TPS7A8101-Q1 [TI]

具有使能功能的汽车类、1A、高 PSRR、可调节低压降稳压器;
TPS7A8101-Q1
型号: TPS7A8101-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类、1A、高 PSRR、可调节低压降稳压器

稳压器
文件: 总28页 (文件大小:1331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
TPS7A8101-Q1 低噪声、宽带宽、高电源抑制比 (PSRR),  
低压降 1A 线性稳压器  
1 特性  
2 应用范围  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
汽车应用中的射频 (RF) 电源  
汽车用高级驾驶员辅助系统 (ADAS) 电子控制单元  
(ECU)  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
远程信息处理控制单元  
音频  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
高速接口 (I/F)(锁相环 (PLL) 和压控振荡器  
(VCO))  
器件充电器件模型 (CDM) ESD 分类等级 C4B  
具有使能功能的低压降 1A 稳压器  
可调节输出电压:0.8V 6V  
宽带宽高 PSRR:  
3 说明  
TPS7A8101-Q1 低压降线性稳压器 (LDO) 在输出噪声  
情况下可提供极佳的性能和电源抑制比 (PSRR)。 这  
LDO 使用一个先进的双极 CMOS (BiCMOS) 工艺  
和一个功率金属氧化物半导体场效应晶体管  
(PMOSFET) 无源器件来实现极低噪音、出色瞬态响应  
和极佳的 PSRR 性能。  
1kHz 时为 80dB  
100kHz 时为 60dB  
1MHz 时为 54dB  
低噪音:23.5μVRMS典型值 (100Hz 至  
100kHz)  
在使用 4.7μF 输出电容时保持稳定  
出色的负载和线路瞬态响应  
TPS7A8101-Q1 器件与 4.7μF 陶瓷输出电容器一起工  
作时保持稳定,并使用一个精确电压基准和反馈环路在  
所有负载、线路、过程和温度变化范围内实现至少 3%  
的精度。  
总体精度 3%(在负载、线路、温度范围内)  
过流和过温保护  
极低压降:1A 时的典型值为 170mV  
这款器件在 TA = -40°C +125°C 的温度范围完全额  
定运行,并采用装有散热焊盘的  
封装方式:3mm x 3mm 小外形尺寸无引线 (SON)-  
8
3mm x 3mm SON-8 封装。  
器件信息(1)  
产品型号  
封装  
SON (8)  
封装尺寸(标称值)  
TPS7A8101-Q1  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用电路  
VI  
VO  
典型电源纹波抑制  
IN  
OUT  
C(IN)  
C(BYPASS)  
100  
90  
80  
70  
60  
50  
R1  
R2  
TPS7A8101-Q1  
EN  
FB/SNS  
NR  
C(OUT)  
GND  
C(NR)  
V(EN)  
40  
IO = 10 mA  
30  
IO = 100 mA  
IO = 750 mA  
20  
IO = 1 A  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
G103  
Frequency (Hz)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCK0  
 
 
 
 
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application .................................................. 13  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
典型应用电路 ........................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
9
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 17  
11.1 Layout Guidelines ................................................. 17  
11.2 Layout Example .................................................... 17  
11.3 Thermal Information.............................................. 18  
12 器件和文档支持 ..................................................... 21  
12.1 文档支持................................................................ 21  
12.2 Trademarks........................................................... 21  
12.3 Electrostatic Discharge Caution............................ 21  
12.4 术语表 ................................................................... 21  
13 机械封装和可订购信息 .......................................... 21  
8
5 修订历史记录  
Changes from Original (April 2014) to Revision A  
Page  
已更改 器件状态从 产品预览 更改为 生产数据 ....................................................................................................................... 1  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
6 Pin Configuration and Functions  
8-Pin SON  
DRB Package  
(Top View)  
OUT  
OUT  
1
2
3
4
8
7
6
5
IN  
IN  
FB/SNS  
GND  
FNBR/SNS  
EN  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
Driving this pin high turns on the regulator. Driving this pin low puts the regulator into shutdown mode. See  
to the Shutdown section for more details. The EN pin must not be left floating and can be connected to the  
IN pin if not used.  
EN  
5
FB/SNS  
GND  
3
4
7
8
This pin is the input to the error amplifier and is used to set the output voltage of the device.  
Ground  
IN  
Unregulated input supply  
Connect an external capacitor between this pin and ground to reduce output noise to very low levels. The  
capacitor also slows down the VO ramp (RC soft start).  
NR  
6
1
2
OUT  
Regulator output. A 4.7-μF or larger ceramic capacitor is required for stability.  
Thermal Pad  
The Thermal Pad should be connected to GND.  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
IN  
7
FB/SNS, NR  
3.6  
VI + 0.3(2)  
7
V
Voltage  
EN  
V
OUT  
V
Current  
OUT  
Internally Limited  
A
Operating junction temperature, TJ  
–55  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods my affect device reliability.  
(2) V(EN) absolute maximum rating is VI + 0.3 V or + 7 V, whichever is smaller.  
7.2 Handling Ratings  
MIN  
–55  
–2  
MAX  
150  
2
UNIT  
°C  
Tstg  
Storage temperature range  
Human body model (HBM), per AEC Q100-002, classification level H2(1)  
kV  
Electrostatic  
discharge  
Corner pins  
(1, 4, 5, and 8)  
V(ESD)  
–750  
–500  
750  
500  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, classification level C4B  
V
Other pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 Specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VI  
IO  
TA  
Input voltage  
2.2  
0
6.5  
1
V
A
Output current  
Operating free air temperature  
–40  
125  
°C  
7.4 Thermal Information  
DRB  
(8 PINS)  
45.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53.1  
21.2  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
21.4  
RθJC(bot)  
5.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953A.  
4
Copyright © 2014, Texas Instruments Incorporated  
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
7.5 Electrical Characteristics  
Over the temperature range of –40°C TA, TJ 125°C, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 1 mA, V(EN)  
=
2.2 V, C(OUT) = 4.7 μF, C(NR) = 0.01 μF, and C(BYPASS) = 0 μF, unless otherwise noted. The device is tested at VO = 0.8 V and  
VO = 6 V. Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
2.2  
TYP  
MAX  
6.5  
UNIT  
VI  
Input voltage range(1)  
Internal reference  
Output voltage range  
V
V
V
V(NR)  
0.79  
0.8  
0.8  
0.81  
6
VO + 0.5 V VI 6 V, VI 2.5 V,  
100 mA IO 500 mA, 0°C TJ 85°C  
–2%  
–3%  
2%  
3%  
VO  
Output accuracy(2)  
VO + 0.5 V VI 6.5 V, VI 2.2 V,  
100 mA IO 1 A  
±0.3%  
VOnom + 0.5 V VI 6.5 V, VI 2.2 V,  
IO = 100 mA  
ΔVO(ΔVI)  
ΔVO(ΔIL)  
Line regulation  
Load regulation  
150  
2
μV/V  
μV/mA  
mV  
100 mA IO 1 A  
VO + 0.5 V VI 6.5 V, VI 2.2 V,  
IO = 500 mA, V(FB/SNS) = GND  
250  
350  
500  
VO + 0.5 V VI 6.5 V, VI 2.5 V,  
IO = 750 mA, V(FB/SNS) = GND  
VDO  
Dropout voltage(3)  
mV  
mV  
VO + 0.5 V VI 6.5 V, VI 2.5 V,  
IO = 1 A, V(FB/SNS) = GND  
IL  
Output current-limit  
Ground pin current  
VO = 0.85 × VOnom, VI 3.3 V  
IO = 1 mA  
1100  
1400  
60  
2000  
100  
mA  
μA  
μA  
I(GND)  
IO = 1 A  
350  
V
(EN) 0.4 V, VI 2.2 V, RL = 1 kΩ,  
IL(sd)  
Shutdown current (I(GND)  
)
0.2  
2.5  
1
μA  
0°C TJ 125°C  
I(FB/SNS)  
Feedback pin current  
VI = 6.5 V, V(FB/SNS) = 0.8 V  
0.02  
80  
μA  
dB  
dB  
dB  
dB  
dB  
ƒ = 100 Hz  
ƒ = 1 kHz  
82  
VI = 4.3 V, VO = 3.3 V,  
IO = 750 mA  
PSRR  
Power-supply rejection ratio  
ƒ = 10 kHz  
ƒ = 100 kHz  
ƒ = 1 MHz  
78  
60  
54  
BW = 100 Hz to 100 kHz,  
VI = 3.8 V, VO = 3.3 V,  
Vn  
Output noise voltage  
Enable high (enabled)  
23.5  
μVRMS  
IO = 100 mA, C(NR) = C(BYPASS) = 470 nF  
2.2 V VI 3.6 V, RL = 1 kΩ  
3.6 V < VI 6.5 V, RL = 1 kΩ  
RL = 1 kΩ  
1.2  
1.35  
0
V
V
V(EN)H  
V(EN)L  
I(EN)  
Enable low (shutdown)  
0.4  
1
V
Enable pin current, enabled  
VI = V(EN) = 6.5 V  
0.02  
80  
μA  
VOnom = 3.3 V, VO = 0% to 90% VOnom  
R1 = 3.3 kΩ, C(OUT) = 10 μF, C(NR) = 470 nF  
,
tst  
Startup time  
ms  
Undervoltage lockout  
Hysteresis  
VI rising, RL = 1 kΩ  
1.86  
2
75  
2.1  
V
UVLO  
VI falling, RL = 1 kΩ  
mV  
°C  
°C  
Shutdown, temperature increasing  
Reset, temperature decreasing  
160  
140  
Tsd  
Thermal shutdown temperature  
(1) Minimum VI = VO + VDO or 2.2 V, whichever is greater.  
(2) The TPS7A8101-Q1 does not include external resistor tolerances and it is not tested at this condition: VO = 0.8 V, 4.5 V VI 6.5 V,  
and 750 mA IO 1 A because the power dissipation is greater than the maximum rating of the package.  
(3) VDO is not measured for fixed output voltage devices with VO < 1.7 V because minimum VI = 2.2 V.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
7.6 Typical Characteristics  
At VOnom = 3.3 V, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 100 mA, V(EN) = VI, C(IN) = 1 μF, C(OUT) = 4.7 μF, and C(NR) = 0.01  
μF; all temperature values refer to TJ, unless otherwise noted.  
3.399  
3.366  
3.333  
3.3  
3.399  
3.366  
3.333  
3.3  
125°C  
85°C  
25°C  
0°C  
125°C  
85°C  
25°C  
0°C  
–40°C  
–40°C  
3.267  
3.234  
3.201  
3.267  
3.234  
3.201  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
0
5
10  
15  
20  
25  
Output Current (mA)  
NOTE: The Y-axis shows 1% VO per division  
NOTE: The Y-axis shows 1% VO per division  
Figure 1. Load Regulation  
Figure 2. Load Regulation Under Light Loads  
0.824  
0.816  
0.818  
0.8  
0.824  
0.816  
0.808  
0.8  
125°C  
85°C  
25°C  
0°C  
125°C  
85°C  
25°C  
0°C  
–40°C  
–40°C  
0.792  
0.784  
0.776  
0.792  
0.784  
0.776  
2.2 2.6  
3
3.4 3.8 4.2 4.6  
5
5.4 5.8 6.2 6.6  
2.2 2.6  
3
3.4 3.8 4.2 4.6  
5
5.4 5.8 6.2 6.6  
Input Voltage (V)  
Input Voltage (V)  
VO = 0.8 V  
IO = 750 mA  
VO = 0.8 V  
IO = 5 mA  
NOTE: The Y-axis shows 1% VO per division  
NOTE: The Y-axis shows 1% VO per division  
Figure 3. Line Regulation  
Figure 4. Line Regulation Under Light Loads  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
125°C  
125°C  
85°C  
25°C  
0°C  
85°C  
25°C  
0°C  
–40°C  
–40°C  
0
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Input Voltage (V)  
Input Voltage (V)  
IO = 1 A  
IO = 750 mA  
Figure 5. Dropout Voltage vs Input Voltage  
Figure 6. Dropout Voltage vs Input Voltage  
6
Copyright © 2014, Texas Instruments Incorporated  
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
At VOnom = 3.3 V, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 100 mA, V(EN) = VI, C(IN) = 1 μF, C(OUT) = 4.7 μF, and  
C(NR) = 0.01 μF; all temperature values refer to TJ, unless otherwise noted.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
125°C  
85°C  
25°C  
0°C  
125°C  
85°C  
25°C  
0°C  
–40°C  
–40°C  
0
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
Input Voltage (V)  
IO = 500 mA  
VI = 3.6 V  
Figure 7. Dropout Voltage vs Input Voltage  
Figure 8. Dropout Voltage vs Load Current  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
IO = 1000 mA  
IO = 750 mA  
IO = 5 mA  
125°C  
85°C  
25°C  
0°C  
–40°C  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2.2 2.6  
3
3.4 3.8 4.2 4.6  
5
5.4 5.8 6.2 6.6  
Input Voltage (V)  
VI = 3.6 V  
VO = 0.8 V  
IO = 750 mA  
Figure 9. Dropout Voltage vs Temperature  
Figure 10. Ground Pin Current vs Input Voltage  
2
1.8  
1.6  
1.4  
1.2  
1
300  
250  
200  
150  
100  
50  
VI = 5 V  
VI = 2.2 V  
VI = 2.5 V  
VI = 3 V  
VI = 5.5 V  
VI = 6 V  
VI = 6.6 V  
VI = 3.3 V  
0.8  
0.6  
0.4  
0.2  
0
125°C  
85°C  
25°C  
0°C  
–40°C  
0
0
100 200 300 400 500 600 700 800 900 1000  
Output Current (mA)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
V(EN) = 0.4 V  
Figure 11. Ground Pin Current vs Load Current  
Figure 12. Shutdown Current vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
At VOnom = 3.3 V, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 100 mA, V(EN) = VI, C(IN) = 1 μF, C(OUT) = 4.7 μF, and  
C(NR) = 0.01 μF; all temperature values refer to TJ, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VI = 2.2 V  
VI = 3.8 V  
VI = 5.5 V  
VI = 6.5 V  
VI VO = 1 V  
VI VO = 0.5 V  
VI VO = 0.3 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
D001  
VO = VI – 0.5 V  
C(NR) = C(BYPASS) = 470 nF  
C(OUT) = 10 µF  
C(IN) = 0 F  
Figure 13. Current-Limit vs Temperature  
Figure 14. PSRR vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
IO = 10 mA  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
IO = 10 mA  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
10  
100  
1000  
10000 100000 1000000 1E+7  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D002  
D003  
VI – VO = 1 V  
C(IN) = 0 F  
C(OUT) = 10 µF  
VI – VO = 0.5 V  
C(IN) = 0 F  
C(OUT) = 10 µF  
C(NR) = C(BYPASS) = 470 nF  
C(NR) = C(BYPASS) = 470 nF  
Figure 15. PSRR vs Frequency  
Figure 16. PSRR vs Frequency  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
30  
20  
10  
IO = 10 mA  
IO = 10 mA  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
30  
20  
10  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
10  
100  
1000  
10000 100000 1000000 1E+7  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D004  
D005  
VI – VO = 1 V  
C(IN) = 0 F  
C(OUT) = 10 µF  
VI – VO = 0.5 V  
C(IN) = 0 F  
C(OUT) = 10 µF  
C(NR) = C(BYPASS) = 470 nF  
C(NR) = C(BYPASS) = 470 nF  
Figure 17. PSRR vs Frequency  
Figure 18. PSRR vs Frequency  
8
Copyright © 2014, Texas Instruments Incorporated  
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
Typical Characteristics (continued)  
At VOnom = 3.3 V, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 100 mA, V(EN) = VI, C(IN) = 1 μF, C(OUT) = 4.7 μF, and  
C(NR) = 0.01 μF; all temperature values refer to TJ, unless otherwise noted.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
ƒ = 1 kHz  
ƒ = 1 kHz  
ƒ = 10 kHz  
ƒ = 100 kHz  
ƒ = 1 MHz  
ƒ = 10 kHz  
ƒ = 100 kHz  
ƒ = 1 MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Dropout Voltage (V)  
Dropout Voltage (V)  
IO = 100 mA  
C(IN) = 0 F  
IO = 750 mA  
C(IN) = 0 F  
Figure 19. PSRR vs Dropout Voltage  
Figure 20. PSRR vs Dropout Voltage  
100  
10  
100  
50  
20  
10  
5
2
1
1
0.5  
0.2  
0.1  
0.1  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
0.05  
C(NR) = C(BYPASS) = 100 nF  
C(NR) = C(BYPASS) = 470 nF  
0.02  
0.01  
0.01  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
D006  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
D007  
VI – VO = 0.5 V  
C(OUT) = 10 µF  
C(IN) = 10 µF  
25.89 µVRMS (VO = 1.8 V)  
23.54 µVRMS (VO = 2.5 V)  
23.54 µVRMS (VO = 3.3 V)  
C(IN) = 10 µF  
C(NR) = 470 nF  
VI – VO = 0.5 V  
24.09 µVRMS (C(NR) = C(BYPASS) = 100 nF)  
23.54 µVRMS (C(NR) = C(BYPASS) = 470 nF)  
C(OUT) = 10 µF  
C(BYPASS) = 470 nF  
Figure 21. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Figure 22. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
100  
10  
1
100  
10  
1
0.1  
0.1  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
CO = 10 µF  
CO = 22 µF  
CO = 100 µF  
0.01  
0.01  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
D008  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
D009  
23.54 µVRMS (IO = 100 mA)  
23.71 µVRMS (IO = 750 mA)  
22.78 µVRMS (IO = 1 A)  
C(IN) = 10 µF  
C(NR) = 470 nF  
VI – VO = 0.5 V  
23.54 µVRMS (CO = 10 µF)  
23.91 µVRMS (CO = 22 µF)  
22.78 µVRMS (CO = 100 µF)  
C(IN) = 10 µF  
C(NR) = 470 nF  
VI – VO = 0.5 V  
C(OUT) = 10 µF  
C(OUT) = 10 µF  
C(BYPASS) = 470 nF  
C(BYPASS) = 470 nF  
Figure 23. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Figure 24. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Copyright © 2014, Texas Instruments Incorporated  
9
 
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
At VOnom = 3.3 V, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 100 mA, V(EN) = VI, C(IN) = 1 μF, C(OUT) = 4.7 μF, and  
C(NR) = 0.01 μF; all temperature values refer to TJ, unless otherwise noted.  
1000  
7
6.5  
6
3.333  
500  
3.32475  
3.3165  
3.30825  
3.3  
VO  
300  
200  
100  
50  
5.5  
5
VI (1V/div)  
30  
20  
4.5  
4
3.29175  
3.2835  
3.27525  
3.267  
10  
5
3
2
3.5  
3
VI  
VO = 1 V  
1
50 ms/div  
10  
20 30 40 50 70 100  
200 300 500 7001000  
C(NR) = C(BYPASS) (nF)  
VI = 3.8 V 4.8 V 3.8 V  
D010  
Using the same value of C(NR) and C(BYPASS) in the X-Axis  
IO = 500 mA  
Figure 25. Startup Time vs Noise Reduction Capacitance  
Figure 26. Line Transient Response  
4.5  
4
3.85  
3.8  
3.75  
3.7  
VI (for reference)  
3.5  
3
EN  
OUT  
2.5  
2
VO  
3.35  
3.3  
2.5  
2
1.5  
1
IO  
3.25  
3.2  
1.5  
1
0.5  
0
3.15  
3.15  
0.5  
0
-0.5  
-0.002  
0
0.002  
0.004  
0.006  
0.008  
Time (50 ms/div)  
C(NR) = 470 nF  
C(IN) = 10 µF  
50 µs/div  
D011  
IO = 100 mA 1 A 100 mA  
RL = 33 Ω  
C(OUT) = 10 µF  
C(BYPASS) = 470 nF  
Figure 27. Load Transient Response  
Figure 28. Enable Pulse Response, see (1) in Figure 29  
6.5  
6
5.5  
5
VI = VEN  
4.5  
4
3.5  
3
VO  
2.5  
2
1.5  
1
0.5  
0
-0.5  
-0.05  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45  
Time (50 ms/div)  
D012  
RL = 33 Ω  
C(NR) = 470 nF  
C(IN) = 10 µF  
C(BYPASS) = 470 nF  
C(OUT) = 10 µF  
(1) The internal reference requires approximately 80 ms of rampup  
time (see Startup) from the enable event; therefore, VO fully reaches  
the target output voltage of 3.3 V in 80 ms from startup.  
Figure 29. Power-Up and Power-Down Response  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
8 Detailed Description  
8.1 Overview  
The TPS7A8101-Q1 device belongs to a family of new-generation LDO regulators that use innovative circuitry to  
achieve wide bandwidth and high loop gain, resulting in extremely high PSRR (over a 1-MHz range) even with  
very low headroom (VI – VO). A noise-reduction capacitor (C(NR)) at the NR pin and a bypass capacitor (C(BYPASS)  
)
decrease noise generated by the bandgap reference in order to improve PSRR, while a quick-start circuit fast-  
charges the noise-reduction capacitor. This family of regulators offers sub-bandgap output voltages, current-limit,  
and thermal protection, and is fully specified from –40°C to 125°C.  
8.2 Functional Block Diagram  
IN  
OUT  
Current-Limit  
EN  
Thermal  
Shutdown  
UVLO  
FB/SNS  
33 kΩ  
Quick-Start  
225 kΩ  
1.2-V  
Band Gap  
NR  
33 kΩ  
15 pF  
0.8 V  
Adjustable  
58.7 kΩ  
TPS7A8101-Q1  
GND  
Figure 30. Functional Block Diagram  
8.3 Feature Description  
8.3.1 Internal Current-Limit  
The TPS7A8101-Q1 internal current-limit helps protect the regulator during fault conditions. During the current-  
limit, the output sources a fixed amount of current that is largely independent of the output voltage. For reliable  
operation, the device should not be operated in a current-limit state for extended periods of time.  
The PMOS pass element in the TPS7A8101-Q1 device has a built-in body diode that conducts current when the  
voltage at the OUT pin (V(OUT)) exceeds the voltage at the IN pin (V(IN)). This current is not limited, so if extended  
reverse-voltage operation is anticipated, external limiting may be appropriate.  
8.3.2 Shutdown  
The enable pin (EN) is active high and is compatible with standard-voltage and low-voltage TTL-CMOS levels.  
When shutdown capability is not required, the EN pin can connect to the IN pin.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Startup  
Through a lower resistance, the bandgap reference can quickly charge the noise-reduction capacitor (C(NR)). The  
TPS7A8101-Q1 device has a quick-start circuit to quickly charge C(NR), if present; see Figure 30. At startup, this  
quick-start switch is closed, with only 33 kΩ of resistance between the bandgap reference and the NR pin. The  
quick-start switch opens approximately 100 ms after any device-enabling event, and the resistance between the  
bandgap reference and the NR pin becomes higher in value (approximately 250 kΩ) to form a very-good low-  
pass (RC) filter. This low-pass filter reduces the noise present on the reference voltage; therefore, reducing the  
noise on the output.  
Inrush current can cause problems in many applications. The 33-kΩ resistance during the startup period is  
intentionally placed between the bandgap reference and the NR pin in order to slow down the reference voltage  
rampup, thus reducing the inrush current.  
Use Equation 1 to calculate the startup time with other C(NR) values. For example, the capacitance of connecting  
the recommended C(NR) value of 0.47 μF along with the 33-kΩ resistance causes an 80-ms RC delay  
(approximately).  
tst (s) = 170000 × C(NR) (F)  
(1)  
Although the noise-reduction effect is nearly saturated at 0.47 μF, connecting a C(NR) value greater than 0.47 μF  
can additionally help reduce noise. However, when connecting a C(NR) value greater than 0.47 µF, the startup  
time is extremely long because the quick-start switch opens after approximately 100 ms. That is, if C(NR) is not  
fully charged during this 100-ms period, C(NR) finishes charging through a higher resistance of 250 kΩ, and takes  
much longer to fully charge.  
NOTE  
A low-leakage capacitor should be used for C(NR). Most ceramic capacitors are suitable  
8.3.4 Undervoltage Lockout (UVLO)  
The TPS7A8101-Q1 device uses an undervoltage-lockout (UVLO) circuit to ensure that the output is shut off until  
the internal circuitry has enough voltage to operate properly. The UVLO circuit has a deglitch feature so that the  
circuit typically ignores undershoot transients on the input if the duration is less than 50-μs.  
8.4 Device Functional Modes  
Driving the EN pin over 1.2 V for VI between 2.2 V to 3.6 V or 1.35 V for VI between 3.6 V and 6.5 V turns on the  
regulator. Driving the EN pin below 0.4 V causes the regulator to enter shutdown mode.  
In shutdown, the current consumption of the device is reduced to 0.02 µA typically.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
9 Application and Implementation  
9.1 Application Information  
The TPS7A8101-Q1 device belongs to a family of new-generation LDO regulators that use innovative circuitry to  
achieve wide bandwidth and high loop gain, resulting in extremely high PSRR (over a 1-MHz range) even with  
very low headroom (VI – VO). A noise-reduction capacitor (C(NR)) at the NR pin and a bypass capacitor (C(BYPASS)  
)
decrease noise generated by the bandgap reference in order to improve PSRR, while a quick-start circuit fast-  
charges the noise-reduction capacitor. This family of regulators offers sub-bandgap output voltages, current-limit,  
and thermal protection, and is fully specified from –40°C to 125°C.  
9.2 Typical Application  
Figure 31 shows the connections for the device.  
VI  
VO  
IN  
OUT  
R1  
R2  
C(BYPASS)  
C(IN)  
TPS7A8101-Q1  
EN  
FB/SNS  
NR  
GND  
C(OUT)  
C(NR)  
V(EN)  
Figure 31. Typical Application Circuit  
The voltage on the FB pin sets the output voltage and is determined by the values of the resistors R1 and R2.  
Use Equation 2 to calculate the values of R1 and R2 any voltage.  
R1+ R2  
(
)
VO  
=
´ 0.8  
R2  
(2)  
Table 1 lists sample resistor values for common output voltages. In Table 1, E96 series resistors are used, and  
all values meet 1% of the target VO, assuming resistors with zero error. For the actual design, pay attention to  
any resistor error-factors. Using lower values for R1 and R2 reduces the noise injected into the FB pin.  
9.2.1 Design Requirements  
9.2.1.1 Dropout Voltage  
The TPS7A8101-Q1 device uses a PMOS pass transistor to achieve low dropout. When (VI – VOnom) is less than  
the dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output  
resistance is the rDS(on) of the PMOS pass element. VDO is proportional to the output current because the PMOS  
device in dropout functions in the same way as a resistor.  
As with any linear regulator, PSRR and transient responses are degraded as (VI – VO) approaches dropout.  
Figure 19 and Figure 20 in the Typical Characteristics section shown this effect.  
9.2.1.2 Minimum Load  
The TPS7A8101-Q1 device is stable and functions well with no output load. Traditional PMOS-LDO regulators  
suffer from lower loop gain at very light output loads. The TPS7A8101-Q1 device employs an innovative low-  
current mode circuit to increase loop gain under very light or no-load conditions, resulting in improved output  
voltage regulation performance down to zero output current.  
9.2.1.3 Input And Output Capacitor Requirements  
Although an input capacitor is not required for stability, connecting a 0.1-µF to 1-µF low-equivalent series-  
resistance (ESR) capacitor from the input supply near the regulator to ground is good analog-design practice.  
This capacitor counteracts reactive input sources and improves transient response and ripple rejection. A higher-  
value capacitor may be necessary if large, fast load transients are anticipated or if the device is located several  
inches from the power source. If source impedance is not sufficiently low, a 0.1-μF input capacitor may be  
necessary to ensure stability.  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
 
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
Typical Application (continued)  
The TPS7A8101-Q1 device is designed to be stable with standard ceramic capacitors of capacitance values 4.7  
μF or larger. This device was evaluated using a 10-μF ceramic capacitor of 10-V rating, 10% tolerance, X5R  
type, and 0805 size (2 mm × 1,25 mm).  
X5R-type and X7R-type capacitors are highly recommended because they have minimal variation in capacitance  
and ESR over temperature. The maximum ESR should be less than 1 .  
Table 1. Recommended Feedback Resistor Values for Common Output Voltages  
VO  
R1  
R2  
0.8 V  
1 V  
0 Ω (Short)  
2.49 kΩ  
4.99 kΩ  
8.87 kΩ  
12.5 kΩ  
21 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5 V  
30.9 kΩ  
52.3 kΩ  
Table 2. Recommended Capacitor Values  
NAME  
DESCRIPTION  
VALUE  
C(NR)  
Noise-reduction capacitor between the NR and  
GND pins  
470 nF  
C(BYPASS)  
C(OUTPUT)  
C(IN)  
Noise-reduction capacitor across R1  
Output capacitor  
470 nF  
10 µF  
10 µF  
Input capacitor  
9.2.1.4 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude  
but increases the duration of the transient response. Using a larger noise-reduction capacitor (C(NR)), bypass  
capacitor (C(BYPASS)), or both types of capacitors can improve line-transient performance.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Noise  
In most LDOs, the bandgap is the dominant noise source. If a noise reduction capacitor (C(NR)) is used with the  
TPS7A8101-Q1 device, the bandgap does not contribute significantly to noise. Instead, noise is dominated by  
the output resistor-divider and the error-amplifier input. If a bypass capacitor (C(BYPASS)) across the high-side  
feedback resistor (R1) is used with the TPS7A8101-Q1 device, noise from these other sources can also be  
significantly reduced.  
To maximize noise performance in a given application, use a 0.47-μF noise-reduction capacitor plus a 0.47-μF  
bypass capacitor.  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
9.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
IO = 10 mA  
30  
VI VO = 1 V  
VI VO = 0.5 V  
VI VO = 0.3 V  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
20  
10  
10  
100  
1000  
10000 100000 1000000 1E+7  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
D001  
D002  
C(NR) = C(BYPASS) = 470 nF  
C(OUT) = 10 µF  
C(IN) = 0 F  
VI – VO = 1 V  
C(IN) = 0 F  
C(OUT) = 10 µF  
C(NR) = C(BYPASS) = 470 nF  
Figure 32. PSRR vs Frequency  
Figure 33. PSRR vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
IO = 10 mA  
0.05  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
C(NR) = C(BYPASS) = 100 nF  
C(NR) = C(BYPASS) = 470 nF  
0.02  
0.01  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
D006  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
D003  
VI – VO = 0.5 V  
C(OUT) = 10 µF  
C(IN) = 10 µF  
VI – VO = 0.5 V  
C(IN) = 0 F  
C(OUT) = 10 µF  
24.09 µVRMS (C(NR) = C(BYPASS) = 100 nF)  
23.54 µVRMS (C(NR) = C(BYPASS) = 470 nF)  
C(NR) = C(BYPASS) = 470 nF  
Figure 35. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Figure 34. PSRR vs Frequency  
100  
10  
100  
10  
1
1
0.1  
0.1  
IO = 100 mA  
IO = 750 mA  
IO = 1 A  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
0.01  
0.01  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
D008  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
D007  
23.54 µVRMS (IO = 100 mA)  
23.71 µVRMS (IO = 750 mA)  
22.78 µVRMS (IO = 1 A)  
C(IN) = 10 µF  
C(NR) = 470 nF  
VI – VO = 0.5 V  
25.89 µVRMS (VO = 1.8 V)  
23.54 µVRMS (VO = 2.5 V)  
23.54 µVRMS (VO = 3.3 V)  
C(IN) = 10 µF  
C(NR) = 470 nF  
VI – VO = 0.5 V  
C(OUT) = 10 µF  
C(OUT) = 10 µF  
C(BYPASS) = 470 nF  
C(BYPASS) = 470 nF  
Figure 36. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Figure 37. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
100  
10  
1
1000  
500  
300  
200  
100  
50  
30  
20  
10  
0.1  
5
CO = 10 µF  
CO = 22 µF  
CO = 100 µF  
0.01  
3
2
VI VO = 1 V  
1
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
10  
20 30 40 50 70 100  
200 300 500 7001000  
C(NR) = C(BYPASS) (nF)  
D009  
D010  
23.54 µVRMS (CO = 10 µF)  
23.91 µVRMS (CO = 22 µF)  
22.78 µVRMS (CO = 100 µF)  
C(IN) = 10 µF VI – VO = 0.5 V  
Using the same value of C(NR) and C(BYPASS) in the X-Axis  
C(NR) = 470 nF  
C(OUT) = 10 µF  
C(BYPASS) = 470 nF  
Figure 38. Output Spectral Noise Density vs Frequency  
(RMS noise (100 Hz to 100 kHz))  
Figure 39. Startup Time vs Noise Reduction Capacitance  
3.85  
7
6.5  
6
3.333  
3.8  
3.75  
3.7  
3.32475  
3.3165  
3.30825  
3.3  
VO  
VI (for reference)  
5.5  
5
VI (1V/div)  
VO  
3.35  
3.3  
2.5  
2
4.5  
4
3.29175  
3.2835  
3.27525  
3.267  
IO  
3.25  
3.2  
1.5  
1
3.5  
3
3.15  
3.15  
0.5  
0
50 ms/div  
50 µs/div  
VI = 3.8 V 4.8 V 3.8 V  
IO = 100 mA 1 A 100 mA  
IO = 500 mA  
Figure 40. Line Transient Response  
Figure 41. Load Transient Response  
4.5  
6.5  
6
4
3.5  
3
5.5  
5
EN  
VI = VEN  
4.5  
4
OUT  
2.5  
2
3.5  
3
VO  
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.05  
-0.5  
-0.002  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45  
Time (50 ms/div)  
0
0.002  
0.004  
0.006  
0.008  
Time (50 ms/div)  
C(NR) = 470 nF  
C(IN) = 10 µF  
D012  
D011  
RL = 33 Ω  
C(NR) = 470 nF  
C(IN) = 10 µF  
C(BYPASS) = 470 nF  
RL = 33 Ω  
C(OUT) = 10 µF  
C(BYPASS) = 470 nF  
C(OUT) = 10 µF  
(1) The internal reference requires approximately 80 ms of  
rampup time (see Startup) from the enable event; therefore, VO  
fully reaches the target output voltage of 3.3 V in 80 ms from  
startup.  
Figure 42. Enable Pulse Response, See (1) in Figure 43  
Figure 43. Power-Up and Power-Down Response  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.2 V and 6.5 V. The input  
voltage range should provide adequate headroom in order for the device to have a regulated output. This input  
supply should be well regulated. If the input supply is noisy, additional input capacitors with low ESR can help  
improve the output noise performance.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Board Layout Recommendations To Improve PSRR And Noise Performance  
To improve AC performance such as PSRR, output noise, and transient response, designing with separate  
ground planes for VI and VO, with each ground plane connected only at the GND pin of the device, is  
recommended. In addition, the ground connection for the noise-reduction capacitor should connect directly to the  
GND pin of the device.  
High ESR capacitors may degrade PSRR.  
11.2 Layout Example  
GND  
R2  
C(NR)  
R1  
C(IN)  
C(OUT)  
C(BYPASS)  
VI  
GND  
VO  
Figure 44. TPS7A8101-Q1 Layout Example  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
11.3 Thermal Information  
11.3.1 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the  
device to cool. When the junction temperature cools to approximately 140°C the output circuitry is again enabled.  
Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage because of  
overheating.  
Any activation of the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink.  
For reliable operation, junction temperature should be limited to 125°C (maximum). To estimate the margin of  
safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is  
triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should trigger at  
least 35°C above the maximum expected ambient condition of your particular application. This configuration  
produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-  
case load.  
The internal protection circuitry of the TPS7A8101-Q1 device has been designed to protect against overload  
conditions. The internal thermal protection circuitry was not intended to replace proper heatsinking. Continuously  
running the TPS7A8101-Q1 device into thermal shutdown degrades device reliability.  
11.3.2 Package Mounting  
See the 机械封装和可订购信息 section for solder pad footprint recommendations and recommended land  
patterns.  
11.3.3 Power Dissipation  
Knowing the device power dissipation and proper sizing of the thermal plane that is connected to the tab or pad  
is critical to avoiding thermal shutdown and ensuring reliable operation.  
The power dissipation of the device depends on input voltage and load conditions. To calculate the device power  
dissipation, use Equation 3.  
PD = (VI – VO) × IO  
(3)  
Using the lowest possible input voltage necessary to achieve the required output voltage regulation minimizes  
power dissipation and achieves greater efficiency.  
On the SON (DRB) package, the primary conduction path for heat is through the exposed pad to the printed  
circuit board (PCB). The pad can be connected to ground or can be left floating; however, the pad should be  
attached to an appropriate amount of copper PCB area to ensure the device does not overheat. The maximum  
junction-to-ambient thermal resistance depends on the maximum ambient temperature, maximum device junction  
temperature, and power dissipation of the device. Calculate the maximum junction-to-ambient thermal resistance  
using Equation 4.  
125°C - T  
(
)
A
RqJA  
=
PD  
(4)  
Once the maximum RθJA value is calculated, use Figure 45 to estimate the minimum amount of PCB copper area  
needed for appropriate heatsinking.  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
Thermal Information (continued)  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
Board Copper Area (in2)  
Note: The RθJA value at board size of 9 in2 (that is, 3 in × 3 in) is a JEDEC standard.  
Figure 45. RθJA vs Board Size  
Figure 45 shows the variation of RθJA as a function of ground plane copper area in the board. Figure 45 is  
intended as a guideline only to demonstrate the effects of heat spreading in the ground plane and should not be  
used to estimate actual thermal performance in real application environments.  
NOTE  
When the device is mounted on an application PCB, using ΨJT and ΨJB, as explained in  
the section is strongly recommended.  
11.3.4 Estimating Junction Temperature  
Using the thermal metrics ΨJT and ΨJB, as shown in the Thermal Information table, the junction temperature can  
be estimated with the corresponding equations, Equation 5 and Equation 6. For backwards compatibility, an  
older θJC,Top parameter is listed as well.  
φJT: TJ = TT + φJT × PD  
where  
PD is the power dissipation (see Equation 4)  
TT is the temperature at the center-top of the IC package  
(5)  
(6)  
φJB: TJ = TB + φJB × PD  
where  
TB is the PCB temperature measured 1-mm away from the IC package on the PCB surface as shown in  
Figure 46  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
 
 
TPS7A8101-Q1  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
www.ti.com.cn  
Thermal Information (continued)  
TT on top  
of IC surface  
TB  
TB on PCB  
TT  
1 mm  
1 mm  
Figure 46. Measuring Points for TT and TB  
NOTE  
Both TT and TB can be measured on actual application boards using an infrared  
thermometer.  
For more information about measuring TT and TB, see TI's application report SBVA025, Using New Thermal  
Metrics.  
As shown in Figure 47, the new thermal metrics (ΨJT and ΨJB) have very little dependency on board size. That  
is, using ΨJT or ΨJB with Equation 5 is a good way to estimate TJ by simply measuring TT or TB, regardless of the  
application board size.  
20  
18  
ΨJB  
16  
14  
12  
10  
8
6
ΨJT  
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
Board Copper Area (in2)  
Figure 47. ΨJT and ΨJB vs Board Size  
For a more detailed discussion of why TI does not recommend using RθJC(top) to determine thermal  
characteristics, refer to TI's application report SBVA025, Using New Thermal Metrics. For further information,  
refer to TI's application report SPRA953, IC Package Thermal Metrics.  
20  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS7A8101-Q1  
www.ti.com.cn  
ZHCSBR4A APRIL 2014REVISED JUNE 2014  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
LDO 噪声详细检查》SLYT489  
LDO 在接近压降电压时的性能》, SBVA029  
TPS7A8101EVM 评估模块SLVU600  
LDO 的宽带宽 PSRR 作者 Nogawa Van Renterghem Bodo's Power Systems®:运动和转换中的电子元器  
2011 3 月  
12.2 Trademarks  
Bodo's Power Systems is a registered trademark of Arlt Bodo.  
All other trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
21  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A8101QDRBRQ1  
ACTIVE  
SON  
DRB  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
SLY  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DRB0008A  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
1.5 0.1  
4X (0.23)  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
4
5
2X  
1.95  
1.75 0.1  
8
1
6X 0.65  
0.37  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
(0.65)  
0.05  
0.5  
0.3  
8X  
4218875/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
(0.65)  
SYMM  
8X (0.6)  
(0.825)  
8
8X (0.31)  
1
SYMM  
(1.75)  
(0.625)  
6X (0.65)  
4
5
(R0.05) TYP  
(
0.2) VIA  
(0.23)  
TYP  
(0.5)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218875/A 01/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.65)  
4X (0.23)  
SYMM  
METAL  
TYP  
8X (0.6)  
4X  
(0.725)  
8
1
8X (0.31)  
(2.674)  
(1.55)  
SYMM  
6X (0.65)  
4
5
(R0.05) TYP  
(1.34)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218875/A 01/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7A8101DRBR

Low-Noise, Wide-Bandwidth, High PSRR, Low-Dropout 1-A Linear Regulator
TI

TPS7A8101DRBT

Low-Noise, Wide-Bandwidth, High PSRR, Low-Dropout 1-A Linear Regulator
TI

TPS7A8101QDRBRQ1

具有使能功能的汽车类、1A、高 PSRR、可调节低压降稳压器 | DRB | 8 | -40 to 125
TI

TPS7A8300

2-A, 6-VRMS, RF, LDO Voltage Regulator
TI

TPS7A8300ARGRR

具有电源正常指示功能的 2A、低输入电压 (1.1V)、低噪声、高精度、超低压降稳压器 | RGR | 20 | -40 to 125
TI

TPS7A8300ARGRT

具有电源正常指示功能的 2A、低输入电压 (1.1V)、低噪声、高精度、超低压降稳压器 | RGR | 20 | -40 to 125
TI

TPS7A8300ARGWR

具有电源正常指示功能的 2A、低输入电压 (1.1V)、低噪声、高精度、超低压降稳压器 | RGW | 20 | -40 to 125
TI

TPS7A8300ARGWT

具有电源正常指示功能的 2A、低输入电压 (1.1V)、低噪声、高精度、超低压降稳压器 | RGW | 20 | -40 to 125
TI

TPS7A8300RGRR

2-A, 6-VRMS, RF, LDO Voltage Regulator
TI

TPS7A8300RGRT

2-A, 6-VRMS, RF, LDO Voltage Regulator
TI

TPS7A8300RGWR

2-A, 6-VRMS, RF, LDO Voltage Regulator
TI

TPS7A8300RGWT

2-A, 6-VRMS, RF, LDO Voltage Regulator
TI