TPS7H4001MDDWTSHP [TI]

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | DDW | 44 | -55 to 125;
TPS7H4001MDDWTSHP
型号: TPS7H4001MDDWTSHP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | DDW | 44 | -55 to 125

转换器
文件: 总66页 (文件大小:3527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
TPS7H4001-SP 耐辐3V 7V 输入、  
18A 同步降压转换器  
1 特性  
2 应用  
• 辐射性能  
– 耐辐射水平高达  
• 太空卫星负载点电源  
3 说明  
TID 100krad(Si)  
TPS7H4001-SP 是一款具有集成式低电阻高侧和低侧  
MOSFET 7V18A 耐辐射同步降压转换器。通过电  
流模式控制可实现高效率并能减少元件数量。  
SELSEB SEGR 抗扰度  
LET = 75MeV-cm2/mg  
SET SEFI 的  
LET 特征值高75MeV-cm2/mg  
• 峰值效率95.5%100kHz VO = 1V)  
• 电源轨3V 7V输入电压)  
• 灵活的开关频率选项:  
输出电压启动斜坡由 SS/TR 引脚控制该引脚既支持  
独立电源运行又支持跟踪模式。正确配置使能与电源  
正常引脚也可实现电源定序。TPS7H4001-SP 可配置  
为初级-次级模式并且通过 SYNC2 引脚无需外部  
时钟即可并行配置四个器件。  
100kHz 1MHz 可调内部振荡器  
– 外部同步功能100kHz 1MHz  
– 可SYNC 引脚配置500kHz 时钟频率、90°  
相位差以并联多4 个器件  
高侧 FET 的逐周期电流限制可在过载情况下保护器  
并通过低侧拉电流保护功能防止电流失控增强限  
制效果。当芯片温度超过热限值时热关断会禁用此器  
件。  
CDFPKGD已知合格芯片HTSSOP  
(QMLP) 选项的温度、辐射以及线路和负载调节范  
围内提0.6V ±1.5% 的基准电压  
器件信息  
器件型号(1)  
HTSSOP (SHP) 选项的温度、辐射以及线路和  
负载调节范围内提0.6V ±1.7% 的基准电压  
• 单调启动至预偏置输出  
• 可调斜坡补偿和软启动  
• 可实现电源定序的可调输入使能和电源正常输出  
等级  
封装  
5962-1820501VXC  
5962R1820501VXC  
QMLV  
34 引脚陶瓷  
7.62mm ×  
QMLV-RHA  
21.59mm(2)  
= 2.612g(3)  
TPS7H4001HKY/EM  
工程样片  
TPS7H4001MDDWTSHP SHP-RHA  
44 引脚塑料  
6.10mm ×  
14.00mm(2)  
VIN  
5962R1820502PYE  
QMLP-RHA  
PWRGD  
= 243.8mg(3)  
VOUT  
PVIN  
VIN  
PWRGD  
PHASE  
QMLV-RHA  
KGD  
5962R1820501V9A  
TPS7H4001Y/EM  
裸片  
工程样片  
EN  
VSENSE  
EN  
(1) 有关更多信息请查看器件选项表。  
(2) 尺寸值为标称值。  
TPS7H4001-SP  
RSC  
(3) 质量误差±10% 以内。  
SSTR  
RT  
PGND  
GND  
THERMAL PAD  
COMP  
功能图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEN7  
 
 
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
8.1 Overview...................................................................26  
8.2 Functional Block Diagram.........................................27  
8.3 Feature Description...................................................27  
8.4 Device Functional Modes..........................................38  
9 Application and Implementation..................................39  
9.1 Application Information............................................. 39  
9.2 Typical Application.................................................... 39  
9.3 Power Supply Recommendations.............................49  
9.4 Layout....................................................................... 49  
10 Device and Documentation Support..........................52  
10.1 Documentation Support.......................................... 52  
10.2 接收文档更新通知................................................... 52  
10.3 支持资源..................................................................52  
10.4 Trademarks.............................................................52  
10.5 静电放电警告.......................................................... 52  
10.6 术语表..................................................................... 52  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options Table...................................................... 4  
6 Pin Configuration and Functions...................................5  
7 Specifications................................................................ 11  
7.1 Absolute Maximum Ratings...................................... 11  
7.2 ESD Ratings..............................................................11  
7.3 Recommended Operating Conditions.......................11  
7.4 Thermal Information..................................................12  
7.5 Electrical Characteristics - All Devices......................12  
7.6 Electrical Characteristics: CDFP and KGD Options..14  
7.7 Electrical Characteristics: HTSSOP (SHP) Option... 15  
7.8 Electrical Characteristics: HTSSOP (QMLP)  
Option..........................................................................16  
7.9 Quality Conformance Inspection...............................17  
7.10 Typical Characteristics............................................18  
8 Detailed Description......................................................26  
Information.................................................................... 53  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (November 2022) to Revision D (May 2023)  
Page  
• 更新了特性器件信息 电气特部分以包HTSSOP (QMLP) 封装选项.................................................1  
• 向部分中的器件信息 表添加QMLP 可订购器件 5962R1820502PYE.................................................... 1  
• 更新了说明 部分中的器件信息 .......................................................................................................................1  
Added Device Options Table section to data sheet............................................................................................ 4  
Updated Voltage Reference section to include HTSSOP (SHP) option........................................................... 27  
Changes from Revision B (September 2022) to Revision C (November 2022)  
Page  
SHP HTSSOP 封装选项从“预告信息”更改为“量产数据”..................................................................1  
• 向部分中的器件信息 表中添加了可订购 EM TPS7H4001Y/EM.........................................................1  
Updated footnote for Pin Functions table to specify CDFP package option.......................................................5  
Changes from Revision A (November 2020) to Revision B (September 2022)  
Page  
• 更新了特性说明器件信息引脚配置和功能热性能信息电气特布局指部分以包HTSSOP  
(SHP) 封装选项.................................................................................................................................................. 1  
Updated ESD CDM standard from JEDEC specification JESD22-C101 to ANSI/ESDA/JEDEC JS-002.........11  
Changes from Revision * (April 2020) to Revision A (November 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更新了特性 部分的辐射性能............................................................................................................................... 1  
• 更新了应用 部分................................................................................................................................................. 1  
• 更新了说明 部分中的器件信息 .......................................................................................................................1  
Added bare die information to Pin Configuration and Functions section............................................................5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
2
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
Added additional thermal resistance parameters to Thermal Information table............................................... 12  
Updated specification for Junction-to-case (bottom) thermal resistance in Thermal Information table ........... 12  
Updated all minimum limits for Enable threshold in Electrical Characteristics table.........................................12  
Updated 2.55 mV maximum limit for Error amplifier input offset voltage in Electrical Characteistics table...... 12  
Removed footnote in Electrical Characteristics table for Error amplifier transconductance, source and sink  
curents specifications....................................................................................................................................... 12  
Updated footnote in Electrical Characteristics table for COMP to Iswitch gm specification to "Bench verified.  
Not tested in production."..................................................................................................................................12  
Updated all maximum limits for Internally set frequency in Electrical Characteristics table............................. 12  
Updated all maximum limits for Externally set frequency for RT = 1.07 M(1%) in Electrical  
Characteristics table......................................................................................................................................... 12  
Updated all limits for Externally set frequency for RT = 165 k(1%) in Electrical Characteristics table..........12  
Added Externally set frequency specification for RT = 73.2 k(1%), VIN = 5 V, TID = 100 krad(Si) in  
Electrical Characteristics table..........................................................................................................................12  
Added footnote in Electrical Characteristics table for SYNC1/SYNC2 in low level threshold for PVIN = VIN =  
7 V.................................................................................................................................................................... 12  
Added footnote in Electrical Characteristics table for SYNC1/SYNC2 in high level threshold for PVIN = VIN =  
7 V ................................................................................................................................................................... 12  
Removed footnote in Electrical Characteristics table for SYNC1 in frequency range specification and added  
test conditions...................................................................................................................................................12  
Updated 235 ns maximum limit for Minimum on time for VIN = 5 V in Electrical Characteristics table............ 12  
Added footnote to Electrical Characteristics table for SS/TR to VSENSE matching........................................ 12  
Added footnote in Electrical Characteristics table for High-side switch resistance with PVIN = VIN = 7 V...... 14  
Added footnote in Electrical Characteristics table for Low-side switch resistance with PVIN = VIN = 7 V.......14  
Updated all typical and maximum limits for Low-side switch resistance for PVIN = VIN = 7 V, lead length = 3  
mm in Electrical Characteristics table...............................................................................................................14  
Updated footnote in Electrical Characteristics table for High-side switch current limit threshold and Low-side  
switch sourcing overcurrent threshold specifications to "Bench verified. Not tested in production."................ 14  
Added footnote in Electrical Characteristics table for Low-side switch sinking overcurrent threshold..............14  
Updated RT equation in Internal Oscillator Mode section................................................................................ 30  
Changed title of Master-Slave Operation Mode section to Primary-Secondary Operation Mode ....................31  
Updated input ripple current equation in Input Capacitor Selection section..................................................... 42  
Added Documentation Support to the Device and Documentation Support section........................................ 52  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
5 Device Options Table  
Generic Part  
Number  
Orderable Part  
Radiation Rating(2)  
Grade(3)  
Package(1)  
Number  
HKY Package CDFP  
(34) Ceramic  
QMLV-RHA  
5962R1820501VXC  
5962R1820501V9A  
Total ionizing dose (TID) characterization up  
to 100 krad(Si) and destructive single event  
effects (DSEE) free up to LET = 75 MeV-  
cm2/mg  
QMLV-RHA  
QMLP-RHA  
KGD  
HTSSOP (44) Plastic 5962R1820502PYE  
TPS7H4001-SP  
TPS7H4001MDDWT  
SHP-RHA  
HTSSOP (44) Plastic  
SHP  
HKY Package CDFP  
TPS7H4001HKY/EM  
(34) Ceramic  
None  
None  
Engineering sample(4)  
Engineering sample(4)  
KGD  
TPS7H4001Y/EM  
(1) For all available packages, see the orderable addendum at the end of the data sheet.  
(2) Refer to the device product folder for full radiation testing results in the associated TID and SEE reports.  
(3) For additional information about part grade, view SLYB235.  
(4) These units are intended for engineering evaluation only. These samples are processed to a non-compliant flow (i.e. no burn-in, 25°C  
testing only). These units are not for qualification, production, radiation testing, or flight use. Parts are not warranted for performance  
over temperature or operating life.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
4
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
GND  
GND  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
1
1
2
3
4
5
34  
33  
GND  
REFCAP  
NC  
2
EN  
RT  
COMP  
VSENSE  
SS/TR  
RSC  
NC  
NC  
3
32  
31  
30  
29  
EN  
REFCAP  
COMP  
VSENSE  
SS/TR  
RSC  
PWRGD  
GND  
PH  
4
VIN  
RT  
5
VIN  
6
SYNC1  
VIN  
7
SYNC2  
PVIN  
PWRGD  
PH  
6
7
SYNC1  
SYNC2  
GND  
8
28  
27  
9
Thermal Pad  
(Bottom Side)  
35  
PVIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PH  
8
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
26  
25  
24  
23  
22  
21  
PH  
PVIN  
PVIN  
9
PowerPADTM  
PH  
10  
11  
PH  
PH  
PVIN  
PH  
PH  
PH  
PGND  
PH  
12  
13  
PH  
PGND  
PGND  
PH  
PH  
PH  
PH  
14  
15  
16  
17  
PH  
20  
19  
18  
PGND  
PGND  
PGND  
PH  
PGND Pad  
(Bottom Side)  
36  
PH Pad  
(Bottom Side)  
37  
PH  
PH  
PH  
PH  
PH  
6-1. HKY Package  
34-Pin CDFP  
6-2. DDW Package  
44-Pin HTSSOP  
Top View  
Top View  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
EN  
CDFP  
HTSSOP  
1
2
3
1, 2, 10, 35  
Return for control circuitry.(1)  
4
5
I
EN pin is internally pulled up allowing for the pin to be floated to enable the device.  
A resistor connected between RT and GND sets the switching frequency of the converter.  
The switching frequency range is 100 kHz to 1 MHz. When an external clock is used, RT  
must be selected such that the set switching frequency coincides with the frequency of the  
applied clock. Leaving this pin floating sets the internal switching frequency to 500 kHz and  
SYNC1 and SYNC2 become output clocks at 500 kHz, with SYNC1 aligned with the  
converter switching and SYNC2 90° out of phase.  
RT  
VIN  
I/O  
I
4
5
6,7  
8
Input power for the control circuitry of the switching regulator.  
SYNC1 is an input when an external clock is provided. The frequency of the external clock  
should match the switching frequency that is set by the resistor between RT and GND. With  
an external clock applied, the converter switching action is 180° out of phase with the  
external clock. When RT is floating, SYNC1 serves as an output of a 500-kHz clock signal  
that is in phase with the converter switching action. SYNC1 can be used in combination with  
SYNC2 in order to connect up to four devices in parallel.  
SYNC1  
I/O  
6
9
SYNC2 is used for connecting multiple devices in parallel. For the primary device, with RT  
floating, SYNC2 outputs 500-kHz signal that is 90° out of phase with the SYNC1 output  
clock. For the secondary devices, in which RT is populated, SYNC2 is used to configure the  
phase of the input clock signal on SYNC1. When SYNC2 is connected to VIN, the internal  
clock of the secondary device is in phase with clock provided at SYNC1. When SYNC2 is  
connected to GND, the input clock signal at SYNC1 is internally inverted.  
SYNC2  
I/O  
I
PVIN  
PGND  
PH  
7-11  
12-17  
18-28  
29  
11-15  
16-22  
23-34  
36  
Input power for the output stage of the switching regulator.  
Return for low-side power MOSFET.  
Switch phase node.  
O
Power Good fault pin. Asserts low if output voltage is low due to thermal shutdown, dropout,  
overvoltage, or EN shutdown, or during soft-start.  
PWRGD  
RSC  
O
30  
31  
37  
38  
I/O A resistor to GND sets the desired slope compensation.  
Soft-start and tracking. An external capacitor connected to this pin sets the internal voltage  
I/O reference rise time. The voltage on this pin overrides the internal reference. It can be used  
for tracking and sequencing.  
SS/TR  
VSENSE  
COMP  
32  
33  
39  
40  
I
Inverting input of the gm error amplifier.  
Error amplifier output and input to the output switch current comparator. Connect frequency  
compensation to this pin.  
I/O  
REFCAP  
34  
41  
O
Required 470-nF external capacitor for internal reference.  
PowerPADTM  
Yes  
Used for heat sinking by soldering to GND copper on printed circuit board.  
THERMAL  
PAD  
35  
Thermal pad internally connected to GND.  
PGND PAD  
PH PAD  
36  
37  
Return for low-side power MOSFET. Connect to PGND pins.  
Switch phase node. Connect to PH pins.  
O
3, 42-44  
No connect. This pin is not internally connected. It is recommended to connect these pins to  
GND to prevent charge buildup; however, these pins can also be left open or tied to any  
voltage between GND and VIN.  
NC  
(1) Thermal pad and package lid are internally connected to GND for CDFP option.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
6
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
6-2. Bare Die Information  
BOND PAD  
DIE THICKNESS  
BACKSIDE FINISH  
Silicon with backgrind  
BACKSIDE POTENTIAL  
METALLIZATION  
COMPOSITION  
BOND PAD THICKNESS  
15 mils  
GND  
AlCu  
1050 nm  
6-3. TPS7H4001-SP Bare Die Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
6-3. Bond Pad Coordinates in Microns  
DESCRIPTION  
GND  
GND  
N/C  
PAD NUMBER  
X MIN  
958.995  
806.445  
653.895  
501.345  
348.795  
196.245  
64.125  
Y MIN  
7185.51  
7185.51  
7185.51  
7185.51  
7185.51  
7185.51  
6969.06  
6265.53  
6080.445  
5927.895  
5775.345  
5622.795  
5119.785  
4881.735  
4299.39  
4299.39  
4299.39  
4299.39  
3858.93  
3858.93  
3858.93  
3858.93  
3698.73  
3698.73  
3698.73  
3698.73  
3259.17  
3259.17  
3259.17  
3259.17  
3098.97  
3098.97  
3098.97  
3098.97  
2659.41  
2659.41  
2659.41  
2659.41  
2499.21  
2499.21  
2499.21  
2499.21  
1643.76  
1643.76  
1643.76  
X MAX  
1098.945  
946.395  
793.845  
641.295  
488.745  
336.195  
204.075  
204.075  
204.075  
204.075  
204.075  
204.075  
204.075  
207.99  
Y MAX  
7325.46  
7325.46  
7325.46  
7325.46  
7325.46  
7325.46  
7109.01  
6405.48  
6220.395  
6067.845  
5915.295  
5762.745  
5259.735  
5021.685  
4439.34  
4439.34  
4439.34  
4439.34  
3998.88  
3998.88  
3998.88  
3998.88  
3838.68  
3838.68  
3838.68  
3838.68  
3399.12  
3399.12  
3399.12  
3399.12  
3238.92  
3238.92  
3238.92  
3238.92  
2799.36  
2799.36  
2799.36  
2799.36  
2639.16  
2639.16  
2639.16  
2639.16  
1783.71  
1783.71  
1783.71  
1
2
3
GND  
GND  
N/C  
4
5
6
EN  
7
RT  
8
64.125  
VIN  
9
64.125  
VIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
64.125  
VIN  
64.125  
VIN  
64.125  
SYNC1  
SYNC2  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PGND  
PGND  
PGND  
64.125  
68.04  
398.475  
556.425  
714.375  
872.325  
398.475  
556.425  
714.375  
872.325  
398.475  
556.425  
714.375  
872.325  
398.475  
556.425  
714.375  
872.325  
398.475  
556.425  
714.375  
872.325  
398.475  
556.425  
714.375  
872.325  
398.475  
556.425  
714.375  
872.325  
270.855  
428.805  
586.755  
538.425  
696.375  
854.325  
1012.275  
538.425  
696.375  
854.325  
1012.275  
538.425  
696.375  
854.325  
1012.275  
538.425  
696.375  
854.325  
1012.275  
538.425  
696.375  
854.325  
1012.275  
538.425  
696.375  
854.325  
1012.275  
538.425  
696.375  
854.325  
1012.275  
410.805  
568.755  
726.705  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
8
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
6-3. Bond Pad Coordinates in Microns (continued)  
DESCRIPTION  
PAD NUMBER  
X MIN  
Y MIN  
1643.76  
1643.76  
1492.65  
1492.65  
1492.65  
1492.65  
1492.65  
1023.66  
1023.66  
1023.66  
1023.66  
1023.66  
872.55  
872.55  
872.55  
872.55  
403.56  
252.45  
403.56  
252.45  
403.56  
252.45  
403.56  
252.45  
403.56  
872.55  
106.02  
543.69  
732.42  
106.02  
543.69  
106.02  
106.02  
543.69  
543.69  
543.69  
732.42  
732.42  
732.42  
732.42  
1163.79  
1163.79  
1163.79  
1163.79  
1163.79  
X MAX  
884.655  
1042.605  
410.805  
568.755  
726.705  
884.655  
1042.605  
410.805  
568.755  
726.705  
884.655  
1042.605  
410.805  
568.755  
726.705  
884.655  
410.805  
568.755  
568.755  
726.705  
726.705  
884.655  
884.655  
1042.605  
1042.605  
1042.605  
1383.075  
1383.075  
1383.075  
1541.025  
1541.025  
1698.975  
1856.925  
2014.875  
1856.925  
1698.975  
2014.875  
1856.925  
1698.975  
1541.025  
2014.875  
1856.925  
1698.975  
1541.025  
1383.075  
Y MAX  
1783.71  
1783.71  
1632.6  
1632.6  
1632.6  
1632.6  
1632.6  
1163.61  
1163.61  
1163.61  
1163.61  
1163.61  
1012.5  
1012.5  
1012.5  
1012.5  
543.51  
392.4  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PH  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
744.705  
902.655  
270.855  
428.805  
586.755  
744.705  
902.655  
270.855  
428.805  
586.755  
744.705  
902.655  
270.855  
428.805  
586.755  
744.705  
270.855  
428.805  
428.805  
586.755  
586.755  
744.705  
744.705  
902.655  
902.655  
902.655  
1243.125  
1243.125  
1243.125  
1401.075  
1401.075  
1559.025  
1716.975  
1874.925  
1716.975  
1559.025  
1874.925  
1716.975  
1559.025  
1401.075  
1874.925  
1716.975  
1559.025  
1401.075  
1243.125  
543.51  
392.4  
543.51  
392.4  
543.51  
392.4  
543.51  
1012.5  
245.97  
683.64  
872.37  
245.97  
683.64  
245.97  
245.97  
683.64  
683.64  
683.64  
872.37  
872.37  
872.37  
872.37  
1303.74  
1303.74  
1303.74  
1303.74  
1303.74  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
6-3. Bond Pad Coordinates in Microns (continued)  
DESCRIPTION  
PH  
PAD NUMBER  
X MIN  
Y MIN  
X MAX  
Y MAX  
1492.47  
91  
1874.925  
1716.975  
1559.025  
1401.075  
1243.125  
1874.925  
1716.975  
1559.025  
1401.075  
1243.125  
1839.915  
1681.965  
1524.015  
1366.065  
1839.915  
1681.965  
1524.015  
1366.065  
1839.915  
1681.965  
1524.015  
1366.065  
1839.915  
1681.965  
1524.015  
1366.065  
1839.915  
1681.965  
1524.015  
1366.065  
1839.915  
1681.965  
1524.015  
1366.065  
1839.915  
1681.965  
1524.015  
1366.065  
1954.305  
1954.305  
1954.305  
1954.305  
1954.305  
1954.305  
1352.52  
2014.875  
1856.925  
1698.975  
1541.025  
1383.075  
2014.875  
1856.925  
1698.975  
1541.025  
1383.075  
1979.865  
1821.915  
1663.965  
1506.015  
1979.865  
1821.915  
1663.965  
1506.015  
1979.865  
1821.915  
1663.965  
1506.015  
1979.865  
1821.915  
1663.965  
1506.015  
1979.865  
1821.915  
1663.965  
1506.015  
1979.865  
1821.915  
1663.965  
1506.015  
1979.865  
1821.915  
1663.965  
1506.015  
2094.255  
2094.255  
2094.255  
2094.255  
2094.255  
2094.255  
PH  
92  
1352.52  
1492.47  
PH  
93  
1352.52  
1492.47  
PH  
94  
1352.52  
1492.47  
PH  
95  
1352.52  
1492.47  
PH  
96  
1786.68  
1926.63  
PH  
97  
1786.68  
1926.63  
PH  
98  
1786.68  
1926.63  
PH  
99  
1786.68  
1926.63  
PH  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
1786.68  
1926.63  
PH  
2356.245  
2356.245  
2356.245  
2356.245  
2802.375  
2802.375  
2802.375  
2802.375  
2956.005  
2956.005  
2956.005  
2956.005  
3402.135  
3402.135  
3402.135  
3402.135  
3555.765  
3555.765  
3555.765  
3555.765  
4001.895  
4001.895  
4001.895  
4001.895  
4155.525  
4155.525  
4155.525  
4155.525  
5335.605  
5533.56  
2496.195  
2496.195  
2496.195  
2496.195  
2942.325  
2942.325  
2942.325  
2942.325  
3095.955  
3095.955  
3095.955  
3095.955  
3542.085  
3542.085  
3542.085  
3542.085  
3695.715  
3695.715  
3695.715  
3695.715  
4141.845  
4141.845  
4141.845  
4141.845  
4295.475  
4295.475  
4295.475  
4295.475  
5475.555  
5673.51  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PH  
PWRGD  
RSC  
SS/TR  
VSENSE  
COMP  
REFCAP  
5731.515  
5910.615  
6116.715  
6948.45  
5871.465  
6050.565  
6256.665  
7088.4  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
10  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1  
MAX  
UNIT  
VIN  
7.5  
PVIN  
EN  
7.5  
7.5  
RSC  
VSENSE  
3.3  
3.3  
Input voltage  
COMP  
3.3  
V
PWRGD  
7.5  
SS/TR  
3.3  
RT  
3.3  
SYNC1  
7.5  
SYNC2  
7.5  
REFCAP  
3.3  
Output voltage  
PH  
7.5  
7.5  
V
PH 10-ns transient  
3  
Vdiff  
(GND to exposed thermal pad)  
0.2  
V
A
0.2  
PH  
Current limit  
±100  
Source current  
RT  
µA  
A
PH  
Current limit  
Current limit  
±200  
PVIN  
COMP  
PWRGD  
A
Sink current  
µA  
mA  
°C  
°C  
5
0.1  
55  
65  
Operating junction temperature  
Storage temperature, Tstg  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
18  
UNIT  
A
IOUT  
TJ  
Maximum switching current  
Junction operating temperature  
125  
°C  
55  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
 
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
7.4 Thermal Information  
TPS7H4001-SP  
CDFP  
THERMAL METRIC(1)  
HTSSOP  
44 PINS  
23.7  
UNIT  
34 PINS  
25.3  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJC(bot)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
12.4  
2.5  
1.2  
9.5  
6.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.4  
0.2  
ψJT  
9.3  
6.7  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953)  
7.5 Electrical Characteristics - All Devices  
TJ = 55°C to 125°C, VIN = PVIN = 3 V to 7 V (unless otherwise noted)  
PARAMETER  
SUPPLY VOLTAGE (VIN AND PVIN PINS)  
PVIN operating input voltage  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
3.0  
2.425  
425  
7.0  
2.575  
475  
7.0  
V
V
PVIN internal UVLO threshold  
PVIN internal UVLO hysteresis  
VIN operating input voltage  
PVIN rising  
Load = 0 A  
2.50  
450  
mV  
V
3.0  
VIN internal UVLO threshold  
VIN rising  
2.71  
134  
2.75  
150  
2.32  
4
2.80  
178  
2.85  
6
V
VIN internal UVLO hysteresis  
VIN shutdown supply current  
mV  
mA  
mA  
VEN = 0 V  
VSENSE = VBG  
VIN operating non switching supply current  
ENABLE AND UVLO (EN PIN)  
Rising  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1.110  
1.080  
4.8  
1.14  
1.11  
6.1  
1.172  
1.148  
7.6  
Enable threshold  
V
Falling  
Input current  
VEN = 1.1 V  
VEN = 1.3 V  
µA  
µA  
Hysteresis current  
2.4  
3.0  
3.9  
ERROR AMPLIFIER  
Error amplifier input offset voltage  
VSENSE pin input current  
Error amplifier transconductance (gm)  
Error amplifier DC gain(2)  
Error amplifier source  
VSENSE = 0.6 V  
VSENSE = 0.6 V  
1, 2, 3  
2.55  
15  
mV  
nA  
2  
15  
1150  
1, 2, 3  
9, 10, 11  
1800  
10000  
140  
140  
7
2400  
µS  
2 μA < ICOMP < 2 μA, V(COMP) = 1 V  
VSENSE = 0.6 V  
V/V  
µA  
V(COMP) = 1 V, 100-mV input overdrive  
V(COMP) = 1 V, 100-mV input overdrive  
1, 2, 3  
1, 2, 3  
100  
100  
190  
190  
Error amplifier sink  
µA  
Error amplifier output resistance  
M  
3
1
2
28  
29  
30  
38  
49  
50  
52  
55℃  
COMP to Iswitch gm(3)  
SLOPE COMPENSATION  
Slope compensation(4)  
COMP = 0.5 V  
40  
S
25℃  
41  
125℃  
fSW = 100 kHz, RSC = 1.1 MΩ  
fSW = 500 kHz, RSC = 196 kΩ  
fSW = 1000 kHz, RSC = 80.6 kΩ  
1.2  
6.0  
A/µs  
16.0  
THERMAL SHUTDOWN  
Thermal shutdown  
190  
18  
°C  
°C  
Thermal shutdown hysteresis  
INTERNAL SWITCHING FREQUENCY  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
12  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
TJ = 55°C to 125°C, VIN = PVIN = 3 V to 7 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
4, 5, 6  
MIN  
444  
449  
80  
TYP  
473  
502  
98  
MAX  
515  
UNIT  
VIN = 3 V  
Internally set frequency  
RT = Open  
kHz  
VIN = 5 V  
4, 5, 6  
560  
VIN = 3 V  
4, 5, 6  
125  
RT = 1.07 MΩ(1%)  
RT = 165 kΩ(1%)  
VIN = 5 V  
VIN = 3 V  
VIN = 5 V  
VIN = 3 V  
VIN = 5 V  
4, 5, 6  
80  
100  
495  
523  
850  
986  
125  
4, 5, 6  
455  
475  
689  
760  
535  
4, 5, 6  
615  
Externally set frequency  
kHz  
4, 5, 6  
1011  
1212  
4, 5, 6  
RT = 73.2 kΩ(1%)  
VIN = 5 V, TID = 100  
krad(Si)  
4
760  
1145  
1425  
EXTERNAL SYNCHRONIZATION  
SYNC1/SYNC2 out low-to-high rise time (10%/  
90%)  
Cload = 25 pF  
Cload = 25 pF  
9, 10, 11  
9, 10, 11  
70  
10  
180  
21  
ns  
ns  
SYNC1/SYNC2 out high-to-low fall time (90%/  
10%)  
SYNC2 to SYNC1 rising edge phase shift  
SYNC1 falling edge delay(3)  
9, 10, 11  
9, 10, 11  
1, 2, 3  
77  
165  
85  
94  
°
°
180  
185  
SYNC1/SYNC2 out high level threshold  
SYNC1/SYNC2 out low level threshold  
IOH = 50 µA  
V
VIN 0.3  
IOL = 50 µA  
1, 2, 3  
600  
800  
800  
800  
mV  
PVIN = VIN = 3 V  
PVIN = VIN = 5 V  
PVIN = VIN = 7 V(3)  
PVIN = VIN = 3 V  
PVIN = VIN = 5 V  
PVIN = VIN = 7 V(3)  
PVIN = VIN = 5 V  
SYNC1/SYNC2 in low level threshold  
SYNC1/SYNC2 in high level threshold  
1, 2, 3  
1, 2, 3  
mV  
V
2.25  
3.5  
4.9  
100  
40  
SYNC1 in frequency range  
SYNC1 in duty cycle range  
PH (PH PIN)  
4, 5, 6  
4, 5, 6  
1000  
60  
kHz  
%
Duty cycle of external clock  
Measured at 10% to 90% of VIN,  
IPH = 2 A, VIN = 3 V  
9, 10, 11  
9, 10, 11  
190  
190  
235  
225  
Minimum on time  
ns  
Measured at 10% to 90% of VIN,  
IPH = 2 A, VIN = 5 V  
SOFT START AND TRACKING (SS/TR PIN)  
SS charge current  
1, 2, 3  
1, 2, 3  
1.5  
90  
2.5  
30  
3
µA  
SS/TR to VSENSE matching(3)  
POWER GOOD (PWRGD PIN)  
V(SS/TR) = 0.3 V  
90  
mV  
VSENSE falling (fault)  
91  
94  
VSENSE rising (good)  
97  
VSENSE threshold  
1, 2, 3  
%VREF  
VSENSE rising (fault)  
109  
106  
30  
111  
VSENSE falling (good)  
VSENSE = VREF, V(PWRGD) = 5 V  
I(PWRGD) = 2 mA  
103  
Output high leakage  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
181  
0.3  
1
nA  
V
Output low  
Minimum VIN for valid output  
Minimum SS/TR voltage for PWRGD  
0.6  
V
V(PWRGD) < 0.5 V at 100 μA  
1.1  
V
(1) For subgroup definitions, see Quality Conformance Inspection table.  
(2) Ensured by design only. Not tested in production.  
(3) Bench verified. Not tested in production.  
(4) Example values are shown in the table. Actual values are application specific and should be calculated as detailed in the Slope  
Compensation section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
MAX UNIT  
7.6 Electrical Characteristics: CDFP and KGD Options  
TJ = 55°C to 125°C, VIN = PVIN = 3 V to 7 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
VOLTAGE REFERENCE  
Internal voltage reference initial  
tolerance  
0 A Iout 18 A, 0 A Iout 18  
1
0.599  
0.605  
0.612  
V
25°C  
A, 25°C  
55°C  
125°C  
3
0.595  
0.600  
1.191  
0.602  
0.607  
1.209  
0.609  
0.613  
1.226  
Internal voltage reference  
V
V
0 A Iout 18 A  
REFCAP = 470 nF  
2
REFCAP voltage  
1, 2, 3  
MOSFET  
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
16  
22  
30  
14  
20  
27  
13  
17  
23  
8
22  
25  
34  
19  
22  
30  
18  
21  
28  
11  
12  
18  
10  
11  
17  
7
55°C  
25°C  
PVIN = VIN = 3 V,  
lead length = 3 mm  
125°C  
55°C  
25°C  
PVIN = VIN = 5 V,  
lead length = 3 mm  
High-side switch resistance(2)  
mΩ  
125°C  
55°C  
25°C  
PVIN = VIN = 7 V,  
lead length = 3  
mm(3)  
125°C  
55°C  
25°C  
PVIN = VIN = 3 V,  
lead length = 3 mm  
9
125°C  
55°C  
25°C  
14  
7
PVIN = VIN = 5 V,  
lead length = 3 mm  
Low-side switch resistance(2)  
9
mΩ  
125°C  
55°C  
25°C  
13  
5
PVIN = VIN = 7 V,  
lead length = 3  
mm(3)  
8
10  
15  
125°C  
13  
OVERCURRENT PROTECTION  
High-side switch current limit threshold(3) VIN = 7 V  
1, 2, 3  
1, 2, 3  
25  
29  
32  
37  
A
A
Low-side switch sourcing overcurrent  
VIN = 7 V  
21  
threshold(3)  
Low-side switch sinking overcurrent  
VIN = 7 V  
1, 2, 3  
4.5  
6
A
threshold(3)  
(1) For subgroup definitions, see Quality Conformance Inspection table.  
(2) Measured at pins  
(3) Bench verified. Not tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
14  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
7.7 Electrical Characteristics: HTSSOP (SHP) Option  
TJ = 55°C to 125°C, VIN = PVIN = 3 V to 7 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX UNIT  
VOLTAGE REFERENCE  
Internal voltage reference initial  
tolerance  
1
0.598  
0.605  
0.613  
V
0 A Iout 18 A, 25°C  
-55°C  
125°C  
3
0.594  
0.599  
1.189  
0.602  
0.607  
1.209  
0.609  
0.614  
1.228  
Internal voltage reference  
V
V
0 A Iout 18 A  
2
REFCAP voltage  
REFCAP = 470 nF  
1, 2, 3  
MOSFET  
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
16  
19  
23  
14  
17  
20  
13  
15  
19  
7
18  
21  
27  
16  
19  
23  
15  
18  
22  
11  
12  
17  
10  
11  
15  
9
55°C  
25°C  
PVIN = VIN = 3 V  
PVIN = VIN = 5 V  
PVIN = VIN = 7 V(3)  
PVIN = VIN = 3 V  
PVIN = VIN = 5 V  
PVIN = VIN = 7 V(3)  
125°C  
55°C  
25°C  
High-side switch resistance(2)  
mΩ  
125°C  
55°C  
25°C  
125°C  
55°C  
25°C  
9
125°C  
55°C  
25°C  
13  
6
Low-side switch resistance(2)  
9
mΩ  
125°C  
55°C  
25°C  
12  
5
8
10  
14  
125°C  
11  
OVERCURRENT PROTECTION  
High-side switch current limit threshold(3) VIN = 7 V  
1, 2, 3  
1, 2, 3  
27  
25  
34  
32  
A
A
Low-side switch sourcing overcurrent  
VIN = 7 V  
threshold(3)  
Low-side switch sinking overcurrent  
VIN = 7 V  
1, 2, 3  
3.5  
6
A
threshold(3)  
(1) For subgroup definitions, see Quality Conformance Inspection table.  
(2) Measured at pins.  
(3) Bench verified. Not tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
MAX UNIT  
7.8 Electrical Characteristics: HTSSOP (QMLP) Option  
TJ = 55°C to 125°C, VIN = PVIN = 3 V to 7 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
VOLTAGE REFERENCE  
Internal voltage reference initial  
tolerance  
1
0.599  
0.605  
0.612  
V
0 A Iout 18 A, 25°C  
-55°C  
125°C  
3
0.595  
0.600  
1.189  
0.602  
0.607  
1.209  
0.609  
0.613  
1.228  
Internal voltage reference  
V
V
0 A Iout 18 A  
2
REFCAP voltage  
REFCAP = 470 nF  
1, 2, 3  
MOSFET  
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
16  
19  
23  
14  
17  
20  
13  
15  
19  
7
18  
21  
27  
16  
19  
23  
15  
18  
22  
11  
12  
17  
10  
11  
15  
9
55°C  
25°C  
PVIN = VIN = 3 V  
PVIN = VIN = 5 V  
PVIN = VIN = 7 V(3)  
PVIN = VIN = 3 V  
PVIN = VIN = 5 V  
PVIN = VIN = 7 V(3)  
125°C  
55°C  
25°C  
High-side switch resistance(2)  
mΩ  
125°C  
55°C  
25°C  
125°C  
55°C  
25°C  
9
125°C  
55°C  
25°C  
13  
6
Low-side switch resistance(2)  
9
mΩ  
125°C  
55°C  
25°C  
12  
5
8
10  
14  
125°C  
11  
OVERCURRENT PROTECTION  
High-side switch current limit threshold(3) VIN = 7 V  
1, 2, 3  
1, 2, 3  
27  
25  
34  
32  
A
A
Low-side switch sourcing overcurrent  
VIN = 7 V  
threshold(3)  
Low-side switch sinking overcurrent  
VIN = 7 V  
1, 2, 3  
3.5  
6
A
threshold(3)  
(1) For subgroup definitions, see Quality Conformance Inspection table.  
(2) Measured at pins.  
(3) Bench verified. Not tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
16  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
7.9 Quality Conformance Inspection  
MIL-STD-883, Method 5005 - Group A  
SUBGROUP  
DESCRIPTION  
Static tests at  
TEMP (°C)  
25  
1
2
Static tests at  
125  
3
Static tests at  
55  
25  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
5
125  
6
55  
25  
7
8A  
8B  
9
125  
55  
25  
10  
11  
125  
55  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
7.10 Typical Characteristics  
Typical characteristics taken with the CDFP package option. Efficiency data was collected using the  
TPS7H4001EVM-CVAL with 2 inductors in parallel. For 100-kHz data, each inductor was L = 10 µH, part number  
= SER1390-103ML. For 500-kHz and 1000-kHz data, each inductor was L = 1.8 µH, part number =  
SER1360-182KL.  
604.8  
604.7  
604.7  
604.7  
604.6  
604.6  
604.6  
604.6  
604.5  
604.5  
606.0  
605.5  
605.0  
604.5  
604.0  
603.5  
603.0  
602.5  
602.0  
601.5  
601.0  
-55 èC  
25 èC  
125 èC  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN(V)  
5.5  
6
6.5  
7
7-1. Internal VREF Initial Tolerance  
7-2. Internal VREF Variation  
515  
2.5  
2.4  
2.3  
2.2  
2.1  
2
-55 èC  
25 èC  
125 èC  
510  
505  
500  
495  
490  
485  
480  
475  
470  
1.9  
1.8  
1.7  
1.6  
-55 èC  
25 èC  
125 èC  
3
3.5  
4
VIN (V)  
4.5  
5
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-3. Internal Frequency Variation  
7-4. VIN Shutdown Supply Current Variation  
3.2  
3.2  
3.2  
3.2  
3.1  
3.1  
3.1  
3.0  
3.0  
3.0  
6.3  
6.3  
6.2  
6.2  
6.1  
6.1  
-55 èC  
25 èC  
125 èC  
-55 èC  
6.0  
25 èC  
125 èC  
6.0  
5.9  
5.9  
5.8  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-5. Enable Hysteresis Current Variation  
7-6. Enable Pull-Up Current Variation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
18  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
1.18  
1.14  
1.13  
1.12  
1.11  
-55 èC  
25 èC  
-55 èC  
25 èC  
125 èC  
125 èC  
1.17  
1.16  
1.15  
1.14  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-7. Enable Threshold Rising Variation  
7-8. Enable Threshold Falling Variation  
3.2  
2.4  
2.3  
2.2  
2.2  
2.2  
-55 èC  
25 èC  
3.0  
125 èC  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
2.1  
-55 èC  
25 èC  
2.1  
125 èC  
2.0  
2.0  
1.9  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-9. VIN Non-Switching Current Variation  
7-10. SS Charge Current Variation  
42.5  
40.0  
37.5  
24.8  
-55 èC  
25 èC  
125 èC  
24.5  
24.2  
24.0  
23.8  
23.5  
23.2  
23.0  
22.8  
22.5  
-55 èC  
35.0  
25 èC  
125 èC  
32.5  
30.0  
27.5  
25.0  
22.5  
20.0  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-11. SS/TR to VSENSE Matching Variation  
7-12. High-Side Current Limit Variation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
30.5  
6.8  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
-55 èC  
-55 èC  
25 èC  
125 èC  
25 èC  
30.0  
125 èC  
29.5  
29.0  
28.5  
28.0  
27.5  
27.0  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-13. Low-Side Sourcing Current Limit Variation 7-14. Low-Side Sinking Current Limit Variation  
14.0  
12.0  
10.0  
8.0  
28.0  
26.0  
24.0  
22.0  
20.0  
18.0  
16.0  
14.0  
12.0  
-55 èC  
25 èC  
125 èC  
-55 èC  
25 èC  
125 èC  
6.0  
4.0  
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
3
3.5  
4
4.5  
5
VIN (V)  
5.5  
6
6.5  
7
7-15. Low-Side Switch Resistance Variation  
7-16. High-Side Switch Resistance Variation  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-17. Efficiency for VIN = 3.3 V, VOUT = 1 V at 7-18. Efficiency for VIN = 5 V, VOUT = 1 V at 100-  
100-kHz Switching Frequency kHz Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
-55 èC  
25 èC  
125 èC  
125 èC  
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-19. Efficiency for VIN = 5 V, VOUT = 1.8 V at  
7-20. Efficiency for VIN = 5 V, VOUT = 2.5 V at  
100-kHz Switching Frequency  
100-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-21. Efficiency for VIN = 3 V, VOUT = 1 V at 500- 7-22. Efficiency for VIN = 3 V, VOUT = 1.5 V at  
kHz Switching Frequency 500-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
125 èC  
-55 èC  
25 èC  
125 èC  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-23. Efficiency for VIN = 3 V, VOUT = 1.8 V at  
7-24. Efficiency for VIN = 3 V, VOUT = 2.5 V at  
500-kHz Switching Frequency  
500-kHz Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
125 èC  
-55 èC  
25 èC  
125 èC  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-25. Efficiency for VIN = 5 V, VOUT = 1 V at 500- 7-26. Efficiency for VIN = 5 V, VOUT = 1.5 V at  
kHz Switching Frequency 500-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
125 èC  
-55 èC  
25 èC  
125 èC  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-27. Efficiency for VIN = 5 V, VOUT = 1.8 V at  
7-28. Efficiency for VIN = 5 V, VOUT = 2.5 V at  
500-kHz Switching Frequency  
500-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-29. Efficiency for VIN = 5 V, VOUT = 3.3 V at 7-30. Efficiency for VIN = 7 V, VOUT = 1 V at 500-  
500-kHz Switching Frequency kHz Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
-55 èC  
25 èC  
125 èC  
125 èC  
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-31. Efficiency for VIN = 7 V, VOUT = 1.5 V at  
7-32. Efficiency for VIN = 7 V, VOUT = 1.8 V at  
500-kHz Switching Frequency  
500-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-33. Efficiency for VIN = 7 V, VOUT = 2.5 V at  
7-34. Efficiency for VIN = 7 V, VOUT = 3.3 V at  
500-kHz Switching Frequency  
500-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-35. Efficiency for VIN = 3 V, VOUT = 1 V at  
7-36. Efficiency for VIN = 3 V, VOUT = 1.5 V at  
1000-kHz Switching Frequency  
1000-kHz Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
125 èC  
-55 èC  
25 èC  
125 èC  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-37. Efficiency for VIN = 3 V, VOUT = 1.8 V at  
7-38. Efficiency for VIN = 3 V, VOUT = 2.5 V at  
1000-kHz Switching Frequency  
1000-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-39. Efficiency for VIN = 5 V, VOUT = 1 V at  
7-40. Efficiency for VIN = 5 V, VOUT = 1.5 V at  
1000-kHz Switching Frequency  
1000-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-41. Efficiency for VIN = 5 V, VOUT = 1.8 V at  
7-42. Efficiency for VIN = 5 V, VOUT = 2.5 V at  
1000-kHz Switching Frequency  
1000-kHz Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
-55 èC  
25 èC  
-55 èC  
25 èC  
125 èC  
125 èC  
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-43. Efficiency for VIN = 5 V, VOUT = 3.3 V at  
7-44. Efficiency for VIN = 7 V, VOUT = 1.8 V at  
1000-kHz Switching Frequency  
1000-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
20%  
-55 èC  
-55 èC  
25 èC  
25 èC  
10%  
10%  
125 èC  
125 èC  
0
0
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
0
2
4
6
8
Output Current (A)  
10  
12  
14  
16  
18  
7-45. Efficiency for VIN = 7 V, VOUT = 2.5 V at  
7-46. Efficiency for VIN = 7 V, VOUT = 3.3 V at  
1000-kHz Switching Frequency  
1000-kHz Switching Frequency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100 kHz  
500 kHz  
0
2
4
6
8
10  
Output Current (A)  
12  
14  
16  
18  
7-47. Efficiency for VIN = 5 V, VOUT = 1 V at 100-kHz and 500-kHz Switching Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device is a 7-V, 18-A synchronous step-down (buck) converter with two integrated MOSFETs; a PMOS for  
the high side and a NMOS for the low side. To improve performance during line and load transients, the device  
implements a constant frequency, peak current mode control, which also simplifies external frequency  
compensation. The wide switching frequency, 100 kHz to 1 MHz, allows for efficiency and size optimization when  
selecting the output filter components. The integrated MOSFETs allow for high-efficiency power supply designs  
with continuous output currents up to 18 A. The MOSFETs have been sized to optimize efficiency for lower duty  
cycle applications.  
The device is designed for safe monotonic startup into prebiased loads. The default start up is when VIN is  
typically 2.75 V. The EN pin has an internal pullup current source that can be used to adjust the input voltage  
UVLO with two external resistors. In addition, the EN pin can be floating for the device to operate with the  
internal pullup current. The total operating current for the device is approximately 4 mA when not switching and  
under no load. When the device is disabled, the supply current is typically 2.3 mA.  
The device has a power-good comparator (PWRGD) with hysteresis, which monitors the output voltage through  
the VSENSE pin. The PWRGD pin is an open-drain MOSFET, which is pulled low when the VSENSE pin voltage  
is less than 91% or greater than 109% of the reference voltage VREF and asserts high when the VSENSE pin  
voltage is 94% to 106% of the VREF.  
The SS/TR (soft-start/tracking) pin is used to minimize inrush currents or provide power-supply sequencing  
during power-up. A small-value capacitor or resistor divider should be coupled to the pin for soft-start or critical  
power-supply sequencing requirements. If VSENSE is greater than the voltage at SS during startup, the device  
will enter into a pulse-skipping mode.  
The device is protected from output overvoltage, overload, and thermal fault conditions. The device minimizes  
excessive output overvoltage transients by taking advantage of the overvoltage circuit power-good comparator.  
When the overvoltage comparator is activated, the high-side MOSFET is turned off and prevented from turning  
on until the VSENSE pin voltage is lower than 106% of the VREF. The device implements both high-side  
MOSFET overload protection and bidirectional low-side MOSFET overload protections, which help control the  
inductor current and avoid current runaway. The device also shuts down if the junction temperature is higher  
than thermal shutdown trip point. The device is restarted under control of the soft-start circuit automatically when  
the junction temperature drops 18°C (typical) below the thermal shutdown trip point.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
26  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.2 Functional Block Diagram  
VIN  
PVIN PVIN  
PWRGD  
EN  
UVLO  
Thermal  
Shutdown  
Shutdown  
Enable  
Comparator  
Ip  
Ih  
2.75 V  
Shutdown  
UV  
OV  
Logic  
1.14 V  
UVLO  
2.49 V  
Current  
Sense  
Minimum Clamp  
Pulse Skip  
ERROR  
AMPLIFIER  
VIN  
VSENSE  
SS/TR  
V/I  
PVIN  
SS/TR  
Hysteretic  
Control  
VSENSE  
HS MOSFET  
Current  
Comparator  
Voltage  
Reference  
Power Stage  
REFCAP  
& Deadtime  
Control  
Logic  
PH  
PH  
PVIN  
Slope  
Compensation  
Overload Recovery  
and  
RT Bias  
Oscillator  
LS MOSFET  
Current Limit  
Clamp  
Current  
Sense  
SYNC  
Detect  
PGND  
PGND  
COMP  
RSC  
Thermal Pad/GND  
RT  
SYNC1 SYNC2  
8.3 Feature Description  
8.3.1 VIN and Power VIN Pins (VIN and PVIN)  
The device allows for a variety of applications by using the VIN and PVIN pins together or separately. The VIN  
pin voltage supplies the internal control circuits of the device. The PVIN pin voltage provides the input voltage to  
the power converter system. Both pins have an input voltage range from 3 V to 7 V. A voltage divider connected  
to the EN pin can adjust the input voltage UVLO appropriately. Adjusting the input voltage UVLO on the PVIN pin  
helps to provide consistent power-up behavior.  
8.3.2 Voltage Reference  
The device generates an internal 1.21-V bandgap reference that is utilized throughout the various control logic  
blocks. This is the voltage present on the REFCAP and SS/TR pins during steady state operation. This voltage is  
divided down to 0.604 V to produce the reference for the error amplifier. The error amplifier reference is  
measured at the COMP pin to account for offsets in the error amplifier and maintains regulation within ±1.5%  
across line, load, temperature, and TID (or ±1.7% for the SHP option) as shown in the Specifications. A 470-nF  
capacitor to ground is required at the REFCAP pin for proper electrical operation as well as to ensure robust  
SET performance of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.3 Adjusting the Output Voltage  
The output voltage is set with a resistor divider from the output (VOUT) to the VSENSE pin. TI recommends to  
use 1% tolerance or better resistors. Start with a 10 kΩ for RTOP and use 方程式 1 to calculate RBOTTOM. To  
improve efficiency at light loads, consider using larger-value resistors. If the values are too high, the regulator is  
more susceptible to noise and voltage errors from the VSENSE input current are noticeable.  
VREF  
RBOTTOM  
=
× RTOP  
VOUT F VREF  
(1)  
where  
VREF = 0.604 V  
8.3.4 Safe Start-Up Into Prebiased Outputs  
The device prevents the low-side MOSFET from discharging a prebiased output lower than the configured output  
voltage through the VSENSE pin.  
8.3.5 Error Amplifier  
The device uses a transconductance error amplifier. The error amplifier compares the VSENSE pin voltage to  
the lower of the SS/TR pin voltage or the internal 0.604-V voltage reference. The transconductance of the error  
amplifier is 1800 μA/V during normal operation. The frequency compensation network is connected between the  
COMP pin and ground. The error amplifier DC gain is typically 10,000 V/V.  
8.3.6 Enable and Adjust UVLO  
The EN pin provides electrical on and off control of the device. When the EN pin voltage exceeds the threshold  
voltage, the device enables operation. If the EN pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters low Iq state. The EN pin has an internal pullup current source, allowing the user to  
float the EN pin for enabling the device. If an application requires controlling the EN pin, use open-drain or open-  
collector output logic to interface with the pin.  
The device implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage  
falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 150-mV  
typical.  
If an application requires either a higher UVLO threshold on the VIN pin or a secondary UVLO on the PVIN in  
split-rail applications, then the EN pin can be configured as shown in 8-1, 8-2, and 8-3. A ceramic  
capacitor in parallel with the bottom resistor R2 is recommended to reduce noise on the EN pin as used in the  
TPS7H4001-SP Evaluation Module. See the TPS7H4001EVM-CVAL Evaluation Module (EVM) User's Guide  
(SLVUBO5) for more information.  
The EN pin has a small pullup current, Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih after the EN pin crosses the enable threshold. Calculate the UVLO thresholds  
with 方程2 and 方程3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
28  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
TPS7H4001-SP  
VIN  
EN  
ip  
i
h
R1  
R2  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Adjustable VIN UVLO  
TPS7H4001-SP  
PVIN  
ip  
i
h
R1  
R2  
EN  
Copyright © 2017, Texas Instruments Incorporated  
8-2. Adjustable PVIN UVLO  
TPS7H4001-SP  
PVIN  
VIN  
ip  
i
h
R1  
EN  
R2  
Copyright © 2017, Texas Instruments Incorporated  
8-3. Adjustable VIN and PVIN UVLO  
VENFALLING  
VENRISING  
VENFALLING  
VENRISING  
VSTART  
×
F VSTOP  
A + Ih  
R1 =  
Ip @1 F  
(2)  
(3)  
R1 × VENFALLING  
R2 =  
VSTOP F VENFALLING + R1kIp + Iho  
where  
Ih = 3 μA  
Ip = 6.1 μA  
VENRISING = 1.14 V  
VENFALLING = 1.11 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.7 Adjustable Switching Frequency and Synchronization (SYNC)  
The switching frequency of the device supports three modes of operations. The modes of operation are set by  
the conditions on the RT, SYNC1, and SYNC2 pins. At a high level, these modes can be described as internal  
oscillator, external synchronization, and primary-secondary operation modes.  
8.3.7.1 Internal Oscillator Mode  
In internal oscillator mode, a resistor is connected between the RT pin and GND to configure the switching  
frequency, fSW, of the device. The switching frequency is adjustable from 100 kHz to 1 MHz depending on the  
RT resistor value, which can be calculated using 方程式 4. 8-4 shows the relationship curve between the RT  
resistor value and the configurable switching frequency range. It is recommended that the SYNC2 pin be  
connected to GND for this mode of operation.  
1.159  
RT = 223260 × fSW  
(4)  
where  
RT in kΩ  
fSW in kHz  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100 200 300 400 500 600 700 800 900 1000  
Switching Frequency (kHz)  
8-4. RT vs Switching Frequency  
8.3.7.2 External Synchronization Mode  
In external synchronization mode, a resistor is connected between the RT pin and GND corresponding to the  
external clock frequency as indicated in 方程式 4 and 8-4. Low tolerance resistor values should be used for  
this purpose as this is necessary for proper slope compensation. The SYNC1 pin requires a toggling signal for  
this mode to be effective. The input signal gets internally inverted and as a result, the switching frequency of the  
device is 180° out of phase with that of SYNC1 pin. During the mode of operation, the SYNC1 pin connects to  
the input clock and the SYNC2 pin must be connected to either GND or VIN depending on whether it is desired  
to invert the clock SYNC1 receives. When SYNC2 is connected to GND, the clock provided on SYNC1 is  
inverted. When SYNC2 is connected to VIN, the input clock signal on SYNC1 does not get inverted. As a result,  
external synchronization mode can be used to connect 2, 3, or 4 devices in parallel using an external clock (at  
any frequency between 100 kHz and 1 MHz) as long as the clocks used for each device are in the proper out of  
phase configuration. If no external clock signal is detected for 20 µs, then the TPS7H4001-SP transitions to its  
internal clock and a switching frequency that is determined by the value of the RT resistor. If no external clock is  
available, then the primary-secondary operation mode can also be used to connect devices in parallel.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
30  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.7.3 Primary-Secondary Operation Mode  
In primary-secondary mode, the RT pin of the primary device must be left floating. This sets the internal  
switching frequency of the device, fSW to a typical 500 kHz and the SYNC1 pin becomes an output clock at the  
same frequency and phase as fSW. In addition, the SYNC2 pin becomes an output clock at the same frequency  
but at 90° out of phase with respect to SYNC1. This SYNC1 and SYNC2 output clock signals, in combination  
with the state of the SYNC2 pins of the secondary devices, can be used to connect 2, 3, or 4 devices in parallel  
configuration. 8-5 shows the SYNC1 and SYNC2 clock signals when the RT pin is floating in the primary  
device and how the signals can be used to generate the 90° out of phase clocks needed to connect 4 devices in  
parallel configuration (1 primary and 3 secondaries). The SYNC1b and SYNC2b indicate the clock signals being  
inverted either internally or due to the state of the SYNC2 pin in the secondary devices. When SYNC2 is  
connected to GND, the inverse functionality of the input clock signal in SYNC1 remains the same. When SYNC2  
is connected to VIN, the input clock signal in SYNC1 does not get inverted. The RT pin of the secondary devices  
must have a resistor to GND corresponding to 500 kHz as indicated in 方程式 4 and 8-4. Low tolerance  
resistor values should be used for this purpose as this is necessary for proper slope compensation.  
90°  
270°  
90°  
270°  
Primary fsw  
SYNC1  
Primary fsw  
Secondary 1 fsw  
Secondary 2 fsw  
Secondary 3 fsw  
SYNC2  
180°  
180°  
8-5. SYNC1 and SYNC2 Clock Signals in Primary-Secondary Mode  
8-6 shows the SYNC1 and SYNC2 output signals from the primary device as well as signals and connections  
needed to operate 4 devices in parallel configuration. The fSW clock signal by each device represents the  
switching frequency signal for the respective device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
TPS7H4001-SP  
RT  
fsw Primary  
SYNC1_PRIMARY  
SYNC2_PRIMARY  
SYNC1  
SYNC2  
Primary  
TPS7H4001-SP  
RT  
SYNC2_PRIMARY  
SYNC1  
SYNC2  
90°  
VIN  
fsw Secondary 1  
Secondary 1  
TPS7H4001-SP  
SYNC1_PRIMARY  
RT  
180°  
SYNC1  
SYNC2  
fsw Secondary 2  
Secondary 2  
TPS7H4001-SP  
RT  
SYNC2_PRIMARY  
sw Secondary 3  
270°  
SYNC1  
SYNC2  
f
Secondary 3  
8-6. Parallel Operation With SYNC1 and SYNC2 Pins  
The 3 modes previously described are summarized in 8-1.  
8-1. Switching Frequency, SYNC, and RT Pin Usage Table  
MODE  
RT PIN  
SYNC1 PIN  
SYNC2 PIN  
SWITCHING FREQUENCY  
Configurable using internal  
oscillator from 100 kHz to 1  
MHz depending on RT  
resistor value  
Internal oscillator  
Floating  
GND  
Resistor to GND based  
on 8-4  
Internally synchronized to  
external clock between 100  
kHz to 1 MHz  
External  
synchronization  
External input clock. Signal  
will be inverted internally  
GND or VIN  
Outputs 500-kHz clock in  
Outputs 500-kHz clock at  
Primary  
Float  
phase with internal switching 90° out of phase with  
500 kHz  
frequency  
internal switching frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
32  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.8 Soft-Start (SS/TR)  
The device uses the lower voltage of the internal voltage reference or the SS/TR pin voltage as the reference  
voltage and regulates the output accordingly. A CSS capacitor on the SS/TR pin to GND implements a soft-start  
time. 方程式 5 shows the equation for the nominal soft-start time, tSS. This is the time it will take VOUT to go  
from 10% to 90% of the programmed voltage. The voltage reference (VREF) is 0.604 V and the soft-start charge  
current (ISS) is 2.5 μA. When calculating the soft-start time tSS, it is important to take into account the variation  
of the parameters CSS, VREF and ISS as these may cause tSS to deviate from the nominal value in the actual  
implementation.  
0.8 × CSS (nF) × VREF (V)  
:
;
tSS ms =  
ISS (µA)  
(5)  
When any of the following four scenarios occur the SS/TR pin is discharged:  
the input UVLO is triggered,  
the EN pin is pulled below 1.05 V,  
the high-side switch current limit threshold is exceeded, or  
a thermal shutdown event occurs  
With the exception of the scenario where the high-side current limit threshold is exceeded, the device will then  
stop switching and enter into low current operation. At the subsequent power-up, when the shutdown condition is  
removed, the device does not start switching until it has discharged its SS/TR pin to ground ensuring proper soft-  
start behavior.  
The device will enter into a pulse-skipping mode during startup in the event that VSENSE is greater than the  
voltage at the SS/TR pin. During this period, the high-side switch will remain off and the low-side switch will  
remain on until VSENSE again falls below the voltage at SS/TR.  
8.3.9 Power Good (PWRGD)  
The PWRGD pin is an open-drain output. When the VSENSE pin is between 94% and 106% of the internal  
voltage reference, the PWRGD pin pulldown is deasserted and the pin floats. TI recommends to use a pullup  
resistor between 10 kΩ to 100 kΩ to a voltage source that is equal to or less than VIN. The PWRGD is in a  
defined state when the VIN input voltage is greater than 1 V but has reduced current sinking capability. The  
PWRGD achieves full current sinking capability when the VIN input voltage is above 3 V.  
The PWRGD pin is pulled low when VSENSE is lower than 91% or greater than 109% of the nominal internal  
reference voltage. Also, the PWRGD is pulled low if:  
the input UVLO or thermal shutdown are asserted,  
the EN pin is pulled low, or  
the SS/TR pin is below 1.1 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.10 Sequencing  
Many of the common power-supply sequencing methods can be implemented using the SS/TR, EN, and  
PWRGD pins.  
The sequential method is shown in 8-7 using two TPS7H4001-SP devices. The PWRGD pin of the first device  
is coupled to the EN pin of the second device, which enables the second power supply after the primary supply  
reaches regulation.  
TPS7H4001-SP  
TPS7H4001-SP  
VIN  
PWRGD  
EN  
EN  
SS/TR  
SS/TR  
PWRGD  
Copyright © 2017, Texas Instruments Incorporated  
8-7. Sequential Start-Up Sequence  
8-8 shows the method implementing ratiometric sequencing by connecting the SS/TR pins of two devices  
together. The regulator outputs ramp up and reach regulation at the same time. When calculating the soft-start  
time, the pullup current source must be doubled in 方程式 5 as there is only one SS/TR capacitor. A similar  
situation applies if a resistor divider is used in the EN pin, that is, only one resistor divider is needed and the  
factor of 2 must be taken into account when calculating the resistor values. This ratiometric connection is the one  
used in primary mode as described in the Adjustable Switching Frequency and Synchronization (SYNC) section.  
TPS7H4001-SP  
EN  
SS/TR  
PWRGD  
TPS7H4001-SP  
EN  
SS/TR  
PWRGD  
Copyright © 2017, Texas Instruments Incorporated  
8-8. Ratiometric Start-Up Sequence  
Ratiometric and simultaneous power-supply sequencing can be implemented by connecting the resistor network  
of R1 and R2 (shown in 8-9) to the output of the power supply that needs to be tracked or another voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
34  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
reference source. Using 方程式 6 and 方程式 7, the tracking resistors can be calculated to initiate the VOUT2  
slightly before, after, or at the same time as VOUT1. 方程式 8 is the voltage difference between VOUT1 and  
VOUT2.  
To design a ratiometric start-up in which the VOUT2 voltage is slightly greater than the VOUT1 voltage when  
VOUT2 reaches regulation, use a negative number in 方程式 6 and 方程式 7 for ΔV. 方程式 8 results in a  
positive number for applications where the VOUT2 is slightly lower than VOUT1 when VOUT2 regulation is  
achieved.  
The ΔV variable is 0 V for simultaneous sequencing. To minimize the effect of the inherent SS/TR to VSENSE  
offset (VSS-OFFSET = 30 mV) in the soft-start circuit and the offset created by the pullup current source (ISS = 2.5  
μA) and tracking resistors, the VSS-OFFSET and ISS are included as variables in the equations.  
To ensure proper operation of the device, the calculated R1 value from 方程式 6 must be greater than the value  
calculated in 方程9.  
VOUT2 + ¿V VSSFOFFSET  
R1 =  
×
VREF  
VREF × R1  
VOUT2 + ¿V F VREF  
ISS  
(6)  
R2 =  
(7)  
(8)  
(9)  
¿V = VOUT F VOUT2  
1
R1 > 2800 × VOUT F 180 × ¿V  
1
TPS7H4001-SP  
EN  
VOUT1  
SS/TR  
VSENSE1  
PWRGD  
TPS7H4001-SP  
EN  
VOUT2  
R1  
R2  
VSENSE2  
SS/TR  
PWRGD  
Copyright © 2017, Texas Instruments Incorporated  
8-9. Ratiometric and Simultaneous Start-Up Sequence  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.11 Output Overvoltage Protection (OVP)  
The device incorporates an output OVP circuit to minimize output voltage overshoot. For example, when the  
power supply output is overloaded, the error amplifier compares the actual output voltage to the internal  
reference voltage. If the VSENSE pin voltage is lower than the internal reference voltage for a considerable time,  
the output of the error amplifier demands maximum output current. After the condition is removed, the regulator  
output rises and the error amplifier output transitions to the steady-state voltage. In some applications with small  
output capacitance, the power supply output voltage can respond faster than the error amplifier. This leads to the  
possibility of an output overshoot. The OVP feature minimizes the overshoot by comparing the VSENSE pin  
voltage to the OVP threshold. If the VSENSE pin voltage is greater than the OVP threshold, the high-side  
MOSFET is turned off, preventing current from flowing to the output and minimizing output overshoot. When the  
VSENSE voltage drops lower than the OVP threshold, the high-side MOSFET is allowed to turn on at the next  
clock cycle.  
8.3.12 Overcurrent Protection  
The device is protected from overcurrent conditions with cycle-by-cycle current limiting on both the high-side and  
low-side MOSFET.  
8.3.12.1 High-Side MOSFET Overcurrent Protection  
The device implements current mode control, which uses the COMP pin voltage to control the turn off of the  
high-side MOSFET and the turn on of the low-side MOSFET on a cycle-by-cycle basis. Each cycle the switch  
current and the current reference generated by the COMP pin voltage are compared, when the peak switch  
current intersects the current reference, the high-side switch is turned off. In the event of an overcurrent  
detection, the following sequence of events occurs:  
The SS/TR pin is discharged  
When the voltage at SS/TR falls below VSENSE, the device will stop switching  
As VOUT decreases, VSENSE does as well. At the point when VSENSE is equal to the voltage at SS/TR, the  
device will begin switching again.  
8.3.12.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on its conduction current is monitored by the internal circuitry. During  
normal operation the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side  
MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side  
sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the  
next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing  
current limit at the start of a cycle.  
The low-side MOSFET may also sink current from the load. If the low-side sinking current limit is exceeded, the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario, both MOSFETs are  
off until the start of the next cycle.  
When the low-side MOSFET turns off, the switch node voltage increases and forward biases the high-side  
MOSFET parallel diode (the high-side MOSFET is still off at this stage).  
8.3.13 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
190°C (typical). The device reinitiates the power-up sequence when the junction temperature drops below 172°C  
(typical).  
8.3.14 Turn-On Behavior  
Minimum on-time specification determines the maximum operating frequency of the design. During soft-start, if  
the required duty cycle is less than the minimum controllable on-time, the device can enter into a pulse-skipping  
mode. Thus, instantaneous output pulses can be higher or lower than the desired voltage. This behavior is only  
evident when operating at high frequency with high bandwidth. When the minimum on-pulse is greater than the  
minimum controllable on-time, the turn-on behavior is normal.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
36  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.15 Slope Compensation  
The device adds a compensating ramp to the switch current signal for all duty cycles. The slope compensation  
adjusts the peak current during the charging of the inductor to avoid instability of the system. As a result, the  
ideal slope compensation is defined as the output voltage divided by the inductor size as shown in 方程式 10.  
The slope compensation, SC, can be configured with a resistor to GND connected to the RSC pin. The RSC  
resistor value, in kΩ, can be calculated using 方程11, where SC is in A/µs and fSW is in kHz.  
di VOUT  
SCideal  
=
=
dt  
L
(10)  
(11)  
24000 1040  
RSC =  
+
F 30  
fSW  
SC  
8.3.15.1 Slope Compensation Requirements  
All the design parameters are relevant when configuring the slope compensation. The first requirement is that  
the inductor peak current ILpeak must be less than the compensated maximum high side FET current, ILmax as  
shown in 方程12.  
ILpeak < ILmax  
(12)  
ILpeak can be calculated as shown in 方程13, where KL relates Iripple the inductor ripple current, to IO the output  
current, as shown in 方程14.  
Iripple  
KL × IO  
2
ILpeak = IO +  
= IO +  
2
(13)  
Iripple  
KL =  
IO  
(14)  
ILmax is defined as the difference between the high side current limit specified in the Electrical Characteristics,  
and the change in current due to the ramp, ISC as shown in 方程式 15. ISC can be calculated using 方程式 16,  
where tON is the on time for the high side FET. tON depends on the switching frequency and is related to the duty  
cycle as shown in 方程17.  
ILmax = IHS_IL F ISC  
(15)  
ISC = SC × tON  
(16)  
1
1
VOUT  
VIN  
tON  
=
× D =  
×
fSW  
fSW  
(17)  
The last requirement related to the slope compensation is related to the maximum value for KL depending on the  
SC value selected so that the desired IO can be supported. In other words, the maximum value for KL such that  
ILpeak is less than ILmax. By substituting 方程式 16 and 方程式 17 into the combinations of 方程式 13 and 方程式  
15, the equation for the maximum value for KL can be derived as shown in 方程18.  
SC VOUT  
IHS_IL  
F
@
F 0.25A  
fSW VIN  
KLmax < 2 f  
F 1j  
IO  
(18)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
 
 
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
8.3.16 Small Signal Model for Frequency Compensation  
The device uses a transconductance amplifier for the error amplifier and readily supports two of the commonly  
used frequency compensation circuits shown in 8-10. In Type 2A, one additional high-frequency pole is added  
to attenuate high-frequency noise.  
The following design guidelines are provided for advanced users who prefer to compensate using the general  
method.  
VOUT  
R1  
VSENSE  
Type 2A  
Type 2B  
COMP  
Coea  
Vref  
R3  
C1  
gm  
C2  
R3  
C1  
ea  
Roea  
R2  
8-10. Types of Frequency Compensation  
The general design guidelines for device loop compensation are as follows:  
1. Determine the crossover frequency fco. A good starting point is one-tenth of the switching frequency, ƒSW  
.
2. R3 can be determined by:  
tN × fco × VOUT × COUT  
R3 =  
gmea × VREF × gmps  
(19)  
where gmea is the transconductance of the error amplifier (1800 μS), gmps is the transconductance of the  
power stage (40 S) and VREF is the reference voltage (0.604 V).  
3. Place a compensation zero at the dominant pole calculated in 方程20 using C1 and R3.  
C1 can be determined by 方程21.  
1
fp =  
COUT × RL × tN  
(20)  
(21)  
COUT × RL  
R3  
C1 =  
4. C2 is optional. It can be used to cancel the zero from the equivalent series resistance (ESR) of the output  
capacitor COUT  
.
COUT × RESR  
R3  
C2 =  
(22)  
8.4 Device Functional Modes  
8.4.1 Fixed-Frequency PWM Control  
The device uses fixed frequency, peak current mode control. As a synchronous buck converter, the device  
normally operates in continuous current mode under all load conditions. The output voltage is compared through  
external resistors on the VSENSE pin to an internal voltage reference by an error amplifier, which drives the  
COMP pin. An internal oscillator initiates the turn on of the high-side power switch. The error amplifier output is  
converted into a current reference, which compares to the high-side power switch current. When the power  
switch current reaches the current reference generated by the COMP voltage level, the high-side power switch is  
turned off and the low-side power switch is turned on.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
38  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS7H4001-SP device is a highly-integrated synchronous step-down DC-DC converter. The device is used  
to convert a higher DC-DC input voltage to a lower DC output voltage with a maximum output current of 18 A.  
The TPS7H4001-SP user's guide is available on the TI website, TPS7H4001EVM-CVAL Evaluation Module  
(EVM) User's Guide (SLVUBO5). The guide highlights standard EVM test results, schematic, and BOM for  
reference.  
9.2 Typical Application  
VIN  
PWRGD  
VOUT  
PWRGD  
PHASE  
PVIN  
VIN  
EN  
VSENSE  
EN  
TPS7H4001-SP  
RSC  
SSTR  
RT  
PGND  
GND  
THERMAL PAD  
COMP  
9-1. Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9.2.1 Design Requirements  
This example highlights a design using the TPS7H4001-SP based on its evaluation module. For more details,  
please refer to the EVM user's guide, TPS7H4001EVM-CVAL Evaluation Module (EVM) User's Guide  
(SLVUBO5). A few parameters must be known in order to start the design process. These parameters are  
typically determined at the system level. For this example, we start with the following known parameters:  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Output voltage  
1 V  
Maximum output current  
Transient response 9-A load step  
Input voltage  
18 A  
ΔVOUT = 5%  
5 V  
Output voltage ripple  
20 mVp-p  
4.5 V  
Start input voltage (rising VIN)  
Stop input voltage (falling VIN)  
Switching frequency  
4.3 V  
500 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Operating Frequency  
The first step is to decide on a switching frequency for the regulator. There is a trade off between higher and  
lower switching frequencies. Higher switching frequencies may produce smaller a solution size using lower  
valued inductors and smaller output capacitors compared to a power supply that switches at a lower frequency.  
However, the higher switching frequency causes extra switching losses, which hurt the converters efficiency  
and thermal performance. In this design, a switching frequency of 500 kHz is selected. Since the regulator can  
internally generate a 500-kHz switching frequency, no RT resistor is necessary but can be used if desired.  
9.2.2.2 Output Inductor Selection  
To calculate the value of the output inductor, use 方程式 23. KL is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current, IO as shown in 方程式 14. The inductor ripple  
current is filtered by the output capacitor, therefore, choosing high inductor ripple currents impact the selection of  
the output capacitor since the output capacitor must have a ripple current rating equal to or greater than the  
inductor ripple current. In general, the inductor ripple value is at the discretion of the designer depending on  
specific system needs. Typical values for KL range from 0.1 to 0.5. For low output currents, the value of KL could  
be increased to reduce the value of the output inductor.  
V
F VOUT  
VOUT  
V × fSW  
INMAX  
INMAX  
L =  
×
IO × KL  
(23)  
For this design example, use KL = 0.1 and the inductor value is calculated to be 0.9 µH for nominal VIN = 5 V.  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
The RMS and peak inductor current can be found from 方程25 and 方程26.  
V
INMAX  
F VOUT  
VOUT  
V × fSW  
INMAX  
Iripple  
=
×
L
(24)  
(25)  
2
:
;
F VOUT  
INMAX  
1
VOUT × V  
2
¨
IO  
ILrms  
=
+
× F  
G
12  
V
× L × fSW  
INMAX  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
40  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
Iripple  
ILpeak = IO +  
2
(26)  
For this design, the RMS inductor current is 18 A and the peak inductor current is 18.9 A. To satisfy this  
requirement, two Coilcraft SER1360 inductors are used in parallel. These inductors have a saturation current  
rating of 17 A and a RMS current rating of 9.5 A.  
The current flowing through the inductor is the inductor ripple current plus the output current. During power up,  
faults or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated previously. In transient conditions, the inductor current can increase up to the switch current limit  
of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
9.2.2.3 Output Capacitor Selection  
There are several considerations in determining the value of the output capacitor. The selection of the output  
capacitor is driven by both the desired output voltage ripple and the allowable voltage deviation due to a large  
and abrupt change in load current. For space applications, the value of capacitance also has to account for the  
mitigation of single event effects (SEE). The output capacitance needs to be selected based on the more  
stringent of these three criteria. It is also important to note that the value of the output capacitor directly  
influences the modulator pole of the converter frequency response, as shown in Small Signal Model for  
Frequency Compensation.  
The desired response to a large change in the load current is the first criteria. The output capacitor needs to  
supply the load with current when the regulator can not. This situation would occur if there are desired hold-up  
times for the regulator where the output capacitor must hold the output voltage above a certain level for a  
specified amount of time after the input power is removed. The regulator is also temporarily not able to supply  
sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from  
no load to full load. The output capacitor must be sized to supply the extra current to the load until the control  
loop responds to the load change. 方程式 27 shows the minimum output capacitance, from the electrical point of  
view, necessary to accomplish this.  
2 × ¿IO  
COUT  
>
fSW × ¿VOUT  
(27)  
Where ΔIO is the change in output current, fSW is the regulator switching frequency, and ΔVOUT is the  
allowable change in the output voltage. For this example, the transient load response is specified as a 5%  
change in VOUT for a load step of 9 A. Also in this example, ΔIO = 9 A and ΔVOUT = 0.05 × 1 = 0.05 V. Using  
these numbers gives a minimum capacitance of 720 μF. This value does not take the ESR of the output  
capacitor into account in the output voltage change. For ceramic capacitors, the ESR is usually small enough to  
ignore in this calculation. However, for space applications and large capacitance values, tantalum capacitors are  
typically used, which have a certain ESR value to take into consideration.  
方程式 28 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
Where fSW is the switching frequency, VOUTripple is the maximum allowable output voltage ripple, and Iripple is the  
inductor ripple current. In this case, the maximum output voltage ripple is 20 mV and the inductor ripple current is  
1.8 A. Under these conditions, 方程28 yields 22.5 µF.  
Iripple  
8 × fSW VOUT  
1
COUT  
>
×
ripple  
(28)  
Additional capacitance de-ratings for aging, temperature and DC bias should be factored in, which increases this  
minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or  
producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some  
capacitor data sheets specify the RMS (Root Mean Square) value of the maximum ripple current. 方程式 25 can  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
be used to calculate the RMS ripple current the output capacitor needs to support. For this application, 方程25  
yields 519 mA.  
方程式 29 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification. 方程29 indicates the ESR should be less than 11.11 mΩ.  
VOUT  
ripple  
RESR  
<
Iripple  
(29)  
For this specific design, taking into consideration the stringent requirements for space applications, a total output  
capacitance of 2 mF with an equivalent ESR of approximately 2 mΩhas been selected.  
9.2.2.4 Input Capacitor Selection  
The TPS7H4001-SP requires a high quality ceramic, type X5R or X7R, input decoupling capacitor of at least 4.7  
µF of effective capacitance on the PVIN input voltage pins, and 4.7 µF on the VIN input voltage pin. In some  
applications additional bulk capacitance may also be required for the PVIN input. The effective capacitance  
includes any DC bias effects. The voltage rating of the input capacitor must be greater than the maximum input  
voltage. The capacitor must also have a ripple current rating greater than the maximum input current ripple of the  
TPS7H4001-SP. The input ripple current can be calculated using 方程30.  
VOUT  
(V  
F VOUT )  
IN_MIN  
ICINrms = IO × ¨  
×
V
IN_MIN  
V
IN_MIN  
(30)  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance to volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. For this example design, a ceramic capacitor with at  
least a 25-V voltage rating is required to support the maximum input voltage. For this example, six 22-μF and  
two 470-µF 25-V capacitors in parallel have been selected as the VIN and PVIN inputs are tied together so the  
TPS7H4001-SP may operate from a single supply. The input capacitance value determines the input ripple  
voltage of the regulator. The input voltage ripple can be calculated using 方程式 31. Using the design example  
values, IOMAX = 18 A, CIN = 1.072 mF, fSW = 500 kHz, yields an input voltage ripple of 8.4 mV and a RMS input  
ripple current of 7.2 A.  
IOMAX × 0.25  
¿VIN =  
CIN × fSW  
(31)  
9.2.2.5 Soft-Start Capacitor Selection  
The soft-start capacitor CSS, determines the minimum amount of time it takes for the output voltage to reach its  
nominal programmed value during power up. This is useful if a load requires a controlled voltage slew rate. This  
is also used if the output capacitance is very large and would require large amounts of current to quickly charge  
the capacitor to the output voltage level. The large currents necessary to charge the capacitor may make the  
TPS7H4001-SP reach the current limit or excessive current draw from the input power supply may cause the  
input voltage rail to sag. Limiting the output voltage slew rate solves both of these problems. The soft-start  
capacitor value can be calculated using 方程式 5. The example circuit has the soft-start time set to an arbitrary  
value of about 2 ms, which requires a 10-nF capacitor. In TPS7H4001-SP, ISS is 2.5-µA typical, and VREF is  
0.604 V.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
42  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9.2.2.6 Undervoltage Lockout (UVLO) Set Point  
The UVLO can be adjusted using the external voltage divider network formed by R1 and R2. R1 is connected  
between VIN and the EN pin of the TPS7H4001-SP and R2 is connected between EN and GND. The UVLO has  
two thresholds, one for power up when the input voltage is rising and one for power down or brown outs when  
the input voltage is falling. For the example design, the supply should turn on and start switching once the input  
voltage increases above selected voltage (UVLO start or enable). After the regulator starts switching, it should  
continue to do so until the input voltage falls below (UVLO stop or disable) voltage. 方程式 2 and 方程式 3 can  
be used to calculate the values for the upper and lower resistor values. For the stop voltages specified in 9-1,  
the nearest standard resistor value for R1 is 10 kΩand for R2 is 3.4 kΩ.  
9.2.2.7 Output Voltage Feedback Resistor Selection  
The resistor divider network RTOP and RBOTTOM is used to set the output voltage. For the example design, 10 kΩ  
was selected for RTOP. Using 方程式 1, RBOTTOM is calculated as 15.32 kΩ. The nearest standard 1% resistor is  
15.4 kΩ.  
9.2.2.7.1 Minimum Output Voltage  
Due to the internal design of the TPS7H4001-SP, there is a minimum output voltage limit for any given input  
voltage. The output voltage can never be lower than the internal voltage reference of 0.604 V. Above 0.604 V,  
the output voltage may be limited by the minimum controllable on time. The minimum output voltage in this case  
is given by 方程32.  
VOU TMIN = V  
× tON ,MIN × fsw  
INMIN  
(32)  
In this equation:  
VOUTMIN is the minimum output voltage  
VINMIN is the minimum input voltage for the application  
tON,MIN is the minimum on-time for the device, for which the maximum specification is 235 ns  
fsw is the switching frequency of the application.  
9.2.2.8 Compensation Component Selection  
There are several industry techniques used to compensate DC-DC regulators. For this design, type 2B  
compensation is used as shown in the Small Signal Model for Frequency Compensation section.  
A good starting rule of thumb is to set the crossover frequency to one-tenth of the switching frequency. This will  
generally provide good transient response and ensure that the modulator poles do not degrade phase margin.  
The compensation components can be calculated using 方程式 19 and 方程式 21. The values calculated for R3  
and C1 are 8.66 kΩand 12 nF, respectively.  
An additional high frequency pole can be used if necessary by adding a capacitor in parallel with the series  
combination of R3 and C1. The pole frequency is given by 方程33.  
1
fp =  
tN × R3 × C2  
(33)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9.2.3 Parallel Operation  
The TPS7H4001-SP can be configured in primary-secondary mode to provide up to 72-A output current. For  
more details, please refer to the EVM user's guide, TPS7H4001QEVM-CVAL Evaluation Module (EVM) User's  
Guide (SLVUBW7). 9-2 shows a parallel configuration that can be used to provide 36-A output.  
VIN  
PVIN  
VIN  
PWRGD  
PHASE  
VOUT  
L
COUT  
RTOP  
R1  
VSENSE  
EN  
VSENSE  
RBOTTOM  
EN  
TPS7H4001-SP  
(Primary)  
R2  
SYNC1  
SYNC2  
REFCAP  
RSC  
470 nF  
SSTR  
SSTR  
RT  
PGND  
GND  
RSC  
COMP  
THERMAL PAD  
COMP  
CSS  
R3  
C1  
C2  
VIN  
PVIN  
VIN  
PWRGD  
PHASE  
L
COUT  
VSENSE  
VSENSE  
EN  
EN  
TPS7H4001-SP  
(Secondary)  
SYNC1  
SYNC2  
REFCAP  
RSC  
470 nF  
SSTR  
SSTR  
RT  
PGND  
GND  
RSC  
COMP  
THERMAL PAD  
COMP  
RT  
9-2. Parallel Configuration Showing Primary and Secondary  
The design procedure to configure the primary-secondary operation using the internal oscillator is as follows:  
The RT pin of the primary device must be left floating. This achieves two purposes, to set the frequency to  
500 kHz (typical) using the internal oscillator and to configure the SYNC1 and SYNC2 pins of the primary  
device as output pins with a 500-kHz clock, in-phase and 90° out of phase, respectively to the internal  
oscillator of the primary device. For more details, see Adjustable Switching Frequency and Synchronization  
(SYNC) section.  
The RT pin on secondary device should be connected to a resistor such that the frequency of the secondary  
device matches the primary's frequency, 500 kHz in this case. See 8-4 for reference.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
44  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
SYNC1 and/or SYNC2 pin of the primary device must be connected to the SYNC1 pin of the secondary  
device(s).  
Only a single feedback network is connected to the VSENSE pin of the primary device. Therefore, all  
VSENSE pins must be connected.  
Only a single compensation network is needed connected to the COMP pin of the primary device. Therefore  
all COMP pins must be connected.  
Only a single soft-start capacitor is needed connected to the SS pin of the primary device. Therefore all SS  
pins must be connected.  
Only a single enable signal (or resistor divider) is needed connected to the EN pin of the primary device.  
Therefore all EN pins must be connected.  
Since the primary device controls the compensation, soft-start and enable networks, the factor of n must be  
taken into account when calculating the components associated with these pins, where n is the number of  
devices in parallel.  
The primary-secondary mode can also be implemented using an external clock. In such case, a different  
frequency other than 500 kHz can be used. When using an external clock, the RT and SYNC pin configurations  
vary as follows:  
RT pins of both primary and secondary device must be connected to a resistor matching the frequency of the  
external clock being used. See 8-4 for reference.  
The external clock is connected to the SYNC1 pin of the primary device. A 10-kΩresistor to GND should be  
connected to the SYNC1 pin as well.  
For two devices in parallel, an inverted clock (180° out of phase respect to the primary device) must be  
connected to the SYNC1 pin of the secondary device. A 10-kΩresistor to GND should be connected to the  
SYNC1 pin as well. The SYNC2 pins of the primary and secondary devices should be connected to VIN.  
Another option for two devices in parallel is to use a single clock connected to the SYNC1 pins of both  
devices, with the SYNC2 pin of the primary device connected to VIN and the SYNC2 pin of the secondary  
device connected to GND.  
For four devices in parallel, the SYNC1 pin of each device can be supplied with a separate clock, each phase  
shifted 90° with respect to the other. In this configuration, all SYNC2 pins should be connected to VIN. There  
is also an option where two clocks can be used, where the second clock is phase shifted 90° with respect to  
the first. In this instance, the table below details how the SYNC1 and SYNC2 pins of each device should be  
configured.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
VIN  
PVIN  
VIN  
PWRGD  
PHASE  
VOUT  
L
COUT  
RTOP  
R1  
VSENSE  
EN  
VSENSE  
RBOTTOM  
EN  
TPS7H4001-SP  
(Primary)  
R2  
EXT. SYNC  
SYNC1  
SYNC2  
REFCAP  
RSC  
VIN  
SS/TR  
470 nF  
SS/TR  
RT  
PGND  
GND  
RSC  
COMP  
R3  
C1  
THERMAL PAD  
COMP  
CSS  
RT  
C2  
VIN  
PVIN  
VIN  
PWRGD  
PHASE  
L
COUT  
VSENSE  
VSENSE  
EN  
EN  
TPS7H4001-SP  
(Secondary)  
SYNC1  
SYNC2  
REFCAP  
RSC  
470 nF  
SS/TR  
COMP  
SS/TR  
RT  
PGND  
GND  
RSC  
THERMAL PAD  
COMP  
RT  
9-3. Parallel Configuration With External Sync  
9-2. Pin Connections for Four Parallel Devices Using External Sync and Two Clocks  
Device  
SYNC1 Pin  
SYNC2 Pin  
1
2
3
4
Clock 1  
VIN  
Clock 2  
VIN  
Clock 1  
GND  
Clock 2  
GND  
The operation of multiple devices in parallel has an impact on some of the component calculations. For instance,  
since the enable pins are all connected together, the UVLO calculation as presented in the Enable and Adjust  
UVLO section will be modified according to the following equations, in which n is the number of paralleled  
devices:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
46  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
VENFALLING  
VSTART  
×
F VSTOP  
VENRISING  
VENFALLING  
VENRISING  
R1 =  
n × Ip @1 F  
A + (n × Ih)  
(34)  
(35)  
R1 × VENFALLING  
R2 =  
:
;
VSTOP F VENFALLING + n × R1 (Ip + Ih)  
Also, since all SS/TR pins will be connected for the paralleled devices, the soft-start calculation presented in the  
Soft-Start (SS/TR) section will be modified according to the following equation:  
0.8 × CSS (nF) × VREF (V)  
:
;
tSS ms =  
n × ISS (JA)  
(36)  
The compensation design is detailed in the Small Signal Model for Frequency Compensation section. The  
equation for R3 changes when the COMP pins of the devices in parallel are connected:  
tN × fco × VOUT × COUT  
n × gmea × VREF × n × gmps n2 × gmea × VREF × gmps  
tN × fco × VOUT × COUT  
R3 =  
=
(37)  
Note that for parallel operation, the equations for the other compensation components, C1 and C2, will remain  
unchanged and still be calculated as shown in 方程21 and 方程22 due to the updated R3 calculation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9.2.4 Application Curve  
The evaluation module for the TPS7H4001-SP was used to capture a load step response of the device. The  
testing conditions were:  
VIN = PVIN = 5 V  
VOUT = 1 V  
Load step = 9 A to 18 A  
Switching frequency = 500 kHz  
9-4. 9-A Step Response for 500-kHz Switching Operation  
9-5. Switch Node Waveform (PH) and Output Voltage Ripple for 500-kHz Switching Operation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
48  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The TPS7H4001-SP is designed to operate from an input voltage supply range between 3 V and 7 V. This  
supply voltage must be well regulated. Power supplies must be well bypassed for proper electrical performance.  
This includes a minimum of one 4.7 µF (after de-rating) ceramic capacitor, type X5R or better from PVIN to  
GND, and from VIN to GND. Additional local ceramic bypass capacitance may be required in systems with small  
input ripple specifications, as well as additional bulk capacitance if the TPS7H4001-SP device is located more  
than a few inches away from its input power supply. Bypass capacitors should be placed as close as possible to  
the input pins and have a low impedance path to GND.  
Larger values of bypass capacitance will improve the response to radiation induced transients. The TPS7H4001-  
SP Evaluation Module uses 6 × 22-µF capacitors in addition to 2 × 470-µF capacitors in parallel on the PVIN  
input. In systems with an auxiliary power rail available, the power stage input, PVIN, and the analog power input,  
VIN, may operate from separate input supplies.  
9.4 Layout  
9.4.1 Layout Guidelines  
Layout is a critical portion of good power supply design. See the Layout Example section for a PCB layout  
example.  
It is recommended to include a large topside area filled with ground. This top layer ground area should be  
connected to the internal ground layer(s) using vias at the input bypass capacitor, the output filter capacitor,  
and directly under the TPS7H4001-SP device to provide a thermal path from the exposed thermal pad land to  
ground. For operation at full rated load, the top side ground area together with the internal ground plane must  
provide adequate heat dissipating area.  
The GND pin should be tied directly to the thermal pad under the IC.  
There are several signals paths that conduct fast changing currents or voltages that can interact with stray  
inductance or parasitic capacitance to generate noise or degrade the power supplies performance. To help  
eliminate these problems, the PVIN pin should be bypassed to ground with a low ESR ceramic bypass  
capacitor with X5R or X7R dielectric.  
Care should be taken to minimize the loop area formed by the bypass capacitor connections, the PVIN pins,  
and the ground connections.  
The VIN pin must also be bypassed to ground using a low ESR ceramic capacitor with X5R or X7R dielectric.  
Make sure to connect this capacitor to the quieter analog ground trace rather than the power ground trace of  
the PVIN bypass capacitor.  
Since the PH connection is the switching node, the output inductor should be located close to the PH pins  
and the area of the PCB conductor minimized to prevent excessive capacitive coupling.  
The output filter capacitor ground should use the same power ground trace as the PVIN input bypass  
capacitor. Try to minimize this conductor length while maintaining adequate width.  
It is critical to keep the feedback trace away from inductor EMI and other noise sources. Run the feedback  
trace as far from the inductor, phase (PH) node, and noisy power traces as possible. Avoid routing this trace  
directly under the output inductor if possible. If not possible, ensure that the trace is routed on another layer  
with a ground layer separating the trace and inductor.  
Keep the resistive divider used to generate VSENSE voltage as close to the device pin as possible in order to  
reduce noise pickup.  
The RT and COMP pins are sensitive to noise as well, so components around these pins should be located  
as close as possible to the IC and routed with minimal lengths of trace.  
Make all of the power (high current) traces as short, direct, and thick as possible.  
It may be possible to obtain acceptable performance with alternate PCB layouts, however this layout has  
been shown to produce good results and is meant as a guideline.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
9.4.2 Layout Example  
1
34  
33  
GND  
REFCAP  
2
3
4
5
EN  
RT  
COMP  
VSENSE  
SS/TR  
RSC  
32  
31  
30  
29  
VIN  
Trace away from  
switching node  
SYNC1  
SYNC2  
PVIN  
PWRGD  
PH  
6
7
28  
27  
Thermal Pad  
VOUT  
(Bottom Side)  
35  
PVIN  
PH  
8
L
26  
25  
24  
23  
22  
21  
PH  
PVIN  
PVIN  
9
10  
11  
PH  
As close to the  
device as  
possible  
COUT  
PVIN  
PH  
PH  
PGND  
12  
13  
RTOP  
PGND  
PGND  
PH  
PH  
PH  
14  
15  
16  
17  
20  
19  
18  
PGND  
PGND  
PGND  
Close to device  
and loop as  
small as possible  
PGND Pad  
(Bottom Side)  
36  
PH Pad  
(Bottom Side)  
37  
RBOTTOM  
PH  
PH  
9-6. PCB Layout Example for CDFP package  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
50  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
GND  
GND  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
1
NC  
2
NC  
NC  
3
EN  
REFCAP  
COMP  
VSENSE  
SS/TR  
RSC  
4
RT  
5
VIN  
6
Route VSENSE trace away from  
switching node (PH)  
VIN  
7
SYNC1  
SYNC2  
GND  
8
PWRGD  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PVIN  
PVIN  
PVIN  
PVIN  
PVIN  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PowerPADTM  
Place bypass  
capacitor as  
close to PVIN  
as possible  
L
COUT  
RTOP  
RBOT  
Place inductor and  
output capacitor close to  
device in order to  
minimize the current loop  
9-7. PCB Layout Example for HTSSOP Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS7H4001EVM-CVAL Evaluation Module (EVM) user's guide  
Texas Instruments, TPS7H4001QEVM-CVAL Evaluation Module User's Guide user's guide  
Texas Instruments, TPS7H4001-SP Single-Event Effects Test Report radiation report  
Texas Instruments, TPS7H4001-SP Total Ionizing Dose (TID) radiation report  
Texas Instruments, TPS7H4001-SP Neutron Displacement Damage Characterization radiation report  
Texas Instruments, TPS7H4001-SP Model user's guide  
Texas Instruments, Texas Instruments Engineering Evaluation Units versus MIL-PRF-38535 QML Class V  
Processing brochure  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
52  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
 
 
 
 
 
 
 
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
 
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
DDW0044F  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
TYP  
A
PIN 1 ID  
AREA  
42X 0.635  
44  
1
14.1  
13.9  
NOTE 3  
2X  
13.335  
22  
B
23  
0.27  
0.17  
44X  
6.2  
6.0  
0.1 C  
SEATING PLANE  
0.08  
C A B  
(0.15) TYP  
C
2.94  
2.42  
SEE DETAIL A  
22  
23  
EXPOSED  
THERMAL PAD  
7.96  
7.44  
45  
0.25  
1.2 MAX  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
0 - 8  
2X (0.33)  
NOTE 4  
DETAIL A  
TYPICAL  
1
44  
2X (0.96)  
NOTE 4  
4228322/A 12/2021  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Features may differ or may not be present.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
54  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DDW0044F  
PowerPAD TM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(5.2)  
NOTE 8  
SOLDER MASK  
DEFINED PAD  
(2.94)  
SEE DETAILS  
SYMM  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
(14)  
NOTE 8  
(1.1) TYP  
SYMM  
45  
(7.96)  
(R0.05) TYP  
(
0.2) TYP  
VIA  
23  
22  
METAL COVERED  
BY SOLDER MASK  
(1.15)  
TYP  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228322/A 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
8. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS7H4001-SP  
English Data Sheet: SLVSEN7  
TPS7H4001-SP  
ZHCSL64D APRIL 2019 REVISED MAY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DDW0044F  
PowerPAD TM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.94)  
BASED ON  
0.125 THICK  
STENCIL  
44X (1.45)  
1
44  
44X (0.4)  
42X (0.635)  
45  
SYMM  
(7.96)  
BASED ON  
0.125 THICK  
STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
22  
23  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
PAD 45:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.29 X 8.90  
2.94 X 7.96 (SHOWN)  
2.68 X 7.27  
0.125  
0.15  
0.175  
2.48 X 6.73  
4228322/A 12/2021  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSEN7  
56  
Submit Document Feedback  
Product Folder Links: TPS7H4001-SP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-1820501VXC  
ACTIVE  
CFP  
HKY  
34  
1
RoHS & Green  
AU  
N / A for Pkg Type  
-55 to 125  
5962-1820501VXC  
TPS7H4001MHKYV  
Samples  
5962R1820501V9A  
5962R1820501VXC  
ACTIVE  
ACTIVE  
XCEPT  
CFP  
KGD  
HKY  
0
25  
1
RoHS & Green  
RoHS & Green  
Call TI  
AU  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
Samples  
Samples  
34  
5962R1820501VXC  
TPS7H4001MHKYV  
5962R1820502PYE  
TPS7H4001HKY/EM  
TPS7H4001MDDWTSHP  
TPS7H4001Y/EM  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
CFP  
DDW  
HKY  
DDW  
KGD  
44  
34  
44  
0
250  
1
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
AU  
Level-3-260C-168 HR  
N / A for Pkg Type  
Level-3-260C-168 HR  
N / A for Pkg Type  
-55 to 125  
25 to 25  
R1820502PYE  
TPS7H4001HKY/EM  
7H4001SHP  
Samples  
Samples  
Samples  
Samples  
HTSSOP  
XCEPT  
250  
5
NIPDAU  
Call TI  
-55 to 125  
25 to 25  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962-1820501VXC  
5962R1820501VXC  
TPS7H4001HKY/EM  
HKY  
HKY  
HKY  
CFP  
CFP  
CFP  
34  
34  
34  
1
1
1
506.98  
506.98  
506.98  
32.77  
32.77  
32.77  
9910  
9910  
9910  
NA  
NA  
NA  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HKY0034A  
CFP - 2.55 mm max height  
S
C
A
L
E
0
.
8
0
0
CERAMIC FLATPACK  
7.82  
7.42  
B
A
15X 1.27  
1
34  
21.84  
21.34  
2X 20.32  
(19.3)  
18  
17  
0.48  
34X  
(7.24)  
2.55  
1.98  
METAL LID  
0.38  
0.2  
METAL LID  
C A B  
0.18  
0.10  
2X (1.518)  
1.04  
0.84  
C
2X (1.59)  
18  
17  
2X (2.32)  
2X (8.378)  
(1.883)  
PKG  
(15.31)  
34  
1
PKG  
BACKSIDE  
METALIZATION  
(THERMAL PAD)  
PIN 1 ID  
(4.62)  
27 0.5  
4224746/C 11/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. The lid is connected to Pin 1.  
4. The leads are gold plated.  
5. Metal lid is connected to backside pad metallization  
www.ti.com  
EXAMPLE BOARD LAYOUT  
HKY0034A  
CFP - 2.55 mm max height  
CERAMIC FLATPACK  
PKG  
(1.16) TYP  
(1.2) TYP  
PKG  
(0.683)  
(8.382)  
(1.09)  
(0.977)  
HEATSINK LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:7X  
4224746/C 11/2020  
www.ti.com  
GENERIC PACKAGE VIEW  
DDW 44  
6.1 x 14, 0.635 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224876/A  
www.ti.com  
PACKAGE OUTLINE  
DDW0044F  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
TYP  
A
PIN 1 ID  
AREA  
42X 0.635  
44  
1
14.1  
13.9  
NOTE 3  
2X  
13.335  
22  
B
23  
0.27  
0.17  
44X  
6.2  
6.0  
0.1 C  
SEATING PLANE  
0.08  
C A B  
(0.15) TYP  
C
2.94  
2.42  
SEE DETAIL A  
22  
23  
EXPOSED  
THERMAL PAD  
7.96  
7.44  
45  
0.25  
1.2 MAX  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
0 - 8  
2X (0.33)  
NOTE 4  
DETAIL A  
TYPICAL  
44  
1
2X (0.96)  
NOTE 4  
4228322/A 12/2021  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDW0044F  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(5.2)  
NOTE 8  
SOLDER MASK  
DEFINED PAD  
(2.94)  
SEE DETAILS  
SYMM  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
(14)  
NOTE 8  
(1.1) TYP  
SYMM  
45  
(7.96)  
(R0.05) TYP  
(
0.2) TYP  
VIA  
23  
22  
METAL COVERED  
BY SOLDER MASK  
(1.15)  
TYP  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228322/A 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
8. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDW0044F  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.94)  
BASED ON  
0.125 THICK  
STENCIL  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
45  
SYMM  
(7.96)  
BASED ON  
0.125 THICK  
STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
22  
23  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
PAD 45:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.29 X 8.90  
2.94 X 7.96 (SHOWN)  
2.68 X 7.27  
0.125  
0.15  
0.175  
2.48 X 6.73  
4228322/A 12/2021  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7H4001Y/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002-SP

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002HKH/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | HKH | 20 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4002Y/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003-SEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003MDDWSEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4003MDDWTSEP

采用增强型航天塑料的抗辐射、3V 至 7V、18A 同步降压转换器 | DDW | 44 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP-V02

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP_V01

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010-SEP_V03

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4010MKGDSEP

TPS7H4010-SEP Radiation Hardened 3.5-V to 32-V, 6-A Synchronous Step-Down Voltage Converter in Space Enhanced Plastic

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI