TPS7B7702QPWPRQ1 [TI]

汽车类 300mA、电池供电运行 (40V)、双通道可调节天线低压降稳压器 | PWP | 16 | -40 to 125;
TPS7B7702QPWPRQ1
型号: TPS7B7702QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 300mA、电池供电运行 (40V)、双通道可调节天线低压降稳压器 | PWP | 16 | -40 to 125

电池 稳压器
文件: 总29页 (文件大小:1393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
具有电流检测功能的 TPS7B770x-Q1 车用单通道和双通道天线 LDO  
1 特性  
3 说明  
1
符合汽车类应用的 要求  
TPS7B770x-Q1 系列器件采用具有电流检测功能的单  
通道和双通道高电压低压差稳压器 (LDO),适合在  
4.5V 40V45V 负载突降保护)的宽输入电压范围  
内工作。这些器件通过一条每通道电流为 300mA 的同  
轴电缆为有源天线的低噪声放大器供电。每条通道还可  
提供 1.5V 20V 的可调节输出电压。  
具有符合 AEC-Q100 标准的下列特性:  
器件温度 1 级:–40°C 125°C 的环境运行温  
度范围  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
这些器件通过电流检测和错误引脚提供诊断。为监视负  
载电流,高侧电流检测电路提供了与检测的负载电流成  
比例的模拟输出。电流检测功能非常精确,无需进一步  
校正即可检测开路、正常和短路条件。可以在通道和器  
件间对电流检测进行多路复用,以节省模数转换器  
(ADC) 资源。每个通道还通过外部电阻实现了可调节  
限流功能。  
具有电流检测和可调节限流功能的单通道和双通道  
低压降稳压器 (LDO)  
4.5V 40V 宽输入电压范围,45V 负载突降保护  
FB 接至 GND 时进入电源开关模式  
1.5V 20V 可调节输出电压  
每通道输出电流高达 300mA  
可通过外部电阻实现可调节限流功能  
高精度电流检测功能,无需进一步校准即可在低电  
流下检测天线开路情况  
集成了反极性二极管,因此无需使用外部二极管。这些  
器件具有标准热关断功能、输出端电池短路保护功能以  
及反向电流保护功能。各通道可在电感式开关断开期间  
为输出端提供内部电感式钳位保护。  
高电源抑制比:100Hz 时的典型值为 73dB  
集成反向极性保护,低至 -40V 且无需外部二极管  
负载电流为 100mA 时,最大压降电压为 500mV  
这些器件的工作环境温度范围为 -40°C +125°C。  
2.2µF 100µFESR 1mΩ 5Ω)范围内  
的输出电容器搭配使用时可保持稳定  
器件信息(1)  
集成了保护和诊断功能  
器件型号  
TPS7B7701-Q1  
TPS7B7702-Q1  
封装  
HTSSOP (16)  
HTSSOP (16)  
通道  
热关断  
单通道  
双通道  
欠压锁定 (UVLO)  
短路保护  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
反向电池极性保护  
反向电流保护  
703A I2C  
Active  
IN  
Battery  
Input  
输出端电池短路保护  
输出端感性负载钳位  
多通道/器件间的电流检测功能复用  
能够通过电流检测功能区分所有故障  
Antenna  
Filter Coil  
Filter Coil  
10 F  
OUT1/2  
FB1/2  
Cable  
10 F  
10 F  
SENSE_EN  
MCU I/O  
MCU I/O  
SENSE_SEL  
SENSE1/2  
16 引脚 HTSSOP PowerPAD™封装  
TPS7B770x-Q1  
R
1 F  
(SENSE)  
2 应用  
EN1/2  
ERR  
ILIM1/2  
MCU I/O  
MCU I/O  
信息娱乐系统有源天线电源  
R
(LIM)  
V
环视摄像头电源  
CC  
1 F  
适用于小电流应用的高侧电源 开关  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCE8  
 
 
 
 
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 文档支持................................................................ 20  
11.2 相关链接................................................................ 20  
11.3 接收文档更新通知 ................................................. 20  
11.4 社区资源................................................................ 20  
11.5 ....................................................................... 20  
11.6 静电放电警告......................................................... 20  
11.7 术语表 ................................................................... 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (November 2015) to Revision C  
Page  
Changed NC pin description in Pin Functions table to clarify which pins are internally connected ...................................... 3  
Added row to Recommended Operating Conditions for OUT1, OUT2, and OUT regarding switched-mode operation ....... 4  
已更改 Current-Limit Resistor Selection section for clarity................................................................................................... 17  
Changes from Revision A (May 2015) to Revision B  
Page  
Deleted the min and max limits of –4% and 4% from the current-limit threshold voltage parameter in the Electrical  
Characteristics table ............................................................................................................................................................... 6  
Added to the current-limit accuracy table note for the programmable current-limit accuracy parameter in the  
Electrical Characteristics table ............................................................................................................................................... 6  
已添加 graphs for the TPS7B7701-Q1 device in the Typical Characteristics section ........................................................... 7  
已删除 the channel 2 PSRR graph in the Typical Characteristics section ............................................................................. 7  
已添加 additional test conditions for the 9- to 16-V Line Transient and Power Up graphs in the Typical  
Characteristics section .......................................................................................................................................................... 9  
已添加 additional test conditions of the Power Up graphs in the Application Curves section ............................................. 18  
Changes from Original (January 2015) to Revision A  
Page  
发布了完整版数据表 ............................................................................................................................................................... 1  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
5 Pin Configuration and Functions  
Single-Channel TPS7B7701-Q1 PWP Package  
16-Pin HTSSOP With PowerPAD  
Top View  
Dual-Channel TPS7B7702-Q1 PWP Package  
16-Pin HTSSOP With PowerPAD  
Top View  
IN  
EN1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT1  
FB1  
IN  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT  
FB  
EN2  
OUT2  
FB2  
NC  
NC  
VCC  
NC  
VCC  
PowerPAD (GND)  
PowerPAD (GND)  
SENSE  
NC  
GND  
NC  
SENSE1  
SENSE2  
SENSE_SEL  
SENSE_EN  
GND  
LIM2  
LIM1  
ERR  
NC  
LIM  
ERR  
SENSE_EN  
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
SINGLE-  
CHANNEL  
DUAL-  
CHANNEL  
NAME  
EN  
2
9
2
Input  
Input  
Input  
Active-high enable input for the OUT pin with internal pulldown.  
Active-high enable input for the OUT1 pin with internal pulldown.  
Active-high enable input for the OUT2 pin with internal pulldown.  
EN1  
EN2  
ERR  
FB  
3
9
Output This pin is an open-drain fault indicator for general faults.  
15  
12  
1
15  
13  
12  
1
Input  
Input  
Input  
Feedback input for setting OUT voltage. Connect FB to GND for current-limited switch operation.  
Feedback input for setting OUT1 voltage. Connect FB1 to GND for current-limited switch operation.  
Feedback input for setting OUT2 voltage. Connect FB2 to GND for current-limited switch operation.  
FB1  
FB2  
GND  
IN  
Ground Ground reference  
Power  
Output  
Input power-supply voltage  
Programmable current-limit pin. Connect a resistor to GND to set the current limitation level. This pin  
does not need an external capacitor. To set to internal current limit, short this pin to GND.  
LIM  
10  
Programmable current-limit pin for channel 1. Connect a resistor to GND to set the current limitation  
LIM1  
10  
Output level for channel 1. This pin does not need an external capacitor. To set to internal current limit, short  
this pin to GND.  
Programmable current-limit pin for channel 2. Connect a resistor to GND to set the current limitation  
Output level for channel 2. This pin does not need an external capacitor. To set to internal current limit, short  
this pin to GND.  
LIM2  
NC  
11  
3, 13, 14  
6, 7, 11  
16  
16  
14  
Not connected. Connect the NC pins to ground or leave floating.  
Internally connected. These pins must either be floated or connected to GND.  
OUT  
Power  
Power  
Power  
Output voltage  
OUT1  
OUT2  
Output voltage 1  
Output voltage 2  
Output of current sense for sensing. To set the SENSE output voltage level, connect a resistor  
SENSE  
5
5
Output between this pin and GND. In addition, connect a 1-µF capacitor from this pin to GND for frequency  
compensation of the current-sense loop. Short this pin to GND if not used.  
SENSE1  
Output Output of current sense for sensing. SENSE1 current is proportional to the current flow through OUT1  
and SENSE 2 current is proportional to OUT2 current when SENSE_SEL and SENSE_EN are low. To  
set the SENSEx output voltage level, connect a resistor between this pin and GND. In addition,  
SENSE2  
6
Output  
connect a 1-µF capacitor from the SENSEx pin to GND for frequency compensation of the current-  
sense loop. Short the SENSEx pin to GND if not used.  
SENSE_EN  
SENSE_SEL  
8
8
7
Input  
Input  
This pin is the enable and disable of the current-sense pin for multiplexing, active-low enable.  
This pin selects the current sense between channel 1 and channel 2. See 2 for details.  
Internal 4.5-V regulator. Connect 1-μF ceramic capacitor between VCC and GND for frequency  
compensation.  
VCC  
4
4
Output  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–40  
MAX  
UNIT  
Unregulated input, IN  
Input voltage  
45  
V
V
V
V
V
EN, EN1, and EN2  
–0.3  
–0.3  
–0.3  
–0.3  
45  
(3)(4)  
VCC  
6
45  
Regulated output(2)  
OUT1 and OUT2  
SENSE, SENSE1, and SENSE2(3)(4)  
VCC + 0.3  
Low-voltage pins  
LIM, LIM1, LIM2, SENSE_EN , SENSE_SEL, ERR, FB, FB1, and  
FB2(3)(4)  
–0.3  
7
V
Operating junction temperature, TJ  
Operating ambient temperature, TA  
Storage Temperature, Tstg  
–40  
–40  
–65  
150  
125  
150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) There is an internal diode connects between the OUT and GND pins with 300-mA DC current capability for inductive clamp protection.  
(3) All voltage values are with respect to GND.  
(4) Absolute maximum voltage.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Corner pins (1, 8, 9, and 16)  
Other pins  
V
Charged device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VI  
Unregulated input  
EN, EN1, and EN2  
4.5  
0
40  
40  
V
SENSE, SENSE1, SENSE2, SENSE_EN , SEN_SEL ,  
ERR , FB, FB1, FB2, LIM, LIM1, LIM2, and VCC  
Low-voltage pins  
0
5.3  
V
V
Normal-mode operation  
Switched-mode operation  
1.5  
1.5  
20  
35  
OUT1, OUT2, and OUT  
CO  
Output capacitor stability range  
2.2  
100  
5
µF  
Ω
CO(ESR)  
TJ  
Output capacitor ESR stability range  
Junction temperature  
0.001  
–40  
150  
125  
°C  
°C  
TA  
Ambient temperature  
–40  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
6.4 Thermal Information  
TPS7B7701-Q1  
TPS7B7702-Q1  
PWP  
(HTSSOP)  
PWP  
(HTSSOP)  
THERMAL METRIC(1)  
UNIT  
16 PINS  
45.9  
29.2  
24.7  
1.3  
16 PINS  
40.3  
27.7  
22.3  
0.8  
(2)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
24.5  
3.7  
22  
RθJC(bot)  
2.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The thermal data is based on JEDEC standard high K profile – JESD 51-7. The copper pad is soldered to the thermal land pattern. Also  
correct attachment procedure must be incorporated  
6.5 Electrical Characteristics  
at VI = 14 V and TJ = –40ºC to +150ºC (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE AND CURRENT (IN)  
VI  
Input voltage  
4.5  
40  
1
V
TPS7B7701-Q1: VI = 4.5 to 40 V, V(EN) 2 V,  
I(OUT) = 0.1 mA  
0.6  
0.6  
IQ  
Quiescent current  
mA  
µA  
TPS7B7702-Q1: VI = 4.5 to 40 V, V(EN1) and  
1
V(EN2) 2 V, I(OUT1) and I(OUT2) = 0.1 mA  
TPS7B7701-Q1: EN = GND  
5
5
I(shutdown)  
Shutdown current  
Operating current  
TPS7B7702-Q1: EN1 = EN2 = GND  
TPS7B7701-Q1: V(EN) 2 V, I(OUT) 300 mA,  
GND current  
4.5  
6
Inom  
mA  
TPS7B7702-Q1: V(EN1) and V(EN2) 2 V, I(OUT1)  
and I(OUT2) 300 mA, GND current  
V(BG)  
V(UVLO)  
Vhys  
Bandgap  
Reference voltage for FB  
–2%  
1.233  
0.4  
2%  
4
V
V
V
Undervoltage lockout falling  
Hysteresis  
Ramp IN down until the output turns off  
INPUT CONTROL PINS (EN, EN1, EN2, SENSE_EN, AND SENSE_SEL)  
For EN, EN1, EN2, SENSE_EN, and  
SENSE_SEL  
VIL  
Logic input low level  
0
2
0.7  
V
V
For EN, EN1, EN2, SENSE_EN, and  
SENSE_SEL  
VIH  
Logic input high level  
II(SENSE_EN)  
SENSE_EN input current  
V(SENSE_EN) = 5 V, V(ENx) 2 V  
V(SENSE_EN) = 5 V, V(ENx) 2 V  
10  
10  
10  
µA  
µA  
µA  
II(SENSE_SEL) SENSE_SEL input current  
II(EN) Enable input current  
REGULATED OUTPUT (OUT, OUT1, AND OUT2)  
V(ENx) 40 V  
40 V VI VO + 1.5 V and VI 4.5 V, IO = 1 to  
VO  
Regulated output  
Line regulation  
Load regulation  
–2%  
2%  
10  
20  
300 mA(1)  
VI = VO + 1.5 V to 40 V and VI 6 V, IO = 10  
mA, voltage variation on FB pin  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
mV  
mV  
IO = 1 mA to 200 mA, voltage variation on FB  
pin  
V(DROPOUT)  
IO  
Dropout voltage  
Measured between IN and OUTx, IO = 100 mA  
VO in regulation  
500  
300  
mV  
mA  
dB  
Output current  
Power supply ripple rejection(2)  
0
PSRR  
IO = 100 mA, CO = 2.2 µF, ƒ = 100 Hz  
73  
CURRENT SENSE AND CURRENT-LIMIT  
IO/ISENSE  
OUTx to SENSEx current ratio (IO / ISENSEx  
)
VI = 4.5 V to 40 V, 5 mA IO 300 mA  
198  
(1) External feedback resistor is not considered.  
(2) Design information; specified by design, not production tested.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
 
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at VI = 14 V and TJ = –40ºC to +150ºC (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
–3%  
TYP  
MAX  
UNIT  
IO = 100 to 300 mA  
3%  
5%  
IO = 50 to 100 mA  
–5%  
OUTx to SENSEx current ratio accuracy  
IO = 10 to 50 mA  
–10%  
–20%  
10%  
20%  
IO = 5 to 10 mA  
IO/ILIM  
I(LIMx)  
IL(LIMx)  
OUTx to LIMx current ratio (IO / ILIM  
Programmable current-limit accuracy(3)  
)
VI = 4.5 V to 40 V, 50 mA I(LIMx) 300 mA  
VI = 4.5 V to 40 V, 50 mA I(LIMx) 300 mA  
LIMx shorted to GND  
198  
–8%  
340  
8%  
Internal current-limit  
550  
mA  
µA  
SENSE, SENSE1, SENSE2, LIM, LIM1,  
and LIM2 leakage current  
Ilkg  
ENx = GND, TA = 25°C  
2
Voltage on the LIM, LIM1, and LIM2 pins when  
output current is limited  
V(LIMx_th)  
Current-limit threshold voltage  
1.233  
3.2  
V
V
When short-to-battery or reverse current  
conditions are detected  
V(SENSEx_stb) Current-sense short-to-battery fault voltage  
3.05  
3.3  
Current-sense thermal shutdown fault  
V(SENSEx_tsd)  
voltage  
When thermal shutdown is detected  
2.7  
2.4  
2.85  
2.55  
3
V
V
V(SENSEx_cl)  
Current-sense current-limit fault voltage  
When current-limit conditions are detected  
2.65  
When short-to-battery, reverse current, thermal  
shutdown, or current-limit conditions are  
detected  
I(SENSEx_H)  
Current-sense fault condition current  
3.3  
mA  
FAULT DETECTION  
V(stb_th) Short-to-battery threshold  
I(REV)  
V(OUTx) – VI, checked during turnon sequence  
Power FET on (SW or LDO mode)  
Junction temperature  
–500  
–100  
–55  
–40  
175  
15  
110  
–1  
mV  
mA  
°C  
Reverse current detection level  
Thermal shutdown  
TSD  
TSD(hys)  
Thermal shutdown hysteresis  
°C  
INTERFACE CIRCUITRY  
VOL ERR output low  
I(SINK) = 5 mA  
0.4  
1
V
ERR high impedance, 5-V external voltage is  
applied at ERR  
Ilkg  
ERR open-drain leakage current  
µA  
R(OUTx-off)  
IR(lkg)  
OUT pulldown resistor(2)  
ENx = GND  
50  
0.6  
4.5  
kΩ  
mA  
V
Reverse leakage current  
–40 V < VI < 0 V, reverse current to IN  
VI = 5.5 to 40 V, ICC = 0 mA  
VCC  
Internal voltage regulator  
4.25  
15  
4.75  
70  
ICC(lim)  
Internal voltage-regulator current-limit  
mA  
(3) The current-limit accuracy is maintained when the current limit is set between 50 mA and 300 mA, and it includes the deviation of the  
current-limit threshold voltage V(LIMx_th)  
.
6.6 Switching Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SENSE AND CURRENT-LIMIT  
Current-sense delay time from the rising edge  
V
(ENx) 2 V, SENSE_EN = GND,  
td(SENSE_SEL_r)  
td(SENSE_SEL_f)  
td(SENSE_EN_r)  
td(SENSE_EN_f)  
10  
10  
10  
10  
µs  
µs  
µs  
µs  
of SENSE_SEL(1)  
SENSE_SEL rise from 0 to 5 V  
Current-sense delay time from the falling edge  
of SENSE_SEL(1)  
V(ENx) 2 V, SENSE_EN = GND,  
SENSE_SEL fall from 5 to 0 V  
V(ENx) 2 V, SENSE_EN rise from 0 to  
Current-sense delay time from rising edge of  
SENSE_EN(1)  
5 V  
Current-sense delay time from falling edge of  
SENSE_EN(1)  
V(ENx) 2 V, SENSE_EN fall from 5 to  
0 V  
FAULT DETECTION  
Delay to shut down the switch or LDO  
after a drop over ron becomes negative,  
I(OUTx) = –200 mA (typical), TA = 25°C  
Reverse current (Short-to-BAT) shutdown  
deglitch time  
t(PD_RC)  
5
20  
µs  
Blanking time for reverse-current  
detection after power up, the rising  
edge of the ENx pin, or the current  
limiting event is over  
t(BLK_RC)  
Reverse current blanking time  
16  
ms  
(1) Design information; specified by design; not production tested.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
6.7 Typical Characteristics  
at VI = 14 V (unless otherwise specified)  
4.5  
4
3
2.5  
2
3.5  
3
2.5  
2
1.5  
1
1.5  
1
-40èC  
25èC  
125èC  
-40èC  
25èC  
125èC  
0.5  
0
0.5  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
D001  
D012  
1. Quiescent Current vs Output Current  
2. Quiescent Current vs Output Current  
(TPS7B7702-Q1)  
(TPS7B7701-Q1)  
3.5  
3
0.8  
0.75  
0.7  
2.5  
2
0.65  
0.6  
1.5  
1
0.55  
0.5  
0
I(shutdown) (VI = 13.5 V)  
I(shutdown) (VI = 40 V)  
0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D002  
D003  
IO = 0.1 mA  
3. Shutdown Current vs Ambient Temperature  
4. Quiescent Current vs Ambient Temperature  
(TPS7B7702-Q1)  
(TPS7B7702-Q1)  
0.6  
0.55  
0.5  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
0.45  
0.4  
0.35  
1.19  
1.18  
0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D013  
D004  
IO = 0.1 mA  
IO = 10 mA  
5. Quiescent Current vs Ambient Temperature  
6. FB Voltage vs Ambient Temperature  
(TPS7B7701-Q1)  
版权 © 2015–2018, Texas Instruments Incorporated  
7
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VI = 14 V (unless otherwise specified)  
1500  
306  
304  
302  
300  
298  
296  
294  
292  
290  
-40èC  
25èC  
125èC  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (èC)  
D005  
D006  
ILIM = 300 mA  
7. Dropout Voltage vs Output Current  
8. Current Limit vs Ambient Temperature  
120  
100  
80  
60  
40  
20  
0
0.52  
0.516  
0.512  
0.508  
0.504  
0.5  
-40èC  
25èC  
125èC  
0.496  
0.492  
0.488  
0.484  
0.48  
1E+1  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6 5E+6  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
Frequency (Hz)  
D007  
D009  
CO = 10 µF  
IO = 10 mA  
9. PSRR TPS7B770x-Q1  
10. Current Sense Ratio vs Output Current, TPS7B7702-  
Q1 Channel 1  
0.52  
-40èC  
0.516  
0.512  
0.508  
0.504  
0.5  
10 V/div  
5 V/div  
25èC  
125èC  
IN  
OUT1  
OUT1  
0.496  
0.492  
0.488  
0.484  
0.48  
200 mV/div AC  
100 mA/div  
IO  
0
30  
60  
90 120 150 180 210 240 270 300  
Output Current (mA)  
D010  
VO = 8.5 V  
CO = 10 µF  
IO = 1 to 170 mA  
11. Current Sense Ratio vs Output Current, TPS7B7702-  
12. 1-mA to 170-mA Load Transient  
Q1 Channel 2  
8
版权 © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
Typical Characteristics (接下页)  
at VI = 14 V (unless otherwise specified)  
10 V/div  
5 V/div  
IN  
IN  
5 V/div  
20 mV/div AC  
OUT2  
OUT1  
100 mV/div AC  
OUT2  
20 mV/div AC  
OUT2  
100 mA/div  
IO  
VO = 5 V  
CO = 10 µF  
IO = 1 to 100 mA  
VO = 8.5 V  
IO = 50 mA  
13. 1-mA to 100-mA Load Transient  
14. 9-V to 16-V Line Transient (1 V/µs)  
5 V/div  
IN  
5 V/div  
5 V/div  
20 mV/div AC  
IN  
OUT1  
OUT1  
20 mV/div AC  
5 V/div  
OUT2  
OUT2  
VO = 5 V  
IO = 50 mA  
VO = 8.5 V  
IO = 100 mA  
VI = 0 to 14 V  
15. 9-V to 16-V Line Transient (1 V/µs)  
16. Power Up (1 V/µs)  
100  
80  
60  
40  
20  
5 V/div  
5 V/div  
Stable Region  
IN  
OUT1  
5 V/div  
OUT2  
2.2  
0.001  
1
2
3
4
5
ESR of Output Capacitance (W)  
VO = 5 V  
IO = 100 mA  
VI = 0 to 14 V  
17. Power Up (1 V/µs)  
18. Load Capacitance vs ESR of Output Capacitance  
版权 © 2015–2018, Texas Instruments Incorporated  
9
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7B770x-Q1 family of devices feature a single- or dual-channel, high voltage LDO with a current-sense  
function. These devices operate with a wide input-voltage range of 4.5 V to 40 V (45-V load dump protection).  
These devices also offers protection of antenna lines against electrostatic discharge (ESD) and from short-to-  
ground, short-to-battery, and thermal overstress. Device output voltage is adjustable from 1.5 V to 20 V through  
an external resistor divider. Alternatively, each channel can be configured as a switch.  
These devices monitor the load. Accurate current sense allows for detection of open, normal, and short-circuit  
conditions without the need of further calibration. The current sense can also be multiplexed between channels  
and devices to save ADC resources. Each channel also provides an adjustable current limit with external  
resistor.  
7.2 Functional Block Diagram  
Reverse polarity  
OUT1  
OUT2  
IN  
Reverse  
current  
monitor  
Current  
sense  
EA  
FB1  
FB2  
LIM  
ref  
1.233 V  
FB  
V
Current  
sense  
SENSE_EN  
SENSE_SEL  
EN1  
EN2  
Logic control  
SENSE1  
SENSE2  
ERR  
Open and  
short  
protection  
LIM1  
LIM2  
Temperature  
sense  
UVLO  
Internal  
reference  
Reverse  
current  
protection  
V
CC  
Regulator  
GND  
10  
版权 © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
7.3 Feature Description  
7.3.1 Fault Detection and Protection  
The device includes both analog current sense and digital fault pins for full diagnostics of different fault  
conditions.  
The current-sense voltage scale is selected based on the output-current range of interest. 19 shows a  
recommended setting that allows for full diagnostics of each fault. Before the device goes into current-limit mode,  
the output current-sense voltage is linearly proportional to the actual load current. During a thermal-shutdown  
(TSD) and short-to-battery (STB) condition, the current-sense voltage is set to the fault voltage level that is  
specified in the Electrical Characteristics table.  
3.3  
Reverse Current and Short to Battery  
3.2 V (Typical)  
3.05  
3.0  
Thermal Shutdown  
2.85 V (Typical)  
2.7  
2.65  
2.4  
Short Circuit and Current limit  
(2.55 V Typical)  
Linear Current Sense  
Band Up to 2.4 V  
Overcurrent  
Open load  
Normal  
Short Circuit  
Operating Range  
19. Functionality of the Current-Sense Output  
7.3.2 Short-Circuit and Overcurrent Protection  
The current limit on each channel is programmed by selecting the external resistor. The voltage on LIMx pin is  
compared with an internal voltage reference. When the threshold is exceeded, the current limit is triggered. The  
output of the current limited channel continues to remain on and the current is limited.  
Under current-limit status, the ERR pin asserts low and the SENSE voltage of the fault channel is internally  
pulled up to a voltage rail between 2.4 V and 2.65 V as shown in 19. At this moment, the output voltage is not  
disabled. The microcontroller (MCU) should monitor the voltage at the SENSEx pin or ERR pin to disable the  
faulted channel by pulling the ENx pin low. If a current-limit condition exists for a long period of time, thermal  
shutdown can be triggered and shutdown the output.  
7.3.3 Short-to-Battery and Reverse Current Detection  
Shorting the OUT pin to the battery because of a fault in the system is possible. Each channel detects this failure  
by comparing the voltage at the OUT and IN pins before the switch turns on. Each time the LDO switch is  
enabled on the rising edge of the EN pin or during the exiting of the thermal shutdown, the short-to-battery  
detection occurs. At this moment, if the device detects the short-to-battery fault, the LDO switch is latched off, the  
ERR pin is asserted low, and the fault-channel SENSE voltage is pulled up internally to a voltage rail between  
3.05 V and 3.3 V. The device operates normally when the short-to-battery is removed and the EN pin is toggled.  
版权 © 2015–2018, Texas Instruments Incorporated  
11  
 
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
During normal operation if a short-to-battery fault results in reverse current for more than 5 µs (typical), the LDO  
switch is latched off and the ERR pin is asserted low. To remove the latched condition after a short-to-battery  
(reverse current) fault, the condition must first be removed and then the EN pin must be toggled.  
Series inductance and the output capacitor can produce ringing during power up or recovery from current limit,  
resulting in an output voltage that temporarily exceeds the input voltage. The 16-ms (typical) reverse-current  
blanking can help filter this ringing.  
For the dual-channel antenna LDO application, if both channels are enabled and one channel is shorted to  
ground after power up, the current drawn from the input capacitor can result in a temporary dip in the input  
voltage, which can trigger the reverse-current detection fault. To avoid this false trigger event, care must be  
taken when selecting the input capacitor; an increase of the input capacitor value is recommended.  
7.3.4 Thermal Shutdown  
The device incorporates a TSD circuit as a protection from overheating. For continuous normal operation, the  
junction temperature should not exceed the TSD trip point. If the junction temperature exceeds the TSD trip  
point, the output is turned off. When the junction temperature decreases by 15°C (typical) than the TSD trip point,  
the output is turned on again. The SENSE voltage is internally pulled up to a voltage rail between 2.7 V and 3 V  
during TSD status.  
The purpose of the design of the internal protection circuitry of the TPS7B770x-Q1 family  
of devices is to protect against overload conditions and is not intended as a replacement  
for proper heat-sinking. Continuously running the device into thermal shutdown degrades  
device reliability.  
7.3.5 Integrated Reverse-Polarity Protection  
The device integrates a reverse-connected PMOS to block the reverse current during reverse polarity at the input  
and output short-to-battery condition. A special ESD structure at the input is specified to withstand –40 V.  
7.3.6 Integrated Inductive Clamp  
During output turnoff, the cable inductance continues to source the current from the output of the device. The  
device integrates an inductive clamp to help dissipate the inductive energy stored in the cable. An internal diode  
is connected between OUT and GND pins with a DC-current capability of 300 mA for inductive clamp protection.  
7.3.7 Undervoltage Lockout  
The device includes an undervoltage lockout (UVLO) threshold that is internally fixed. The undervoltage lockout  
activates when the input voltage on the IN pin drops below V(UVLO). The UVLO makes sure that the regulator is  
not latched into an unknown state during low input-supply voltage. If the input voltage has a negative transient  
that drops below the UVLO threshold and then recovers, the regulator shuts down and powers up with a normal  
power-up sequence when the input voltage is above the required levels.  
1. Fault Table  
FAILURE MODE  
Open load  
V(SENSE)  
ERR  
HIGH  
HIGH  
HIGH  
LDO SWITCH OUTPUT  
Enabled  
LATCHED  
No  
No  
No  
I
ì R  
(SENSE)  
O
Normal  
Enabled  
198  
Overcurrent  
Enabled  
Short-circuit or current  
limit  
2.4 to 2.65 V  
LOW  
Enabled  
No  
Thermal shutdown  
Output short-to-battery  
Reverse current  
2.7 to 3 V  
3.05 to 3.3 V  
3.05 to 3.3 V  
LOW  
LOW  
LOW  
Disabled  
Disabled  
Disabled  
No  
Yes  
Yes  
12  
版权 © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
7.3.8 Enable (EN, EN1, and EN2)  
The TPS7B7702-Q1 device features two active-high enable inputs, EN1 and EN2. The EN1 pin controls output  
voltage 1, OUT1, and the EN2 pin controls output voltage 2, OUT2. The devices consumes a maximum of  
shutdown current 5-µA when the ENx pins are low. Both the EN1 and EN2 pins have a maximum internal  
pulldown of 10 µA.  
The TPS7B7701-Q1 device features one active-high enable input. The device consumes a maximum shutdown  
current of 5 µA when the EN pin is low. The EN pin has a maximum internal pull down of 10 µA.  
7.3.9 Internal Voltage Regulator (VCC  
)
The device features an internal regulator that regulates the input voltage to 4.5 V to power all internal circuitry.  
Bypass a 1-µF ceramic capacitor from the VCC pin to the GND pin for frequency compensation. The VCC pin can  
be used as a power supply for external circuitry with up to 15-mA current capability.  
7.3.10 Current Sense Multiplexing  
The two, independent current sense pins (one for each channel) provide flexibility in the system design. When  
the ADC resource is limited, the device allows the multiplexing of the current sense pins by only using one  
current sense pin and one ADC to monitor all the antenna outputs.  
The SENSE_SEL pin (TPS7B7702-Q1 only) selects the channels to monitor the current. The SENSE_EN pin  
enables and disables the SENSE pin, allowing multiplexing between chips. Therefore, only one ADC and one  
resistor is needed for current-sense diagnostics of multiple outputs. When the SENSE1 pin is connected to an  
ADC, the current flow through both channels can be sensed by changing the electrical level at the SENSE_SEL  
pin.  
2 lists the selection logic for the current sense.  
2. SENSE_EN and SEN_SEL Logic Table  
SENSE_EN  
LOW  
SEN_SEL  
LOW  
SENSE1 Status  
CH1 current  
SENSE2 Status  
CH2 current  
LOW  
HIGH  
CH2 current  
HIGH impedance  
HIGH impedance  
HIGH  
HIGH impedance  
20 shows the application of four antenna channels sharing one ADC resource.  
Current  
Sense  
SENSE_EN  
Antenna AM/FM  
SENSE_SEL  
SENSE2  
Antenna FM2  
SENSE1  
MCU  
Current  
Sense  
SENSE_EN  
ADC  
Antenna DAB  
Antenna GPS  
R(SENSE)  
SENSE_SEL  
SENSE2  
SENSE1  
20. Current Multiplexing Application Block  
版权 © 2015–2018, Texas Instruments Incorporated  
13  
 
 
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
7.3.11 Adjustable Output Voltage (FB, FB1, and FB2)  
Using an external resistor divider selects an output voltage between 1.5 V and 20 V. Use 2 to calculate the  
output voltage (VO). The recommended value for both R1 and R2 is less than 100 kΩ.  
V
ì (R1+ R2)  
(FB)  
V
=
O
R2  
where  
V(FB) = 1.233 V  
(1)  
OUT  
R1  
R2  
TPS7B770x-Q1  
FB  
21. TPS7B770x-Q1 Output Voltage Setting Connection  
The TPS7B770x-Q1 family of devices can also be used as a current-limited switch by connecting the FB pin to  
the GND pin.  
7.4 Device Functional Modes  
7.4.1 Operation With IN < 4.5 V  
The maximum UVLO voltage is 4 V and the device operates at an input voltage above 4.5V. The device can also  
operate at lower input voltage. No minimum UVLO voltage is specified. At an input voltage below the actual  
UVLO voltage, the device does not operate.  
7.4.2 Operation With EN Control  
The threshold of EN rising edge is 2 V (maximum). With the EN pin held above that voltage and the input voltage  
above 4.5 V, the device becomes active. The EN falling edge is 0.7 V (minimum). Holding the EN pin below that  
voltage disables the device which therefore reduces the quiescent current of the device.  
14  
版权 © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS7B770x-Q1 family of devices is a single- or dual-channel 300-mA LDO regulator with high, accurate  
current sense and a programmable current-limit function. Use the PSPICE transient model to evaluate the base  
function of the devices. Go to www.ti.com to download the PSPICE model and user's guide for the devices.  
8.2 Typical Application  
22 shows the typical application circuit for the TPS7B770x-Q1 family of devices. Different values of external  
components can be used depending on the end application. An application can require a larger output capacitor  
during fast load steps to prevent large drops on output voltage. TI recommends a low-ESR ceramic capacitor  
with a dielectric of type X5R or X7R.  
Active antenna  
Filter coil  
Reverse polarity  
Filter coil  
OUT1  
OUT2  
IN  
Battery  
Input  
Cable  
10 µF  
10 µF  
Reverse  
current  
monitor  
Current  
sense  
EA  
FB1  
FB2  
LIM  
FB  
V
ref  
Current  
sense  
SENSE_EN  
MCU I/O  
1.233 V  
SENSE_SEL  
MCU I/O  
EN1  
EN2  
Logic control  
MCU I/O  
MCU I/O  
SENSE1  
SENSE2  
ERR  
R
Open and  
short  
(SENSE)  
1 µF  
protection  
LIM1  
LIM2  
Temperature  
sense  
UVLO  
R
(LIM)  
Internal  
reference  
Reverse  
current  
protection  
V
CC  
Regulator  
1 µF  
GND  
22. TPS7B770x-Q1 Typical Application  
版权 © 2015–2018, Texas Instruments Incorporated  
15  
 
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 3 as the design parameters.  
3. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.5 to 40 V  
Output voltage  
1.5 to 20 V  
Output capacitor range  
Output Capacitor ESR range  
SENSE resistor  
2.2 to 100 µF  
0.001 to 5 Ω  
See the Current Sense Resistor Selection section  
Programmable current limit  
50 to 300 mA  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage  
Output voltage  
Output current  
Current limit  
ADC voltage rating  
8.2.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 10 µF. The voltage rating must be greater than the maximum  
input voltage.  
8.2.2.2 Output Capacitor  
The device requires an output capacitor to stabilize the output voltage. The capacitor value should be between  
2.2 µF and 100 µF. The ESR range should be between 1 mΩ and 5 Ω. TI recommends selecting a ceramic  
capacitor with low ESR to improve the load transient response.  
8.2.2.3 Current Sense Resistor Selection  
The current-sense outputs, SENSEx (SENSE, SENSE1, and SENSE2), are proportional to the output current at  
the OUT, OUT1, and OUT2 pins with a factor of 1/198. An output resistor, R(SENSE), must be connected between  
the SENSEx pin and ground to generate a current sense voltage to be sampled by ADC. Use 公式 2 to calculate  
the voltage at SENSEx pin (V(SENSEx)).  
V
= I(SENSEx) ì R(SENSEx)  
(SENSEx)  
where  
I(OUTx)  
I(SENSEx)  
=
198  
(2)  
For this example, select 1.5 kΩ as a value for R(SENSEx). Do not consider the resistor and current-sense accuracy.  
For a load current of 198 mA, use 公式 3 to calculate the value of V(SENSEx)  
.
198 mA  
I(SENSEx)  
=
= 1mA ç V  
= 1mA ì 1.5 kW = 1.5 V  
(SENSEx)  
198  
(3)  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
To avoid any overlap between normal operation and current-limit or short-to-ground phase, using 公式 4 to select  
the value of the SENSE resistor is recommended.  
198 ì 2.4 V  
R(SENSEx)  
Ç
IOmax  
where  
198 is the output current to current-sense ratio  
2.4 V is the minimum possible voltage at the SENSEx pin under a short-circuit fault case  
IOmax is the maximum possible output current under normal operation  
(4)  
To stabilize the current-sense loop, connecting a 1-µF ceramic capacitor at the SENSE, SENSE1, or SENSE2  
pin is required. 4 lists the current sense accuracy across temperature.  
4. Current Sense Accuracy  
OUTPUT CURRENT  
5 mA to 10 mA  
CURRENT SENSE ACCURACY  
20%  
10%  
5%  
10 mA to 50 mA  
50 mA to 100 mA  
100 mA to 300 mA  
3%  
8.2.2.4 Current-Limit Resistor Selection  
The current at the LIMx pins (LIM, LIM1, and LIM2) is proportional to the load current at the OUTx (OUT, OUT1,  
and OUT2) pins and is internally connected to a current-limit comparator referenced to 1.233 V. The current limit  
is programmable through the external resistor connected at LIMx pin. Use 公式 5 to calculate the value of the  
external resistor, R(LIMx). The programmable current limit accuracy is 8% maximum across all conditions. The  
internal current limit of the device is set by shorting the LIM pin to ground. Because the current limit varies by  
8%, 公式 6 shows how to calculate the minimum current limit value, and 公式 7 shows how to calculate the  
maximum current limit value.  
1.233 V  
R(LIMx)  
=
ì 198  
I(LIMx)  
where  
1.233 V  
I(LIMx)(typ)  
=
ì 198  
R(LIMx)  
(5)  
(6)  
(7)  
1.233 V  
R(LIMx)  
I(LIMx)(min) = I(LIMx)(typ) ì0.92 = 0.92  
ì198  
ì198  
«
÷
÷
(
)
1.233 V  
R(LIMx)  
I(LIMx)(max) = I(LIMx)(typ) ì1.08 = 1.08  
«
÷
÷
(
)
Select a maximum current-limit value of 200 mA and use 公式 8 to calculate the value of R(LIMx)  
.
1.08ì198ì1.233 V  
R(LIMx)  
=
I(LIMx)(max)  
(8)  
Using 公式 8 yields a RLIMx value of 1.318 kΩ. The closest 1% resistor that can be selected is 1.33 kΩ. Now  
using 公式 7 and plugging in 1.33 kΩ for RLIMx yields a maximum current of 198.2 mA. Keep in mind this result  
does not include resistor tolerance in the calculation. To make sure that the current does not exceed the set  
amount, resistor tolerance must also be included in the equation.  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
 
 
 
 
 
 
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.2.3 Application Curves  
5 V/div  
5 V/div  
5 V/div  
IN  
IN  
5 V/div  
OUT1  
OUT1  
5 V/div  
OUT2  
5 V/div  
OUT2  
VO = 8.5 V  
IO = 100 mA  
VI = 0 to 14 V  
VO = 5 V  
IO = 100 mA  
VI = 0 to 14 V  
23. Power Up (1 V/µs)  
24. Power Up (1 V/µs)  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply with a range between 4.5 V and 40 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the TPS7B770x-Q1  
device, TI recommends adding an 10-µF electrolytic capacitor and a ceramic bypass capacitor at the input.  
10 Layout  
10.1 Layout Guidelines  
For the layout of TPS7B770x-Q1 device, place the input and output capacitors close to the device as shown in 图  
25. To enhance the thermal performance, TI recommends surrounding the device with some vias.  
Minimize equivalent-series inductance (ESL) and ESR to maximize performance and provide stability. Place  
every capacitor as close as possible to the device and on the same side of the PCB as the regulator.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI  
strongly discourages the use long traces because they can negatively impact system performance and cause  
instability.  
If possible, and to maintain the maximum performance specified in this device data sheet, use the same layout  
pattern used for the TPS7B770x-Q1 evaluation board, available online at www.ti.com/tool/TPS7B7702EVM.  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
TPS7B7701-Q1, TPS7B7702-Q1  
www.ti.com.cn  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
10.2 Layout Example  
VIN  
OUT1  
OUT2  
GND  
Thermal Pad  
(GND)  
25. TPS7B770x-Q1 Layout Example  
版权 © 2015–2018, Texas Instruments Incorporated  
19  
TPS7B7701-Q1, TPS7B7702-Q1  
ZHCSDQ2C JANUARY 2015REVISED SEPTEMBER 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
TPS7B7702-Q1 评估模块用户指南》  
11.2 相关链接  
5 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
5. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TPS7B7701-Q1  
TPS7B7702-Q1  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2015–2018, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B7701QPWPRQ1  
TPS7B7702QPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
7B7701  
7B7702  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B7701QPWPRQ1 HTSSOP PWP  
TPS7B7702QPWPRQ1 HTSSOP PWP  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B7701QPWPRQ1  
TPS7B7702QPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7B81

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B81-Q1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8125QDGNRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8133DGNR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DGN | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8133DRVR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8133QDGNRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8133QDRVRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8133QKVURQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | KVU | 5 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150DGNR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DGN | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150DRVR

具有使能功能的 150mA、电池供电运行 (40V)、超低 IQ、低压降 (LDO) 稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150QDGNRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DGN | 8 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7B8150QDRVRQ1

具有使能功能的汽车类 150mA、电池供电运行 (40V)、超低 IQ、低压降稳压器 | DRV | 6 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI