TPS7B68-Q1 [TI]

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器;
TPS7B68-Q1
型号: TPS7B68-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器

电池 稳压器
文件: 总36页 (文件大小:2249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
TPS7B68-Q1 500mA 40V 高电压超低静态电流看门狗 LDO  
1 特性  
3 说明  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
在汽车微控制器或微处理器电源 应用中,看门狗用于  
监测微控制器的工作状态,防止软件失控。在可靠的系  
统中,看门狗必须独立于微控制器。  
器件温度 1 级:–40°C +125°C 的环境工作  
温度范围  
TPS7B68-Q1 是一款专为实现高达 40V 的工作电压而  
设计的 500mA 看门狗 LDO,其轻载条件下的典型静  
态电流仅为 19µA。该器件集成了一项可编程功能,用  
于选择窗口或标准看门狗,并使用外部电阻器来设置看  
门狗时间(精度在 10% 以内)。  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C4B  
最大输出电流:500mA  
4V 40V VIN 输入电压范围,瞬态电压高达  
45V  
TPS7B68-Q1 上的 PG 引脚指示输出电压何时达到稳  
定且处于稳压范围内。电源正常延迟周期和电源正常阈  
值可通过外部组件来调整。此外,该器件还 具备 短路  
和过流保护。这些特性 组合 使得该器件极具灵活性,  
适用于为汽车应用中的微控制器 供电。  
3.3V 5V 两种固定输出电压  
最大压降电压:600mV(电流为 500mA)  
在宽电容(4.7µF 500µF)和 ESR0.001Ω 至  
20Ω)范围内,与输出电容器一起工作时保持稳定  
低静态电流 (I(Q)):  
EN 为低电平(关断模式)时 < 4µA  
器件信息(1)  
轻负载(WD_EN 为高电平)时具有 19µA 的典  
型值(看门狗禁用)  
器件型号  
封装  
封装尺寸(标称值)  
TPS7B68-Q1  
HTSSOP (28)  
9.70mm × 4.40mm  
可针对窗口看门狗和标准看门狗进行配置  
开关窗口比例可配置为 1:1 8:1  
完全可调的看门狗周期(10ms 500ms)  
10% 精度看门狗周期  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用原理图  
TPS7B6850-Q1  
Battery  
专用 WD_EN 引脚,用于控制看门狗开关  
完全可调的电源正常阈值和电源正常延迟周期  
针对 UVLO 的低输入电压跟踪功能  
集成故障保护:  
IN  
OUT  
MCU  
Supply  
EN  
PGADJ  
过载电流限制保护  
热关断  
WD_EN  
Digital I/O  
MCU I/O  
MCU  
I/O  
WD  
WDO  
PG  
28 引脚 HTSSOP 封装  
WTS  
2 应用  
ROSC  
FSEL  
WRS  
MCU  
Reset  
汽车 MCU 电源  
DELAY  
车身控制模块 (BCM)  
车身舒适模块  
GND  
EV HEV 电池管理系统(BMS)  
电子换挡器  
变速器控制单元 (TCU)  
电动助力转向 (EPS)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSD43  
 
 
 
 
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Application ................................................. 22  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Switching Characteristics.......................................... 9  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 文档支持................................................................ 26  
11.2 接收文档更新通知 ................................................. 26  
11.3 社区资源................................................................ 26  
11.4 ....................................................................... 26  
11.5 静电放电警告......................................................... 26  
11.6 术语表 ................................................................... 26  
12 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (September 2017) to Revision C  
Page  
已更改 通篇将看门狗精度从 9% 更改成了 10%...................................................................................................................... 1  
已更改 更改了器件信息表 ................................................................................................................................................... 1  
Changed test conditions of VOUT parameter........................................................................................................................... 7  
Added second row to VOUT parameter ................................................................................................................................... 7  
Changed V(dropout) parameter maximum specifications from 600 mV to 800 mV at 500 mA and changed 260 mV to  
325 mV at 200 mA.................................................................................................................................................................. 7  
Added footnote indicating dropout is not tested for the 3.3-V option at 200 mA.................................................................... 7  
Changed first row test conditions of I(LIM) parameter: changed VIN = 5.6 V to 40 V to VIN = 5.6 V and added voltage  
option...................................................................................................................................................................................... 7  
Added second row to I(LIM) parameter for the 3.3-V option..................................................................................................... 7  
Changed t(DEGLITCH) parameter minimum specification from 100 µs to 55 µs ........................................................................ 9  
Changed t(DLY_FIX) parameter specifications: deleted minimum specification and changed maximum specification  
from 550 µs to 900 µs ........................................................................................................................................................... 9  
Changed t(WD_TOL) parameter: changes test conditions, changed minim specification from –9% to –10%, and  
changed maximum specification from 9% to 10%.................................................................................................................. 9  
已更改 Several Typical Periods of Watchdog Window table to reflect change in watchdog duration accuracy from  
9% to 10% ............................................................................................................................................................................ 17  
Changes from Revision A (December 2016) to Revision B  
Page  
Changed V(PG_TH) symbol to V(PG_TH) rising and V(PGADJ_TH) symbol to V(PGADJ_TH) falling in Electrical Characteristics table......... 8  
Added V(PGADJ_HYST) parameter to Electrical Characteristics table ......................................................................................... 8  
已更改 Adjustable Power-Good Threshold section: updated symbols and changed Equation 1 ........................................ 15  
已更改 parameter symbols in Power Up and Conditions for Activation of Power Good figure and added footnote............ 16  
已更改 parameter symbols in Window Watchdog Operation figure and added footnote ..................................................... 20  
已更改 parameter symbols in Standard Watchdog Operation figure and added footnote ................................................... 21  
2
版权 © 2015–2019, Texas Instruments Incorporated  
 
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Changes from Original (June 2016) to Revision A  
Page  
已将 TPS7B6850-Q1 的状态从产品预览改为量产数据........................................................................................................... 1  
Copyright © 2015–2019, Texas Instruments Incorporated  
3
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
PWP PowerPAD™ Package  
28-Pin HTSSOP With Exposed Thermal Pad  
Top View  
IN  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
OUT  
NC  
2
NC  
3
NC  
EN  
4
PGADJ  
PG  
FSEL  
WTS  
NC  
5
6
NC  
7
NC  
Thermal  
Pad  
GND  
NC  
8
GND  
NC  
9
NC  
10  
11  
12  
13  
14  
NC  
ROSC  
DELAY  
WD  
WRS  
NC  
WD_EN  
WDO  
NC  
Not to scale  
NC - No internal connection  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DELAY  
NO.  
Power-good delay-period adjustment pin. Connect this pin via a capacitor to ground to adjust  
the power-good delay time.  
12  
O
I
Device enable pin. Pull this pin down to low-level voltage to disable the device. Pull this pin  
up to high-level voltage to enable the device.  
EN  
4
5
Internal oscillator-frequency selection pin. Pull this pin down to low-level voltage to select the  
high-frequency oscillator. Pull this pin up to high-level voltage to select the low-frequency  
oscillator.  
FSEL  
I
GND  
IN  
8, 21  
1
G
I
Ground reference  
Device input power-supply pin  
2, 3, 7, 9, 10,  
14, 17, 19,  
20, 22, 23,  
26, 27  
NC  
Not connected  
OUT  
PG  
28  
O
O
Device 3.3-V or 5-V regulated output voltage pin  
Power-good pin. Open-drain output pin. Pull this pin up to VOUT or to a reference through a  
resistor. When the output voltage is not ready, this pin is pulled down to ground.  
24  
Power-good threshold-adjustment pin. Connect a resistor divider between the PGADJ and  
OUT pins to set the power-good threshold. Connect this pin to ground to set the threshold to  
PGADJ  
25  
O
91.6% of output voltage VOUT  
.
(1) I = input, O = output, G = ground.  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
ROSC  
NO.  
Watchdog timer adjustment pin. Connect a resistor between the ROSC pin and the GND pin  
to set the duration of the watchdog monitor. Leaving this pin open or connecting this pin to  
ground results in the watchdog reporting a fault at the watchdog output (WDO).  
11  
O
WD  
13  
15  
I
Watchdog service-signal input pin.  
Watchdog status pin. Open-drain output pin. Pull this pin up to OUT or a reference voltage  
through a resistor. When watchdog fault occurs, this pin is pulled down to a low-level voltage.  
WDO  
O
Watchdog enable pin. Pull this pin down to a low level to enable the watchdog. Pull this pin  
up to a high level to disable the watchdog.  
WD_EN  
WRS  
16  
18  
6
I
I
Window ratio selection pin (only applicable for the window watchdog). Pull this pin down to a  
low level to set the open:closed window ratio to 1:1. Pull this pin up to high level to set the  
open:closed window ratio to 8:1.  
Watchdog type-selection pin. To set the window watchdog, connect this pin to the GND pin.  
To set the standard watchdog, pull this pin high.  
WTS  
O
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
45  
7
UNIT  
V
Unregulated input  
IN, EN  
ROSC  
DELAY  
OUT  
Internal oscillator reference voltage  
Power-good delay-timer output  
Regulated output  
V
7
V
7
V
Power-good output voltage  
PG  
7
V
Watchdog status output voltage  
Watchdog frequency selection, watchdog-type selection  
Watchdog enable  
WDO  
7
V
FSEL, WTS  
WD_EN  
WD  
45  
7
V
V
Watchdog service signal voltage  
Window ratio selection  
7
V
WRS  
7
V
Power good threshold adjustment voltage  
Operating junction temperature, TJ  
Storage temperature, Tstg  
PGADJ  
7
V
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground.  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±2000  
±500  
±750  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Corner pins (1, 14, 15, and 28)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
4
MAX  
UNIT  
Unregulated input  
40-V pins  
IN  
40  
VIN  
5.5  
V
V
V
EN, FSEL, WTS  
OUT  
0
Regulated output  
0
Power good, watchdog status,  
reference oscillator  
PG, WDO, ROSC  
0
5.5  
V
Low voltage pins  
WD, WD_EN, PGADJ, DELAY, WRS  
0
0
5.5  
500  
150  
125  
V
Output current  
mA  
°C  
°C  
Operating junction temperature, TJ  
Ambient temperature, TA  
–40  
–40  
6.4 Thermal Information  
TPS7B68-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
28 PINS  
37.8  
18.4  
18.7  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
18.5  
2.4  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
6.5 Electrical Characteristics  
VIN = 14 V, COUT 4.7 µF, 1 mΩ < ESR < 20 Ω, and TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (IN)  
VIN  
Input voltage  
4
40  
4
V
I(SLEEP)  
Input sleep current  
EN = OFF  
µA  
VIN = 5.6 V to 40 V for fixed 5-V  
VOUT; VIN = 4 V to 40 V for fixed  
3.3-V VOUT; EN = ON; watchdog  
disabled; IOUT < 1 mA;  
19  
29.6  
42  
TJ < 80°C  
VIN = 5.6 V to 40 V for fixed 5-V  
VOUT; VIN = 4 V to 40 V for fixed  
3.3-V VOUT; EN = ON; watchdog  
enabled; IOUT < 1 mA  
I(Q)  
Input quiescent current  
µA  
28  
78  
VIN = 5.6 V to 40 V for fixed 5-V  
VOUT; VIN = 4 V to 40 V for fixed  
3.3-V VOUT; EN = ON; watchdog  
enabled; IOUT < 100 mA  
98  
Ramp VIN down until output is  
turned off  
V(UVLO)  
Undervoltage lockout, falling  
UVLO hysteresis  
2.6  
V
V
V(UVLO_  
HYST)  
0.5  
ENABLE INPUT, WATCHDOG TYPE SELECTION AND FSEL (EN, WTS, AND FSEL)  
VIL  
Low-level input voltage  
High-level input voltage  
Hysteresis  
0.7  
V
V
VIH  
Vhys  
2
2
150  
mV  
WATCHDOG ENABLE (WD_EN PIN)  
Low-level input threshold voltage for  
watchdog enable pin  
VIL  
Watchdog enabled  
Watchdog disabled  
VWD_EN = 5 V  
0.7  
3
V
V
High-level input threshold voltage for  
watchdog enable pin  
VIH  
Pulldown current for watchdog  
enable pin  
IWD_EN  
µA  
REGULATED OUTPUT (OUT)  
VIN = VOUT + 1 V to 40 V,  
IOUT = 0 to 500 mA  
–2%  
–2%  
2%  
2%  
10  
VOUT  
Regulated output  
VIN = 5.4 V, IOUT = 250 mA  
TJ = –40°C to 85°C  
ΔVOUT  
(ΔVIN)  
Line regulation  
Load regulation  
VIN = 5.6 V to 40 V  
mV  
mV  
ΔVOUT  
(ΔIOUT)  
IOUT = 1 mA to 500 mA  
20  
IOUT = 500 mA  
IOUT = 200 mA(2)  
350  
170  
800  
325  
500  
(1)  
V(dropout)  
IOUT  
Dropout voltage (VIN – VOUT  
)
mV  
mA  
Output current  
VOUT in regulation  
0
VOUT shorted to ground, VIN = 5.6 V,  
TPS7B6850QPWPRQ1  
550  
690  
690  
60  
1000  
1000  
I(LIM)  
Output short-circuit current limit  
Power supply ripple rejection(3)  
mA  
dB  
VOUT shorted to ground, VIN = 5.6V,  
TPS7B6833QPWPRQ1  
490  
IOUT = 100 mA; COUT = 10 µF;  
frequency (f) = 100 Hz  
PSRR  
IOUT = 100 mA; COUT = 10 µF;  
frequency (f) = 100 kHz  
40  
(1) This test is done with VOUT in regulation, measuring the VIN – VOUT when VOUT drops by 100 mV from the rated output voltage at the  
specified load.  
(2) Dropout is not measured for VOUT = 3.3 V in this test because VIN must be 4 V or greater for proper operation.  
(3) Design Information – Not tested, determined by characterization.  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN = 14 V, COUT 4.7 µF, 1 mΩ < ESR < 20 Ω, and TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD (PG, PGADJ)  
VOL(PG)  
PG output, low voltage  
IOL = 5 mA, PG pulled low  
0.4  
1
V
PG pulled to VOUT through a 10-kΩ  
resistor  
Ilkg(PG)  
PG pin leakage current  
µA  
VOUT powered above the internally  
set tolerance, PGADJ pin shorted to  
ground  
V(PG_TH)  
rising  
Default power-good threshold  
89.6  
91.6  
2
93.6 % of VOUT  
% of VOUT  
VOUT falling below the internally set  
tolerance hysteresis  
V(PG_HYST) Power-good hysteresis  
PGADJ  
V(PGADJ_  
TH) falling  
V(PGADJ_  
HYST)  
Switching voltage for the power-  
good adjust pin  
VOUT is falling  
1.067  
1.1  
26  
1.133  
V
PGADJ hysteresis  
mV  
POWER-GOOD DELAY  
I(DLY_CHG) DELAY capacitor charging current  
3
5
1
10  
µA  
V
DELAY pin threshold to release PG  
V(DLY_TH)  
high  
Voltage at DELAY pin is ramped up  
VDELAY = 1 V  
0.95  
1.05  
DELAY capacitor discharging  
I(DLY_DIS)  
current  
0.5  
mA  
V
CURRENT VOLTAGE REFERENCE (ROSC)  
VROSC  
WATCHDOG (WD, WDO, WRS)  
Low-level threshold voltage for the  
Voltage reference  
0.95  
1
1.05  
VIL  
watchdog input and window-ratio  
select  
For WD and WRS pins  
For WD and WRS pins  
30 % of VOUT  
High-level threshold voltage for the  
watchdog input and window-ratio  
select  
VIH  
70  
% of VOUT  
% of VOUT  
V(HYST)  
IWD  
Hysteresis  
10  
2
Pulldown current for the WD pin  
Watchdog output pulled low  
VWDO = 5 V  
IWDO = 5 mA  
4
µA  
V
VOL  
0.4  
WDO pin pulled to VOUT through  
10-kΩ resistor  
Ilkg  
WDO pin leakage current  
1
µA  
OPERATING TEMPERATURE RANGE  
TJ  
Junction temperature  
–40  
150  
°C  
°C  
°C  
T(SD)  
T(HYST)  
Junction shutdown temperature  
Hysteresis of thermal shutdown  
175  
25  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
6.6 Switching Characteristics  
VI = 14 V, CO 4.7 µF, 1 mΩ < ESR < 20 Ω, and TJ = –40°C to 150°C (unless otherwise noted)  
PARAMETER  
POWER-GOOD DELAY (DELAY)  
t(DEGLITCH) Power-good deglitch time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
55  
180  
248  
250  
900  
µs  
µs  
t(DLY_FIX)  
Fixed power-good delay  
No capacitor connect at DELAY pin  
Delay capacitor value:  
C(DELAY) = 100 nF  
t(DLY)  
Power-on-reset delay  
20  
ms  
WATCHDOG (WD, WDO, WRS)  
R(ROSC) = 20 kΩ ±1%, FSEL = LOW  
R(ROSC) = 20 kΩ ±1%, FSEL = HIGH  
9
10  
50  
11  
55  
t(WD)  
Watchdog window duration  
ms  
45  
Tolerance of watchdog window  
duration using external resistor  
R(ROSC) =  
20 kΩ ±1% to 50 kΩ ±1%  
t(WD_TOL)  
tp(WD)  
–10%  
100  
10%  
Watchdog service-signal duration  
µs  
Watchdog output resetting time  
t(WD_HOLD) (percentage of settled watchdog  
window duration)  
% of  
t(WD)  
20  
R(ROSC) = 20 kΩ ± 1%, FSEL = LOW  
1.8  
9
2
2.2  
11  
t(WD_RESET) Watchdog output resetting time  
ms  
R(ROSC) = 20 kΩ ± 1%,  
FSEL = HIGH  
10  
版权 © 2015–2019, Texas Instruments Incorporated  
9
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
VIN = 14 V, VEN 2 V, TJ = –40°C to +150°C (unless otherwise noted)  
120  
110  
100  
90  
400  
350  
300  
250  
200  
150  
100  
50  
IOUT = 1 mA  
IOUT = 100 mA  
IOUT = 200 mA  
80  
70  
60  
50  
40  
30  
-40èC  
25èC  
125èC  
20  
10  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
D001  
D002  
1. Quiescent Current vs Output Current  
2. Quiescent Current vs Input Voltage  
35  
30  
25  
20  
15  
10  
5
4
3
2
1
0
IOUT = 1 mA  
IOUT = 100 mA  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (èC)  
D003  
D004  
3. Shutdown Current vs Ambient Temperature  
4. Quiescent Current vs Ambient Temperature  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
-40èC  
25èC  
125èC  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
D005  
D006  
IOUT = 200 mA  
6. Dropout Voltage vs Ambient Temperature  
5. Dropout Voltage vs Output Current  
10  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Typical Characteristics (接下页)  
VIN = 14 V, VEN 2 V, TJ = –40°C to +150°C (unless otherwise noted)  
5.06  
6
5
4
3
2
1
0
5.03  
5
4.97  
-40èC  
25èC  
125èC  
4.94  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
D007  
D008  
VOUT = 5 V  
VOUT = 5 V  
7. Output Voltage vs Ambient Temperature  
8. Output Voltage vs Input Voltage  
900  
800  
700  
600  
500  
1
-40èC  
0.8  
0.6  
0.4  
0.2  
0
25èC  
125èC  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
0
100  
200  
300  
400  
500  
Output Current (mA)  
D009  
D010  
VIN = 5.6 V  
9. Output Current Limit (ILIM) vs Ambient Temperature  
10. Load Regulation  
1
120  
100  
80  
60  
40  
20  
0
-40èC  
0.8  
25èC  
125èC  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
5
10  
15  
20  
25  
30  
35  
40  
10  
100  
1k  
10k  
100k  
1M  
10M  
Input Voltage (V)  
Frequency (Hz)  
D011  
D012  
COUT = 10 μF  
IOUT = 1 mA  
12. PSRR vs Frequency  
TA = 25°C  
11. Line Regulation  
版权 © 2015–2019, Texas Instruments Incorporated  
11  
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 14 V, VEN 2 V, TJ = –40°C to +150°C (unless otherwise noted)  
120  
1k  
Unstable Region  
Stable Region  
500  
100  
80  
60  
40  
20  
0
100  
10  
4.7  
Unstable Region  
1
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.01  
0.1  
ESR (W)  
1
10 20  
Frequency (Hz)  
D013  
D014  
COUT = 10 μF  
IOUT = 100 mA  
13. PSRR vs Frequency  
TA = 25°C  
14. ESR Stability vs Output Capacitance  
VIN (10 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VIN (10 V/div)  
VOUT(AC) (100 mV/div)  
IOUT (10 mA/div)  
VOUT(AC) (100 mV/div)  
IOUT (10 mA/div)  
VIN = 6 V to 40 V  
IOUT = 1 mA  
VOUT = 5 V  
COUT = 10 µF  
VIN = 40 V to 6 V  
IOUT = 1 mA  
VOUT = 5 V  
COUT = 10 µF  
15. Line Transient  
16. Line Transient  
VIN (5 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (50 mV/div)  
IOUT (200 mA/div)  
VOUT(AC) (50 mV/div)  
IOUT (200 mA/div)  
VIN = 6 V to 40 V  
IOUT = 200 mA  
VOUT = 5 V  
COUT = 10 µF  
VIN = 40 V to 6 V  
IOUT = 200 mA  
VOUT = 5 V  
COUT = 10 µF  
17. Line Transient  
18. Line Transient  
12  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Typical Characteristics (接下页)  
VIN = 14 V, VEN 2 V, TJ = –40°C to +150°C (unless otherwise noted)  
VIN (5 V/div)  
VIN (5 V/div)  
VOUT (1 V/div)  
VOUT (1 V/div)  
VOUT(AC) (500 mV/div)  
VOUT(AC) (500 mV/div)  
IOUT (200 mA/div)  
IOUT (200 mA/div)  
VOUT = 5 V  
COUT = 10 µF  
IOUT = 1 mA to 200 mA  
VOUT = 5 V  
COUT = 10 µF  
IOUT = 200 mA to 1 mA  
19. Load Transient  
20. Load Transient  
版权 © 2015–2019, Texas Instruments Incorporated  
13  
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B68-Q1 is a 500-mA, 40-V monolithic low-dropout linear voltage regulator with integrated watchdog  
and adjustable power-good threshold functionality. This voltage regulator consumes only 19-µA quiescent current  
in light-load applications. Because of the adjustable power-good delay (also called power-on-reset delay) and the  
adjustable power-good threshold, this device is well-suited as power supplies for microprocessors and  
microcontrollers in automotive applications.  
7.2 Functional Block Diagram  
IN  
OUT  
VBAT  
VREG  
Overcurrent  
Protection  
Regulator  
Control  
Thermal  
Shutdown  
Undervoltage  
Lockout  
Band Gap  
Error  
Amp  
Vref  
EN  
PG  
DELAY  
ROSC  
Power-Good  
Control With  
Delay  
V(PG_REF )  
Current  
Regulator  
Watchdog  
Oscillator  
Amp  
PGADJ  
WDO  
WD  
MCU I/O  
Timer  
WD_EN  
Digital I/O  
Watchdog  
Fault Control  
GND  
FSEL  
WTS  
WRS  
7.3 Feature Description  
7.3.1 Device Enable (EN)  
The EN pin is a high-voltage-tolerant pin. High input activates the devices and turns the regulators ON. Connect  
this input pin to an external microcontroller or a digital control circuit to enable and disable the devices, or  
connect to the IN pin for self-bias applications.  
14  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Feature Description (接下页)  
7.3.2 Adjustable Power-Good Threshold (PG, PGADJ)  
The PG pin is an open-drain output with an external pullup resistor to the regulated supply, and the PGADJ pin is  
a power-good threshold adjustment pin. Connecting the PGADJ pin to GND sets the power-good threshold value  
to the default, V(PG_TH) rising. When VOUT exceeds the default power-good threshold, the PG output turns high after  
the power-good delay period has expired. When VOUT falls below V(PG_TH) rising – V(PG_HYST), the PG output turns  
low after a short deglitch time.  
The power-good threshold is also adjustable from 1.1 V to 5 V with external resistor divider between PGADJ and  
OUT. The threshold can be calculated using 公式 1:  
R1+ R2  
R2  
V PG_ ADJ falling = V PGADJ_ TH falling  
ì
(
)
(
)
R1+ R2  
R2  
»
ÿ
V PG_ ADJ risng = V PGADJ_ TH falling + 26 mV typ  
ì
(
)
(
)
(
)
where  
V(PG_ADJ) rising, V(PG_ADJ) falling is the adjustable power-good threshold  
V(PGADJ_TH) falling is the internal comparator reference voltage of the PGADJ pin, 1.1 V typical, 3% accuracy  
specified under all conditions  
(1)  
By setting the power-good threshold V(PG_ADJ) rising, when VOUT exceeds this threshold, the PG output turns high  
after the power-good delay period has expired. When VOUT falls below V(PG_ADJ) falling, the PG output turns low  
after a short deglitch time.  
OUT  
VREG  
Adjustable Power-  
Good Threshold  
PG  
R1  
DELAY  
Power-Good  
Control  
R2  
V(PG_REF)  
Amp  
PGADJ  
21. Adjustable Power Good Threshold  
7.3.3 Adjustable Power-Good Delay Timer (DELAY)  
The power-good delay period is a function of the value set by an external capacitor on the DELAY pin before  
turning the PG pin high. Connecting an external capacitor from this pin to GND sets the power-good delay  
period. The constant current charges an external capacitor until the voltage exceeds a threshold to trip an  
internal comparator, and 公式 2 determines the power-good delay period:  
C
DELAY ´ 1 V  
t(DLY)  
=
5 mA  
where  
t(DLY) is the adjustable power-good delay period  
CDELAY is the value of the power-good delay capacitor  
(2)  
15  
版权 © 2015–2019, Texas Instruments Incorporated  
 
 
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
VIN  
V
(UVLO)  
t < t(DEGLITCH)  
V(PG_HYST)  
V(PG_TH) rising  
V(PG_TH) falling  
V(PG_ADJ) falling  
V(PG_ADJ) rising  
VOUT  
V
(DLY_TH)  
DELAY  
t(DEGLITCH)  
t(DEGLITCH)  
t
t
(DLY)  
(DLY)  
PG  
Power Up  
Input Voltage Drop  
Undervoltage  
Power Down  
NOTE: V(PG_TH) falling = V(PG_TH) rising – V(PG_HYST)  
.
22. Power Up and Conditions for Activation of Power Good  
If the DELAY pin is open, the default delay time is t(DLY_FIX)  
7.3.4 Undervoltage Shutdown  
.
This device has an integrated undervoltage lockout (UVLO) circuit to shut down the output if the input voltage  
falls below an internal UVLO threshold, V(UVLO). This ensures that the regulator does not latch into an unknown  
state during low input-voltage conditions. If the input voltage has a negative transient which drops below the  
UVLO threshold and recovers, the regulator shuts down and powers up with a normal power-up sequence when  
the input voltage is above the required levels.  
7.3.5 Current Limit  
This device features current-limit protection to keep the device in a safe operating area when an overload or  
output short-to-ground condition occurs. This protects the device from excessive power dissipation. For example,  
during a short-circuit condition on the output, fault protection limits the current through the pass element to I(LIM)  
to protect the device from excessive power dissipation.  
7.3.6 Thermal Shutdown  
This device incorporates a thermal shutdown (TSD) circuit as a protection from overheating. For continuous  
normal operation, the junction temperature should not exceed the thermal shutdown trip point. The junction  
temperature exceeding the TSD trip point causes the output to turn off. When the junction temperature falls  
below the T(SD) – T(HYST), the output turns on again.  
7.3.7 Integrated Watchdog  
This device has an integrated watchdog with fault (WDO) output option. Both window watchdog and standard  
watchdog are available in one device. The watchdog operation, service fault conditions, and differences between  
window watchdog and standard watchdog are described as follows.  
16  
版权 © 2015–2019, Texas Instruments Incorporated  
 
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Feature Description (接下页)  
7.3.7.1 Window Watchdog (WTS, ROSC, FSEL and WRS)  
This device works in the window watchdog mode when the watchdog type selection (WTS) pin is connected to a  
to low voltage level. The user can set the duration of the watchdog window by connecting an external resistor  
(RROSC) to ground at the ROSC pin and setting the voltage level at the FSEL pin. The current through the RROSC  
resistor sets the clock frequency of the internal oscillator. The user can adjust the duration of the watchdog  
window (the watchdog timer period) by changing the resistor value. A high voltage level at the FSEL pin sets the  
watchdog window duration to 5 times as long as that of a low voltage level with same external component  
configuration.  
The duration of the watchdog window and the duration of the fault output are multiples of the internal oscillator  
frequency, as shown by the following equations:  
t(WD) = RROSC × 0.5 × 10-6  
t(WD) = RROSC × 2.5 × 10-6  
t(WD_INI) = 8 × t(WD)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
FSEL low  
FSEL high  
Watchdog initialization  
Open and closed windows  
WRS low  
t(WD) = t(OW) + t(CW)  
t(OW) = t(CW) = 50% × t(WD)  
t(OW) = 8 × t(CW) = (8 / 9) × t(WD)  
WRS high  
where:  
t(WD) is the duration of the watchdog window  
RROSC is the resistor connected at the ROSC pin  
t(WD_INI) is the duration of the watchdog initialization  
t(OW) is the duration of the open watchdog window  
t(CW) is the duration of the closed watchdog window  
For all the foregoing items, the unit of resistance is Ω and the unit of time is s.  
1 illustrates several periods of watchdog window with typical conditions.  
1. Several Typical Periods of Watchdog Window  
FSEL  
R(ROSC) (k)  
I(ROSC) (µA)  
t(WD) (ms)  
WATCHDOG PERIOD  
TOLERANCE  
200  
100  
50  
5
500  
250  
125  
100  
62.5  
50  
15%  
10  
20  
25  
40  
50  
10  
20  
25  
40  
50  
High  
40  
10%  
10%  
25  
20  
100  
50  
50  
25  
Low  
40  
20  
25  
12.5  
10  
20  
As shown in 23, each watchdog window consists of an open window and a closed window. While the window  
ratio selection (WRS) pin is low, each open window (t(OW)) and closed window (t(CW)) having a width  
approximately 50% of the watchdog window (t(WD)). While the WRS pin is high, the ratio between open window  
and closed window is about 8:1. However, there is an exception to this; the first open window after watchdog  
initialization (t(WD_INI)) is eight times the duration of the watchdog window. The watchdog must receive the service  
signal (by software, external microcontroller, and so forth) during this initialization open window.  
版权 © 2015–2019, Texas Instruments Incorporated  
17  
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
A watchdog fault occurs when servicing the watchdog during a closed window, or not servicing during an open  
window.  
t(WD_INI)  
t(WD)  
Closed Window  
(Must Not Be Serviced  
to Prevent Fault)  
Open Window  
(Must Be Serviced  
to Prevent Fault)  
Open Window  
After Watchdog Initialization  
(Must Be Serviced to Prevent Fault)  
WRS = Low  
t(CW) = ½ ´ t(WD)  
t(OW) = ½ ´ t(WD)  
8 ´ t(WD)  
Open Window  
After Watchdog Initialization  
(Must Be Serviced to Prevent Fault)  
Open Window  
(Must Be Serviced  
to Prevent Fault)  
CW  
WRS = High  
t(OW) = 8 / 9 ´ t(WD)  
8 ´ t(WD)  
Closed Window  
(Must Not Be Serviced  
to Prevent Fault)  
Event Causing  
Watchdog Initialization  
t(CW) = 1 / 9 ´ t(WD)  
23. Watchdog Initialization, Open Window and Closed Window  
7.3.7.2 Standard Watchdog (WTS, ROSC and FSEL)  
This device works in the standard watchdog mode when the watchdog type selection (WTS) pin is connected to  
a high voltage level. The same as in window watchdog mode, the user can set the duration of the watchdog  
window by adjusting the external resistor (RROSC) value at the ROSC pin and setting the voltage level at the  
FSEL pin. The current through the RROSC resistor sets the clock frequency of the internal oscillator. The user can  
adjust the duration of the watchdog window (the watchdog timer period) by changing the resistor value. A high  
voltage level at the FSEL pin sets the watchdog window duration to 5 times as long as that of a low voltage level  
with same external component configuration.  
The duration of the watchdog window and the duration of the fault output are multiples of the internal oscillator  
frequency as shown by the following equations:  
t(WD) = RROSC × 0.5 × 10-6  
t(WD) = RROSC × 2.5 × 10-6  
t(WD_INI) = 8 × t(WD)  
(9)  
(10)  
(11)  
FSEL low  
FSEL high  
Watchdog initialization  
where:  
t(WD) is the duration of the watchdog window  
RROSC is the resistor connected at the ROSC pin  
t(WD_INI) is the duration of the watchdog initialization  
For all the foregoing items, the unit of resistance is Ω and the unit of time is s  
Compared with window watchdog, there is no closed window in standard watchdog mode. The standard  
watchdog receives a service signal at any time within the watchdog window. The watchdog fault occurs when not  
servicing watchdog during the watchdog window.  
7.3.7.3 Watchdog Service Signal and Watchdog Fault Outputs (WD and WDO)  
The correct watchdog service signal (WD) must stay high for at least 100 µs. The WDO pin is the fault output  
terminal and is tied high through a pullup resistor to a regulated output supply. When a watchdog fault occurs,  
the device momentarily pulls WDO low for a duration of t(WD_HOLD)  
.
t
(WD _HOLD) = 20%´ t(WD)  
(12)  
18  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
7.3.7.4 ROSC Status Detection (ROSC)  
When a watchdog function is enabled, if the ROSC pin is shorted to GND or open, the watchdog output (WDO)  
pin remains low, indicating a fault status. If watchdog function is disabled, ROSC pin status detection does not  
work.  
7.3.7.5 Watchdog Enable (PG and WD_EN)  
When PG (power good) is high, an external microcontroller or a digital circuit can apply a high or low logic signal  
to the WD_EN pin to disable or enable the watchdog. A low input to this pin turns the watchdog on, and a high  
input turns the watchdog off. If PG is low, the watchdog is disabled and the watchdog-fault output (WDO) pin  
stays in the high-impedance state.  
7.3.7.6 Watchdog Initialization  
On power up and during normal operation, the watchdog initializes under the conditions shown in 2.  
2. Conditions for Watchdog Initialization  
EDGE  
WHAT CAUSES THE WATCHDOG TO INITIALIZE  
Rising edge of PG (power good) while the watchdog is in the enabled state, for example,  
during soft power up  
Falling edge of WD_EN while PG is already high, for example, when the microprocessor  
enables the watchdog after the device is powered up  
Rising edge of WDO while PG is already high and the watchdog is in the enabled state, for  
example, right after a closed window is serviced  
7.3.7.7 Window Watchdog Operation (WTS = Low)  
The window watchdog is able to monitor whether the frequency of the watchdog service signal (WD) is within  
certain ranges. A watchdog low-voltage fault is reported when the frequency of the watchdog service signal is out  
of the setting range. 24 shows the window watchdog initialization and operation for the TPS7B68-Q1 (WRS is  
low). After the output voltage is in regulation and PG is high, the window watchdog becomes enabled when an  
external signal pulls WD_EN (the watchdog enable pin) low. This causes the watchdog to initialize and wait for a  
service signal during the first initialization window for 8 times the duration of t(WD). A service signal applied to the  
WD pin during the initialization open window resets the watchdog counter and a closed window starts. To prevent  
a fault condition from occurring, watchdog service must not occur during the closed window. Watchdog service  
must occur during the following open window to prevent a fault condition from occurring. The fault output (WDO),  
externally pulled up to VOUT (typical), stays high as long as the watchdog receives a proper service signal and  
there is no other fault condition.  
版权 © 2015–2019, Texas Instruments Incorporated  
19  
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
VIN  
V(PG_TH) rising  
V(PG_ADJ) rising  
)
VOUT  
V(PG_TH) falling  
V(PG_ADJ) falling  
t(DLY)  
V(DLY_TH)  
DELAY  
t(DLY)  
PG  
t(DEGLITCH)  
WD_EN  
WD  
WDO  
OW  
WD  
OW  
WD  
OW  
WD Ini- NA  
tialization  
F
L
T
OW  
WD Initial-  
ization  
F
L
T
F
L
T
OW  
WD Initialization  
OW  
WD Initialization  
N
A
Watchdog  
Window Status  
CW  
OW CW  
CW  
OW  
NA  
Initial...  
Initialization  
<8 t(WD)  
t(WD) / 2  
<8 t(WD)  
t(WD) / 2  
t(WD) / 2  
<8 t(WD)  
8 t(WD)  
<8 t(WD)  
Normal Operation  
20% ´ t(WD)  
20% ´ t(WD)  
20% ´ t(WD)  
Fault 1  
Fault 2  
Fault 3  
NOTE: V(PG_TH) rising = V(PG_TH) falling + V(PG_HYST)  
.
24. Window Watchdog Operation  
Three different fault conditions occur in 24:  
Fault 1: The watchdog service signal is received during the closed window. The WDO is triggered one time,  
receiving a WD rising edge during the closed window.  
Fault 2: The watchdog service signal is not received during the open window. WDO is triggered after the  
maximum open-window duration t(WD) / 2.  
Fault 3: The watchdog service signal is not received during the WD initialization. WDO is triggered after the  
maximum initialization window duration 8 × t(WD)  
.
7.3.7.8 Standard Watchdog Operation (WTS = High)  
The standard watchdog is able to monitor whether the frequency of the watchdog service signal (WD) is lower  
than a certain value. A watchdog low-voltage fault is reported when the frequency of the watchdog service signal  
is lower than the set value.  
25 shows the standard watchdog initialization and operation for the TPS7B68-Q1. Similar to the window  
watchdog, after output the voltage is in regulation and PG asserts high, the standard watchdog becomes enabled  
when an external signal pulls WD_EN low. This causes the standard watchdog to initialize and wait for a service  
signal during the first initialization window for 8 times the duration of t(WD). A service signal applied to the WD pin  
during the first open window resets the watchdog counter and another open window starts. To prevent a fault  
condition from occurring, watchdog service must occur during the every open window to prevent a fault condition  
from occurring. The fault output (WDO), externally pulled up to VOUT (typical), stays high as long as the watchdog  
receives proper service and there is not fault condition.  
20  
版权 © 2015–2019, Texas Instruments Incorporated  
 
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
VIN  
V(PG_TH) rising  
V(PG_ADJ) rising  
VOUT  
V(PG_TH) falling  
V(PG_ADJ) falling  
t(DLY)  
V(DLY_TH)  
DELAY  
t(DLY)  
PG  
t(DEGLITCH)  
WD_EN  
WD  
WDO  
OW  
WD  
OW  
WD  
OW  
WD Ini- NA  
tialization  
F
L
T
F
L
T
OW  
WD Initialization  
OW  
WD Initialization  
N
A
Watchdog  
Window Status  
NA  
OW  
OW  
OW OW  
OW  
OW  
OW  
Initialization Initial...  
<8 t(WD)  
<t(WD)  
<t(WD)  
<t(WD) <t(WD)  
<t(WD)  
<t(WD)  
<8 t(WD)  
8 t(WD)  
<8 t(WD)  
20% ´ t(WD)  
20% ´ t(WD)  
Normal Operation  
Fault 1  
Fault 2  
NOTE: V(PG_TH) rising = V(PG_TH) falling + V(PG_HYST)  
.
25. Standard Watchdog Operation  
Two different fault conditions occur in 25:  
Fault 1: The watchdog service signal is not received during the open window. WDO is triggered after the  
maximum open-window duration t(WD) / 2.  
Fault 2: The watchdog service signal is not received during the WD initialization. WDO is triggered after the  
maximum initialization window duration 8 × t(WD)  
.
7.4 Device Functional Modes  
7.4.1 Operation With Input Voltage Lower Than 4 V  
The device normally operates with input voltages above 4 V. The device can also operate at lower input  
voltages; the maximum UVLO voltage is 2.6 V. At input voltages below the actual UVLO voltage, the device does  
not operate.  
7.4.2 Operation With Input Voltage Higher Than 4 V  
When the input voltage is greater than 4 V, if the input voltage is higher than the output set value plus the device  
dropout voltage, then the output voltage is equal to the set value. Otherwise, the output voltage is equal to the  
input voltage minus the dropout voltage.  
版权 © 2015–2019, Texas Instruments Incorporated  
21  
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7B68-Q1 device is a 500-mA low-dropout watchdog linear regulator with ultralow quiescent current. The  
PSpice transient model is available for download on the product folder and can be used to evaluate the basic  
function of the device.  
8.2 Typical Application  
26 shows a typical application circuit for the TPS7B68-Q1. Different values of external components can be  
used, depending on the end application. An application may require a larger output capacitor during fast load  
steps to prevent a large drop on the output voltage. TI recommends using a low-ESR ceramic capacitor with a  
dielectric of type X7R.  
TPS7B6833-Q1  
or  
TPS7B6850-Q1  
OUT  
IN  
MCU  
Supply  
Battery  
EN  
PGADJ  
WD_EN  
Digital  
I/O  
WD  
WTS  
MCU  
I/O  
WDO  
PG  
MCU  
I/O  
MCU  
Reset  
ROSC  
FSEL  
WRS  
DELAY  
GND  
26. TPS7B68-Q1 Typical Application Schematic  
22  
版权 © 2015–2019, Texas Instruments Incorporated  
 
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 3.  
3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUES  
Input voltage range  
4 V to 40 V for TPS7B6833-Q1  
5.6 V to 40 V for TPS7B6850-Q1  
Input capacitor range  
Output voltage  
10 μF to 22 μF  
3.3 V, 5 V  
Output current rating  
Output capacitor range  
Power-good threshold  
500 mA maximum  
4.7 μF to 500 μF  
Adjustable or fixed  
Power-good delay capacitor  
Watchdog type  
100 pF to 100 nF  
Standard watchdog or window watchdog  
10 ms to 500 ms  
Watchdog window periods  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Output voltage  
Output current  
Power-good threshold  
Power-good delay capacitor  
Watchdog type  
Watchdog window period  
8.2.2.1 Input Capacitor  
When using a TPS7B68-Q1 device, TI recommends adding a 10-μF to 22-μF capacitor with a 0.1 μF ceramic  
bypass capacitor in parallel at the input to keep the input voltage stable. The voltage rating must be greater than  
the maximum input voltage.  
8.2.2.2 Output Capacitor  
Ensuring the stability of the TPS7B68-Q1 requires an output capacitor with a value in the range from 4.7 μF to  
500 μF and with an ESR range from 0.001 Ω to 20 Ω. TI recommends selecting a ceramic capacitor with low  
ESR to improve the load transient response.  
8.2.2.3 Power-Good Threshold  
The power-good threshold is set by connecting PGADJ to GND or to a resistor divider from OUT to GND. The  
Adjustable Power-Good Threshold (PG, PGADJ) section provides the method for setup the power-good  
threshold.  
8.2.2.4 Power-Good Delay Period  
The power-good delay period is set by an external capacitor (CDELAY) to ground, with a typical capacitor value  
from 100 pF to 100 nF. Calculate the correct capacitance for the application using 公式 2.  
8.2.2.5 Watchdog Setup  
The Integrated Watchdog section discusses the watchdog type selection and watchdog window-period setup  
method.  
版权 © 2015–2019, Texas Instruments Incorporated  
23  
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
8.2.3 Application Curves  
VOUT (5 V/div)  
WD Signal (5 V/div)  
VIN (5 V/div)  
WDO Signal (5 V/div)  
IOUT (10 mA/div)  
VOUT (2 V/div)  
VPG (2 V/div)  
IOUT (10 mA/div)  
28. TPS7B6850-Q1 Watchdog Fault (High Frequency  
27. TPS7B6850-Q1 Power-Up Waveform  
Watchdog Service Signal)  
24  
版权 © 2015–2019, Texas Instruments Incorporated  
TPS7B68-Q1  
www.ti.com.cn  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
9 Power Supply Recommendations  
The device is designed to operate from an input-voltage supply range from 4 V to 40 V. This input supply must  
be well regulated. If the input supply is located more than a few inches from the TPS7B68-Q1 device, TI  
recommends adding a capacitor with a value of 10 μF with a 0.1 μF ceramic bypass capacitor in parallel at the  
input.  
10 Layout  
10.1 Layout Guidelines  
For LDO power supplies, especially high-voltage and high-current ones, layout is an important step. If layout is  
not carefully designed, the regulator could not deliver enough output current because of thermal limitation. To  
improve the thermal performance of the device and maximize the current output at high ambient temperature, TI  
recommends spreading the thermal pad as much as possible and put enough thermal vias on the thermal pad.  
29 shows an example layout.  
10.2 Layout Example  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IN  
NC  
OUT  
NC  
3
NC  
NC  
4
EN  
PGADJ  
PG  
5
FSEL  
WTS  
NC  
6
NC  
Thermal  
Pad  
7
NC  
8
GND  
NC  
GND  
NC  
9
10  
11  
12  
13  
14  
NC  
NC  
ROSC  
DELAY  
WD  
WRS  
NC  
WD_EN  
WDO  
NC  
29. Layout Recommendation  
版权 © 2015–2019, Texas Instruments Incorporated  
25  
 
TPS7B68-Q1  
ZHCSFR0C MAY 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TPS7B68-Q1 评估模块用户指南》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
26  
版权 © 2015–2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B6833QPWPRQ1  
TPS7B6850QPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
28  
28  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
7B6833Q  
7B6850Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B6833QPWPRQ1 HTSSOP PWP  
TPS7B6850QPWPRQ1 HTSSOP PWP  
28  
28  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B6833QPWPRQ1  
TPS7B6850QPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
28  
28  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
26X 0.65  
28  
1
2X  
9.8  
9.6  
8.45  
NOTE 3  
14  
15  
0.30  
0.19  
28X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
14  
15  
2X 0.2 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
5.18  
4.48  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
28  
3.1  
2.4  
4223582/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.1)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
28X (1.5)  
1
28X (0.45)  
28  
SEE DETAILS  
(R0.05) TYP  
(5.18)  
(0.6)  
26X (0.65)  
SYMM  
(9.7)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.2) TYP  
(
0.2) TYP  
VIA  
14  
15  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4223582/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.1)  
BASED ON  
0.125 THICK  
STENCIL  
28X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
28X (0.45)  
28  
(R0.05) TYP  
26X (0.65)  
SYMM  
(5.18)  
BASED ON  
0.125 THICK  
STENCIL  
15  
14  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.47 X 5.79  
3.10 X 5.18 (SHOWN)  
2.83 X 4.73  
0.125  
0.15  
0.175  
2.62 X 4.38  
4223582/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS7B6833QPWPRQ1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 28 | -40 to 125
TI

TPS7B6850QPWPRQ1

具有看门狗计时器的汽车类 500mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | PWP | 28 | -40 to 125
TI

TPS7B69

150mA、40V、低 IQ、低压降稳压器
TI

TPS7B69-Q1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器
TI

TPS7B6925QDBVRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS7B6925QDCYRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DCY | 4 | -40 to 125
TI

TPS7B6933DBVR

150mA、40V、低 IQ、低压降稳压器 | DBV | 5 | -40 to 105
TI

TPS7B6933QDBVRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS7B6933QDCYRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DCY | 4 | -40 to 125
TI

TPS7B6950DBVR

150mA、40V、低 IQ、低压降稳压器 | DBV | 5 | -40 to 105
TI

TPS7B6950QDBVRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DBV | 5 | -40 to 125
TI

TPS7B6950QDCYRQ1

汽车类 150mA、电池供电运行 (40V)、高 PSRR、低 IQ、低压降稳压器 | DCY | 4 | -40 to 125
TI