TPS7B8733QKVURQ1R2 [TI]

TPS7B87-Q1 500-mA, 40-V, Low-Dropout Regulator With Power-Good;
TPS7B8733QKVURQ1R2
型号: TPS7B8733QKVURQ1R2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS7B87-Q1 500-mA, 40-V, Low-Dropout Regulator With Power-Good

文件: 总38页 (文件大小:3896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
TPS7B87-Q1 500-mA, 40-V, Low-Dropout Regulator  
With Power-Good  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
The TPS7B87-Q1 is a low-dropout linear regulator  
designed to connect to the battery in automotive  
applications. The device has an input voltage range  
extending to 40 V, which allows the device to  
withstand transients (such as load dumps) that are  
anticipated in automotive systems. With only a 17-  
µA quiescent current at light loads, the device is an  
optimal solution for powering always-on components  
such as microcontrollers (MCUs) and controller area  
network (CAN) transceivers in standby systems.  
Temperature grade 1: –40°C to +125°C, TA  
– Junction temperature: –40°C to +150°C, TJ  
Input voltage range: 3 V to 40 V (42 V max)  
Output voltage range: 3.3 V and 5 V (fixed)  
Maximum output current: 500 mA  
Output voltage accuracy: ±0.85% (max)  
Low dropout voltage:  
– 475 mV (max) at 450 mA  
Low quiescent current:  
– 17 µA (typ) at light loads  
Excellent line transient response:  
– ±2% VOUT deviation during cold-crank  
– ±2% VOUT deviation (1-V/µs VIN slew rate)  
Power-good with programmable delay period  
Stable with a 2.2-µF or larger capacitor  
Functional Safety-Capable  
– Documentation available to aid functional safety  
system design  
Package options:  
The device has state-of-the-art transient response  
that allows the output to quickly react to changes  
in load or line (for example, during cold-crank  
conditions). Additionally, the device has a novel  
architecture that minimizes output overshoot when  
recovering from dropout. During normal operation, the  
device has a tight DC accuracy of ±0.85% over line,  
load, and temperature.  
The power-good delay can be adjusted by external  
components, allowing the delay time to be configured  
to fit application-specific systems.  
– 5-pin TO-252 package: 29.7°C/W RθJA  
– 8-pin HSOIC-8 package with thermal pad:  
41.8°C/W RθJA  
The device is available in thermally conductive  
packaging to allow the device to efficiently transfer  
heat to the circuit board.  
2 Applications  
Device Information (1)  
Reconfigurable instrument clusters  
Body control modules (BCM)  
Always-on battery-connected applications:  
Automotive gateways  
Remote keyless entries (RKE)  
PART NUMBER  
PACKAGE  
HSOIC (8)  
TO-252 (5)  
BODY SIZE (NOM)  
4.89 mm × 3.90 mm  
6.60 mm × 6.10 mm  
TPS7B87-Q1  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
45  
0.25  
0.2  
VIN  
VOUT  
40  
35  
30  
25  
20  
15  
10  
5
0.15  
0.1  
IN  
OUT  
0.05  
0
TPS7B87-Q1  
-0.05  
-0.1  
-0.15  
-0.2  
DELAY  
PG  
I/O  
GND  
0
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
Output Equal to Reference Voltage  
Line Transient Response (3-V/µs VIN Slew Rate)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................6  
6.6 Switching Characteristics ...........................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................17  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Application.................................................... 23  
9 Power Supply Recommendations................................24  
10 Layout...........................................................................25  
10.1 Layout Guidelines................................................... 25  
10.2 Layout Examples ................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 Receiving Notification of Documentation Updates..27  
11.4 Support Resources................................................. 27  
11.5 Trademarks............................................................. 27  
11.6 Electrostatic Discharge Caution..............................27  
11.7 Glossary..................................................................27  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 27  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (December 2020) to Revision A (April 2021)  
Page  
Added Functional Safety-Capable bullet to Features list....................................................................................1  
Updated pin functions table to reflect pin 4 of the HSOIC (DDA) package as an NC pin...................................3  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
5 Pin Configuration and Functions  
IN  
OUT  
NC  
1
2
3
4
8
7
6
5
NC  
PG  
GND  
Thermal  
Pad  
Thermal  
Pad  
DELAY  
NC  
Figure 5-2. DDA Package, 8-Pin HSOIC, Top View  
Not to scale  
Figure 5-1. KVU Package, 5-Pin TO-252, Top View  
Table 5-1. Pin Functions  
PIN  
KVU  
TYPE(1)  
DESCRIPTION  
NAME  
DDA  
Power-good delay adjustment pin. Connect a capacitor from this pin to GND  
to set the PG reset delay. Leave this pin floating for a default (t(DLY_FIX)) delay.  
See the Power-Good (PG) section for more information. If this functionality is  
not desired, leave this pin floating because connecting this pin to GND causes  
a permanent increase in the GND current.  
DELAY  
4
3
I
GND  
NC  
3
5
G
Ground reference  
No internal connection. This pin can be left floating or tied to GND for best  
thermal performance.  
2, 4, 7  
Power-good pin. This pin has an internal pullup resistor. Do not connect this pin  
to VOUT or any other biased voltage rail. VPG is logic level high when VOUT is  
above the power-good threshold. See the Power-Good (PG) section for more  
information.  
PG  
IN  
2
1
6
8
I
Input power-supply voltage pin. For best transient response and to minimize  
input impedance, use the recommended value or larger ceramic capacitor from  
IN to GND as listed in the Recommended Operating Conditions table and the  
Input Capacitor section. Place the input capacitor as close to the input of the  
device as possible.  
P
Regulated output voltage pin. A capacitor is required from OUT to GND for  
stability. For best transient response, use the nominal recommended value or  
larger ceramic capacitor from OUT to GND; see the Recommended Operating  
Conditions table and the Output Capacitor section. Place the output capacitor  
as close to output of the device as possible. If using a high equivalent  
series resistance (ESR) capacitor, decouple the output with a 100-nF ceramic  
capacitor.  
OUT  
5
1
O
Thermal  
pad  
Connect the thermal pad to a large area GND plane for improved thermal  
performance.  
Pad  
Pad  
(1) I = input; O = output; P = power; G = ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7B87-Q1  
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VIN  
Unregulated input  
–0.3  
42  
V
V
VOUT  
Delay  
PG  
Regulated output  
–0.3 VIN + 0.3 V(2)  
Reset delay input, power-good adjustable threshold  
Power-good outupt  
–0.3  
–0.3  
–40  
–65  
6
20  
V
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Theseare stress ratings  
only and functional operation of the device at these or any other conditionsbeyond those indicated under recommended operating  
conditions isnot implied. Exposure to absolute-maximum-rated conditions for extended periods may affect devicereliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 20 V, whichever is smaller  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
Corner pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
TYP  
MAX  
40  
UNIT  
VIN  
Input voltage  
V
V
VOUT  
IOUT  
VDelay  
VPG  
Output voltage  
1.2  
0
18  
Output current  
500  
5.5  
18  
mA  
V
Delay pin voltage, power-good adjustable threshold  
Power-good outupt pin  
Output capacitor(2)  
0
0
V
COUT  
ESR  
CIN  
2.2  
0.001  
0.1  
220  
2
µF  
Ω
Output capacitor ESR requirements  
Input capacitor(1)  
1
µF  
µF  
°C  
CDelay  
TJ  
Power-good delay capacitor  
Operating junction temperature  
1
–40  
150  
(1) For robust EMI performance the minimum input capacitance is 500 nF.  
(2) Effective output capacitance of 1 µF minimum required for stability.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
 
 
 
 
 
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.4 Thermal Information  
TPS7B87-Q1  
THERMAL METRIC(1) (2)  
KVU  
5 PINS  
29.7  
40.2  
8.6  
DDA  
8 PINS  
41.8  
55  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
17.3  
4.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.9  
ψJB  
8.5  
17.3  
5.7  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
1.5  
(1) The thermal data is based on the JEDEC standard high K profile,JESD 51-7. Two-signal, two-plane, four-layer board with 2-oz. copper.  
The copper pad is soldered tothe thermal land pattern. Also, correct attachment procedure must be incorporated.  
(2) For more information about traditional and new thermal metrics,see the Semiconductor and IC PackageThermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7B87-Q1  
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 0 mA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF typical  
values are at TJ = 25°C  
PARAMETER  
Test Conditions  
MIN TYP MAX UNIT  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 450 mA, TJ =  
25ºC(1)  
–0.85  
0.85  
0.85  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 500 mA, TJ =  
25ºC(1)  
–0.85  
VOUT  
Regulated output  
%
%
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 450 mA(1)  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 500 mA(1)  
–1.15  
–1.15  
1.15  
1.15  
VIN = VOUT + 1 V, IOUT = 100 µA to 450 mA , VOUT ≥ 3.3  
V
0.425  
ΔVOUT(ΔIOUT)  
Load regulation  
Line regulation  
VIN = VOUT + 1 V, IOUT = 100 µA to 500 mA , VOUT ≥ 3.3  
V
0.45  
0.2  
ΔVOUT(ΔVIN)  
ΔVOUT  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA  
tR = tF = 1 µs; COUT = 10 µF, VOUT ≥ 3.3V  
IOUT = 150 mA to 350 mA  
%
Load transient response  
settling time  
100  
µs  
–2%  
Load transient response  
overshoot, undershoot(2)  
tR = tF = 1 µs; COUT  
10 µF  
=
ΔVOUT  
IOUT = 350 mA to 150 mA  
IOUT = 0 mA to 500 mA  
10% %VOUT  
–10%  
VIN = VOUT + 1 V to 40V, IOUT = 0 mA, TJ = 25ºC(3)  
VIN = VOUT + 1 V to 40 V, IOUT = 0 mA(3)  
IOUT = 500 µA  
17  
21  
IQ  
Quiescent current  
26  
35  
µA  
IOUT ≤ 1 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM) x 0.95  
IOUT = 315 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT = 450 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT = 500 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT ≤ 1 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM) x 0.95  
IOUT = 315 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT = 450 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT = 500 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
VIN rising  
43  
260  
335  
360  
360  
475  
535  
46  
Dropout voltage fixed output  
voltages (DDA Package)  
VDO  
mV  
275  
360  
390  
400  
525  
575  
Dropout voltage fixed output  
voltages (KVU Package)  
VDO  
mV  
VUVLO(RISING)  
VUVLO(FALLING)  
VUVLO(HYST)  
ICL  
Rising input supply UVLO  
Falling input supply UVLO  
V UVLO(IN) hysteresis  
2.6  
2.7 2.82  
V
VIN falling  
2.38  
2.5  
2.6  
V
230  
mV  
mA  
dB  
Output current limit  
VIN = VOUT + 1 V, VOUT short to 90% x VOUT(NOM)  
VIN - VOUT = 1 V, frequency = 1 kHz, IOUT = 450 mA  
540  
10  
780  
PSRR  
Power supply rejection ratio  
70  
30  
Power-good internal pull up  
resistor  
RPG  
50  
kΩ  
V
VPG(OL)  
PG pin low level output voltage VOUT ≤ 0.83 x VOUT  
Default power-good threshold VOUT rising  
0.4  
95  
VPG(TH,RISING)  
85  
83  
VPG(TH,FALLING) Default power-good threshold VOUT falling  
93 %VOUT  
VPG(HYST)  
VDLY(TH)  
IDLY(CHARGE)  
TJ  
Power-good hysteresis  
2
Threshold to release power-  
good high  
Voltage at DELAY pin rising  
Voltage at DELAY pin = 1 V  
1.17 1.21 1.25  
V
Delay capacitor charging  
current  
1
1.5  
2
µA  
°C  
°C  
Junction temperature  
–40  
150  
Junction shutdown  
temperature  
TSD(SHUTDOWN)  
175  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 0 mA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF typical  
values are at TJ = 25°C  
PARAMETER  
Test Conditions  
MIN TYP MAX UNIT  
Hysteresis of thermal  
shutdown  
TSD(HYST)  
20 °C  
(1) Power dissipation is limited to 2 W for device production testing purposes. The power dissipation can be higher during normal  
operation. See the thermal dissipation section for more information on how much power the device can dissipate while maintaining a  
junction temperature below 150.  
(2) Specified by design.  
(3) For the adjustable output this is tested in unity gain and resistor current is not included.  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TIMING POWER-GOOD  
t(DLY_FIX)  
t(Deglitch)  
Power-good propagation delay  
Power-good deglitch time  
No capacitor connect at DELAY pin  
No capacitor connect at DELAY pin  
100  
90  
µs  
µs  
Delay capacitor value:  
C(DELAY) = 100 nF  
t(DLY)  
Power-good propagation delay  
80  
ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7B87-Q1  
 
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.7 Typical Characteristics  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
0.3  
0.25  
0.2  
5.015  
5.01  
5.005  
5
500 mA  
100 mA  
-55èC  
-40èC  
0èC  
85èC  
150èC  
25èC  
125èC  
0.15  
0.1  
0.05  
0
4.995  
4.99  
4.985  
4.98  
4.975  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature èC  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 150 mA  
Figure 6-2. Line Regulation vs VIN  
Figure 6-1. Accuracy vs Temperature  
5.015  
5.015  
5.01  
5.005  
5
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
5.01  
5.005  
5
4.995  
4.99  
4.985  
4.98  
4.975  
4.995  
4.99  
4.985  
4.98  
4.975  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 5 mA  
Figure 6-3. Line Regulation vs VIN  
VOUT = 5 V, IOUT = 1 mA  
Figure 6-4. Line Regulation vs VIN  
5.015  
5.01  
5.005  
5
5.01  
5.0075  
5.005  
5.0025  
5
-55èC  
-40èC  
0èC  
85èC  
150èC  
-40 èC  
25 èC  
85 èC  
25èC  
125èC  
4.995  
4.99  
4.985  
4.98  
4.975  
4.9975  
4.995  
4.9925  
4.99  
0
25  
50 75  
Output Current (mA)  
100  
125  
150  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V  
Figure 6-5. Load Regulation vs IOUT  
COUT = 10 µF, VOUT = 5 V  
Figure 6-6. Line Regulation at 50 mA  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.7 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
5.01  
5.0075  
5.005  
5.0025  
5
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-40 èC  
25 èC  
85 èC  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
4.9975  
4.995  
4.9925  
4.99  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
VIN = 3 V  
COUT = 10 µF, VOUT = 5 V  
Figure 6-7. Line Regulation at 100 mA  
Figure 6-8. Dropout Voltage (VDO) vs IOUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
IOUT  
10 mA, 364.8 mVRMS  
150 mA, 391.4 mVRMS  
500 mA, 437.2 mVRMS  
0.005  
1 mA  
10 mA  
50 mA  
150 mA  
350 mA  
500 mA  
0.002  
0.001  
0
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
COUT = 10 µF (X7R 50 V), VOUT = 5 V  
COUT = 10 µF (X7R 50 V), VOUT = 5 V  
Figure 6-9. PSRR vs Frequency and IOUT  
Figure 6-10. Noise vs Frequency  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
IOUT  
10 mA, 252.5 mVRMS  
150 mA, 267.6 mVRMS  
500 mA, 293.8 mVRMS  
0.005  
0.002  
0.001  
6 V VIN  
100  
7 V VIN  
10 VIN  
13.5 V VIN  
1M 10M  
10  
1k  
10k  
Frequency (Hz)  
100k  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
COUT = 10 µF (X7R 50 V), IOUT = 500 mA, VOUT = 5 V  
COUT = 10 µF (X7R 50 V), VOUT = 3.3 V  
Figure 6-12. PSRR vs Frequency and VIN  
Figure 6-11. Noise vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7B87-Q1  
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.7 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.25  
0.2  
10  
8
300  
240  
180  
120  
60  
VIN  
VOUT  
VIN  
VOUT  
6
0.15  
0.1  
4
2
0.05  
0
0
0
-2  
-4  
-6  
-8  
-10  
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-120  
-180  
-240  
-300  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
VOUT = 5 V, IOUT = 100 mA, VIN = 5.5 V to 6.5 V,  
rise time = 1 µs  
VOUT = 5 V, IOUT = 1 mA, VIN = 13.5 V to 45 V,  
slew rate = 2.7 V/µs  
Figure 6-14. Line Transients  
Figure 6-13. Line Transients  
150  
100  
50  
300  
200  
100  
0
150  
300  
200  
100  
0
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
100  
50  
0
0
-50  
-100  
-150  
-100  
-200  
-300  
-50  
-100  
-150  
-100  
-200  
-300  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
Figure 6-15. Load Transient, No Load to 100 mA  
Figure 6-16. Load Transient, No Load to 100-mA Rising Edge  
50  
40  
300  
240  
180  
120  
60  
50  
40  
30  
20  
10  
0
200  
150  
100  
50  
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
30  
20  
10  
0
0
0
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-100  
-150  
-200  
-250  
-120  
-180  
-240  
-300  
0
40  
80  
120  
Time (ms)  
160  
200  
240  
280  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 45 mA to 105 mA, slew rate = 0.1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 45 mA to 105 mA, slew rate = 0.1 A/µs,  
COUT = 10 µF  
Figure 6-17. Load Transient, 45 mA to 105 mA  
Figure 6-18. Load Transient, 45-mA to 105-mA Rising Edge  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.7 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
150  
100  
50  
300  
200  
100  
0
150  
100  
50  
300  
200  
100  
0
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
0
0
-50  
-100  
-150  
-100  
-200  
-300  
-50  
-100  
-150  
-100  
-200  
-300  
0
0.25  
0.5  
0.75  
1
Time (ms)  
1.25  
1.5  
1.75  
2
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
Figure 6-19. Load Transient, No Load to 150-mA  
Figure 6-20. Load Transient, No Load to 150-mA Rising Edge  
150  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
100  
50  
0
0
-50  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-150  
-200  
-250  
-300  
-50  
-100  
-150  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
25  
50  
75 100 125 150 175 200 225 250  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 500 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 150 mA to 350 mA, slew rate = 0.1 A/µs,  
COUT = 10 µF  
Figure 6-22. Load Transient, No Load to 500 mA  
660  
Figure 6-21. Load Transient, 150-mA to 350-mA  
150  
100  
50  
900  
-40èC  
25èC  
150èC  
IOUT  
659  
658  
657  
656  
655  
654  
653  
652  
651  
650  
750  
600  
450  
300  
150  
0
0
-50  
-100  
-150  
-200  
-250  
-150  
-300  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
Current Limit  
105 135  
-75  
-45  
-15  
15  
45  
75  
VOUT = 5 V, IOUT = 0 mA to 500 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
Temperature (èC)  
VIN = VOUT + 1 V, VOUT = 90% × VOUT(NOM)  
Figure 6-24. Output Current Limit vs Temperature  
Figure 6-23. Load Transient, No Load to 500-mA Rising Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7B87-Q1  
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.7 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
40  
35  
30  
25  
20  
15  
10  
175  
150  
125  
100  
75  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
50  
25  
0
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
0
5
10  
15  
Input Voltage (V)  
20  
25  
30  
35  
40  
VOUT = 5 V  
Figure 6-26. Quiescent Current (IQ) vs VIN  
Figure 6-25. Quiescent Current (IQ) vs VIN  
1300  
281  
280  
279  
278  
277  
276  
275  
274  
273  
272  
271  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
Figure 6-27. Ground Current (IGND) vs IOUT  
Figure 6-28. Ground Current at 100 mA  
Falling Threshold  
Rising Threshold  
26  
25  
24  
23  
22  
21  
92  
91  
90  
89  
88  
87  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Ambient Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
Figure 6-30. PG Threshold vs Temperature  
Figure 6-29. Ground Current at 500 µA  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
6.7 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, and CIN = 1 µF  
(unless otherwise noted)  
20  
17.5  
15  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.8  
2.75  
2.7  
Input Voltage  
Output Voltage  
Output Current  
Falling Threshold  
Rising Threshold  
12.5  
10  
2.65  
2.6  
7.5  
5
2.55  
2.5  
2.5  
0
-2.5  
-5  
2.45  
2.4  
-100  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
Time (ms)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
VIN = 13.5 V, VOUT = 5 V, IOUT = 150 mA, COUT = 10 µF  
Figure 6-32. Undervoltage Lockout (UVLO) Threshold vs  
Temperature  
Figure 6-31. Startup Plot Inrush Current  
1.58  
1.57  
1.56  
1.55  
1.54  
1.53  
1.52  
20  
18  
16  
14  
12  
10  
8
6
4
0.2  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature èC  
0.4  
0.6  
0.8  
1
1.2  
Injected current (mA)  
1.4  
1.6  
1.8  
VDELAY = 1 V  
Figure 6-33. Delay Pin Current vs Temperature  
Figure 6-34. Output Voltage vs Injected Current  
10  
5
2
1
OFF  
0.5  
0.2  
0.1  
0.05  
Stable region  
0.02  
0.01  
0.005  
ON  
0.002  
0.001  
0.0005  
0.0002  
0.0001  
-50 -25  
0
25  
50  
75 100 125 150 175 200  
Temperature (èC)  
1
2
3
4 5 67810  
20 30 50 70 100 200300 500  
COUT (mF)  
Figure 6-35. Thermal Shutdown  
Figure 6-36. Stability, ESR vs COUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7B87-Q1  
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS7B87-Q1 is a low-dropout linear regulator (LDO) with improved transient performance that allows  
for quick response to changes in line or load conditions. The device aslo features a novel output overshoot  
reduction feature that minimizes output overshoot during cold-crank conditions.  
The integrated power-good and delay features allow for the system to notify down-stream components when the  
power is good and assist in sequencing requirements.  
During normal operation, the device has a tight DC accuracy of ±0.85% over line, load, and temperature. The  
increased accuracy allows for the powering of sensitive analog loads or sensors.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
R1  
Thermal  
Shutdown  
œ
+
UVLO  
R2  
Bandgap  
œ
+
VREF  
VOUT  
VSUBREG  
PG  
DELAY  
œ
VREF  
+
Cap  
Control  
GND  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Power-Good (PG)  
The PG signal provides an easy solution to meet demanding sequencing requirements because PG alerts when  
the output nears its nominal value. PG can be used to signal other devices in a system when the output voltage  
is near, at, or above the set output voltage (VOUT(nom)). Figure 7-1 shows a simplified schematic. The PG signal  
is an internal pullup resistor to the nominal output voltage and is active high. The PG circuit sets the PG pin into  
a high-impedance state to indicate that the power is good.  
OUT  
-
+
PG  
+
VREF  
œ
Figure 7-1. Simplified Power-Good Schematic  
7.3.2 Adjustable Power-Good Delay Timer (DELAY)  
The power-good delay period is a function of the external capacitor on the DELAY pin. The adjustable delay  
configures the amount of time required before the PG pin becomes high. This delay is configured by connecting  
an external capacitor from this pin to GND. Figure 7-2 shows the typical timing diagram for the power-good delay  
pin. If the DELAY pin is left floating, the power-good delay is t(DLY_FIX). For more information on how to program  
the PG delay, see the Setting the Adjustable Power-Good Delay section.  
VIN  
V
(UVLO)  
t < t(DEGLITCH)  
V(PG_HYST)  
V(PG_TH) rising  
V(PG_ADJ) rising  
V(PG_TH) falling  
V(PG_ADJ) falling  
VOUT  
V
(DLY_TH)  
DELAY  
t(DEGLITCH)  
t(DEGLITCH)  
t
t
(DLY)  
(DLY)  
PG  
Power Up  
V(PG_TH) falling = V(PG_TH) rising – V(PG_HYST).  
Input Voltage Drop  
Undervoltage  
Power Down  
.
Figure 7-2. Typical Power-Good Timing Diagram  
7.3.3 Undervoltage Lockout  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7B87-Q1  
 
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
7.3.4 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off  
when thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can  
be high from large VIN – VOUT voltage drops across the device or from high inrush currents charging large  
output capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
7.3.5 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brickwall scheme. In a high-load current fault, the brickwall scheme  
limits the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. If thermal shutdown is triggered, the device  
turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the  
output current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application report.  
Figure 7-3 shows a diagram of the current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
Figure 7-3. Current Limit  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO)  
The output current is less than the current limit (IOUT < ICL)  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the input voltage below the UVLO falling threshold (see  
the Electrical Characteristics table). When disabled, the pass transistor is turned off and internal circuits are  
shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TPS7B87-Q1 requires an output capacitor of 2.2 µF or larger (1 µF or larger capacitance) for stability  
and an equivalent series resistance (ESR) between 0.001 Ω and 2 Ω. For best transient performance, use  
X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in value and ESR over  
temperature. When choosing a capacitor for a specific application, be mindful of the DC bias characteristics for  
the capacitor. Higher output voltages cause a significant derating of the capacitor. For best performance, the  
maximum recommended output capacitance is 220 µF.  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input  
supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves  
transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of  
frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several  
inches from the input power source.  
8.1.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
8.1.3 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT ≤ VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
8.1.4 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. The following equation calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(2)  
Note  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to the following equation, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA).  
TJ = TA + (RθJA × PD)  
(3)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes.  
The junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.4.1 Thermal Performance Versus Copper Area  
The most used thermal resistance parameter RθJA is highly dependent on the heat-spreading capability built into  
the particular PCB design, and therefore varies according to the total copper area, copper weight, and location  
of the planes. The RθJA recorded in the Thermal Information table in the Specifications section is determined  
by the JEDEC standard (see Figure 8-1), PCB, and copper-spreading area, and is only used as a relative  
measure of package thermal performance. For a well-designed thermal layout, RθJA is actually the sum of the  
package junction-to-case (bottom) thermal resistance (RθJCbot) plus the thermal resistance contribution by the  
PCB copper.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7B87-Q1  
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
Mold  
Compound  
Die  
Wire  
Die  
Attach  
2oz  
Signal  
Trace  
Lead  
Frame  
Internal Signal  
or power plane  
1oz copper  
Thermal  
Pad or Tab  
of the LDO  
Internal  
GND plane  
1oz copper  
Bottom  
Relief  
2oz copper  
Thermal  
Vias  
Figure 8-1. JEDEC Standard 2s2p PCB  
Figure 8-2 through Figure 8-5 illustrate the functions of RθJA and ψJB versus copper area and thickness. These  
plots are generated with a 101.6-mm x 101.6-mm x 1.6-mm PCB of two and four layers. For the 4-layer board,  
inner planes use 1-oz copper thickness. Outer layers are simulated with both 1-oz and 2-oz copper thickness.  
A 2x3 (DDA package) or a 3x4 (KVU package) array of thermal vias with a 300-µm drill diameter and 25-µm  
copper plating is located beneath the thermal pad of the device. The thermal vias connect the top layer, the  
bottom layer and, in the case of the 4-layer board, the first inner GND plane. Each of the layers has a copper  
plane of equal area.  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 2 oz copper  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 2 oz copper  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Cu Area Per Layer (cm2)  
Cu Area Per Layer (cm2)  
Figure 8-2. RθJA vs Copper Area (DDA Package)  
Figure 8-3. ψJB vs Copper Area (DDA Package)  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
20  
18  
16  
14  
12  
10  
8
95  
85  
75  
65  
55  
45  
35  
25  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 2 oz copper  
4 Layer PCB, 1 oz copper  
4 Layer PCB, 2 oz copper  
2 Layer PCB, 1 oz copper  
2 Layer PCB, 2 oz copper  
6
15  
0
4
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Cu Area Per Layer (cm2)  
Cu Area Per Layer (cm2)  
Figure 8-4. RθJA vs Copper Area (KVU Package)  
Figure 8-5. ψJB vs Copper Area (KVU Package)  
8.1.4.2 Power Dissipation Versus Ambient Temperature  
Figure 8-6 is based off of a JESD51-7 4-layer, high-K board. The allowable power dissipation was estimated  
using the following equation. As discussed in the An empirical analysis of the impact of board layout on LDO  
thermal performance application report, thermal dissipation can be improved in the JEDEC high-K layout by  
adding top layer copper and increasing the number of thermal vias. If a good thermal layout is used, the  
allowable thermal dissipation can be improved by up to 50%.  
6 + 4à,# T 2& Q 150 °%  
#
(4)  
6.5  
KVU Package  
DDA Package  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temerature (èC)  
Figure 8-6. TPS7B87-Q1 Allowable Power Dissipation  
8.1.5 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These  
psi metrics are determined to be significantly independent of the copper area available for heat-spreading.  
The Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two methods  
for calculating the junction temperature (TJ), as described in the following equations. Use the junction-to-top  
characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to calculate  
the junction temperature. Use the junction-to-board characterization parameter (ψJB) with the PCB surface  
temperature 1 mm from the device package (TB) to calculate the junction temperature.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7B87-Q1  
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
TJ = TT + ψJT × PD  
where:  
(5)  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(6)  
where  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
8.1.6 Pulling Up the PG Pin to a Different Voltage  
Because the power-good (PG) pin is pulled up internally to the output rail, this pin cannot be pulled up to any  
voltage or wire AND'd like a typical open-drain PG output can be. If this signal must be pulled up to another logic  
level then an external circuit can be implemented using a PMOS transistor and a pullup resistor. Implementing  
the circuit shown in Figure 8-7 allows the outputs to be pulled up to any logic rail. If a PMOS transistor is used  
make sure to pick a transistor with a low threshold voltage as this will determine the output low voltage. this can  
also be done with a NMOS transistor, but it inverts the logic. This implementation also allows the outputs to be  
AND'd together like the traditional power-good pins.  
SENSE_OUT  
Figure 8-7. Additional Components for the PG Pin to be Pulled Up to Another Rail  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
8.1.7 Power-Good  
8.1.7.1 Setting the Adjustable Power-Good Delay  
The power-good delay time can be set in two ways: either by floating the DELAY pin or by connecting a  
capacitor from this pin to GND. When the DELAY pin is floating, the time defaults to t(DLY_FIX). The delay time is  
set by the following equation if a capacitor is connected between the DELAY pin and GND.  
VDLY(TH)  
t = t(DLY _FIX) + CDELAY  
«
÷
÷
IDLY(CHARGE)  
(7)  
8.2 Typical Application  
Figure 8-8 shows a typical application circuit for the TPS7B87-Q1. TI recommends a low-ESR ceramic capacitor  
with a dielectric of type X5R or X7R.  
IN  
OUT  
TPS7B87-Q1  
DELAY  
PG  
I/O  
GND  
Figure 8-8. Typical Application Schematic for the TPS7B87-Q1  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 8-1 as the input parameters.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
6 V to 40 V  
5 V  
Output current  
350 mA  
10 µF  
Output capacitor  
Power-good delay capacitor  
100 nF  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 1 µF. The voltage rating must be greater than the maximum  
input voltage.  
8.2.2.2 Output Capacitor  
The device requires an output capacitor to stabilize the output voltage. The capacitor value must be between  
2.2 µF and 200 µF and the ESR range must be between 1 mΩ and 2 Ω. For this design, a low ESR, 10-µF  
ceramic capacitor was used to improve transient performance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7B87-Q1  
 
 
 
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
8.2.3 Application Curves  
150  
100  
50  
600  
500  
90  
80  
70  
60  
50  
40  
30  
20  
-40èC  
25èC  
150èC  
IOUT  
400  
300  
200  
100  
0
0
-50  
-100  
-150  
1 mA  
10 mA  
50 mA  
150 mA  
350 mA  
500 mA  
10  
0
25  
50  
75 100 125 150 175 200 225 250  
Time (ms)  
0
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Figure 8-10. Transient Response  
Figure 8-9. PSRR  
9 Power Supply Recommendations  
This device is designed for operation from an input voltage supply with a range between 3 V and 40 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the TPS7B87-Q1, add  
an electrolytic capacitor with a value of 22 µF and a ceramic bypass capacitor at the input.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near  
as practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close as possible to each other, connected by a wide, component-side,  
copper surface. The use of vias and long traces to the input and output capacitors is strongly discouraged and  
negatively affects system performance. TI also recommends a ground reference plane either embedded in the  
PCB itself or located on the bottom side of the PCB opposite the components. This reference plane serves  
to assure accuracy of the output voltage, shield noise, and behaves similarly to a thermal plane to spread (or  
sink) heat from the LDO device when connected to the thermal pad. In most applications, this ground plane is  
necessary to meet thermal requirements.  
10.1.1 Package Mounting  
Solder pad footprint recommendations for the TPS7B87-Q1 are available at the end of this document and at  
www.ti.com.  
10.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance  
As depicted in Figure 10-1 and Figure 10-2, place the input and output capacitors close to the device for the  
layout of the TPS7B87-Q1. In order to enhance the thermal performance, place as many vias as possible around  
the device. These vias improve the heat transfer between the different GND planes in the PCB.  
To improve AC performance such as PSRR, output noise, and transient response, TI recommends a board  
design with separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin of  
the device. In addition, the ground connection for the output capacitor must connect directly to the GND pin of  
the device.  
Minimize equivalent series inductance (ESL) and ESR in order to maximize performance and ensure stability.  
Place each capacitor as close as possible to the device and on the same side of the PCB as the regulator itself.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI  
strongly discourages the use of vias and long traces to connect the capacitors because may negatively affect  
system performance and even cause instability.  
If possible, and to ensure the maximum performance specified in this document, use the same layout pattern  
used for the TPS7B87-Q1 evaluation board, available at www.ti.com.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7B87-Q1  
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
10.2 Layout Examples  
GND  
Denotes a via  
Figure 10-1. DDA Package Fixed Output  
Denotes a via  
Figure 10-2. KVU Package Fixed Outupt  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7B87-Q1  
 
 
 
TPS7B87-Q1  
SBVS363A – DECEMBER 2020 – REVISED APRIL 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Table 11-1. Device Nomenclature(1)  
PRODUCT  
VOUT  
xx is the nominal output voltage (for example, 33 = 3.3 V V; 50 = 5.0 V).  
yyy is the package designator.  
Q indicates that this device is a grade-1 device in accordance with the AEC-Q100 standard.  
Q1 indicates that this device is an automotive grade (AEC-Q100) device.  
TPS7B87xxQyyyRQ1  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
11.1.2 Development Support  
For the PSpice model, see the TPS7B4250 PSpice Transient Model.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Various Applications for Voltage-Tracking LDO application report  
Texas Instruments, TPS7B4250 Evaluation Module user's guide  
Texas Instruments, TPS7B5250-Q1 Pin FMEA application report  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7B87-Q1  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B8733QDDARQ1  
TPS7B8733QKVURQ1  
TPS7B8733QKVURQ1R2  
TPS7B8750QDDARQ1  
TPS7B8750QKVURQ1  
TPS7B8750QKVURQ1R2  
ACTIVE SO PowerPAD  
DDA  
KVU  
KVU  
DDA  
KVU  
KVU  
8
5
5
8
5
5
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
7B8733  
ACTIVE  
ACTIVE  
TO-252  
TO-252  
SN  
SN  
7B8733  
7B8733  
7B8750  
7B8750  
7B8750  
ACTIVE SO PowerPAD  
NIPDAUAG  
SN  
ACTIVE  
ACTIVE  
TO-252  
TO-252  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B8733QDDARQ1  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
TPS7B8733QKVURQ1R2 TO-252  
KVU  
DDA  
5
8
2500  
2500  
330.0  
330.0  
16.4  
12.8  
6.9  
6.4  
10.5  
5.2  
2.7  
2.1  
8.0  
8.0  
16.0  
12.0  
Q2  
Q1  
TPS7B8750QDDARQ1  
SO  
Power  
PAD  
TPS7B8750QKVURQ1R2 TO-252  
KVU  
5
2500  
330.0  
16.4  
6.9  
10.5  
2.7  
8.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jul-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B8733QDDARQ1  
TPS7B8733QKVURQ1R2  
TPS7B8750QDDARQ1  
TPS7B8750QKVURQ1R2  
SO PowerPAD  
TO-252  
DDA  
KVU  
DDA  
KVU  
8
5
8
5
2500  
2500  
2500  
2500  
366.0  
340.0  
366.0  
340.0  
364.0  
340.0  
364.0  
340.0  
50.0  
38.0  
50.0  
38.0  
SO PowerPAD  
TO-252  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS7B8750QDDARQ1

TPS7B87-Q1 500-mA, 40-V, Low-Dropout Regulator With Power-Good
TI

TPS7B8750QKVURQ1

TPS7B87-Q1 500-mA, 40-V, Low-Dropout Regulator With Power-Good
TI

TPS7B8750QKVURQ1R2

TPS7B87-Q1 500-mA, 40-V, Low-Dropout Regulator With Power-Good
TI

TPS7B88-Q1

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7B88-Q1_V01

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7B8833QKVURQ1

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7B8833QKVURQ1R2

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7B8850QKVURQ1

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7B8850QKVURQ1R2

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7H1101-SP_15

TPS7H1x01 1.5-V to 7-V, Ultra-Low Dropout (LDO) Regulator
TI

TPS7H1101A-SP

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器
TI

TPS7H1101A-SP_V01

TPS7H1101A-SP 1.5-V to 7-V Input, 3-A, Radiation-Hardened LDO Regulator
TI