TPS7B8833QKVURQ1R2 [TI]

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator;
TPS7B8833QKVURQ1R2
型号: TPS7B8833QKVURQ1R2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator

文件: 总31页 (文件大小:3161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
The TPS7B88-Q1 is a low-dropout linear regulator  
designed to connect to the battery in automotive  
applications. The device has an input voltage range  
extending to 40 V, which allows the device to  
withstand transients (such as load dump) that are  
anticipated in automotive systems. With only a 17-µA  
quiescent current at light loads, the device is an  
optimal solution for powering always-on components  
such as microcontrollers (MCUs) and controller area  
network (CAN) transceivers in standby systems.  
Temperature grade 1: –40°C to +125°C, TA  
– Junction temperature: –40°C to +150°C, TJ  
Input voltage range: 3 V to 40 V (42 V max)  
Output voltage range: 3.3 V and 5 V (fixed)  
Maximum output current: 500 mA  
Output voltage accuracy: ±1.15% (max)  
Low dropout voltage:  
– 525 mV (max) at 450 mA  
Low quiescent current:  
– 17 µA (typ) at light loads  
Excellent line transient response:  
– ±2% VOUT deviation during cold-crank  
– ±2% VOUT deviation (1-V/µs VIN slew rate)  
Stable with a 2.2-µF or larger capacitor  
Package 3-pin TO-252: (RθJA): 30°C/W  
The device has state-of-the-art transient response  
that allows the output to quickly react to changes in  
load or line (for example, during cold-crank  
conditions). Additionally, the device has a novel  
architecture that minimizes output overshoot when  
recovering from dropout. During normal operation, the  
device has a tight DC accuracy of ±1.15% over line,  
load, and temperature.  
2 Applications  
The device is available in thermally conductive  
packaging to allow the parts to efficiently transfer heat  
to the circuit board.  
Reconfigurable instrument clusters  
Body control modules (BCM)  
Always-on battery-connected applications:  
Automotive gateways  
Device Information (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Remote keyless entries (RKE)  
TPS7B88-Q1  
TO-252 (3)  
6.60 mm × 6.10 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
45  
0.25  
0.2  
IN  
OUT  
VIN  
VOUT  
40  
TPS7B88-Q1  
GND  
35  
30  
25  
20  
15  
10  
5
0.15  
0.1  
0.05  
0
Output Equal to Reference Voltage  
-0.05  
-0.1  
-0.15  
-0.2  
0
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
Line Transient Response (3-V/µs VIN Slew Rate)  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 17  
9 Power Supply Recommendations................................19  
10 Layout...........................................................................20  
10.1 Layout Guidelines................................................... 20  
10.2 Layout Example...................................................... 21  
11 Device and Documentation Support..........................22  
11.1 Device Support........................................................22  
11.2 Documentation Support.......................................... 22  
11.3 Receiving Notification of Documentation Updates..22  
11.4 Support Resources................................................. 22  
11.5 Trademarks............................................................. 22  
11.6 Electrostatic Discharge Caution..............................22  
11.7 Glossary..................................................................22  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 22  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
January 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
5 Pin Configuration and Functions  
Thermal pad  
Not to scale  
Figure 5-1. KVU Package, 3-Pin TO-252, Top View  
Table 5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
GND  
KVU  
2
G
Ground pin. Connect this pin to the thermal pad with a low-impedance connection.  
Input power-supply voltage pin. For best transient response and to minimize input  
impedance, use the recommended value or larger ceramic capacitor from IN to ground as  
listed in the Recommended Operating Conditions table and the Input Capacitor section.  
Place the input capacitor as close to the input of the device as possible  
IN  
1
P
Regulated output voltage pin. A capacitor is required from OUT to ground for stability. For  
best transient response, use the nominal recommended value or larger ceramic capacitor  
from OUT to ground; see the Recommended Operating Conditions table and the Output  
Capacitor section. Place the output capacitor as close to output of the device as possible.  
If using a high ESR capacitor, decouple the output with a 100-nF ceramic capacitor.  
OUT  
3
O
Thermal pad  
Pad  
Connect the thermal pad to a large area GND plane for improved thermal performance.  
(1) I = input; O = output; P = power; G = ground.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7B88-Q1  
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VIN  
Unregulated input  
–0.3  
42  
V
V
VOUT  
TJ  
Regulated output  
–0.3 VIN + 0.3 V(2)  
Operating junction temperature  
Storage temperature  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Theseare stress ratings  
only and functional operation of the device at these or any other conditionsbeyond those indicated under recommended operating  
conditions isnot implied. Exposure to absolute-maximum-rated conditions for extended periods may affect devicereliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 20 V, whichever is smaller  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
Corner pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
TYP  
MAX  
40  
UNIT  
VIN  
Input voltage  
V
V
VOUT  
IOUT  
COUT  
ESR  
CIN  
Output voltage  
1.2  
0
18  
Output current  
500  
220  
2
mA  
µF  
Ω
Output capacitor(2)  
2.2  
0.001  
0.1  
–40  
Output capacitor ESR requirements  
Input capacitor(1)  
1
µF  
°C  
TJ  
Operating junction temperature  
150  
(1) For robust EMI performance the minimum input capacitance is 500 nF.  
(2) Effective output capacitance of 1 µF minimum required for stability.  
6.4 Thermal Information  
TPS7B88-Q1  
THERMAL METRIC(1) (2)  
KVU  
3 PINS  
30  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
39.5  
8.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.6  
ψJB  
8.6  
RθJC(bot)  
1.3  
(1) The thermal data is based on the JEDEC standard high K profile,JESD 51-7. Two-signal, two-plane, four-layer board with 2-oz. copper.  
The copper pad is soldered tothe thermal land pattern. Also, correct attachment procedure must be incorporated.  
(2) For more information about traditional and new thermal metrics,see the Semiconductor and IC PackageThermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.5 Electrical Characteristics  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 0 mA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF typical  
values are at TJ = 25°C  
PARAMETER  
Test Conditions  
MIN TYP MAX UNIT  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 450 mA, TJ =  
25ºC(1)  
–0.85  
0.85  
0.85  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 500 mA, TJ =  
25ºC(1)  
–0.85  
VOUT  
Regulated output  
%
%
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 450 mA(1)  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA to 500 mA(1)  
–1.15  
–1.15  
1.15  
1.15  
VIN = VOUT + 1 V, IOUT = 100 µA to 450 mA , VOUT ≥ 3.3  
V
0.425  
ΔVOUT(ΔIOUT)  
Load regulation  
Line regulation  
VIN = VOUT + 1 V, IOUT = 100 µA to 500 mA , VOUT ≥ 3.3  
V
0.45  
0.2  
ΔVOUT(ΔVIN)  
ΔVOUT  
VIN = VOUT + 1 V to 40 V, IOUT = 100 µA  
tR = tF = 1 µs; COUT = 10 µF, VOUT ≥ 3.3V  
IOUT = 150 mA to 350 mA  
%
Load transient response  
settling time  
100  
µs  
–2%  
Load transient response  
overshoot, undershoot(2)  
tR = tF = 1 µs; COUT  
10 µF  
=
ΔVOUT  
IOUT = 350 mA to 150 mA  
IOUT = 0 mA to 500 mA  
10% %VOUT  
–10%  
VIN = VOUT + 1 V to 40V, IOUT = 0 mA, TJ = 25ºC(3)  
VIN = VOUT + 1 V to 40 V, IOUT = 0 mA(3)  
IOUT = 500 µA  
17  
21  
IQ  
Quiescent current  
26  
35  
µA  
IOUT ≤ 1 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM) x 0.95  
IOUT = 315 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT = 450 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
IOUT = 500 mA, VOUT ≥ 3.3 V, VIN = VOUT(NOM)  
VIN rising  
46  
275  
360  
390  
400  
525  
575  
Dropout voltage fixed output  
voltages (KVU Package)  
VDO  
mV  
VUVLO(RISING)  
VUVLO(FALLING)  
VUVLO(HYST)  
ICL  
Rising input supply UVLO  
Falling input supply UVLO  
V UVLO(IN) hysteresis  
2.6  
2.7 2.82  
V
V
VIN falling  
2.38  
2.5  
2.6  
780  
150  
230  
mV  
mA  
dB  
°C  
Output current limit  
VIN = VOUT + 1 V, VOUT short to 90% x VOUT(NOM)  
VIN - VOUT = 1 V, frequency = 1 kHz, IOUT = 450 mA  
540  
–40  
PSRR  
Power supply rejection ratio  
Junction temperature  
70  
TJ  
Junction shutdown  
temperature  
TSD(SHUTDOWN)  
TSD(HYST)  
175  
20  
°C  
°C  
Hysteresis of thermal  
shutdown  
(1) Power dissipation is limited to 2 W for device production testing purposes. The power dissipation can be higher during normal  
operation. See the thermal dissipation section for more information on how much power the device can dissipate while maintaining a  
junction temperature below 150.  
(2) Specified by design.  
(3) For the adjustable output this is tested in unity gain and resistor current is not included.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7B88-Q1  
 
 
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.6 Typical Characteristics  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF (unless  
otherwise noted)  
0.3  
0.25  
0.2  
5.015  
5.01  
5.005  
5
500 mA  
100 mA  
-55èC  
-40èC  
0èC  
85èC  
150èC  
25èC  
125èC  
0.15  
0.1  
0.05  
0
4.995  
4.99  
4.985  
4.98  
4.975  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature èC  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 150 mA  
Figure 6-2. Line Regulation vs VIN  
Figure 6-1. Accuracy vs Temperature  
5.015  
5.015  
5.01  
5.005  
5
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
5.01  
5.005  
5
4.995  
4.99  
4.985  
4.98  
4.975  
4.995  
4.99  
4.985  
4.98  
4.975  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 5 mA  
Figure 6-3. Line Regulation vs VIN  
VOUT = 5 V, IOUT = 1 mA  
Figure 6-4. Line Regulation vs VIN  
5.015  
5.01  
5.005  
5
5.01  
5.0075  
5.005  
5.0025  
5
-55èC  
-40èC  
0èC  
85èC  
150èC  
-40 èC  
25 èC  
85 èC  
25èC  
125èC  
4.995  
4.99  
4.985  
4.98  
4.975  
4.9975  
4.995  
4.9925  
4.99  
0
25  
50 75  
Output Current (mA)  
100  
125  
150  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V  
Figure 6-5. Load Regulation vs IOUT  
COUT = 10 µF, VOUT = 5 V  
Figure 6-6. Line Regulation at 50 mA  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF (unless  
otherwise noted)  
5.01  
5.0075  
5.005  
5.0025  
5
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-40 èC  
25 èC  
85 èC  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
4.9975  
4.995  
4.9925  
4.99  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
VIN = 3 V  
COUT = 10 µF, VOUT = 5 V  
Figure 6-7. Line Regulation at 100 mA  
Figure 6-8. Dropout Voltage (VDO) vs IOUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
IOUT  
10 mA, 364.8 mVRMS  
150 mA, 391.4 mVRMS  
500 mA, 437.2 mVRMS  
0.005  
1 mA  
10 mA  
50 mA  
150 mA  
350 mA  
500 mA  
0.002  
0.001  
0
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
COUT = 10 µF (X7R 50 V), VOUT = 5 V  
COUT = 10 µF (X7R 50 V), VOUT = 5 V  
Figure 6-9. PSRR vs Frequency and IOUT  
Figure 6-10. Noise vs Frequency  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
IOUT  
10 mA, 252.5 mVRMS  
150 mA, 267.6 mVRMS  
500 mA, 293.8 mVRMS  
0.005  
0.002  
0.001  
6 V VIN  
100  
7 V VIN  
10 VIN  
13.5 V VIN  
1M 10M  
10  
1k  
10k  
Frequency (Hz)  
100k  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
COUT = 10 µF (X7R 50 V), IOUT = 500 mA, VOUT = 5 V  
COUT = 10 µF (X7R 50 V), VOUT = 3.3 V  
Figure 6-12. PSRR vs Frequency and VIN  
Figure 6-11. Noise vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7B88-Q1  
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF (unless  
otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.25  
0.2  
10  
8
300  
240  
180  
120  
60  
VIN  
VOUT  
VIN  
VOUT  
6
0.15  
0.1  
4
2
0.05  
0
0
0
-2  
-4  
-6  
-8  
-10  
-60  
-0.05  
-0.1  
-0.15  
-0.2  
-120  
-180  
-240  
-300  
0
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
VOUT = 5 V, IOUT = 100 mA, VIN = 5.5 V to 6.5 V,  
rise time = 1 µs  
VOUT = 5 V, IOUT = 1 mA, VIN = 13.5 V to 45 V,  
slew rate = 2.7 V/µs  
Figure 6-14. Line Transients  
Figure 6-13. Line Transients  
150  
100  
50  
300  
200  
100  
0
150  
100  
50  
300  
200  
100  
0
-40èC  
-40èC  
25èC  
150èC  
IOUT  
25èC  
150èC  
IOUT  
0
0
-50  
-100  
-150  
-100  
-200  
-300  
-50  
-100  
-150  
-100  
-200  
-300  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
Figure 6-15. Load Transient, No Load to 100 mA  
Figure 6-16. Load Transient, No Load to 100-mA Rising Edge  
50  
40  
300  
50  
40  
30  
20  
10  
0
200  
150  
100  
50  
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
240  
180  
120  
60  
30  
20  
10  
0
0
0
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-100  
-150  
-200  
-250  
-120  
-180  
-240  
-300  
0
40  
80  
120  
Time (ms)  
160  
200  
240  
280  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 45 mA to 105 mA, slew rate = 0.1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 45 mA to 105 mA, slew rate = 0.1 A/µs,  
COUT = 10 µF  
Figure 6-17. Load Transient, 45 mA to 105 mA  
Figure 6-18. Load Transient, 45-mA to 105-mA Rising Edge  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF (unless  
otherwise noted)  
150  
100  
50  
300  
200  
100  
0
150  
100  
50  
300  
200  
100  
0
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
0
0
-50  
-100  
-150  
-100  
-200  
-300  
-50  
-100  
-150  
-100  
-200  
-300  
0
0.25  
0.5  
0.75  
1
Time (ms)  
1.25  
1.5  
1.75  
2
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
Figure 6-19. Load Transient, No Load to 150-mA  
Figure 6-20. Load Transient, No Load to 150-mA Rising Edge  
150  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
-40èC  
25èC  
150èC  
IOUT  
-40èC  
25èC  
150èC  
IOUT  
100  
50  
0
0
-50  
-50  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
25  
50  
75 100 125 150 175 200 225 250  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 500 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
VOUT = 5 V, IOUT = 150 mA to 350 mA, slew rate = 0.1 A/µs,  
COUT = 10 µF  
Figure 6-22. Load Transient, No Load to 500 mA  
Figure 6-21. Load Transient, 150-mA to 350-mA  
150  
100  
50  
900  
750  
600  
450  
300  
150  
0
660  
659  
658  
657  
656  
655  
654  
653  
652  
651  
-40èC  
25èC  
150èC  
IOUT  
0
-50  
-100  
-150  
-200  
-250  
-150  
-300  
0
20  
40  
60  
80 100 120 140 160 180 200  
Time (ms)  
Current Limit  
105 135  
650  
-75  
-45  
-15  
15  
45  
75  
VOUT = 5 V, IOUT = 0 mA to 500 mA, slew rate = 1 A/µs,  
COUT = 10 µF  
Temperature (èC)  
VIN = VOUT + 1 V, VOUT = 90% × VOUT(NOM)  
Figure 6-24. Output Current Limit vs Temperature  
Figure 6-23. Load Transient, No Load to 500-mA Rising Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7B88-Q1  
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF (unless  
otherwise noted)  
40  
35  
30  
25  
20  
15  
10  
175  
150  
125  
100  
75  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
50  
25  
0
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
0
5
10  
15  
Input Voltage (V)  
20  
25  
30  
35  
40  
VOUT = 5 V  
Figure 6-26. Quiescent Current (IQ) vs VIN  
Figure 6-25. Quiescent Current (IQ) vs VIN  
1300  
281  
280  
279  
278  
277  
276  
275  
274  
273  
272  
271  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature (èC)  
Figure 6-27. Ground Current (IGND) vs IOUT  
Figure 6-28. Ground Current at 100 mA  
20  
17.5  
15  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
26  
25  
24  
23  
22  
21  
Input Voltage  
Output Voltage  
Output Current  
12.5  
10  
7.5  
5
2.5  
0
-2.5  
-5  
-100  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
Time (ms)  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
VIN = 13.5 V, VOUT = 5 V, IOUT = 150 mA, COUT = 10 µF  
Ambient Temperature (èC)  
Figure 6-30. Startup Plot Inrush Current  
Figure 6-29. Ground Current at 500 µA  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
6.6 Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF (unless  
otherwise noted)  
2.8  
2.75  
2.7  
20  
18  
16  
14  
12  
10  
8
Falling Threshold  
Rising Threshold  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
6
4
0.2  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
0.4  
0.6  
0.8  
1
1.2  
Injected current (mA)  
1.4  
1.6  
1.8  
Figure 6-31. Undervoltage Lockout (UVLO) Threshold vs  
Temperature  
Figure 6-32. Output Voltage vs Injected Current  
10  
5
2
1
OFF  
0.5  
0.2  
0.1  
0.05  
Stable region  
0.02  
0.01  
0.005  
ON  
0.002  
0.001  
0.0005  
0.0002  
0.0001  
-50 -25  
0
25  
50  
75 100 125 150 175 200  
Temperature (èC)  
1
2
3
4 5 67810  
20 30 50 70 100 200300 500  
COUT (mF)  
Figure 6-34. Stability, ESR vs COUT  
Figure 6-33. Thermal Shutdown  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7B88-Q1  
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS7B88-Q1 is a low-dropout linear regulator (LDO) with improved transient performance that allows for  
quick response to changes in line or load conditions. The device aslo features a novel output overshoot  
reduction feature that minimizes output overshoot during cold-crank conditions.  
During normal operation, the device has a tight DC accuracy of ±1.15% over line, load, and temperature. The  
increased accuracy allows for the powering of sensitive analog loads or sensors.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
R1  
Thermal  
Shutdown  
œ
+
UVLO  
R2  
Bandgap  
GND  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.2 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can be high  
from large VIN – VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
 
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
7.3.3 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brickwall scheme. In a high-load current fault, the brickwall scheme  
limits the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. If thermal shutdown is triggered, the device turns  
off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output  
current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application report.  
Figure 7-1 shows a diagram of the current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
Figure 7-1. Current Limit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7B88-Q1  
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO)  
The output current is less than the current limit (IOUT < ICL)  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the input voltage below the UVLO falling threshold (see the  
Electrical Characteristics table). When disabled, the pass transistor is turned off and internal circuits are  
shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TPS7B88-Q1 requires an output capacitor of 2.2 µF or larger (1 µF or larger capacitance) for stability and an  
equivalent series resistance (ESR) between 0.001 Ω and 2 Ω. For best transient performance, use X5R- and  
X7R-type ceramic capacitors because these capacitors have minimal variation in value and ESR over  
temperature. When choosing a capacitor for a specific application, be mindful of the DC bias characteristics for  
the capacitor. Higher output voltages cause a significant derating of the capacitor. For best performance, the  
maximum recommended output capacitance is 220 µF.  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input  
supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves  
transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of  
frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several  
inches from the input power source.  
8.1.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(1)  
8.1.3 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT ≤ VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7B88-Q1  
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
8.1.4 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. The following equation calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(2)  
Note  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to the following equation, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA).  
TJ = TA + (RθJA × PD)  
(3)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.4.1 Power Dissipation Versus Ambient Temperature  
Figure 8-1 is based off of a JESD51-7 4-layer, high-K board. The allowable power dissipation was estimated  
using the following equation. As disscussed in the An empirical analysis of the impact of board layout on LDO  
thermal performance application report, thermal dissipation can be improved in the JEDEC high-K layout by  
adding top layer copper and increasing the number of thermal vias. If a good thermal layout is used, the  
allowable thermal dissipation can be improved by up to 50%.  
6 + 4à,# T 2& Q 150 °%  
#
(4)  
6.5  
KVU Package  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temerature (èC)  
Figure 8-1. TPS7B88-Q1 Allowable Power Dissipation  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
8.1.5 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two methods  
for calculating the junction temperature (TJ), as described in the following equations. Use the junction-to-top  
characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to calculate the  
junction temperature. Use the junction-to-board characterization parameter (ψJB) with the PCB surface  
temperature 1 mm from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
(5)  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(6)  
where  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
8.2 Typical Application  
Figure 8-2 shows a typical application circuit for the TPS7B88-Q1. TI recommends a low-ESR ceramic capacitor  
with a dielectric of type X5R or X7R.  
IN  
OUT  
TPS7B88-Q1  
GND  
Figure 8-2. Typical Application Schematic for the TPS7B88-Q1  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 8-1 as the input parameters.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
6 V to 40 V  
5 V  
Output current  
350 mA  
10 µF  
Output capacitor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7B88-Q1  
 
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 1 µF. The voltage rating must be greater than the maximum  
input voltage.  
8.2.2.2 Output Capacitor  
The device requires an output capacitor to stabilize the output voltage. The capacitor value must be between  
2.2 µF and 200 µF and the ESR range must be between 1 mΩ and 2 Ω. For this design, a low ESR, 10-µF  
ceramic capacitor was used to improve transient performance.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
8.2.3 Application Curves  
20  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Input Voltage  
Output Voltage  
Output Current  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
-2.5  
-5  
-100  
1 mA  
10 mA  
50 mA  
150 mA  
350 mA  
500 mA  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
Time (ms)  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
Figure 8-3. Power-Up Waveform  
Figure 8-4. PSRR  
150  
100  
50  
600  
-40èC  
25èC  
150èC  
IOUT  
500  
400  
300  
200  
100  
0
0
-50  
-100  
-150  
0
25  
50  
75 100 125 150 175 200 225 250  
Time (ms)  
Figure 8-5. Transient Response  
9 Power Supply Recommendations  
This device is designed for operation from an input voltage supply with a range between 3 V and 40 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the TPS7B88-Q1, add  
an electrolytic capacitor with a value of 22 µF and a ceramic bypass capacitor at the input.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7B88-Q1  
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close as possible to each other, connected by a wide, component-side,  
copper surface. The use of vias and long traces to the input and output capacitors is strongly discouraged and  
negatively affects system performance. TI also recommends a ground reference plane either embedded in the  
PCB itself or located on the bottom side of the PCB opposite the components. This reference plane serves to  
assure accuracy of the output voltage, shield noise, and behaves similarly to a thermal plane to spread (or sink)  
heat from the LDO device when connected to the thermal pad. In most applications, this ground plane is  
necessary to meet thermal requirements.  
10.1.1 Package Mounting  
Solder pad footprint recommendations for the TPS7B88-Q1 are available at the end of this document and at  
www.ti.com.  
10.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance  
As depicted in Figure 10-1 , place the input and output capacitors close to the device for the layout of the  
TPS7B88-Q1. In order to enhance the thermal performance, place as many vias as possible around the device.  
These vias improve the heat transfer between the different GND planes in the PCB.  
To improve AC performance such as PSRR, output noise, and transient response, TI recommends a board  
design with separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin of  
the device. In addition, the ground connection for the output capacitor must connect directly to the GND pin of  
the device.  
Minimize equivalent series inductance (ESL) and ESR in order to maximize performance and ensure stability.  
Place each capacitor as close as possible to the device and on the same side of the PCB as the regulator itself.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. TI  
strongly discourages the use of vias and long traces to connect the capacitors because may negatively affect  
system performance and even cause instability.  
If possible, and to ensure the maximum performance specified in this document, use the same layout pattern  
used for the TPS7B88-Q1 evaluation board, available at www.ti.com.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
10.2 Layout Example  
GND  
VIN  
VOUT  
Denotes a via  
Figure 10-1. KVU Package Fixed Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7B88-Q1  
 
 
TPS7B88-Q1  
SBVS377 – JANUARY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
Table 11-1. Device Nomenclature (1)  
PRODUCT  
VOUT  
xx is the nominal output voltage (for example, 33 = 3.3 V V; 50 = 5.0 V).  
Q indicates that this device is a grade-1 device in accordance with the AEC-Q100 standard.  
Q1 indicates that this device is an automotive grade (AEC-Q100) device.  
TPS7B88xxQKVURQ1  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
11.1.2 Development Support  
For the PSpice model, see the TPS7B4250 PSpice Transient Model.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Various Applications for Voltage-Tracking LDO application report  
Texas Instruments, TPS7B4250 Evaluation Module user's guide  
Texas Instruments, TPS7B5250-Q1 Pin FMEA application report  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7B88-Q1  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7B8833QKVURQ1  
TPS7B8833QKVURQ1R2  
TPS7B8850QKVURQ1  
TPS7B8850QKVURQ1R2  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TO-252  
TO-252  
TO-252  
TO-252  
KVU  
KVU  
KVU  
KVU  
3
3
3
3
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 150  
-40 to 125  
-40 to 150  
7B8833  
SN  
SN  
SN  
7B8833  
7B8850  
7B8850  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS7B8833QKVURQ1R2 TO-252  
TPS7B8850QKVURQ1R2 TO-252  
KVU  
KVU  
3
3
2500  
2500  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.5  
10.5  
2.7  
2.7  
8.0  
8.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS7B8833QKVURQ1R2  
TPS7B8850QKVURQ1R2  
TO-252  
TO-252  
KVU  
KVU  
3
3
2500  
2500  
340.0  
340.0  
340.0  
340.0  
38.0  
38.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
KVU0003A  
TO-252 - 2.52 mm max height  
S
C
A
L
E
1
.
5
0
0
TO-252  
10.41  
9.40  
6.22  
5.97  
1.27  
0.89  
B
A
1
2.29  
6.70  
5.460 6.35  
4.953  
2
4.58  
3
0.890  
0.635  
1.02  
0.61  
3X  
NOTE 3  
OPTIONAL  
0.25  
C A B  
0.61  
0.46  
C
2.52 MAX  
0.61  
0.46  
SEE DETAIL A  
5.21 MIN  
3
4.32  
MIN  
4
2
1
EXPOSED  
THERMAL PAD  
NOTE 3  
0.51  
GAGE PLANE  
0.13  
0.00  
1.78  
1.40  
0 -8  
A
7.000  
DETAIL A  
TYPICAL  
4218915/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Shape may vary per different assembly sites.  
4. Reference JEDEC registration TO-252.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
KVU0003A  
TO-252 - 2.52 mm max height  
TO-252  
2X (2.75)  
(6.15)  
2X (1)  
1
4
SYMM  
(4.58)  
(5.55)  
3
(R0.05) TYP  
(4.2)  
(2.5)  
PKG  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4218915/A 02/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers  
SLMA002(www.ti.com/lit/slm002) and SLMA004 (www.ti.com/lit/slma004).  
6. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
KVU0003A  
TO-252 - 2.52 mm max height  
TO-252  
(1.18) TYP  
(0.14)  
2X (2.75)  
2X (1)  
1
(R0.05)  
(1.33) TYP  
SYMM  
4
(4.58)  
3
20X (1.13)  
20X (0.98)  
(4.2)  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4218915/A 02/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS7B8850QKVURQ1

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7B8850QKVURQ1R2

TPS7B88-Q1 500-mA, 40-V, Low-Dropout Regulator
TI

TPS7H1101-SP_15

TPS7H1x01 1.5-V to 7-V, Ultra-Low Dropout (LDO) Regulator
TI

TPS7H1101A-SP

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器
TI

TPS7H1101A-SP_V01

TPS7H1101A-SP 1.5-V to 7-V Input, 3-A, Radiation-Hardened LDO Regulator
TI

TPS7H1101AHKR/EM

TPS7H1101A-SP 1.5-V to 7-V Input, 3-A, Radiation-Hardened LDO Regulator
TI

TPS7H1101AY/EM

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器 | KGD | 0 | 25 to 25
TI

TPS7H1101HKR/EM

耐辐射 QMLV、1.5V 至 7V 输入、3A 低噪声可调低压降 (LDO) 稳压器 | HKR | 16 | 25 to 25
TI

TPS7H1101SPEVM

TPS7H1101A-SP 1.5-V to 7-V Input, 3-A, Radiation-Hardened LDO Regulator
TI

TPS7H1111-SEP

抗辐射、1.5A、超低噪声、超高 PSRR RF LDO 稳压器
TI

TPS7H1111-SP

耐辐射加固保障(RHA)、1.5A、超低噪声、超高 PSRR RF LDO 线性稳压器
TI

TPS7H1201-HT

TPS7H1x01 1.5-V to 7-V, Ultra-Low Dropout (LDO) Regulator
TI