TPS7B63-Q1 [TI]

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器;
TPS7B63-Q1
型号: TPS7B63-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器

电池 稳压器
文件: 总34页 (文件大小:1995K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
TPS7B63xx-Q1  
300mA40V 高压超低静态电流看门LDO  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等1: 40 ° C 125 ° C T A  
• 最大输出电流300mA  
在汽车微控制器或微处理器电源应用中看门狗用于监  
测微控制器的工作状态以防止软件失控。在可靠的系  
统中看门狗必须独立于微控制器。  
4V 40V VIN 输入电压范围瞬态电压高达  
45V  
TPS7B63xx-Q1 300mA 看门狗低压降稳压器 (LDO)  
系列器件额定工作电压高达 40V轻负载条件下的  
典型静态电流仅为 19µA。该系列器件集成了一项可编  
程功能用于选择窗口看门狗或标准看门狗并使用外  
部电阻设置看门狗时间精度10% 以内。  
3.3V 5V 两种固定输出电压  
• 最大压降电压400mV/300mA  
• 在宽电容4.7µF 500µFESR0.001Ω至  
20Ω范围内与输出电容器搭配使用时可保持稳  
TPS7B63xx-Q1 器件上的 PG 引脚指示输出电压何时  
达到稳定且处于稳压范围内。可以通过选择外部组件来  
调整电源正常延迟周期和电源正常阈值。该系列器件还  
具有集成的短路保护和过流保护功能。上述特性组合使  
得该系列器件极具灵活性适用于为汽车应用中的微控  
制器供电。  
• 低静态电(I(Q)):  
EN 为低电平关断模式< 4µA  
– 轻负载WD_EN 为高电平时具19µA 的典  
型值看门狗禁用)  
• 可针对窗口看门狗和标准看门狗进行配置  
• 开关窗口比例可配置1:1 8:1  
• 完全可调的看门狗周期10ms 500ms)  
• 看门狗周期精度10%  
• 专WD_EN 引脚用于控制看门狗开关  
• 完全可调的电源正常阈值和电源正常延迟周期  
• 针UVLO 的低输入电压跟踪功能  
• 集成故障保护  
器件信息  
器件型(1)  
输出电压  
3.3V  
5V  
封装  
TPS7B6333-Q1  
TPS7B6350-Q1  
HTSSOP (16)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 过载电流限制保护  
– 热关断  
功能安全型  
– 可提供用于功能安全系统设计的文档  
16 HTSSOP 封装  
2 应用  
• 汽MCU 电源  
车身控制模(BCM)  
座椅舒适模块  
EV HEV 电池管理系(BMS)  
电子换挡器  
变速箱  
电动助力转(EPS)  
典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDU9  
 
 
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 21  
8.3 Power Supply Recommendations.............................23  
8.4 Layout....................................................................... 24  
9 Device and Documentation Support............................25  
9.1 Documentation Support............................................ 25  
9.2 接收文档更新通知..................................................... 25  
9.3 支持资源....................................................................25  
9.4 Trademarks...............................................................25  
9.5 Electrostatic Discharge Caution................................25  
9.6 术语表....................................................................... 25  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................8  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................13  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (September 2020) to Revision C (December 2022)  
Page  
Changed PADJ and WTS pins to inputs instead of outputs................................................................................3  
Changed Load Regulation graph and changed VIN condition for IOUT = 200 mA Line Transient graphs...........9  
Changed resistor values in TPS7B63xx-Q1 Typical Application Schematic figure...........................................21  
Changes from Revision A (March 2017) to Revision B (September 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更改了部分中的汽车特定应用要点..............................................................................................................1  
• 将部分的看门狗周期精度9% 更改10%.............................................................................................. 1  
• 向部分添加了“功能安全型”要点..............................................................................................................1  
• 将部分的精度9% 更改10%................................................................................................................ 1  
Added ESD classification levels to ESD Ratings table.......................................................................................4  
Changed VOUT parameter: added temperature range to test conditions of first parameter row and added  
second row to parameter....................................................................................................................................5  
Changed V(dropout) maximum specification in second row of parameter from 260 mV to 325 mV......................5  
Changed t(DEGLITCH) minimum specification from 100 μs to 50 μs, changed t(DLY_FIX) maximum specification  
from 550 μs to 900 μs, and deleted t(DLY_FIX) minimum specification..............................................................8  
Changed fault 1 maximum open-window duration from t(WD) / 2 to t(WD) .........................................................19  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
EN  
1
16  
OUT  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
PGADJ  
PG  
FSEL  
WTS  
GND  
NC  
GND  
WRS  
WD_EN  
WDO  
WD  
Thermal  
pad  
ROSC  
DELAY  
Not to scale  
NC - No internal connection  
5-1. PWP PowerPADPackage, 16-Pin HTSSOP With Exposed Thermal Pad (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
DELAY  
NO.  
Power-good delay period adjustment pin. Connect this pin with a capacitor to ground to adjust the  
power-good delay time.  
8
O
I
Device enable pin. Pull this pin down to low-level voltage to disable the device. Pull this pin up to  
high-level voltage to enable the device.  
EN  
2
3
Internal oscillator frequency selection pin. Pull this pin down to low-level voltage to select the  
high-frequency oscillator. Pull this pin up to high-level voltage to select the low-frequency  
oscillator.  
FSEL  
I
GND  
IN  
5, 13  
1
Ground reference  
I
Device input power-supply pin  
Not connected  
NC  
6
OUT  
16  
O
Device 3.3-V or 5-V regulated output voltage pin  
Power-good pin. Open-drain output pin. Pull this pin up to VOUT or to a reference through a  
resistor. When the output voltage is not ready, this pin is pulled down to ground.  
PG  
14  
15  
O
I
Power-good threshold adjustment pin. Connect a resistor divider between the PGADJ and OUT  
pins to set the power-good threshold. Connect this pin to ground to set the threshold to 91.6% of  
PGADJ  
output voltage VOUT  
.
Watchdog timer adjustment pin. Connect a resistor between the ROSC pin and the GND pin to  
set the duration of the watchdog monitor. Leaving this pin open or connecting this pin to ground  
results in the watchdog reporting a fault at the watchdog output (WDO).  
ROSC  
7
O
WD  
9
I
Watchdog service-signal input pin.  
Watchdog status pin. Open-drain output pin. Pull this pin up to OUT or a reference voltage  
through a resistor. When watchdog fault occurs, this pin is pulled down to a low-level voltage.  
WDO  
10  
O
Watchdog enable pin. Pull this pin down to a low level to enable the watchdog. Pull this pin up to  
a high level to disable the watchdog.  
WD_EN  
WRS  
11  
12  
I
I
Window ratio selection pin (only applicable for the window watchdog). Pull this pin down to a low  
level to set the open:closed window ratio to 1:1. Pull this pin up to high level to set the  
open:closed window ratio to 8:1.  
Watchdog type-selection pin. To set the window watchdog, connect this pin to the GND pin. To  
set the standard watchdog, pull this pin high.  
WTS  
4
I
Thermal pad  
Solder to board to improve the thermal performance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
45  
7
UNIT  
V
Unregulated input  
IN, EN  
ROSC  
DELAY  
OUT  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
Internal oscillator reference voltage  
Power-good delay-timer output  
Regulated output  
V
7
V
7
V
Power-good output voltage  
PG  
7
V
Watchdog status output voltage  
Watchdog frequency selection, watchdog-type selection  
Watchdog enable  
WDO  
7
V
FSEL, WTS  
WD_EN  
WD  
45  
7
V
V
Watchdog service signal voltage  
Window ratio selection  
7
V
WRS  
7
V
Power-good threshold-adjustment voltage  
Operating junction temperature, TJ  
Storage temperature, Tstg  
PGADJ  
7
V
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to ground.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1), device HBM ESD classification  
level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
All pins  
±500  
±750  
Charged-device model (CDM), per AEC Q100-011,  
device CDM ESD classification level C4B  
Corner pins (1, 14, 15, and 28)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
4
MAX  
40  
UNIT  
Unregulated input  
40-V pins  
IN  
V
V
V
EN, FSEL, WTS  
OUT  
0
VIN  
5.5  
Regulated output  
0
Power good, watchdog status,  
reference oscillator  
PG, WDO, ROSC  
0
5.5  
V
Low voltage pins  
WD, WD_EN, PGADJ, DELAY, WRS  
0
0
5.5  
300  
125  
V
Output current  
mA  
°C  
Ambient temperature, TA  
40  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
 
 
 
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
TPS7B63xx-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
39.7  
28.9  
23.8  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
23.7  
3.1  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VIN = 14 V, COUT 4.7 µF, 1 mΩ< ESR < 20 Ω, and TJ = 40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (IN)  
VIN  
Input voltage  
4
40  
4
V
I(SLEEP)  
Input sleep current  
EN = OFF  
µA  
VIN = 5.6 V to 40 V for fixed 5-V VOUT  
VIN = 4 V to 40 V for fixed 3.3-V VOUT  
;
;
19  
28  
78  
29.6  
42  
EN = ON; watchdog disabled; IOUT < 1 mA;  
TJ < 80°C  
VIN = 5.6 V to 40 V for fixed 5-V VOUT  
VIN = 4 V to 40 V for fixed 3.3-V VOUT  
;
;
I(Q)  
Input quiescent current  
µA  
EN = ON; watchdog enabled; IOUT < 1 mA  
VIN = 5.6 V to 40 V for fixed 5-V VOUT  
VIN = 4 V to 40 V for fixed 3.3-V VOUT  
EN = ON; watchdog enabled;  
IOUT < 100 mA  
;
;
98  
V(UVLO)  
Undervoltage lockout, falling  
Ramp VIN down until output is turned off  
2.6  
V
V
V(UVLO_HYST) UVLO hysteresis  
ENABLE INPUT, WATCHDOG TYPE SELECTION AND FSEL (EN, WTS, AND FSEL)  
0.5  
VIL  
Low-level input voltage  
High-level input voltage  
Hysteresis  
0.7  
0.7  
V
V
VIH  
Vhys  
2
2
150  
mV  
WATCHDOG ENABLE (WD_EN PIN)  
Low-level input threshold voltage  
for watchdog enable pin  
VIL  
Watchdog enabled  
Watchdog disabled  
VWD_EN = 5 V  
V
V
High-level input threshold voltage  
for watchdog enable pin  
VIH  
Pulldown current for watchdog  
enable pin  
IWD_EN  
3
µA  
REGULATED OUTPUT (OUT)  
VIN = 5.6 V to 40 V for fixed 5-V VOUT  
VIN = 4 V to 40 V for fixed 3.3-V VOUT  
,
,
2%  
2%  
IOUT = 0 to 300 mA, 40°C TJ 125°C  
VOUT  
Regulated output  
Line regulation  
VIN = 5.6 V to 40 V for fixed 5-V VOUT  
VIN = 4 V to 40 V for fixed 3.3-V VOUT  
IOUT = 0 to 300 mA  
;
;
2.5%  
10  
2.5%  
VIN = 5.6 V to 40 V  
mV  
ΔVOUT(ΔVIN)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VIN = 14 V, COUT 4.7 µF, 1 mΩ< ESR < 20 Ω, and TJ = 40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ΔVOUT(Δ  
Load regulation  
IOUT = 1 mA to 300 mA  
20  
mV  
IOUT)  
IOUT = 300 mA(2)  
IOUT = 200 mA(2)  
VOUT in regulation  
300  
170  
400  
325  
300  
V(dropout)  
mV  
Dropout voltage (VIN VOUT  
)
IOUT  
I(LIM)  
Output current  
0
mA  
mA  
VOUT shorted to ground, VIN = 5.6 V to  
40 V  
Output current limit  
301  
680  
60  
1000  
IOUT = 100 mA; COUT = 10 µF;  
frequency (f) = 100 Hz  
PSRR  
Power-supply ripple rejection(1)  
dB  
IOUT = 100 mA; COUT = 10 µF;  
frequency (f) = 100 kHz  
40  
POWER-GOOD (PG, PGADJ)  
VOL(PG) PG output, low voltage  
IOL = 5 mA, PG pulled low  
0.4  
1
V
PG pulled to VOUT through a 10-kΩ  
resistor  
Ilkg(PG)  
PG pin leakage current  
Default power-good threshold  
Power-good hysteresis  
µA  
VOUT powered above the internally set  
tolerance, PGADJ pin shorted to ground  
% of  
VOUT  
V(PG_TH)  
89.6  
91.6  
2
93.6  
VOUT falling below the internally set  
tolerance hysteresis  
% of  
VOUT  
V(PG_HYST)  
PGADJ  
Switching voltage for the power-  
good adjust pin  
V(PGADJ_TH)  
VOUT is falling  
1.067  
1.1  
1.133  
V
POWER-GOOD DELAY  
I(DLY_CHG) DELAY capacitor charging current  
3
5
1
10  
µA  
V
DELAY pin threshold to release  
PG high  
V(DLY_TH)  
Voltage at DELAY pin is ramped up  
VDELAY = 1 V  
0.95  
1.05  
DELAY capacitor discharging  
current  
I(DLY_DIS)  
0.5  
mA  
V
CURRENT VOLTAGE REFERENCE (ROSC)  
VROSC Voltage reference  
WATCHDOG (WD, WDO, WRS)  
Low-level threshold voltage for  
the watchdog input and window- For WD and WRS pins  
0.95  
1
1.05  
30  
% of  
VOUT  
VIL  
ratio select  
High-level threshold voltage for  
the watchdog input and window- For WD and WRS pins  
ratio select  
% of  
VOUT  
VIH  
70  
% of  
VOUT  
V(HYST)  
Hysteresis  
10  
2
IWD  
VOL  
Pulldown current for the WD pin  
Low-levlel watchdog output  
VWDO = 5 V  
IWDO = 5 mA  
4
µA  
V
0.4  
WDO pin pulled to VOUT through 10-kΩ  
resistor  
Ilkg  
WDO pin leakage current  
1
µA  
OPERATING TEMPERATURE RANGE  
TJ  
Junction temperature  
150  
°C  
°C  
°C  
40  
T(SD)  
T(HYST)  
Junction shutdown temperature  
Hysteresis of thermal shutdown  
175  
25  
(1) Design information not tested, determined by characterization.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
(2) This test is done with VOUT in regulation, measuring the VIN VOUT when VOUT drops by 100 mV from the rated output voltage at the  
specified load.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Switching Characteristics  
VI = 14 V, CO 4.7 µF, 1 mΩ< ESR < 20 Ω, and TJ = 40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER-GOOD DELAY (DELAY)  
t(DEGLITCH)  
t(DLY_FIX)  
t(DLY)  
Power-good deglitch time  
50  
180  
248  
20  
250  
900  
µs  
µs  
Fixed power-good delay  
Power-on-reset delay  
No capacitor connect at DELAY pin  
Delay capacitor value: C(DELAY) = 100 nF  
ms  
WATCHDOG (WD, WDO, WRS)  
9
10  
50  
11  
55  
R(ROSC) = 20 kΩ±1%, FSEL = LOW  
R(ROSC) = 20 kΩ±1%, FSEL = HIGH  
t(WD)  
Watchdog window duration  
ms  
45  
Tolerance of watchdog window  
duration using external resistor  
Excludes tolerance of R(ROSC) = 20 kΩto  
100 kΩ  
t(WD_TOL)  
tp(WD)  
t(WD_HOLD)  
10%  
10%  
Watchdog service-signal duration  
100  
µs  
Watchdog output resetting time  
(percentage of settled watchdog  
window duration)  
20  
% of t(WD)  
1.8  
9
2
2.2  
11  
R(ROSC) = 20 kΩ± 1%, FSEL = LOW  
R(ROSC) = 20 kΩ± 1%, FSEL = HIGH  
t(WD_RESET)  
Watchdog output resetting time  
ms  
10  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
at VIN = 14 V, VEN 2 V, and TJ = 40°C to +150°C (unless otherwise noted)  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
350  
300  
250  
200  
150  
100  
50  
-40 °C  
25 °C  
125 °C  
IOUT = 1 mA  
IOUT = 100 mA  
IOUT = 200 mA  
0
0
50  
100  
150  
Output Current (mA)  
200  
250  
300  
0
5
10  
15  
Input Voltage (V)  
20  
25  
30  
35  
40  
D001  
D002  
6-1. Quiescent Current vs Output Current  
6-2. Quiescent Current vs Input Voltage  
4
3
2
1
0
35  
30  
25  
20  
15  
10  
5
IOUT = 1 mA  
IOUT = 100 mA  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D003  
D004  
6-3. Shutdown Current vs Ambient Temperature  
6-4. Quiescent Current vs Ambient Temperature  
350  
300  
-40 °C  
25 °C  
125 °C  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
50  
100  
150 200  
Output Current (mA)  
250  
300  
350  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D005  
D006  
IOUT = 200 mA  
6-5. Dropout Voltage vs Output Current  
6-6. Dropout Voltage vs Ambient Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at VIN = 14 V, VEN 2 V, and TJ = 40°C to +150°C (unless otherwise noted)  
5.06  
5.03  
5
6
5
4
3
2
1
0
4.97  
-40èC  
25èC  
125èC  
4.94  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
D007  
D008  
VOUT = 5 V  
6-7. Output Voltage vs Ambient Temperature  
VOUT = 5 V  
6-8. Output Voltage vs Input Voltage  
900  
800  
700  
600  
500  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
40 °C  
25 °C  
125 °C  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
0
50  
100  
150  
200  
250  
300  
350  
Output Current (mA)  
D009  
VIN = 5.6 V  
6-10. Load Regulation  
6-9. Output Current Limit (ILIM) vs Ambient Temperature  
1
120  
100  
80  
60  
40  
20  
0
-40èC  
0.8  
25èC  
125èC  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
5
10  
15  
Input Voltage (V)  
20  
25  
30  
35  
40  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D011  
D012  
COUT = 10 μF, IOUT = 1 mA, TA = 25°C  
6-12. PSRR vs Frequency  
6-11. Line Regulation  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at VIN = 14 V, VEN 2 V, and TJ = 40°C to +150°C (unless otherwise noted)  
120  
100  
80  
60  
40  
20  
0
1k  
Unstable Region  
Stable Region  
500  
100  
10  
4.7  
Unstable Region  
1
0.001  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
0.01  
0.1  
ESR (W)  
1
10 20  
D013  
D014  
COUT = 10 μF, IOUT = 100 mA, TA = 25°C  
6-13. PSRR vs Frequency  
6-14. ESR Stability vs Output Capacitance  
VIN (10 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VIN (10 V/div)  
VOUT(AC) (100 mV/div)  
VOUT(AC) (100 mV/div)  
IOUT (10 mA/div)  
IOUT (10 mA/div)  
VIN = 6 V to 40 V, VOUT = 5 V, COUT = 10 µF, IOUT = 1 mA  
VIN = 40 V to 6 V, VOUT = 5 V, COUT = 10 µF, IOUT = 1 mA  
6-15. Line Transient  
6-16. Line Transient  
VIN (5 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (50 mV/div)  
IOUT (200 mA/div)  
VOUT(AC) (50 mV/div)  
IOUT (200 mA/div)  
VIN = 9 V to 16 V, VOUT = 5 V, COUT = 10 µF, IOUT = 200 mA  
VIN = 16 V to 9 V, VOUT = 5 V, COUT = 10 µF, IOUT = 200 mA  
6-17. Line Transient  
6-18. Line Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
at VIN = 14 V, VEN 2 V, and TJ = 40°C to +150°C (unless otherwise noted)  
VIN (5 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (500 mV/div)  
VOUT(AC) (500 mV/div)  
IOUT (200 mA/div)  
IOUT (200 mA/div)  
VOUT = 5 V, COUT = 10 µF, IOUT = 1 mA to 200 mA  
6-19. Load Transient  
VOUT = 5 V, COUT = 10 µF, IOUT = 200 mA to 1 mA  
6-20. Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B63xx-Q1 device is a family of 300-mA, 40-V monolithic low-dropout linear voltage regulators with  
integrated watchdog and adjustable power-good threshold functionality. These voltage regulators consume only  
19-µA quiescent current in light-load applications. Because of the adjustable power-good delay (also called  
power-on-reset delay) and the adjustable power-good threshold, these devices are well-suited as power supplies  
for microprocessors and microcontrollers in automotive applications.  
7.2 Functional Block Diagram  
IN  
OUT  
VBAT  
VREG  
Overcurrent  
Protection  
Regulator  
Control  
Thermal  
Shutdown  
Undervoltage  
Lockout  
Band Gap  
Error  
Amp  
Vref  
EN  
PG  
DELAY  
ROSC  
Power-Good  
Control With  
Delay  
V(PG_REF )  
Current  
Regulator  
Watchdog  
Oscillator  
Amp  
PGADJ  
WDO  
WD  
MCU I/O  
Timer  
WD_EN  
Digital I/O  
Watchdog  
Fault Control  
GND  
FSEL  
WTS  
WRS  
7.3 Feature Description  
7.3.1 Device Enable (EN)  
The EN pin is a high-voltage-tolerant pin. A high input activates the device and turns the regulator ON. Connect  
this input pin to an external microcontroller or a digital control circuit to enable and disable the device, or connect  
to the IN pin for self-bias applications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.2 Adjustable Power-Good Threshold (PG, PGADJ)  
The PG pin is an open-drain output with an external pullup resistor to the regulated supply, and the PGADJ pin is  
a power-good threshold adjustment pin. Connecting the PGADJ pin to GND sets the power-good threshold value  
to the default, V(PG_TH). When VOUT exceeds the default power-good threshold, the PG output turns high after  
the power-good delay period has expired. When VOUT falls below V(PG_TH) V(PG_HYST), the PG output turns  
low after a short deglitch time.  
The power-good threshold is also adjustable from 1.1 V to 5 V by using an external resistor divider between  
PGADJ and OUT. The threshold can be calculated using 方程1:  
R1+ R2  
R2  
V PG_ ADJ falling = V PGADJ_ TH falling  
ì
(
)
(
)
R1+ R2  
R2  
»
ÿ
V PG_ ADJ risng = V PGADJ_ TH falling + 26 mV typ  
ì
(
)
(
)
(
)
(1)  
where  
V(PG_ADJ) is the adjustable power-good threshold  
V(PG_REF) is the internal comparator reference voltage of the PGADJ pin, 1.1 V typical, 2% accuracy specified  
under all conditions  
By setting the power-good threshold V(PG_ADJ), when VOUT exceeds this threshold, the PG output turns high after  
the power-good delay period has expired. When VOUT falls below V(PG_ADJ) V(PG_HYST), the PG output turns  
low after a short deglitch time. 7-1 shows typical hardware connections for the PGADJ pin and DELAY pin.  
OUT  
VREG  
Adjustable Power-  
Good Threshold  
PG  
R1  
DELAY  
Power-Good  
Control  
R2  
V(PG_REF)  
Amp  
PGADJ  
7-1. Adjustable Power-Good Threshold  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.3 Adjustable Power-Good Delay Timer (DELAY)  
The power-good delay period is a function of the value set by an external capacitor on the DELAY pin before  
turning the PG pin high. 7-2 illustrates typical power-good and delay behavior. Connecting an external  
capacitor from this pin to GND sets the power-good delay period. The constant current charges an external  
capacitor until the voltage exceeds a threshold to trip an internal comparator, and 方程式 2 determines the  
power-good delay period:  
%
T 18  
&'.#;  
P:  
= P  
+
;
&.;  
@HU _BET  
5 ä#  
(2)  
where  
t(DLY) is the adjustable power-good delay period  
CDELAY is the value of the power-good delay capacitor  
VIN  
V
(UVLO)  
t < t(DEGLITCH)  
V(PG_HYST)  
V(PG_TH) rising  
V(PG_TH) falling  
V(PG_ADJ) falling  
V(PG_ADJ) rising  
VOUT  
V
(DLY_TH)  
DELAY  
t(DEGLITCH)  
t(DEGLITCH)  
t
t
(DLY)  
(DLY)  
PG  
Power Up  
Input Voltage Drop  
Undervoltage  
Power Down  
7-2. Power Up and Conditions for Activating Power-Good  
If the DELAY pin is open, the default delay time is t(DLY_FIX)  
.
7.3.4 Undervoltage Shutdown  
These devices have an integrated undervoltage lockout (UVLO) circuit to shut down the output if the input  
voltage falls below an internal UVLO threshold, V(UVLO). This ensures that the regulator does not latch into an  
unknown state during low-input-voltage conditions. If the input voltage has a negative transient which drops  
below the UVLO threshold and recovers, the regulator shuts down and powers up with a normal power-up  
sequence once the input voltage is above the required level.  
7.3.5 Current Limit  
These devices feature current-limit protection to keep the device in a safe operating area when an overload or  
output short-to-ground condition occurs. This protects devices from excessive power dissipation. For example,  
during a short-circuit condition on the output, fault protection limits the current through the pass element to I(LIM)  
to protect the device from excessive power dissipation.  
7.3.6 Thermal Shutdown  
These devices incorporate a thermal shutdown (TSD) circuit as a protection from overheating. For continuous  
normal operation, the junction temperature should not exceed the TSD trip point. The junction temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
exceeding the TSD trip point causes the output to turn off. When the junction temperature falls below the T(SD)  
T(HYST), the output turns on again.  
7.3.7 Integrated Watchdog  
These devices have an integrated watchdog with fault (WDO) output option. Both window watchdog and  
standard watchdog are available in one device. The watchdog operation, service fault conditions, and  
differences between window watchdog and standard watchdog are described as follows.  
7.3.7.1 Window Watchdog (WTS, ROSC, FSEL and WRS)  
These devices work in the window watchdog mode when the watchdog type selection (WTS) pin is connected to  
a to low voltage level. The user can set the duration of the watchdog window by connecting an external resistor  
(RROSC) to ground at the ROSC pin and setting the voltage level at the FSEL pin. The current through the RROSC  
resistor sets the clock frequency of the internal oscillator. The user can adjust the duration of the watchdog  
window (the watchdog timer period) by changing the resistor value. A high voltage level at the FSEL pin sets the  
watchdog window duration to 5 times as long as that of a low voltage level with same external component  
configuration.  
The duration of the watchdog window and the duration of the fault output are multiples of the internal oscillator  
frequency, as shown by the following equations:  
FSEL low  
t(WD) = RROSC × 0.5 × 10-6  
t(WD) = RROSC × 2.5 × 10-6  
t(WD_INI) = 8 × t(WD)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
FSEL high  
Watchdog initialization  
Open and closed windows  
WRS low  
t(WD) = t(OW) + t(CW)  
t(OW) = t(CW) = 50% × t(WD)  
t(OW) = 8 × t(CW) = (8 / 9) × t(WD)  
WRS high  
where:  
t(WD) is the duration of the watchdog window  
RROSC is the resistor connected at the ROSC pin  
t(WD_INI) is the duration of the watchdog initialization  
t(OW) is the duration of the open watchdog window  
t(CW) is the duration of the closed watchdog window  
For all the foregoing items, the unit of resistance is Ωand the unit of time is s.  
7-1 illustrates several periods of watchdog window with typical conditions.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7-1. Several Typical Periods of Watchdog Window  
FSEL  
I(ROSC) (µA)  
t(WD) (ms)  
WATCHDOG PERIOD  
TOLERANCE  
R(ROSC) (k)  
200  
100  
50  
5
500  
250  
125  
100  
62.5  
50  
15%  
10  
20  
25  
40  
50  
10  
20  
25  
40  
50  
High  
40  
10%  
25  
20  
100  
50  
50  
25  
Low  
40  
20  
10%  
25  
12.5  
10  
20  
As illustrated in 7-3, each watchdog window consists of an open window and a closed window. While the  
window ratio selection (WRS) pin is low, each open window (t(OW)) and closed window (t (CW)) has a width  
approximately 50% of the watchdog window (t (WD)). While the WRS pin is high, the ratio between open window  
and closed window is about 8:1. However, there is an exception to this; the first open window after watchdog  
initialization (t(WD_INI)) is eight times the duration of the watchdog window. The watchdog must receive the  
service signal (by software, external microcontroller, and so forth) during this initialization open window.  
A watchdog fault occurs when servicing the watchdog during a closed window, or not servicing during an open  
window.  
t(WD_INI)  
t(WD)  
Closed Window  
(Must Not Be Serviced  
to Prevent Fault)  
Open Window  
(Must Be Serviced  
to Prevent Fault)  
Open Window  
After Watchdog Initialization  
(Must Be Serviced to Prevent Fault)  
WRS = Low  
t(CW) = ½ ´ t(WD)  
t(OW) = ½ ´ t(WD)  
8 ´ t(WD)  
Open Window  
After Watchdog Initialization  
(Must Be Serviced to Prevent Fault)  
Open Window  
(Must Be Serviced  
to Prevent Fault)  
CW  
WRS = High  
t(OW) = 8 / 9 ´ t(WD)  
8 ´ t(WD)  
Closed Window  
(Must Not Be Serviced  
to Prevent Fault)  
Event Causing  
Watchdog Initialization  
t(CW) = 1 / 9 ´ t(WD)  
7-3. Watchdog Initialization, Open Window and Closed Window  
7.3.7.2 Standard Watchdog (WTS, ROSC and FSEL)  
These devices work in the standard watchdog mode when the watchdog type selection (WTS) pin is connected  
to a high voltage level. The same as in window watchdog mode, the user can set the duration of the watchdog  
window by adjusting the external resistor (RROSC) value at the ROSC pin and setting the voltage level at the  
FSEL pin. The current through the RROSC resistor sets the clock frequency of the internal oscillator. The user can  
adjust the duration of the watchdog window (the watchdog timer period) by changing the resistor value. A high  
voltage level at the FSEL pin sets the watchdog window duration to 5 times as long as that of a low voltage level  
with same external component configuration.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
The duration of the watchdog window and the duration of the fault output are multiples of the internal oscillator  
frequency, as shown by the following equations:  
FSEL low  
t(WD) = RROSC × 0.5 × 10-6  
t(WD) = RROSC × 2.5 × 10-6  
t(WD_INI) = 8 × t(WD)  
(9)  
(10)  
(11)  
FSEL high  
Watchdog initialization  
where:  
t(WD) is the duration of the watchdog window  
RROSC is the resistor connected at the ROSC pin  
t(WD_INI) is the duration of the watchdog initialization  
For all the foregoing items, the unit of resistance is Ωand the unit of time is s  
Compared with window watchdog, there is no closed window in standard watchdog mode. The standard  
watchdog receives a service signal at any time within the watchdog window. The watchdog fault occurs when not  
servicing watchdog during the watchdog window.  
7.3.7.3 Watchdog Service Signal and Watchdog Fault Outputs (WD and WDO)  
The watchdog service signal (WD) must stay high for at least 100 µs. The WDO pin is the fault output terminal  
and is tied high through a pullup resistor to a regulated output supply. When a watchdog fault occurs, the devices  
momentarily pull WDO low for a duration of t(WD_HOLD)  
(WD _HOLD) = 20%´ t(WD)  
7.3.7.4 ROSC Status Detection (ROSC)  
.
t
(12)  
When a watchdog function is enabled, if the ROSC pin is shorted to GND or open, the watchdog output (WDO)  
pin remains low, indicating a fault status. If the watchdog function is disabled, ROSC pin status detection does  
not work.  
7.3.7.5 Watchdog Enable (PG and WD_EN)  
When PG (power good) is high, an external microcontroller or a digital circuit can apply a high or low logic signal  
to the WD_EN pin to disable or enable the watchdog. A low input to this pin turns the watchdog on, and a high  
input turns the watchdog off. If PG is low, the watchdog is disabled and the watchdog-fault output (WDO) pin  
stays in the high-impedance state.  
7.3.7.6 Watchdog Initialization  
On power up and during normal operation, the watchdog initializes under the conditions shown in 7-2.  
7-2. Conditions for Watchdog Initialization  
EDGE  
WHAT CAUSES THE WATCHDOG TO INITIALIZE  
Rising edge of PG (power good) while the watchdog is in the enabled state, for example,  
during soft power up  
Falling edge of WD_EN while PG is already high, for example, when the microprocessor  
enables the watchdog after the device is powered up  
Rising edge of WDO while PG is already high and the watchdog is in the enabled state, for  
example, right after a closed window is serviced  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.7.7 Window Watchdog Operation (WTS = Low)  
The window watchdog is able to monitor whether the frequency of the watchdog service signal (WD) is within  
certain ranges. A watchdog low-voltage fault is reported when the frequency of the watchdog service signal is  
out of the setting range. 7-4 shows the window watchdog initialization and operation for the TPS7B63xx-Q1  
(WRS is low). After the output voltage is in regulation and PG is high, the window watchdog becomes enabled  
when an external signal pulls WD_EN (the watchdog enable pin) low. This causes the watchdog to initialize and  
wait for a service signal during the first initialization window for 8 times the duration of t(WD). A service signal  
applied to the WD pin during the initialization open window resets the watchdog counter and a closed window  
starts. To prevent a fault condition from occurring, watchdog service must not occur during the closed window.  
Watchdog service must occur during the following open window to prevent a fault condition from occurring. The  
fault output (WDO), externally pulled up to VOUT (typical), stays high as long as the watchdog receives a proper  
service signal and there is no other fault condition.  
VIN  
V(PG_TH) rising  
V(PG_ADJ) rising  
)
VOUT  
DELAY  
PG  
V(PG_TH) falling  
V(PG_ADJ) falling  
t(DLY)  
V(DLY_TH)  
t(DLY)  
t(DEGLITCH)  
WD_EN  
WD  
WDO  
OW  
WD  
OW  
WD  
OW  
WD Ini- NA  
tialization  
F
L
T
OW  
WD Initial-  
ization  
F
L
T
F
L
T
OW  
WD Initialization  
OW  
WD Initialization  
N
A
Watchdog  
Window Status  
CW  
OW CW  
CW  
OW  
NA  
Initial...  
Initialization  
<8 t(WD)  
t(WD) / 2  
<8 t(WD)  
t(WD) / 2  
t(WD) / 2  
<8 t(WD)  
8 t(WD)  
<8 t(WD)  
Normal Operation  
20% ´ t(WD)  
20% ´ t(WD)  
20% ´ t(WD)  
Fault 1  
Fault 2  
Fault 3  
7-4. Window Watchdog Operation  
Three different fault conditions occur in 7-4:  
Fault 1: The watchdog service signal is received during the closed window. The WDO is triggered once,  
receiving a WD rising edge during the closed window.  
Fault 2: The watchdog service signal is not received during the open window. WDO is triggered after the  
maximum open-window duration t(WD) / 2.  
Fault 3: The watchdog service signal is not received during the WD initialization. WDO is triggered after the  
maximum initialization window duration 8 × t(WD)  
.
7.3.7.8 Standard Watchdog Operation (WTS = High)  
The standard watchdog is able to monitor whether the frequency of the watchdog service signal (WD) is lower  
than a certain value. A watchdog low-voltage fault is reported when the frequency of the watchdog service signal  
is lower than the set value.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
7-5 shows the standard watchdog initialization and operation for the TPS7B63xx-Q1. Similar to the window  
watchdog, after output the voltage is in regulation and PG asserts high, the standard watchdog becomes  
enabled when an external signal pulls WD_EN low. This causes the standard watchdog to initialize and wait for a  
service signal during the first initialization window for 8 times the duration of t(WD). A service signal applied to the  
WD pin during the first open window resets the watchdog counter and another open window starts. To prevent a  
fault condition from occurring, watchdog service must occur during the every open window to prevent a fault  
condition from occurring. The fault output (WDO), externally pulled up to VOUT (typical), stays high as long as the  
watchdog receives proper service and there is not fault condition.  
VIN  
V(PG_TH) rising  
V(PG_ADJ) rising  
VOUT  
V(PG_TH) falling  
V(PG_ADJ) falling  
t(DLY)  
V(DLY_TH)  
DELAY  
t(DLY)  
PG  
t(DEGLITCH)  
WD_EN  
WD  
WDO  
OW  
WD  
OW  
WD  
OW  
WD Ini- NA  
tialization  
F
L
T
F
L
T
OW  
WD Initialization  
OW  
WD Initialization  
N
A
Watchdog  
Window Status  
NA  
OW  
OW  
OW OW  
OW  
OW  
OW  
Initialization Initial...  
<8 t(WD)  
<t(WD)  
<t(WD)  
<t(WD) <t(WD)  
<t(WD)  
<t(WD)  
<8 t(WD)  
8 t(WD)  
<8 t(WD)  
20% ´ t(WD)  
20% ´ t(WD)  
Normal Operation  
Fault 1  
Fault 2  
7-5. Standard Watchdog Operation  
Two different fault conditions occur in 7-5:  
Fault 1: The watchdog service signal is not received during the open window. WDO is triggered after the  
maximum open-window duration t(WD)  
Fault 2: The watchdog service signal is not received during the WD initialization. WDO is triggered after the  
.
maximum initialization window duration 8 × t(WD)  
.
7.4 Device Functional Modes  
7.4.1 Operation With Input Voltage Lower Than 4 V  
The devices normally operate with input voltages above 4 V. The devices can also operate at lower input  
voltages; the maximum UVLO voltage is 2.6 V. At input voltages below the actual UVLO voltage, the devices do  
not operate.  
7.4.2 Operation With Input Voltage Higher Than 4 V  
When the input voltage is greater than 4 V, if the input voltage is higher than the output set value plus the device  
dropout voltage, then the output voltage is equal to the set value. Otherwise, the output voltage is equal to the  
input voltage minus the dropout voltage.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS7B63xx-Q1 is a 300-mA low-dropout watchdog linear regulator with ultralow quiescent current. The  
PSpice transient model is available for download on the product folder and can be used to evaluate the basic  
function of the device.  
8.2 Typical Application  
8-1 shows a typical application circuit for the TPS7B63xx-Q1 device. Different values of external components  
can be used, depending on the end application. An application may require a larger output capacitor during fast  
load steps to prevent a large drop on the output voltage. TI recommends using a low-ESR ceramic capacitor with  
a dielectric of type X7R.  
IN  
OUT  
MCU Supply  
Battery  
10 µF  
4.7 µF  
to  
500 µF  
1 kW  
to  
200 kW  
1 kW  
to  
20 kW  
to  
22 µF  
EN  
WD_EN  
WD  
RADJ  
1 kW  
1 kW  
to  
200 kW  
Digital Output  
MCU O  
to  
20 kW  
WDO  
PG  
TPS7B63xx-Q1  
MCU I  
WTS  
MCU RESET  
ROSC  
FSEL  
WRS  
20 kW  
to  
100 kW  
DELAY  
100 pF  
to  
100 nF  
8-1. TPS7B63xx-Q1 Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1.  
8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUES  
Input voltage range  
4 V to 40 V for TPS7B6333-Q1  
5.6 V to 40 V for TPS7B6350-Q1  
10 μF to 22 μF  
Input capacitor range  
Output voltage  
3.3 V, 5 V  
Output current rating  
Output capacitor range  
Power-good threshold  
300 mA maximum  
4.7 μF to 500 μF  
Adjustable or fixed  
Power-good delay capacitor  
Watchdog type  
100 pF to 100 nF  
Standard watchdog or window watchdog  
10 ms to 500 ms  
Watchdog window periods  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Output voltage  
Output current  
Power-good threshold  
Power-good delay capacitor  
Watchdog type  
Watchdog window period  
8.2.2.1 Input Capacitor  
When using a TPS7B63xx-Q1 device, TI recommends adding a 10-μF to 22-μF capacitor with a 0.1 μF  
ceramic bypass capacitor in parallel at the input to keep the input voltage stable. The voltage rating must be  
greater than the maximum input voltage.  
8.2.2.2 Output Capacitor  
Ensuring the stability of the TPS7B63xx-Q1 device requires an output capacitor with a value in the range from  
4.7 μF to 500 μF and with an ESR range from 0.001 Ωto 20 Ω. TI recommends selecting a ceramic capacitor  
with low ESR to improve the load transient response.  
8.2.2.3 Power-Good Threshold  
The power-good threshold is set by connecting PGADJ to GND or to a resistor divider from OUT to GND. The  
Adjustable Power-Good Threshold (PG, PGADJ) section provides the method for setup of the power-good  
threshold.  
8.2.2.4 Power-Good Delay Period  
The power-good delay period is set by an external capacitor (CDELAY) to ground, with a typical capacitor value  
from 100 pF to 100 nF. Calculate the correct capacitance for the application using 方程2.  
8.2.2.5 Watchdog Setup  
The Integrated Watchdog section discusses the watchdog type selection and watchdog window-period setup  
method.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.3 Application Curves  
VOUT (5 V/div)  
WD Signal (5 V/div)  
VIN (5 V/div)  
VOUT (2 V/div)  
VPG (2 V/div)  
WDO Signal (5 V/div)  
IOUT (10 mA/div)  
IOUT (10 mA/div)  
8-3. TPS7B6350-Q1 Watchdog Fault (High-  
8-2. TPS7B6350-Q1 Power-Up Waveform  
Frequency Watchdog Service Signal)  
8.3 Power Supply Recommendations  
The device is designed to operate from an input-voltage supply range from 4 V to 40 V. This input supply must  
be well regulated. If the input supply is located more than a few inches from the TPS7B63xx-Q1 device, TI  
recommends adding a capacitor with a value of 10 μF with a 0.1 μF ceramic bypass capacitor in parallel at  
the input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
For LDO power supplies, especially high-voltage and high-current ones, layout is an important step. If layout is  
not carefully designed, the regulator could not deliver enough output current because of thermal limitation. To  
improve the thermal performance of the device and maximize the current output at high ambient temperature, TI  
recommends spreading the thermal pad as much as possible and putting enough thermal vias on the thermal  
pad. 8-4 shows an example layout.  
8.4.2 Layout Example  
IN  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT  
PGADJ  
PG  
FSEL  
WTS  
GND  
NC  
Thermal  
Pad  
GND  
WRS  
WDEN  
WDO  
WD  
ROSC  
DELAY  
8-4. Layout Recommendation  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
TPS7B6333-Q1, TPS7B6350-Q1  
ZHCSG47C FEBRUARY 2017 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS7B63xx-Q1 Evaluation Module user's guide  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7B6333-Q1 TPS7B6350-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B6333QPWPRQ1  
TPS7B6350QPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
7B6333Q  
7B6350Q  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Oct-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B6333QPWPRQ1 HTSSOP PWP  
TPS7B6350QPWPRQ1 HTSSOP PWP  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B6333QPWPRQ1  
TPS7B6350QPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7B6333QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6350QPWPRQ1

汽车类 300mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B67-Q1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6701QKTTRQ1

1.5V-18V ADJUSTABLE POSITIVE LDO REGULATOR, 0.45V DROPOUT, PSSO5, DDPAK-5

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6701QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6733QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6750QPWPRQ1

具有电源正常指示功能的汽车类 450mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B68-Q1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6833QPWPRQ1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 28 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B6850QPWPRQ1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 28 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B69

150mA、40V、低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B69-Q1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI