TPS9103_09 [TI]

POWER SUPPLY FOR GAAS POWER AMPLIFIERS;
TPS9103_09
型号: TPS9103_09
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

POWER SUPPLY FOR GAAS POWER AMPLIFIERS

放大器 功率放大器
文件: 总22页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
PW PACKAGE  
(TOP VIEW)  
Charge Pump Provides Negative Gate Bias  
for Depletion-Mode GaAs Power Amplifiers  
Buffered Clock Output to Drive Additional  
External Charge Pump  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GATE_BIAS  
V
DD  
CLK  
BCLK  
GND  
BATT_OUT  
BATT_OUT  
BATT_OUT  
SW_EN  
OSC_EN  
EN  
V
CC  
135-mHigh-Side Switch Controls Supply  
Voltage to the GaAs Power Amplifier  
C1–  
C1+  
BATT_IN  
BATT_IN  
BATT_IN  
PGP  
Power-Good Circuitry Prevents High-Side  
Switch Turn-on Until Negative Gate Bias is  
Present  
Charge Pump Can Be Driven From the  
Internal Oscillator or An External Clock  
PG  
GND  
10-µA Maximum Standby Current  
Low-Profile (1.2-mm Max Height), 20-Pin  
TSSOP Package  
description  
The TPS9103 is a highly integrated power supply for depletion-mode GaAs power amplifiers (PA) in cellular  
handsets and other wireless communications equipment. Functional integration and low-profile packaging  
combine to minimize circuit-board area and component height requirements. The device includes: a p-channel  
MOSFET configured as a high-side switch to control the application of power to the PA; a driver for the high-side  
switch with a logic-compatible input; a charge pump to provide negative gate-bias voltage; and logic to prevent  
turn-on of the high-side switch until gate bias is present. The high-side switch has a typical on-state resistance  
of 135 m.  
The TPS9103 is available in a 20-pin thin shrink small-outline package (TSSOP) or in chip form. Contact factory  
for die sales. The device operates over a junction temperature range of 25°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
CHIP FORM  
T
A
TSS0P  
(PW)  
(Y)  
25°C to 85°C  
TPS9103PWLE  
TPS9103Y  
The PW package is only available left-end taped and reeled  
(indicated by the LE suffix on the device type).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1996, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
functional block diagram  
14, 15, 16  
3
3
5, 6, 7  
BATT_IN  
BATT_OUT  
V
CC  
UVLO  
2
V
CC  
13  
9
18  
20  
SW_EN  
PG  
BCLK  
UVDLO  
V
DD  
EN  
11  
12  
8
V
ref  
REF  
+
OSC  
OSC_EN  
PGP  
19  
CLK  
PG  
Comparator  
R
Inverting  
Charge  
Pump  
4
3
0.6R  
C1+  
C1–  
1
GATE_BIAS  
10, 17  
GND  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
TPS9103Y chip information  
This chip, when properly assembled, displays characteristics similar to the TPS9103. Thermal compression or  
ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with  
conductive epoxy or a gold-silicon preform. Contact factory for die sales.  
BONDING PAD ASSIGNMENTS  
(1 )  
(3)  
(2)  
(20)  
(18)  
(19)  
V
CC  
V
DD  
2
20  
4
3
C1+  
C1–  
1
(4)  
GATE_BIAS  
5, 6, 7  
BATT_IN  
PGP  
14, 15, 16  
8
9
BATT_OUT  
TPS9103Y  
PG  
11  
12  
13  
(17)  
EN  
OSC_EN  
SW_EN  
CLK  
18  
19  
BCLK  
116  
(16)  
10, 17  
GND  
(5)  
(15)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
max = 150°C  
(6)  
T
J
TOLERANCES ARE ±10%.  
(14)  
(13)  
ALL DIMENSIONS ARE IN MILS.  
(7)  
(8)  
(9)  
(10)  
(11)  
(12)  
83  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
Terminal Functions  
TERMINAL  
NAME  
GATE_BIAS  
DESCRIPTION  
NO.  
1
Negative gate-bias output voltage  
V
CC  
2
Logic supply voltage  
C1–  
3
External capacitor connection (inverting charge pump)  
External capacitor connection (inverting charge pump)  
High-side switch input voltage  
High-side switch input voltage  
High-side switch input voltage  
Program input for power-good threshold  
Power-good output  
C1+  
4
BATT_IN  
BATT_IN  
BATT_IN  
PGP  
5
6
7
8
PG  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Ground  
EN  
Chip-enable input  
OSC_EN  
SW_EN  
BATT_OUT  
BATT_OUT  
BATT_OUT  
GND  
Oscillator-enable input  
High-side switch enable input  
High-side switch output voltage  
High-side switch output voltage  
High-side switch output voltage  
Ground  
BCLK  
Buffered clock output  
CLK  
Clock (bidirectional)  
V
DD  
Charge-pump supply voltage  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
detailed description  
high-side switch and driver (BATT_IN, BATT_OUT, SW_EN)  
The high-side switch is a p-channel MOSFET with a maximum on-state resistance of 180 mΩ  
(V  
= 6 V and V  
= 3.3 V). The driver pulls the gate of the high-side switch to GATE_BIAS instead of  
I(BATT_IN)  
CC  
ground to reduce the MOSFET on-state resistance. Gate breakdown considerations limit the voltage between  
BATT_IN and GATE_BIAS to 15 V. Extremely fast switching times are not required in this application, and the  
high-sideswitch/driverisdesignedtoprovide2µsmaximumswitchingtimeswithminimumpowerconsumption.  
The GaAs depletion-mode MOSFETs in the PA are protected from damage at power-up by internal logic that  
inhibits the driver until negative gate bias is available. The control input SW_EN is compatible with 3-V and 5-V  
CMOS logic; a logic-high input turns the high-side switch on.  
oscillator (OSC_EN, CLK)  
The internal oscillator drives the charge pump at 50 kHz with a nominal duty cycle of 50% when both the EN  
and OSC_EN inputs are logic lows. CLK outputs the internal oscillator signal (no buffer). A logic-high input to  
OSC_EN disables the internal oscillator and allows the charge pump to operate from an external clock  
connected to CLK. When an external clock with negative overshoot is applied, a Schottky diode must be added  
to limit the amplitude of the overshoot.  
charge pump (GATE_BIAS, C1+, C1–)  
The inverting charge pump generates the negative gate-bias voltage output at GATE_BIAS.  
chip enable (EN)  
A logic high on EN shuts down the internal functions of the TPS9103 and turns the bias system off, reducing  
the supply current to less than 10 µA. A low input on EN causes normal operation to resume.  
power good (PG, PGP)  
PG output is logic high when GATE_BIAS is in regulation. PG output is logic low when GATE_BIAS is not in  
regulation. The high-side switch is disabled and PG is forced to logic low whenever the magnitude of  
GATE_BIAS is less than 0.6 × V . A modified threshold for the power-good function can be achieved by  
DD  
programming PGP with an external resistor.  
undervoltage lockout for V  
and V  
(UVLO and UVDLO)  
DD  
CC  
Undervoltage lockout prevents operation at supply voltages too low for proper operation. When UVLO or  
UVDLO is active, all power-switch drives are forced to the off state and bias is removed from unneeded  
functions. Hysteresis is provided to minimize cycling on and off because of source impedance loading when the  
supply voltage is close to the threshold.  
buffered clock output (BCLK)  
The buffered clock output is a driver for an external charge pump. When the optional external charge pump is  
not needed, BCLK should be left unconnected. For more details, see the application section.  
supply input for inverting charge pump (V  
)
DD  
V
is the supply voltage for the inverting charge pump. In normal operation, V  
is connected to V . If the  
DD  
DD CC  
negative gate-bias needs to be larger than V  
connected to V . This can be supplied from an external charge pump driven from BCLK.  
(i.e., more negative), then a higher voltage supply needs to be  
CC  
DD  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T
A
= 70°C  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
PW  
645 mW  
6.5 mW/°C  
353 mW  
255 mW  
Maximum values are calculated using a derating factor based on R  
mounted on an FR4 board with no special thermal considerations.  
= 154°C/W for the package. These devices are  
θJA  
700  
PW Package  
= 154°C/W  
R
θJA  
600  
500  
400  
300  
200  
100  
0
25  
35  
45  
55  
65  
75  
85  
T
A
– Free-Air Temperature – °C  
Figure 1. Dissipation vs Free-Air Temperature  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
High-side switch input voltage range, BATT_IN (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 15 V  
Supply voltage range, V , V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
CC DD  
Differential voltage, |BATT_IN|–|GATE_BIAS| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
Input voltage range, SW_EN, EN, CLK, OSC_EN, PG . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
CC  
GATE_BIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
Output current, PG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
Output current, BCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Output current, GATE_BIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Output current, BATT_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A  
Peak output current, BATT_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A  
Maximum external clock frequency, CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 kHz  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25°C to 150°C  
J
stg  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltages are with respect to device GND.  
2. Differential voltage calculated: |V max| + |GATE_BIAS|  
I
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
recommended operating conditions  
MIN NOM  
MAX  
9
UNIT  
V
Input voltage, BATT_IN  
3
2.7  
–2  
0
Supply voltage, V  
V
5.5  
–5  
10  
2
V
CC, DD  
Output voltage, GATE_BIAS, V  
V
O
Continuous output current, GATE_BIAS  
Continuous output current, BATT_OUT  
Charge-pump capacitor value at C1+/C1–  
External clock frequency, CLK  
mA  
A
0
0.33  
25  
2
µF  
kHz  
V
75  
High-level input voltage, V  
IH  
Low-level input voltage, V  
SW_EN, EN, OSC_EN, CLK  
0.8  
1
V
IL  
Input current, I  
–1  
µA  
°C  
I
Operating junction temperature, T  
–25  
125  
J
electrical characteristics over recommended operating junction temperature range,  
BATT_IN = 6 V, V = V = 3.3 V, I = 0.5 A, I = 2 mA,  
CC  
DD  
O(BATT_OUT)  
O(GATE_BIAS)  
EN = OSC_EN = 0 V, SW_EN = V , C1 = 0.33 µF (unless otherwise noted)  
CC  
charge pump  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Output voltage  
–3 –3.10  
95  
–3.3  
Output resistance  
high-side switch  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
135  
MAX  
180  
210  
220  
260  
1
UNIT  
T
= 25°C  
A
T
A
= 25°C to 85°C  
= 25°C,  
Dran-to-source on-state resistance  
mΩ  
V
= 3 V  
T
A
160  
I(BATT_IN)  
T
A
= –25°C to 85°C, BATT_IN = 3 V  
V
= 9 V,  
= 9 V,  
T
A
= 25°C,  
= 85°C,  
SW_EN = 0 V  
SW_EN = 0 V  
I(BATT_IN)  
I(BATT_IN)  
Leakage current  
µA  
V
T
A
10  
Delay to high-level output  
Delay to low-level output  
SW_EN from 0 to V  
CC  
0.2  
0.9  
2
µs  
µs  
SW_EN from V  
to 0  
2
CC  
oscillator  
PARAMETER  
Frequency  
TEST CONDITIONS  
MIN  
35  
40%  
TYP  
MAX  
60  
UNIT  
V
V
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
50  
kHz  
CC  
Duty cycle  
50%  
60%  
CC  
buffered clock output (BCLK)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output resistance  
10  
High-level output voltage  
Low-level output voltage  
I(BCLK) = 30 mA  
I(BCLK) = 30 mA  
V
CC  
0.3  
V
0.3  
V
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
power good (PG)  
PARAMETER  
Threshold voltage  
TEST CONDITIONS  
= 2.7 V to 5.5 V  
MIN  
TYP  
MAX  
UNIT  
V
V
DD  
0.60 × V  
DD  
On-state voltage  
Off-state voltage  
Hysteresis  
I
= 500 µA,  
=–500µA,  
V
= 2.7 V to 5.5 V  
= 2.7 V to 5.5 V  
0.3  
V
O(PG)  
CC  
CC  
I
V
V
CC  
0.3  
V
O(PG)  
130  
mV  
power good (PGP)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input impedance  
85  
kΩ  
undervoltage lockout (UVLO + UVDLO)  
PARAMETER  
Start threshold voltage  
Hysteresis  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
CC  
increasing  
2.4  
2.7  
130  
mV  
supply current (I  
and I  
)
CC  
DD  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX  
10  
UNIT  
µA  
Standby mode  
EN = V  
CC  
= V  
Undervoltage lockout  
Operating mode  
V
< 2.3 V  
35  
50  
µA  
CC  
No load  
DD  
300  
500  
µA  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
PARAMETER MEASUREMENT INFORMATION  
5
6
7
14  
15  
16  
BATT_IN  
BATT_OUT  
BATT_OUT  
BATT_OUT  
V
I(BATT_IN)  
I
BATT_IN  
BATT_IN  
O(BATT_OUT)  
C1  
0.1 µF  
2
V
CC  
V
CC  
1
20  
+
GATE_BIAS  
V
DD  
C3  
C4  
I
O(GATE_BIAS)  
C5  
0.1 µF  
C6  
4.7 µF  
4.7 µF  
0.1 µF  
4
3
+
C1+  
TSP9103  
C2  
9
0.33 µF  
C1–  
V
CC  
PG  
PGP  
10 kΩ  
10 kΩ  
10 kΩ  
13  
11  
12  
8
SW_EN  
19  
18  
EN  
CLK  
OSC_EN  
BCLK  
I
O(BCLK)  
GND GND  
17 10  
Figure 2. Test Circuit  
4
3
V
CC  
2
1
0
– 1  
– 2  
GATE BIAS  
25 30  
– 3  
0
5
10  
15  
20  
35  
40 45  
50  
t – Time – ms  
Figure 3. GATE_BIAS Output Voltage Rise Time  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
PARAMETER MEASUREMENT INFORMATION  
I
V
– GATE_BIAS = 5 mA  
O
= V  
= 5 V  
CC  
DD  
20 mV/div  
0
5
10  
15  
20  
25  
30  
35  
40  
t – Time – µs  
Figure 4. Ripple on GATE_BIAS  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
FIGURE  
vs Gate-source voltage, dc  
5
6
r
Static drain-source on-state resistance  
Oscillator frequency  
DS(on)  
vs Temperature  
vs Supply voltage  
vs Temperature  
vs Output current  
vs CLK frequency  
vs Temperature  
vs Supply voltage  
vs Temperature  
7
F
osc  
8
9
V
V
Output voltage  
O
10  
11  
12  
13  
Threshold voltage  
IT  
Supply current (I  
+ I )  
CC DD  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
HIGH-SIDE SWITCH  
STATIC DRAIN-SOURCE ON-STATE RESISTANCE  
vs  
TEMPERATURE  
180  
190  
180  
GATE-SOURCE VOLTAGE,  
160  
140  
120  
100  
80  
dc (V  
–V  
)
I(BATT_IN)  
O(GATE_BIAS)  
170  
160  
150  
140  
130  
120  
110  
100  
60  
– 50 – 25  
0
25  
50  
75  
100  
125  
– 12  
– 11  
V
dc (V  
– 10  
– 9  
– 8  
– 7  
– 6  
T – Temperature –°C  
– Gate-Source Voltage,  
GS  
–V  
)
O(GATE_BIAS) I(BATT_IN)  
Figure 5  
Figure 6  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
TYPICAL CHARACTERISTICS  
OSCILLATOR FREQUENCY  
vs  
OSCILLATOR FREQUENCY  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
49  
49.5  
49  
3.3 V  
48  
47  
46  
48.5  
48  
2.7 V  
5 V  
47.5  
47  
2.5  
3
3.5  
4
4.5  
5
5.5  
– 50 – 25  
0
25  
50  
75  
100  
125  
V
CC  
– Supply Voltage – V  
T – Temperature – °C  
Figure 7  
Figure 8  
GATE BIAS  
OUTPUT VOLTAGE  
vs  
GATE BIAS  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
CLK FREQUENCY  
0
– 1  
– 2  
– 3  
– 4  
– 5  
– 6  
– 3  
– 3.05  
– 3.1  
V
= 2.7 V  
= 3.3 V  
CC  
– 3.15  
– 3.2  
V
CC  
V
= 5 V  
CC  
– 3.25  
– 3.3  
0
1
2
3
4
5
6
7
8
9
10  
25 30 35 40 45 50 55 60 65 70 75  
f – CLK Frequency – kHz  
I
O
– Output Current – mA  
Figure 9  
Figure 10  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
TYPICAL CHARACTERISTICS  
UNDERVOLTAGE LOCKOUT (V , V  
)
CC DD  
SUPPLY CURRENT (I  
vs  
+ I  
)
THRESHOLD VOLTAGE  
CC  
DD  
vs  
SUPPLY VOLTAGE  
TEMPERATURE  
2.65  
2.63  
450  
400  
350  
2.61  
2.59  
300  
2.57  
250  
200  
2.55  
– 50 – 25  
0
25  
50  
75  
100  
125  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
T – Temperature – °C  
Supply Voltage – V  
Figure 11  
Figure 12  
SUPPLY CURRENT (I  
vs  
+ I  
)
CC  
DD  
TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
5.5 V  
3.3 V  
– 50 – 25  
0
25  
50  
75  
100  
125  
T – Temperature – °C  
Figure 13  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
THERMAL INFORMATION  
Implementation of integrated circuits in low-profile and fine-pitch packages requires special attention to power  
dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection  
surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given  
component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power-dissipation capability of the PWB design  
Improving the thermal coupling of the component to the PWB  
Introducing airflow in to the system  
Using the given R  
for this IC, the maximum power dissipation can be calculated with the equation:  
θJA  
T max  
J
T
A
P max  
D
R
JA  
2
I
R
where I is the  
For the TPS9103, the power dissipation is in the PMOSFET. To calculate the power, use:  
current through the device and R is the internal resistance as shown in the electrical characteristics table.  
For a V of 6 V, the resistance at 85°C is 0.210 . At a current of 2 A, the peak power dissipation is:  
I
2
P
2
0.210  
0.84 W  
D
Assuming a duty cycle of 1/8 or 0.125, the average power is:  
0.84 W 0.125  
0.105 W  
The change in temperature is:  
T = 0.105 W × 154°C/W = 16.2°C  
and the junction temperature is:  
T = 85°C + 16.2°C =101.2°C  
J
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
APPLICATION INFORMATION  
introduction  
Traditionally the RF power amplifier (PA) is powered directly from the battery, with a switching arrangement for  
powering down when not in use. GaAs FET PAs require a negative bias voltage that must be present before  
the supply is connected, or there is risk of destroying the FET. Logic must be provided to ensure the presence  
of the negative bias voltage.  
A secondary charge pump is necessary for systems in which the supply voltage is insufficiently high – the  
negative bias produced from the charge pump is inadequate. In mobile telephony a second charge pump  
(regulated or unregulated) may also be needed, e.g. for varicap diodes/VCOs and some preamplifiers. The  
need for larger dynamic range or control-voltage range can become critical in certain applications.  
the TPS9103 approach  
TheTPS9103integratesaP-channelMOSFEThigh-sideswitchtogetherwithaselectableoscillatorandcharge  
pump for the GaAs FET power-amplifier gate bias, which is monitored.  
Complete precautions are taken to ensure that the PA supply is not enabled unless the gate bias is present while  
V
and V  
are also good. This protects the PA from inadvertent damage–without a major system size/cost  
CC  
DD  
increase.  
The bias regulation monitor is flexible, accommodating both fixed and programmable approaches. The fixed  
resistors, provided internally, set the trip voltage to –0.6 x V . If V is 5 V, then the trip voltage is –3 V. Should  
DD  
DD  
another value be preferred, it can be set by applying voltage divider to PGP. See the section “dimensioning the  
external voltage divider” for more details.  
The charge pump clock is also flexible. The on-chip oscillator runs at a nominal 50 kHz, or alternatively an  
external oscillator can be connected to CLK. When an external clock is used, OSC_EN should be taken high  
to disable the oscillator. When OSC_EN is low and the on-chip oscillator is used, CLK provides an unbuffered  
clock output.  
The circuit provides for a secondary charge pump driver. The buffered BCLK output can be used (with four  
external components) to provide a higher supply, both for those system functions that require it and for those  
GaAs PAs that need a more negative bias than is made possible by inverting the existing supply. This is  
facilitated by use of single-cell Li-ion batteries.  
Figure 14 shows the TPS9103 in a typical application.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
APPLICATION INFORMATION  
5
6
7
14  
15  
16  
Battery  
4 V to 8 V  
BATT_IN  
PA Drain  
BATT_OUT  
BATT_OUT  
BATT_OUT  
BATT_IN  
BATT_IN  
C1  
0.1 µF  
13  
4
XMIT  
SW_EN  
C1+  
1
PA Gate–3 V  
GATE_BIAS  
C5  
0.1 µF  
C6  
4.7 µF  
TSP9103  
C2  
0.33 µF  
+
3
C1–  
2
20  
11  
12  
9
V
3.3 V  
CC  
V
PG  
PGP  
CC  
+
C3  
C4  
0.1 µF  
8
V
DD  
4.7 µF  
19  
18  
EN  
CLK  
OSC_EN  
BCLK  
GND GND  
17 10  
Figure 14. Typical Application  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
APPLICATION INFORMATION  
capacitors of the internal inverting charge pump (see Figure 15)  
This charge pump inverts the voltage at V  
and provides a negative output voltage at GATE_BIAS.  
DD  
TPS9103  
C +  
Charge  
GATE_BIAS  
Pump  
C2  
C6  
+
C –  
Figure 15. Internal Inverting Charge Pump  
The output capacitor C6 limits the voltage ripple at GATE_BIAS:  
I
O(GATE_BIAS)  
V
Ripple  
C6  
f
With a capacitor C6 of 4.7 µF and an output current of 10 mA, the voltage ripple at GATE_BIAS is 42 mV.  
The capacitor C2 can be calculated using an equivalent resistance method:  
1
C2  
R
equivalent  
f
Using 0.33 µF for C2, the equivalent resistance is:  
1
R
60.6  
equivalent  
0.33  
Add the internal resistance of the switches (35 ) to get a total resistance seen by the current:  
60 35 95  
F
50 kHz  
R
TOTAL  
With a total resistance of 95 and 10 mA flowing through it, a voltage drop of 0.95 V occurs. With 5 V on V  
the output is 4.05 V with a 42 mV ripple.  
,
DD  
The capacitors should have a low equivalent series resistance (ESR) to maintain low ripple and low noise.  
Careful layout is required. In most instances it is advisable to add a small decoupling capacitor C5 close to the  
GATE_BIAS.Anadditional0.1-µFcapacitoratotherlocationsmaybenecessaryifthepoweramplifierislocated  
away from the TPS9103.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
APPLICATION INFORMATION  
dimensioning of the external charge pump  
For systems in which the bias voltage requirement is not met by inverting the power rail, the BCLK output can  
be used (with four passive components) to generate a higher V  
to produce the bias voltage. This voltage is also available for other parts of the main circuitry (see Figure 16).  
The higher voltage is then inverted as before  
DD.  
With the TPS9103, an external charge pump could be used to increase the voltage at V , thereby deriving a  
DD  
higher negative voltage at GATE_BIAS than would otherwise be available.  
V
CC  
D1  
BCLK  
V
V
DD  
1
D2  
C7  
+
C8  
Figure 16. External Charge Pump  
When BCLK is low, node 1 charges up to V  
– V  
. When BCLK goes high, node 1 is 2 V  
– V  
. The  
diode  
CC  
diode  
CC  
capacitor C8 charges up to 2 V  
– 2 V  
. This voltage can then be connected to V  
.
CC  
diode  
DD  
The magnitude of V  
of V  
is determined by the value of C8. Capacitor value must be large enough that  
DD  
ripple  
the discharge during one period is not as great as the maximum voltage variation allowable. The discharge of  
C8 depends on the load current.  
I
O(GATE_BIAS)  
C8  
V
ripple  
f
With a supply voltage of V  
= 3.3 V, a maximum voltage variation (V  
) of 2% = 66 mV and a load of  
ripple  
CC  
I
= 10 mA, the value of C8 is 3 µF. A 4.7 µF meets this requirement.  
CC  
The capacitance of C7 can be calculated using an equivalent resistance method:  
1
C7  
R
equivalent  
f
Using 0.22 µF for C7, the equivalent resistance is:  
1
R
90  
equivalent  
0.22  
Add the equivalent resistance to the internal resistance of the switch (10 ):  
= 90 + 10 = 100 Ω  
F
50 kHz  
R
TOTAL  
With a total resistance of 100 and with 10 mA flowing through it, a voltage drop of 1 V occurs. Thus with 3.3  
V on V the output is 4.2 V with a 42-mV ripple.  
CC  
Care must be taken that the maximum voltages are not exceeded when using BCLK as a charge pump (see  
Figure 17).  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
APPLICATION INFORMATION  
5
6
7
14  
15  
16  
Battery  
4 V to 8 V  
BATT_IN  
PA Drain  
BATT_OUT  
BATT_OUT  
BATT_OUT  
BATT_IN  
BATT_IN  
C1  
0.1 µF  
1
13  
4
PA Gate–3 V  
GATE_BIAS  
XMIT  
SW_EN  
C1+  
C5  
0.1 µF  
C6  
+
4.7 µF  
TSP9103  
C2  
0.33 µF  
3
2
C1–  
9
8
PG  
V
CC  
3.3 V  
V
CC  
PGP  
+
C3  
4.7 µF  
C4  
0.1 µF  
19  
20  
18  
CLK  
11  
12  
V
EN  
DD  
OSC_EN  
BCLK  
C7  
0.22 µF  
+
GND GND  
17 10  
C8  
4.7 µF  
Figure 17. TPS9103 Configured With External Charge Pump  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
dimensioning the external voltage divider  
Drain voltage should only be applied to the power amplifier when the complete negative voltage from the  
GATE_BIAS output is provided to the gate of the GaAs power amplifier. For that reason there is an internal  
voltage divider R/0.6R and a PG comparator in the TPS9103 (see Figure 15). When the voltage at the inverting  
input of the comparator reaches zero, the output goes high and the high-side MOSFET switches on, provided  
a SW_EN high signal is applied. For example, when the supply voltage at V  
switched on when the voltage at GATE_BIAS reaches –3 V.  
is 5 V, the high-side switch is  
DD  
This trip point can be changed to another value by using an external voltage divider connected between V  
,
DD  
GATE_BIAS, and PGP. The resistor values should be low enough to minimize the error that is present when  
the internal resistor values (typ R = 100 k± 30%) are taken into consideration. Therefore, the external resistor  
values, R1 and R2, are chosen within the 10-krange.  
TPS9103  
V
DD  
R1  
R2  
R
PG Comparator  
PGP  
0.6 R  
GATE_BIAS  
Figure 18. External Voltage Divider for Setting the Trip Point  
R1 = 10 k. The value of R2 can then be calculated using:  
0.6 R1  
R
V
trip  
R2  
[
]
R
0.6  
V
R1  
V
R1  
DD  
trip  
where V  
= supply voltage, and V = chosen value to trip PG comparator.  
DD  
trip  
The values of the internal resistor can vary about 30%, and can move the trip point. In a worst-case condition,  
with a resistor variation of 30%, the shifting of the trip point can be calculated to:  
R1 1.3  
R1  
R
0.6 R2  
R2 0.78  
0.6 R2  
R2 0.6 R  
R1  
R1  
R
V
V
trip_point  
DD  
R
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9103  
POWER SUPPLY FOR GaAs POWER AMPLIFIERS  
SLVS131A – OCTOBER 1995 – REVISED JULY 1996  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,32  
0,19  
0,65  
M
0,13  
14  
8
0,15 NOM  
4,50  
4,30  
6,70  
6,10  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
1,20 MAX  
0,10 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/D 10/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TPS9104

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9104IPT

SPECIALTY TELECOM CIRCUIT, PQFP48, PLASTIC, TQFP-48
TI

TPS9104IPTR

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9104PT

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9104Y

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9104_05

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY/AUDIO SYSTEM
TI

TPS9110

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY
TI

TPS9110IPW

Cellular Subscriber Terminal Power-Supply System 28-TSSOP -40 to 85
TI

TPS9110IPWLE

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY
TI

TPS9110IPWR

Cellular Subscriber Terminal Power-Supply System 28-TSSOP -40 to 85
TI

TPS9110Y

SPECIALTY TELECOM CIRCUIT, UUC28, DIE-28
TI

TPS9111

CELLULAR SUBSCRIBER TERMINAL POWER SUPPLY
TI