TPS7A9001DSKT [TI]

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125;
TPS7A9001DSKT
型号: TPS7A9001DSKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

500mA、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125

稳压器
文件: 总32页 (文件大小:2699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7A90  
ZHCSGH9 JUNE 2017  
TPS7A90  
500mA 高精度、低噪声 LDO 电压稳压器  
1 特性  
3 说明  
1
整个线路、负载和温度范围内的精度达 1.0%  
TPS7A90 器件是一款低噪声 (4.7µVRMS)、低压降  
(LDO) 电压稳压器,能够仅仅通过 100mV 200mV  
的最大压降将 500mA 的电流分别转换为 5V 5.7V。  
低输出噪声:4.7µVRMS (10Hz–100kHz)  
低压降:0.5A 电流时为 100mV(最大值)  
宽输入电压范围:1.4V 6.5V  
宽输出电压范围:0.8V 5.7V  
高电源抑制比 (PSRR):  
TPS7A90 输出可通过外部电阻器在 0.8V 5.7V 范围  
内进行调节。TPS7A90 的宽输入电压范围支持其在  
1.4V 6.5V 范围内的电压下工作。  
直流时为 60dB  
TPS7A90 的输出电压精度(整个线路、负载和温度范  
围内)达 1%,并且可通过软启动功能减少浪涌电流,  
因此非常适合为敏感类模拟低压器件 [例如,压控振荡  
(VCO)、模数转换器 (ADC) 和数模转换器 (DAC)]  
供电。  
100kHz 时为 50dB  
1MHz 时为 30dB  
快速瞬态响应  
通过可选软启动充电电流实现可调节的启动浪涌控  
开漏电源正常 (PG) 输出  
θJC = 3.2ºC/W  
TPS7A90 旨在为高速通信、视频、医疗或测试和测量  
应用等中的噪声敏感类组件 供电。极低的 4.7µVRMS  
输出噪声和宽带 PSRR1MHz 时为 30dB)可最大限  
度地减少相位噪声和时钟抖动。这些 特性 最大限度提  
升了计时器件、ADC DAC 的性能。  
2.5mm × 2.5mm 10 引脚 WSON 封装  
2 应用  
高速模拟电路:  
器件信息(1)  
压控振荡器 (VCO)、模数转换器 (ADC)、数模  
转换器 (DAC) 以及低压差分信令 (LVDS)  
器件型号  
TPS7A90  
封装  
封装尺寸(标称值)  
WSON (10)  
2.50mm x 2.50mm  
成像:互补金属氧化物半导体 (CMOS) 传感器,视  
频专用集成电路 (ASIC)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
测试和测量  
仪器仪表、医疗和音频  
数字负载:串化解串器 (SerDes),现场可编程栅极  
阵列 (FPGA)DSP  
典型应用电路  
典型应用图  
TPS7A90  
ENABLE  
2.0 V  
IN  
OUT  
FB  
1.2 V  
COUT  
10 F  
CIN  
10 mF  
R1 5.9 kW  
LMK03328  
LMX2581  
Clock  
EN  
PG  
VIN  
EN  
IN  
CIN  
OUT  
VDD_VCO  
SS_CTRL  
NR/SS  
CFF 10 nF  
VOUT  
COUT  
R2  
TPS7A90  
11.8 kW  
CNR/SS  
RPG  
0.1 mF  
20 kW  
EN  
PG  
PG  
GND  
GND  
VDD  
SCLK  
ADC3xxx  
ADC3xJxx  
Copyright © 2017, Texas Instruments Incorporated  
ADC3xJBxx  
ADS4xxBxx  
ADS5xJxx  
ADC  
ADS12Jxxxx  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS324  
 
 
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application .................................................. 21  
Power Supply Recommendations...................... 22  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 16  
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 器件支持 ............................................................... 24  
11.2 文档支持................................................................ 24  
11.3 接收文档更新通知 ................................................. 24  
11.4 社区资源................................................................ 25  
11.5 ....................................................................... 25  
11.6 静电放电警告......................................................... 25  
11.7 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注意  
2017 6 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
5 Pin Configuration and Functions  
DSK Package  
2.5-mm × 2.5-mm, 10-Pin WSON  
Top View  
OUT  
OUT  
FB  
1
2
3
4
5
10  
9
IN  
IN  
Thermal  
Pad  
8
NR/SS  
EN  
GND  
PG  
7
6
SS_CTRL  
Not to scale  
Pin Functions  
PIN  
NAME  
NO.  
I/O  
DESCRIPTION  
Enable pin. This pin turns the LDO on and off. If VEN VIH(EN), the regulator is enabled. If VEN VIL(EN)  
the regulator is disabled. The EN pin must be connected to IN if the enable function is not used.  
,
EN  
FB  
7
I
Feedback pin.  
3
I
This pin is the input to the control loop error amplifier and is used to set the output voltage of the device.  
GND  
IN  
4
I
Device GND. Connect to the device thermal pad.  
9, 10  
Input pin. A 10-µF or greater input capacitor is required.  
Noise reduction pin.  
NR/SS  
8
Connect this pin to an external capacitor to bypass the noise generated by the internal band-gap reference. The  
capacitor reduces the output noise to very low levels and sets the output ramp rate to limit in-rush current.  
OUT  
PG  
1, 2  
5
O
O
Regulated output. A 10-µF or greater capacitor must be connected from this pin to GND for stability.  
Open-drain, power-good indicator pin for the LDO output voltage. A 10-kΩ to 100-kΩ external pullup resistor is  
required. This pin can be left floating or connected to GND if not used.  
Soft-start control pin. Connect this pin either to GND or IN to change the NR/SS capacitor charging current.  
If a CNR/SS capacitor is not used, SS_CTRL must be connected to GND to avoid output overshoot.  
SS_CTRL  
6
I
Thermal pad  
Pad  
Connect the thermal pad to the printed circuit board (PCB) ground plane. For an example layout, see 42.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range and all voltages with respect to GND (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
IN, PG, EN  
7.0  
7.5  
IN, PG, EN (5% duty cycle, pulse duration 200 µs)  
Voltage  
OUT  
VIN + 0.3  
VIN + 0.3  
3.6  
V
SS_CTRL  
NR/SS, FB  
OUT  
Internally limited  
A
Current  
PG (sink current into the device)  
Operating junction, TJ  
Storage, Tstg  
5
mA  
°C  
°C  
–55  
–55  
150  
150  
Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
1.4  
0.8  
0
MAX  
6.5  
UNIT  
VIN  
Input supply voltage range  
Output voltage range  
Output current  
V
V
VOUT  
IOUT  
CIN  
5.7  
0.5  
A
Input capacitor  
10  
10  
0
µF  
µF  
µF  
nF  
kΩ  
°C  
COUT  
CNR/SS  
CFF  
Output capacitor  
Noise-reduction capacitor  
Feedforward capacitor  
Power-good pullup resistance  
Junction temperature  
10  
100  
100  
125  
0
RPG  
TJ  
10  
–40  
6.4 Thermal Information  
TPS7A90  
THERMAL METRIC(1)  
DSK (SON)  
10 PINS  
56.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
46.3  
29.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
29.4  
RθJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
6.5 Electrical Characteristics  
over operating temperature range (TJ = –40°C to +125°C), 1.4 V VIN 6.5 V, VOUT(NOM) = 0.8 V, IOUT = 5 mA, VEN = 1.4 V,  
CIN = COUT = 10 μF, CNR/SS = CFF = 0 nF, SS_CTRL = GND, and PG pin pulled up to VIN with 100 kΩ (unless otherwise  
noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input supply voltage range  
Reference voltage  
1.4  
6.5  
V
VREF  
0.8  
1.31  
290  
V
VUVLO  
VHYS(UVLO)  
Input supply UVLO  
VIN rising  
1.39  
V
Input supply UVLO hysteresis  
Output voltage range  
Output voltage accuracy(1)  
Line regulation  
mV  
V
0.8  
5.7  
VOUT  
1.4 V VIN 6.5 V, 5 mA IOUT 0.5 A  
–1.0%  
1.0%  
ΔVOUT(ΔVIN)  
0.005  
0.02  
%/V  
%/A  
ΔVOUT(ΔIOUT)  
Load regulation(2)  
5 mA IOUT 0.5 A  
1.4 V VIN 5.0 V, IOUT = 0.5 A, VFB = 0.8 V – 3%  
5.0 V < VIN 5.7 V, IOUT = 0.5 A, VFB = 0.8 V – 3%  
100  
200  
VDO  
Dropout voltage  
Output current limit  
GND pin current  
mV  
A
VOUT forced at 0.9 × VOUT(NOM)  
VIN = VOUT(NOM) + 300 mV  
,
ILIM  
0.8  
1.1  
2.1  
1.5  
VIN = 6.5 V, IOUT = 5 mA  
VIN = 1.4 V, IOUT = 0.5 A  
3.5  
4
IGND  
mA  
ISDN  
IEN  
Shutdown GND pin current  
EN pin current  
PG = (open), VIN = 6.5 V, VEN = 0.4 V  
0.1  
15  
0.2  
µA  
µA  
VIN = 6.5 V, 0 V VEN 6.5 V  
–0.2  
0
EN pin low-level input voltage  
(device disabled)  
VIL(EN)  
0.4  
V
EN pin high-level input voltage  
(device enabled)  
VIH(EN)  
ISS_CTRL  
VIT(PG)  
1.1  
–0.2  
82%  
6.5  
0.2  
V
SS_CTRL pin current  
PG pin threshold  
VIN = 6.5 V, 0 V VSS_CTRL 6.5 V  
µA  
For PG transitioning low with falling VOUT, expressed as  
a percentage of VOUT(NOM)  
88.9%  
1%  
93%  
For PG transitioning high with rising VOUT, expressed as  
a percentage of VOUT(NOM)  
VHYS(PG)  
PG pin hysteresis  
VOL(PG)  
ILKG(PG)  
PG pin low-level output voltage VOUT < VIT(PG), IPG = –1 mA (current into device)  
0.4  
1
V
PG pin leakage current  
VOUT > VIT(PG), VPG = 6.5 V  
VNR/SS = GND, VSS_CTRL = GND  
VNR/SS = GND, VSS_CTRL = VIN  
VIN = 6.5 V, VFB = 0.8 V  
µA  
4.0  
65  
6.2  
9.0  
150  
100  
INR/SS  
NR/SS pin charging current  
µA  
100  
IFB  
FB pin leakage current  
–100  
nA  
dB  
f = 500 kHz, VIN = 3.8 V, VOUT(NOM) = 3.3 V,  
IOUT = 250mA, CNR/SS = 10 nF, CFF = 10 nF  
PSRR  
Power-supply ripple rejection  
39  
4.7  
13  
BW = 10 Hz to 100 kHz, VIN = 1.8 V, VOUT(NOM) = 0.8 V,  
IOUT = 0.5 A, CNR/SS = 10 nF, CFF = 10 nF  
Vn  
Output noise voltage  
Noise spectral density  
µVRMS  
nV/Hz  
Ω
f = 10 kHz, VIN = 1.8 V, VOUT(NOM) = 0.8 V,  
IOUT = 0.5 A, CNR/SS = 10 nF, CFF = 10 nF  
Output active discharge  
resistance  
Rdiss  
VEN = GND  
250  
Shutdown, temperature increasing  
Reset, temperature decreasing  
160  
140  
Tsd  
Thermal shutdown temperature  
°C  
(1) When the device is connected to external feedback resistors at the FB pin, external resistor tolerances are not included.  
(2) The device is not tested under conditions where VIN > VOUT + 2.5 V and IOUT = 0.5 A because the power dissipation is higher than the  
maximum rating of the package. Also, this accuracy specification does not apply on any application condition that exceeds the power  
dissipation limit of the package under test.  
版权 © 2017, Texas Instruments Incorporated  
5
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
at TJ = 25°C, 1.4 V VIN 6.5 V, VIN VOUT(NOM) + 0.3 V, VOUT = 0.8 V, SS_CTRL = GND, IOUT = 5 mA, VEN = 1.1 V, COUT  
10 μF, CNR/SS = CFF = 0 nF, PG pin pulled up to VOUT with 100 kΩ, and SS_CTRL = GND (unless otherwise noted)  
=
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
VIN  
1.4 V  
1.5 V  
1.7 V  
2.0 V  
VIN  
1.4 V  
1.5 V  
1.8 V  
2.2 V  
2.5 V  
3.0 V  
2.0 V  
2.5 V  
3.0 V  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 0.8 V, IOUT = 500 mA, COUT = 10 µF,  
CNR/SS = CFF = 10 nF  
VOUT = 1.2 V, IOUT = 500 mA, COUT = 10 µF,  
CNR/SS = CFF = 10 nF  
1. PSRR vs Frequency and Input Voltage  
2. PSRR vs Frequency and Input Voltage  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
VIN  
VIN  
3.5 V  
3.6 V  
3.7 V  
3.8 V  
4.0 V  
4.3 V  
5.2 V  
5.3 V  
5.4 V  
5.5 V  
6 V  
6.5 V  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 3.3 V, IOUT = 500 mA, COUT = 10 µF,  
CNR/SS = CFF = 10 nF  
VOUT = 5 V, IOUT = 500 mA, COUT = 10 µF,  
CNR/SS = CFF = 10 nF  
3. PSRR vs Frequency and Input Voltage  
4. PSRR vs Frequency and Input Voltage  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 250 mA  
IOUT = 500 mA  
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 250 mA  
IOUT = 500 mA  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 1.2 V, VIN = VEN = 1.5 V, COUT = 10 µF,  
CNR/SS = CFF = 10 nF  
VOUT = 3.3 V, VIN = VEN = 3.6 V, COUT = 10 µF,  
CNR/SS = CFF = 10 nF  
5. PSRR vs Frequency and Output Current  
6. PSRR vs Frequency and Output Current  
6
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VIN 6.5 V, VIN VOUT(NOM) + 0.3 V, VOUT = 0.8 V, SS_CTRL = GND, IOUT = 5 mA, VEN = 1.1 V, COUT  
10 μF, CNR/SS = CFF = 0 nF, PG pin pulled up to VOUT with 100 kΩ, and SS_CTRL = GND (unless otherwise noted)  
=
70  
60  
50  
40  
30  
20  
10  
0
10  
VOUT  
0.8 V, 4.7 mVRMS  
1.2 V, 5.3 mVRMS  
1.8 V, 6.5 mVRMS  
3.3 V, 9.2 mVRMS  
5 V, 12.2 mVRMS  
1
0.1  
0.01  
CNR = Open  
CNR = 10 nF  
CNR = 100 nF  
CNR = 1 uF  
CNR = 10 uF  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 1.2 V, VIN = VEN = 1.7 V, IOUT = 500 mA, COUT = 10 µF,  
CFF = 10 nF  
VIN = VOUT + 1.0 V, IOUT = 500 mA, CIN = COUT = 10 µF,  
CNR/SS = CFF = 10 nF, VRMS BW = 10 Hz to 100 kHz  
7. PSRR vs Frequency and CNR/SS  
8. Spectral Noise Density vs Frequency and  
Output Voltage  
10  
10  
CNR  
CFF  
None, 10.5 mVRMS  
10 nF, 5.2 mVRMS  
100 nF, 4.8 mVRMS  
1 mF, 4.7 mVRMS  
10µF, 4.7 mVRMS  
None, 7.7 mVRMS  
10 nF, 5.0 mVRMS  
100 nF, 5.2 mVRMS  
1
0.1  
1
0.1  
0.01  
0.01  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VIN = 2.2 V, VOUT = 1.2 V, IOUT = 500 mA, CIN = COUT = 10 µF,  
CFF = 10 nF, VRMS BW = 10 Hz to 100 kHz  
VIN = 2.2 V, VOUT = 1.2 V, IOUT = 500 mA, CIN = COUT = 10 µF,  
CNR/SS = 10 nF, VRMS BW = 10 Hz to 100 kHz  
10. Spectral Noise Density vs Frequency and CFF  
9. Spectral Noise Density vs Frequency and CNR/SS  
10  
1.6  
COUT  
Temperature  
10 mF, 5.2 mVRMS  
-40èC  
0èC  
25èC  
85èC  
125èC  
1.5  
1.4  
1.3  
1.2  
1.1  
1
22 mF, 5.2 mVRMS  
100 mF, 6 mVRMS  
1
0.1  
0.01  
0.9  
0.8  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100  
200  
300  
400  
500  
600  
700  
800  
Frequency (Hz)  
Output Voltage (mV)  
VIN = 2.2 V, VOUT = 1.2 V, IOUT = 500 mA, CIN = 10 µF,  
CNR/SS = CFF = 10 nF, VRMS BW = 10 Hz to 100 kHz  
VIN = 1.4 V, VOUT = 0.8 V  
11. Spectral Noise Density vs Frequency and COUT  
12. Current Limit Foldback  
版权 © 2017, Texas Instruments Incorporated  
7
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VIN 6.5 V, VIN VOUT(NOM) + 0.3 V, VOUT = 0.8 V, SS_CTRL = GND, IOUT = 5 mA, VEN = 1.1 V, COUT  
10 μF, CNR/SS = CFF = 0 nF, PG pin pulled up to VOUT with 100 kΩ, and SS_CTRL = GND (unless otherwise noted)  
=
1.4  
1.35  
1.3  
100  
80  
60  
40  
20  
0
Temperature  
25èC  
-40èC  
0èC  
125èC  
85èC  
1.25  
1.2  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
100  
200  
300  
400  
500  
Temperature (èC)  
Output Current (mA)  
VIN = 1.4 V, VOUT = 0.8 V  
VIN = 5.5 V  
13. Current Limit vs Temperature  
14. Dropout Voltage vs Output Current  
250  
200  
150  
100  
50  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Temperature  
Temperature  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
100  
200  
300  
400  
500  
Input Voltage (V)  
Output Current (mA)  
IOUT = 500 mA  
VIN = 1.4 V  
15. Dropout Voltage vs Input Voltage  
16. Load Regulation  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
Temperature  
Temperature  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
2.5  
2
1.5  
1
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.5  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Input Voltage (V)  
Input Voltage (V)  
IOUT = 50 mA  
VEN = 0.4 V  
17. Line Regulation  
18. Shutdown Current vs Input Voltage  
8
版权 © 2017, Texas Instruments Incorporated  
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VIN 6.5 V, VIN VOUT(NOM) + 0.3 V, VOUT = 0.8 V, SS_CTRL = GND, IOUT = 5 mA, VEN = 1.1 V, COUT  
10 μF, CNR/SS = CFF = 0 nF, PG pin pulled up to VOUT with 100 kΩ, and SS_CTRL = GND (unless otherwise noted)  
=
4
3.5  
3
3
2.5  
2
Temperature  
25èC  
Temperature  
25èC  
-40èC  
0èC  
125èC  
-40èC  
0èC  
125èC  
85èC  
85èC  
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
100  
200  
300  
400  
500  
Input Voltage (V)  
Output Current (mA)  
VIN = 1.4 V  
20. Ground Current vs Input Voltage  
19. Ground Current vs Output Current  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
Temperature  
Temperature  
-40èC  
0èC  
25èC  
85èC  
125èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
0
0.5  
1
1.5  
PG Current (mA)  
2
2.5  
3
0
0.5  
1
1.5  
PG Current (mA)  
2
2.5  
3
21. PG Low Level Voltage vs PG Current  
22. PG Low Level Voltage vs PG Current  
(VIN = 1.4 V)  
(VIN = 6.5 V)  
93  
92  
91  
90  
89  
88  
87  
86  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PG Falling  
PG Rising  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
VIN = VPG = 6.5 V  
23. PG Threshold vs Temperature  
24. PG Leakage Current vs Temperature  
版权 © 2017, Texas Instruments Incorporated  
9
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VIN 6.5 V, VIN VOUT(NOM) + 0.3 V, VOUT = 0.8 V, SS_CTRL = GND, IOUT = 5 mA, VEN = 1.1 V, COUT  
10 μF, CNR/SS = CFF = 0 nF, PG pin pulled up to VOUT with 100 kΩ, and SS_CTRL = GND (unless otherwise noted)  
=
150  
140  
130  
120  
110  
100  
90  
9
8.5  
8
VIN  
1.4 V  
VIN  
1.4 V  
6.5 V  
6.5 V  
7.5  
7
6.5  
6
5.5  
5
80  
70  
4.5  
4
60  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
25. Soft-Start Current vs Temperature  
26. Soft-Start Current vs Temperature  
(SS_CTRL = VIN  
(SS_CTRL = GND)  
)
1.4  
1.35  
1.3  
1.1  
1
UVLO Falling  
UVLO Rising  
VIL(EN)  
VIH(EN)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.25  
1.2  
1.15  
1.1  
1.05  
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
27. Enable Threshold vs Temperature  
28. Input UVLO Threshold vs Temperature  
5
50  
40  
30  
20  
10  
0
4
3.5  
3
60  
45  
30  
15  
0
Output Current  
Load Transient  
Output Current  
Load transient  
4.5  
4
3.5  
3
2.5  
2
2.5  
2
-10  
-20  
-30  
-40  
-50  
1.5  
1
-15  
-30  
-45  
-60  
1.5  
1
0.5  
0
0.5  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
0
60 120 180 240 300 360 420 480 540 600  
Time (ms)  
Time (ms)  
Figu  
Figu  
VIN = 1.4 V, IOUT = 50 mA to 500 mA to 50 mA at 1 A/µs,  
COUT = 10 µF, VPG = VOUT  
VIN = 5.5 V, IOUT = 50 mA to 500 mA to 50 mA at 1 A/µs,  
COUT = 10 µF, VPG = VOUT  
29. Load Transient Response (VOUT = 0.8 V)  
30. Load Transient Response (VOUT = 5.0 V)  
版权 © 2017, Texas Instruments Incorporated  
10  
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
Typical Characteristics (接下页)  
at TJ = 25°C, 1.4 V VIN 6.5 V, VIN VOUT(NOM) + 0.3 V, VOUT = 0.8 V, SS_CTRL = GND, IOUT = 5 mA, VEN = 1.1 V, COUT  
=
10 μF, CNR/SS = CFF = 0 nF, PG pin pulled up to VOUT with 100 kΩ, and SS_CTRL = GND (unless otherwise noted)  
VEN  
1 V/div  
VIN  
2 V/div  
VOUT  
200 mV/div  
VOUT  
20 mV/div  
VPG  
200mV/div  
VPG  
1 V/div  
Time (50 ms/div)  
Time (200 ms/div)  
VIN = 1.4 V, VPG = VOUT  
VIN = 1.4 V to 6.5 V to 1.4 V at 2 V/µs, VOUT = 0.8 V,  
IOUT = 500 mA, CNR/SS = CFF = 10 nF, VPG = VOUT  
31. Line Transient  
32. Start-Up (SS_CTRL = GND, CNR/SS = 0 nF)  
VEN  
VEN  
1 V/div  
1 V/div  
VOUT  
VOUT  
200 mV/div  
200 mV/div  
VPG  
200 mV/div  
VPG  
200 mV/div  
Time (500 ms/div)  
Time (50 ms/div)  
VIN = 1.4 V, VPG = VOUT  
VIN = 1.4 V, VPG = VOUT  
33. Start-Up (SS_CTRL = GND, CNR/SS = 10 nF)  
34. Start-Up (SS_CTRL = VIN, CNR/SS = 10 nF)  
VEN  
1 V/div  
VOUT  
200 mV/div  
VPG  
200 mV/div  
Time (2 ms/div)  
VIN = 1.4 V, VPG = VOUT  
35. Start-Up (SS_CTRL = VIN, CNR/SS = 1 µF)  
版权 © 2017, Texas Instruments Incorporated  
11  
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7A90 is a low-noise, high PSRR, low dropout (LDO) regulator capable of sourcing a 500-mA load with  
only 200 mV of maximum dropout. The TPS7A90 can operate down to a 1.4-V input voltage and a 0.8-V output  
voltage. This combination of low-noise, high PSRR, and low dropout voltage makes the device an ideal LDO to  
power a multitude of loads from noise-sensitive communication components in high-speed communications  
applications to high-end microprocessors or field-programmable gate arrays (FPGAs).  
As shown in the Functional Block Diagram section, the TPS7A90 linear regulator features a low-noise, 0.8-V  
internal reference that can be filtered externally to obtain even lower output noise. The internal protection circuitry  
(such as the undervoltage lockout) prevents the device from turning on before the input is high enough to ensure  
accurate regulation. Foldback current limiting is also included, allowing the output to source the rated output  
current when the output voltage is in regulation but reduces the allowable output current during short-circuit  
conditions. The internal power-good detection circuit allows down-stream supplies to be sequenced and alerts if  
the output voltage is below a regulation threshold.  
7.2 Functional Block Diagram  
PSRR  
Boost  
Current  
Limit  
IN  
OUT  
Charge  
Pump  
Active  
RNR/SS = 280 kW  
Discharge  
0.8-V  
VREF  
+
Error  
Amp  
œ
Soft-Start  
Control  
INR/SS  
SS_CTRL  
NR/SS  
200 pF  
FB  
Internal  
Controller  
UVLO  
Circuits  
œ
PG  
0.889 x VREF  
+
Thermal  
Shutdown  
EN  
GND  
7.3 Feature Description  
7.3.1 Output Enable  
The enable pin (EN) for the TPS7A90 is active high. The output voltage is enabled when the enable pin voltage  
is greater than VIH(EN) and disabled with the enable pin voltage is less than VIL(EN). If independent control of the  
output voltage is not needed, then connect the enable pin to the input.  
The TPS7A90 has an internal pulldown MOSFET that connects a discharge resistor from VOUT to ground when  
the device is disabled to actively discharge the output voltage.  
7.3.2 Dropout Voltage (VDO  
)
Dropout voltage (VDO) is defined as the VIN – VOUT voltage at the rated current (IRATED) of 500 mA, where the  
pass-FET is fully on and in the ohmic region of operation. VDO indirectly specifies a minimum input voltage above  
the nominal programmed output voltage at which the output voltage is expected to remain in regulation. If the  
input falls below the nominal output regulation, then the output follows the input.  
12  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
Feature Description (接下页)  
Dropout voltage is determined by the RDS(ON) of the pass-FET. Therefore, if the LDO operates below the rated  
current, then the VDO for that current scales accordingly. Use 公式 1 to calculate the RDS(ON) for the TPS7A90:  
VDO  
RDS(ON)  
=
IRATED  
(1)  
7.3.3 Output Voltage Accuracy  
Output voltage accuracy specifies minimum and maximum output voltage error, relative to the expected nominal  
output voltage stated as a percent. The TPS7A90 features an output voltage accuracy of 1% that includes the  
errors introduced by the internal reference, load regulation, and line regulation variance across the full range of  
rated load and line operating conditions over temperature, as specified by the Electrical Characteristics table.  
Output voltage accuracy also accounts for all variations between manufacturing lots.  
7.3.4 High Power-Supply Rejection Ratio (PSRR)  
PSRR is a measure of how well the LDO control loop rejects noise from the input source to make the dc output  
voltage as noise-free as possible across the frequency spectrum (usually measured from 10 Hz to 10 MHz).  
Even though PSRR is a loss in noise signal amplitude, the PSRR curves in the Typical Characteristics section  
are illustrated as positive values in decibels (dB) for convenience. 公式 2 gives the PSRR calculation as a  
function of frequency where input noise voltage [VIN(f)] and output noise voltage [VOUT(f)] are the amplitudes of  
the respective sinusoidal signals.  
«
÷
V (f)  
IN  
PSRR (dB) = 20 Log10  
VOUT(f)  
(2)  
Noise that couples from the input to the internal reference voltage is a primary contributor to reduced PSRR  
performance. Using a noise-reduction capacitor is recommended to filter unwanted noise from the input voltage,  
which creates a low-pass filter with an internal resistor to improve PSRR performance at lower frequencies.  
LDOs are often employed not only as a step-down regulators, but also to provide exceptionally clean power rails  
for noise-sensitive components. This usage is especially true for the TPS7A90, which features an innovative  
circuit to boost the PSRR between 200 kHz and 1 MHz. This boost circuit helps further filter switching noise from  
switching-regulators that operate in this region; see 1. To achieve the maximum benefit of this PSRR boost  
circuit, using a capacitor with a minimum impedance in the 100-kHz to 1-MHz band is recommended.  
7.3.5 Low Output Noise  
LDO noise is defined as the internally-generated intrinsic noise created by the semiconductor circuits. The  
TPS7A90 is designed for system applications where minimizing noise on the power-supply rail is critical to  
system performance. This scenario is the case for phase-locked loop (PLL)-based clocking circuits where  
minimum phase noise is all important, or in test and measurement systems where even small power-supply  
noise fluctuations can distort instantaneous measurement accuracy.  
The TPS7A90 includes a low-noise reference ensuring minimal output noise in normal operation. Further  
improvements can be made by adding a noise-reduction capacitor (CNR/SS), a feedforward capacitor (CFF), or a  
combination of the two. See the Noise-Reduction and Soft-Start Capacitor (CNR/SS) and Feed-Forward Capacitor  
(CFF) sections for additional design information.  
For more information on noise and noise measurement, see the How to Measure LDO Noise white paper.  
7.3.6 Output Soft-Start Control  
Soft-start refers to the ramp-up characteristic of the output voltage during LDO turn-on after the EN and UVLO  
thresholds are exceeded. The noise-reduction capacitor (CNR/SS) serves a dual purpose of both governing output  
noise reduction and programming the soft-start ramp during turn-on. Larger values for the noise-reduction  
capacitors decrease the noise but also result in a slower output turn-on ramp rate.  
版权 © 2017, Texas Instruments Incorporated  
13  
 
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
Feature Description (接下页)  
The TPS7A90 features an SS_CTRL pin. When the SS_CTRL pin is grounded, the charging current for the  
NR/SS pin is 6.2 µA (typ); when this pin is connected to IN, the charging current for the NR/SS pin is increased  
to 100 µA (typ). The higher current allows the use of a much larger noise-reduction capacitor and maintains a  
reasonable startup time. 36 shows a simplified block diagram of the soft-start circuit. The switch SW is opened  
to turn off the INR/SS current source after VFB reaches approximately 97% of VREF. The final 3% of VNR/SS is  
charged through the noise-reduction resistor (RNR), which creates an RC delay. RNR is approximately 280 kΩ and  
applications that require the highest accuracy when using a large value CNR/SS must take this RC delay into  
account.  
If a noise-reduction capacitor is not used on the NR/SS pin, tying the SS_CTRL pin to the IN pin can result in  
output voltage overshoot of approximately 10%. This overshoot is minimized by either connecting the SS_CTRL  
pin to GND or using a capacitor on the NR/SS pin.  
SW  
INR/SS  
RNR  
NR/SS Control  
VREF  
+
CNR/SS  
œ
VFB  
GND  
36. Simplified Soft-Start Circuit  
7.3.7 Power-Good Function  
The power-good circuit monitors the voltage at the feedback pin to indicate the status of the output voltage.  
When the feedback pin voltage falls below the PG threshold voltage (VIT(PG)), the PG pin open-drain output  
engages and pulls the PG pin close to GND. When the feedback voltage exceeds the VIT(PG) threshold by an  
amount greater than VHYS(PG), the PG pin becomes high impedance. By connecting a pullup resistor to an  
external supply, any downstream device can receive power-good as a logic signal that can be used for  
sequencing. Make sure that the external pullup supply voltage results in a valid logic signal for the receiving  
device or devices. Using a pullup resistor from 10 kΩ to 100 kΩ is recommended. Using an external reset device  
such as the TPS3890 is also recommended in applications where high accuracy is needed or in applications  
where microprocessor induced resets are needed.  
When using a feed-forward capacitor (CFF), the time constant for the LDO startup is increased whereas the  
power-good output time constant stays the same, possibly resulting in an invalid status of the power-good output.  
To avoid this issue and to receive a valid PG output, make sure that the time constant of both the LDO startup  
and the power-good output are matching, which can be done by adding a capacitor in parallel with the power-  
good pullup resistor. For more information, see the application report Pros and Cons of Using a Feedforward  
Capacitor with a Low-Dropout Regulator.  
The state of PG is only valid when the device is operating above the minimum input voltage of the device and  
power-good is asserted regardless of the output voltage state when the input voltage falls below the UVLO  
threshold minus the UVLO hysteresis. 37 illustrates a simplified block diagram of the power-good circuit.  
When the input voltage falls below approximately 0.8 V, there is not enough gate drive voltage to keep the open-  
drain, power-good device turned on and the power-good output is pulled high. Connecting the power-good pullup  
resistor to the output voltage can help minimize this effect.  
14  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
Feature Description (接下页)  
VPG  
VREF  
VIN  
VFB  
œ
+
GND  
EN  
GND  
UVLO  
GND  
37. Simplified PG Circuit  
7.3.8 Internal Protection Circuitry  
7.3.8.1 Undervoltage Lockout (UVLO)  
The TPS7A90 has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing  
a controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the  
input drops during turn on, the UVLO has approximately 290 mV of hysteresis.  
The UVLO circuit responds quickly to glitches on VIN and disables the output of the device if this rail starts to  
collapse too quickly. Use an input capacitor that is large enough to slow input transients to less then two volts  
per microsecond.  
7.3.8.2 Internal Current Limit (ICL  
)
The internal current-limit circuit is used to protect the LDO against transient high-load current faults or shorting  
events. The LDO is not designed to operate in current limit under steady-state conditions. During an overcurrent  
event where the output voltage is pulled 10% below the regulated output voltage, the LDO sources a constant  
current as specified in the Electrical Characteristics table. When the output voltage falls, the amount of output  
current is reduced to better protect the device. During a hard short-circuit event, the current is reduced to  
approximately 1.45 A. See 12 in the Typical Characteristics section for more information about the current-  
limit foldback behavior. However, when a current-limit event occurs, the LDO begins to heat up because of the  
increase in power dissipation. The increase in heat can trigger the integrated thermal shutdown protection circuit.  
7.3.8.3 Thermal Protection  
The TPS7A90 contains a thermal shutdown protection circuit to turn off the output current when excessive heat is  
dissipated in the LDO. Thermal shutdown occurs when the thermal junction temperature (TJ) of the pass-FET  
exceeds 160°C (typical). Thermal shutdown hysteresis assures that the LDO again resets (turns on) when the  
temperature falls to 140°C (typical). The thermal time-constant of the semiconductor die is fairly short, and thus  
the output turns on and off at a high rate when thermal shutdown is reached until power dissipation is reduced.  
The internal protection circuitry of the TPS7A90 is designed to protect against thermal overload conditions. The  
circuitry is not intended to replace proper heat sinking. Continuously running the TPS7A90 into thermal shutdown  
degrades device reliability.  
For reliable operation, limit junction temperature to a maximum of 125°C. To estimate the thermal margin in a  
given layout, increase the ambient temperature until the thermal protection shutdown is triggered using worst-  
case load and highest input voltage conditions. For good reliability, thermal shutdown must occur at least 35°C  
above the maximum expected ambient temperature condition for the application. This configuration produces a  
worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.  
版权 © 2017, Texas Instruments Incorporated  
15  
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
7.4 Device Functional Modes  
1 provides a quick comparison between the normal, dropout, and disabled modes of operation.  
1. Device Functional Modes Comparison  
PARAMETER  
OPERATING MODE  
VIN  
EN  
IOUT  
IOUT < ICL  
IOUT < ICL  
TJ  
TJ < Tsd  
Normal(1)  
Dropout(1)  
Disabled(2)  
VIN > VOUT(nom) + VDO  
VIN < VOUT(nom) + VDO  
VIN < VUVLO  
VEN > VIH(EN)  
VEN > VIH(EN)  
VEN < VIL(EN)  
TJ < Tsd  
TJ > Tsd  
(1) All table conditions must be met.  
(2) The device is disabled when any condition is met.  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage when all of the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO)  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
below the enable falling threshold  
The output current is less than the current limit (IOUT < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < Tsd)  
)
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout. In this mode, the output voltage tracks  
the input voltage. During this mode, the transient performance of the device becomes significantly degraded  
because the pass device is in a triode state and no longer controls the current through the LDO. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
right after being in a normal regulation state, but not during startup), the pass-FET is driven as hard as possible.  
When the input voltage returns to VIN VOUT(NOM) + VDO, VOUT can overshoot for a short period of time if the input  
voltage slew rate is greater than 0.1 V/µs.  
7.4.3 Disabled  
The output of the TPS7A90 can be shutdown by forcing the enable pin below 0.4 V. When disabled, the pass  
device is turned off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an  
internal resistor from the output to ground.  
16  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7A90 is a linear voltage regulator operating from 1.4 V to 6.5 V on the input, and regulates voltages  
between 0.8 V to 5.0 V within 1% accuracy and a 500-mA maximum output current. Efficiency is defined by the  
ratio of output voltage to input voltage because the TPS7A90 is a linear voltage regulator. To achieve high  
efficiency, the dropout voltage (VIN – VOUT) must be as small as possible, thus requiring a very low dropout LDO.  
Successfully implementing an LDO in an application depends on the application requirements. This section  
discusses key device features and how to best implement them to achieve a reliable design.  
8.1.1 Adjustable Output  
As 38 shows, the output voltage of the TPS7A9001 can be adjusted from 0.8 V to 5.2 V by using a resistor  
divider network.  
VIN  
IN  
VOUT  
COUT  
OUT  
FB  
R1  
CIN  
EN  
SS_CTRL  
R2  
NR/SS  
PG  
CNR/SS  
GND  
Copyright © 2016, Texas Instruments Incorporated  
38. Adjustable Operation  
Use 公式 3 to calculate R1 and R2 for any output voltage range. This resistive network must provide a current  
greater than or equal to 5 µA for optimum noise performance.  
VREF(max)  
«
VOUT  
VREF  
R1= R 2  
-1 , where  
> 5 mA  
÷
R 2  
(3)  
If greater voltage accuracy is required, take into account the output voltage offset contribution resulting from the  
feedback pin current (IFB) and use 0.1%-tolerance resistors.  
版权 © 2017, Texas Instruments Incorporated  
17  
 
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
Application Information (接下页)  
2 lists the resistor combination required to achieve a few of the most common rails using commercially-  
available, 0.1%-tolerance resistors to maximize nominal voltage accuracy and also abiding to the formula given  
in 公式 3.  
2. Recommended Feedback-Resistor Values  
(1)  
FEEDBACK RESISTOR VALUES  
R1 (kΩ)  
VOUT(TARGET)  
(V)  
CALCULATED OUTPUT  
VOLTAGE (V)  
R2 (kΩ)  
Open  
10.2  
11.8  
10.7  
1.5  
0.8  
Short  
2.55  
5.9  
0.800  
1.000  
1.200  
1.496  
1.797  
1.899  
2.490  
2.998  
3.283  
5.00  
1.00  
1.20  
1.50  
1.80  
1.90  
2.50  
3.00  
3.30  
5.00  
9.31  
1.87  
15.8  
2.43  
3.16  
3.57  
10.5  
11.5  
1.15  
1.15  
1.15  
2
(1) R1 is connected from OUT to FB; R2 is connected from FB to GND; see 38.  
8.1.2 Start-Up  
8.1.2.1 Enable (EN) and Undervoltage Lockout (UVLO)  
The TPS7A90 only turns on when EN and UVLO are above the respective voltage thresholds. The TPS7A90 has  
an independent UVLO circuit that monitors the input voltage to allow a controlled and consistent turn on and off.  
The UVLO has approximately 290 mV of hysteresis to prevent the device from turning off if the input drops  
during turn on. The EN signal allows independent logic-level turn-on and shutdown of the LDO when the input  
voltage is present. Connecting EN directly to IN is recommended if independent turn-on is not needed.  
The TPS7A90 has an internal pulldown MOSFET that connects a discharge resistor from VOUT to ground when  
the device is disabled to actively discharge the output voltage.  
8.1.2.2 Noise-Reduction and Soft-Start Capacitor (CNR/SS  
)
The CNR/SS capacitor serves a dual purpose of both reducing output noise and setting the soft-start ramp during  
turn-on.  
8.1.2.2.1 Noise Reduction  
For low-noise applications, the CNR/SS capacitor forms an RC filter for filtering output noise that is otherwise  
amplified by the control loop. For low-noise applications, a CNR/SS of between 10 nF to 10 µF is recommended.  
Larger values for CNR/SS can be used; however, above 1 µF there is little benefit in lowering the output voltage  
noise for frequencies above 10 Hz.  
18  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
8.1.2.2.2 Soft-Start and In-Rush Current  
Soft-start refers to the gradual ramp-up characteristic of the output voltage after the EN and UVLO thresholds are  
exceeded. Reducing how quickly the output voltage increases during startup also reduces the amount of current  
needed to charge the output capacitor, referred to as in-rush current. In-rush current is defined as the current  
going into the LDO during start-up. In-rush current consists of the load current, the current used to charge the  
output capacitor, and the ground pin current (that contributes very little to in-rush current). This current is difficult  
to measure because the input capacitor must be removed, which is not recommended. However, 公式 4 can be  
used to estimate in-rush current:  
«
÷
C
OUT ì dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t) =  
+
«
÷
dt  
where:  
VOUT(t) is the instantaneous output voltage of the turn-on ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
(4)  
The TPS7A90 features a monotonic, voltage-controlled soft-start that is set with an external capacitor (CNR/SS).  
This soft-start helps reduce in-rush current, minimizing load transients to the input power bus that can cause  
potential start-up initialization problems when powering FPGAs, digital signal processors (DSPs), or other high  
current loads.  
To achieve a monotonic start-up, the TPS7A90 error amplifier tracks the voltage ramp of the external soft-start  
capacitor until the voltage exceeds approximately 97% of the internal reference. The final 3% of VNR/SS is  
charged through the noise-reduction resistor (RNR), creating an RC delay. RNR is approximately 280 kΩ and  
applications that require the highest accuracy when using a large value CNR/SS must take this RC delay into  
account.  
The soft-start ramp time depends on the soft-start charging current (INR/SS), the soft-start capacitance (CNR/SS),  
and the internal reference (VREF). Use 公式 5 to calculate the approximate soft-start ramp time (tSS):  
tSS = (VREF × CNR/SS) / INR/SS  
(5)  
The value for INR/SS is determined by the state of the SS_CTRL pin. When the SS_CTRL pin is connected to  
GND, the typical value for the INR/SS current is 6.2 µA. Connecting the SS_CTRL pin to IN increases the typical  
soft-start charging current to 100 µA. The larger charging current for INR/SS is useful if shorter start-up times are  
needed (such as when using a large noise-reduction capacitor).  
8.1.3 Capacitor Recommendation  
The TPS7A90 is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the  
input, output, and noise-reduction pin. Multilayer ceramic capacitors are the industry standard for these types of  
applications and are recommended, but must be used with good understanding of their limitations. Ceramic  
capacitors that employ X7R-, X5R-, and COG-rated dielectric materials provide relatively good capacitive stability  
across temperature, whereas the use of Y5V-rated capacitors is discouraged precisely because the capacitance  
varies so widely. In all cases, ceramic capacitors vary a great deal with operating voltage and temperature and  
the design engineer must be aware of these characteristics. As a rule of thumb, ceramic capacitors are  
recommended to be derated by 50%. The input and output capacitors recommended herein account for a  
capacitance derating of 50%.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
 
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
8.1.3.1 Input and Output Capacitor Requirements (CIN and COUT  
)
The TPS7A90 is designed and characterized for operation with ceramic capacitors of 10 µF or greater at the  
input and output. Locate the input and output capacitors as near as practical to the input and output pins to  
minimize the trace inductance from the capacitor to the device.  
Attention must be given to the input capacitance to minimize transient input droop during startup and load current  
steps. Simply using very large ceramic input capacitances can cause unwanted ringing at the output if the input  
capacitor (in combination with the wire-lead inductance) creates a high-Q peaking effect during transients, which  
is why short, well-designed interconnect traces to the upstream supply are needed to minimize ringing. Damping  
of unwanted ringing can be accomplished by using a tantalum capacitor, with a few hundred milliohms of ESR, in  
parallel with the ceramic input capacitor. The UVLO circuit responds quickly to glitches on VIN and disables the  
output of the device if this rail starts to collapse too quickly. Use an input capacitor that is large enough to slow  
input transients to less then two volts per microsecond.  
8.1.3.1.1 Load-Step Transient Response  
The load-step transient response is the output voltage response by the LDO to a step change in load current.  
The depth of charge depletion immediately after the load step is directly proportional to the amount of output  
capacitance. However, although larger output capacitances decrease any voltage dip or peak occurring during a  
load step, the control-loop bandwidth is also decreased, thereby slowing the response time.  
The LDO cannot sink charge, therefore when the output load is removed or greatly reduced, the control loop  
must turn off the pass-FET and wait for any excess charge to deplete.  
8.1.3.2 Feed-Forward Capacitor (CFF)  
Although a feed-forward capacitor (CFF), from the FB pin to the OUT pin is not required to achieve stability, a  
10-nF, feed-forward capacitor improves the noise and PSRR performance. A higher capacitance CFF can be  
used; however, the startup time is longer and the power-good signal can incorrectly indicate that the output  
voltage has settled. For a detailed description, see the application report Pros and Cons of Using a Feedforward  
Capacitor with a Low-Dropout Regulator.  
8.1.4 Power Dissipation (PD)  
Circuit reliability demands that proper consideration be given to device power dissipation, location of the circuit  
on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator  
must be as free as possible of other heat-generating devices that cause added thermal stresses.  
To a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage  
difference and load conditions. 公式 6 calculates PD:  
PD = (VIN – VOUT) × IOUT  
(6)  
Power dissipation can be minimized, and thus greater efficiency achieved, by proper selection of the system  
voltage rails. For the lowest power dissipation use the minimum input voltage necessary for proper output  
regulation.  
The primary heat conduction path for the DSK package is through the thermal pad to the PCB. Solder the  
thermal pad to a copper pad area under the device. This pad area should contain an array of plated vias that  
conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to 公式 7, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (θJA) of the combined PCB and device package and the temperature of the ambient  
air (TA).  
TJ = TA + (qJA ´ PD)  
(7)  
Unfortunately, the thermal resistance (θJA) is highly dependent on the heat-spreading capability built into the  
particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the  
planes. The θJA recorded in the Thermal Information table is determined by the JEDEC standard, PCB, and  
copper-spreading area and is only used as a relative measure of package thermal performance.  
20  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
8.1.5 Estimating Junction Temperature  
The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of  
the LDO when in-circuit on a typical PCB board application. These metrics are not strictly speaking thermal  
resistances, but rather offer practical and relative means of estimating junction temperatures. These psi metrics  
are determined to be significantly independent of the copper-spreading area. The key thermal metrics (ΨJT and  
ΨJB) are used in accordance with 公式 8 and are given in the Thermal Information table.  
YJT: TJ = TT + YJT ´ PD  
YJB: TJ = TB + YJB ´ PD  
where:  
PD is the power dissipated as explained in 公式 6  
TT is the temperature at the center-top of the device package  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(8)  
For a more detailed discussion on thermal metrics and how to use them, see the application report  
Semiconductor and IC Package Thermal Metrics.  
8.2 Typical Application  
This section discusses the implementation of the TPS7A90 to regulate from a 2-V input voltage to a 1.2-V output  
voltage for noise-sensitive loads. 39 shows the schematic for this application circuit.  
TPS7A90  
2.0 V  
IN  
OUT  
FB  
1.2 V  
COUT  
10 F  
CIN  
10 mF  
R1 5.9 kW  
EN  
SS_CTRL  
NR/SS  
CFF 10 nF  
VOUT  
R2  
11.8 kW  
CNR/SS  
RPG  
0.1 mF  
20 kW  
PG  
PG  
GND  
Copyright © 2017, Texas Instruments Incorporated  
39. Application Example  
8.2.1 Design Requirements  
For the design example shown in 39, use the parameters listed in 3 as the input parameters.  
3. Design Parameters  
PARAMETER  
APPLICATION REQUIREMENTS  
DESIGN RESULTS  
2 V, ±3%, provided by the dc-dc converter  
switching at 750 kHz  
Input voltages (VIN  
)
1.4 V to 6.5 V  
Maximum ambient operating  
temperature  
85°C  
108°C junction temperature  
Output voltages (VOUT  
)
1.2 V, ±1%  
1.2 V, ±1%  
Output currents (IOUT  
)
500 mA (max), 10 mA (min)  
500 mA (max), 5 mA (min)  
5.2 µVRMS, bandwidth = 10 Hz to 100 kHz  
47 dB  
RMS noise  
< 6 µVRMS, bandwidth = 10 Hz to 100 kHz  
PSRR at 500 kHz  
Startup time  
> 40 dB  
< 2 ms  
80 µs (typ) 148 µs (max)  
版权 © 2017, Texas Instruments Incorporated  
21  
 
 
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The output voltage can be set to 1.2 V by selecting the correct values for R1 and R2; see 公式 3.  
Input and output capacitors are selected in accordance with the Capacitor Recommendation section. Ceramic  
capacitances of 10 µF for both input and output are selected to help balance the charge needed during startup  
when charging the output capacitor, thus reducing the input voltage drop.  
To satisfy the required startup time (tSS) and still maintain low-noise performance, a 0.01-µF CNR/SS is selected  
for with SS_CTRL connected to VIN. 公式 9 calculates this value. Using INR/SS(MAX) and the smallest CNR/SS  
capacitance resulting from manufacturing variance (often ±20%) provides the fastest startup time, whereas using  
INR/SS(MIN) and the largest CNR/SS capacitance resulting from manufacturing variance provides the slowest startup  
time.  
tSS = (VREF × CNR/SS) / INR/SS  
(9)  
With a 500-mA maximum load, the internal power dissipation is 800 mW, corresponding to a 23°C junction  
temperature rise. With an 85°C maximum ambient temperature, the junction temperature is at 108°C. To  
minimize noise, a feed-forward capacitance (CFF) of 10 nF is selected.  
See the Layout section for an example of how to layout the TPS7A90 to achieve best PSRR and noise.  
8.2.3 Application Curves  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
5.2 mVRMS  
CNR = 10 nF, CFF = 10 nF  
0.1  
0.01  
VIN  
2.0 V  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
40. PSRR vs Frequency  
41. Output Noise vs Frequency  
9 Power Supply Recommendations  
The input of the TPS7A90 is designed to operate from an input voltage range between 1.4 V and 6.5 V and with  
an input capacitor of 10 µF. The input voltage range must provide adequate headroom in order for the device to  
have a regulated output. This input supply must be well regulated. If the input supply is noisy, additional input  
capacitors can be used to improve the output noise performance.  
10 Layout  
10.1 Layout Guidelines  
General guidelines for linear regulator designs are to place all circuit components on the same side of the circuit  
board and as near as practical to the respective LDO pin connections. Place ground return connections to the  
input and output capacitors, and to the LDO ground pin as close to each other as possible, connected by a wide,  
component-side, copper surface. The use of vias and long traces to create LDO circuit connections is strongly  
discouraged and negatively affects system performance.  
22  
版权 © 2017, Texas Instruments Incorporated  
 
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
Layout Guidelines (接下页)  
10.1.1 Board Layout  
To maximize the ac performance of the TPS7A90, following the layout example shown in 42 is recommended.  
This layout isolates the analog ground (AGND) from the noisy power ground. Components that must be  
connected to the quiet analog ground are the noise-reduction capacitor (CNR/SS) and the lower feedback resistor  
(R2). These components must have a separate connection back to the thermal pad of the device for optimal  
output noise performance. Connect the GND pin directly to the thermal pad and not to any external plane.  
To maximize the output voltage accuracy, the connection from the output voltage back to top output divider  
resistors (R1) must be made as close as possible to the load. This method of connecting the feedback trace  
eliminates the voltage drop from the device output to the load.  
To improve thermal performance, use an array of thermal vias to connect the thermal pad to the ground planes.  
Larger ground planes improve the thermal performance of the device and lowering the operating temperature of  
the device.  
10.2 Layout Example  
toꢅer Dround  
tlane  
COUT  
CIN  
Lb  
hÜÇ  
hÜÇ  
1
2
3
4
10  
VOUT  
VIN  
Lb  
CFF  
R1  
C.  
Db5  
tD  
8
bw/{{  
CNR/SS  
R2  
7
9b  
To VIN  
6
{{_ꢀÇw[  
Ço tD  
tullup {upply  
Dround tlane for  
Çꢃermal welief and  
{ignal Dround  
tD huꢄpuꢄ  
5enoꢄes vias used for applicaꢄion purposes  
42. TPS7A90 Example Layout  
版权 © 2017, Texas Instruments Incorporated  
23  
 
TPS7A90  
ZHCSGH9 JUNE 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
提供了评估模块 (EVM),您可以借此来对使用 TPS7A90 时的电路性能进行初始评估。4 显示了此装置的摘要信  
息。  
4. 设计套件与评估模块(1)  
名称  
部件号  
TPS7A90EVM-831 评估模块用户指南  
TPS7A90EVM-831  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
可在德州仪器 (TI) 网站上,通过 TPS7A90 产品文件夹申请该 EVM。  
11.1.1.2 SPICE 模型  
分析模拟电路和系统的性能时,使用 SPICE 模型对电路性能进行计算机仿真非常有用。您可以通过仿真模型下的  
TPS7A90 产品文件夹来获取 TPS7A90 SPICE 模型。  
11.1.2 器件命名规则  
5. 订购信息(1)  
产品  
说明  
XX 表示输出电压。01 为可调输出版本。  
YYY 为封装标识符。  
TPS7A90XXYYYZ  
Z 为封装数量。  
(1) 欲获得最新的封装和订货信息,请参阅本文档末尾的封装选项附录,或者访问 www.ti.com 查看器件产品文件夹。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《具有可编程延迟的 TPS3890 低静态电流、1% 精度监控器》  
TPS7A90EVM-831 评估模块用户指南》  
《如何测量 LDO 噪声》  
《使用前馈电容器和低压降稳压器的优缺点》  
半导体和集成电路 (IC) 封装热度量  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
24  
版权 © 2017, Texas Instruments Incorporated  
 
TPS7A90  
www.ti.com.cn  
ZHCSGH9 JUNE 2017  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7A9001DSKR  
TPS7A9001DSKT  
ACTIVE  
ACTIVE  
SON  
SON  
DSK  
DSK  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1CEP  
1CEP  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSK 10  
2.5 x 2.5 mm, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225304/A  
PACKAGE OUTLINE  
DSK0010A  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.6  
2.4  
A
B
PIN 1 INDEX AREA  
2.6  
2.4  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
1.2 0.1  
6
5
1
2X  
2
11  
2
0.1  
10  
8X 0.5  
0.3  
10X  
0.45  
0.35  
0.2  
0.1  
0.05  
10X  
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4218903/B 10/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSK0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
(1.2)  
10  
1
10X (0.25)  
SYMM  
(2)  
11  
8X (0.5)  
(0.75)  
(R0.05) TYP  
5
6
(0.35)  
(
0.2) VIA  
TYP  
SYMM  
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218903/B 10/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSK0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.6)  
SYMM  
1
10  
METAL  
TYP  
10X (0.25)  
SYMM  
11  
8X (0.5)  
(0.89)  
6
(R0.05) TYP  
5
(1.13)  
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4218903/B 10/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7A91

1A、低噪声、高 PSRR、高精度、可调节超低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A9101DSKR

1A、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A9101DSKT

1A、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A92

2A、低噪声、高 PSRR、高精度、可调节超低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A9201DSKR

2A、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A9201DSKT

2A、低噪声、高 PSRR、高精度、可调节超低压降稳压器 | DSK | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A94

1A 超低噪声、超高 PSRR RF 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A9401DSCR

1A 超低噪声、超高 PSRR RF 稳压器 | DSC | 10 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7A96

2A 超低噪声、超高 PSRR 射频稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B4250-Q1

汽车类 50mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B4250QDBVQ1

汽车类 50mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B4250QDBVRQ1

汽车类 50mA、电池供电运行 (40V)、可调节电压跟踪低压降稳压器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI