TPS9111Y [TI]

SPECIALTY TELECOM CIRCUIT, UUC28, DIE-28;
TPS9111Y
型号: TPS9111Y
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SPECIALTY TELECOM CIRCUIT, UUC28, DIE-28

电信 电信集成电路
文件: 总23页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
PW PACKAGE  
(TOP VIEW)  
Complete Power Supply for Cellular  
Handsets  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Three Low-Dropout Regulators (LDOs) with  
100-mV Dropout  
RESET  
VCP  
GND_CP  
CP  
V
CC  
PL  
2
3
GND  
ON  
Less Than 1 µA Supply Current in  
Shutdown Typ  
4
5
EN_CP  
GND  
EN  
CL  
250-ms Microprocessor Reset Output  
6
VL  
10-mA Charge-Pump Driver Configurable  
For Inverted or Doubled Output  
7
REF  
OFF  
VB  
8
ON  
Separate Enables for LDOs and Charge  
Pump  
9
VA  
10  
11  
12  
13  
14  
CA  
CB  
1.185-V Reference  
PA  
ON_REM  
GND  
EN_B  
PB  
GND  
EN_A  
28-Pin TSSOP Package  
V
CC  
description  
The TPS9111 incorporates a complete power supply system for a cellular subscriber terminal that uses battery  
packs with three or four NiMH/NiCd cells or a single lithium-ion cell. The device includes three low-dropout linear  
regulators rated for 3.3 V or 3 V at 100 mA each, a charge-pump driver, and logic that includes a 250-ms reset,  
on/off control, and processor interface. Regulators A and B and the charge-pump driver are disabled until  
regulator L (logic regulator) reaches the rated voltage and RESET is logic high. Regulators A and B and the  
charge-pump driver also have separate enables allowing circuitry to be powered up or down as necessary to  
conserve battery power.  
The TPS9111 operates over a free-air temperature range of –40°C to 85°C and is supplied in a 28-pin TSSOP  
package.  
AVAILABLE OPTIONS  
PACKAGED DEVICE  
TSSOP (PW)  
CHIP FORM  
(Y)  
T
A
40°C to 85°C  
TPS9111IPWLE  
TPS9111Y  
The PW package is only available left-end taped and reeled.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
functional block diagram  
VCP  
Charge-  
Pump  
Driver  
CP  
2
V
CC  
GND_CP  
EN_CP  
EN  
VB  
LDO  
Regulator  
B
CB  
PB  
Voltage  
Reference  
REF  
1 Ω  
1 Ω  
1 Ω  
UVLO  
and  
OTP  
VA  
LDO  
Regulator  
A
CA  
PA  
EN_A  
VL  
LDO  
Regulator  
L
EN_B  
GND  
CL  
PL  
4
Reset  
Generator  
RESET  
OFF  
ON  
ON  
ON_REM  
UVLO - Undervoltage lockout  
OTP - Overtemperature protection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
TPS9111Y chip information  
These chips, when properly assembled, display characteristics similar to those of the TPS9111. Thermal  
compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be  
mounted with conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
23  
22  
21  
20  
19  
18  
25  
24  
26  
17  
27  
28  
16  
15  
CHIP THICKNESS:  
15 TYPICAL  
BONDING PADS:  
3.3 × 3.3 MINIMUM  
T
J
max = 150°C  
TOLERANCES ARE ±10%.  
94  
14  
ALL DIMENSIONS  
ARE IN MILS.  
1
2
13  
12  
3
8
9
10  
11  
4
5
6
7
153  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
CA  
NO.  
10  
13  
11  
9
Regulator A filter capacitor connection  
EN_A  
PA  
I
I
Regulator A enable input. A logic low on EN_A turns on regulator A.  
Program A. PA provides programming input for regulator A.  
Regulator A output voltage  
VA  
O
CB  
19  
16  
15  
20  
24  
27  
23  
Regulator B filter capacitor connection  
EN_B  
PB  
I
I
Regulator B enable input. A logic low on EN_B turns on regulator B.  
Program B. PB provides programming input for regulator B.  
Regulator B output voltage  
VB  
O
CL  
Regulator L filter capacitor connection  
PL  
I
Program L. PL provides voltage programming input for regulator L.  
Regulator L output voltage  
VL  
O
GND  
6, 12,  
Ground. GND terminals should be externally connected to ground to ensure proper functionality.  
17, 26  
REF  
22  
O
1.185-V reference output. Decouple REF with an external 0.01-µF to 0.1-µF capacitor to ground.  
V
CC  
14, 28  
Supply voltage input. V  
proper functionality.  
terminals are not connected internally and must be externally connected to ensure  
CC  
CP  
4
5
O
I
Charge pump driver output  
EN_CP  
GND_CP  
VCP  
Charge pump driver enable input. Logic low on EN_CP turns on the charge pump.  
Charge pump driver ground  
3
2
Charge pump driver supply voltage  
EN  
7
I/O Enable signal input/output. A logic low on EN enables the TPS9111.  
OFF  
21  
8
I
O
I
Off-signal input. A logic low on OFF turns off the TPS9111.  
On-signal output. ON is the logical inversion of ON.  
ON  
ON  
25  
18  
1
On signal. A logic low on ON enables the TPS9111.  
ON_REM  
RESET  
I
Remote on. A logic high on ON_REM enables the TPS9111.  
Microprocessor reset output. RESET is a logic low for 250 ms at power-up.  
O
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
detailed description  
voltage reference  
The regulators and reset generator utilize an internal 1.185-V band-gap voltage reference. The reference isalso  
buffered and brought out on REF for external use; REF can source a maximum of 2 mA. A 0.01-µF to 0.1-µF  
capacitor must be connected between REF and ground.  
LDO regulators  
The TPS9111 includes three low-dropout regulators, implemented with 1-PMOS series-pass transistors, with  
quiescent supply currents of 100 µA. Each of the regulators can supply up to 100 mA of continuous output  
current. The 1-PMOS series-pass transistor achieves the dropout voltage of 100 mV at the maximum-rated  
output current. Each regulator output voltage can be independently programmed to either 3.3 V or 3 V using  
its programming control input PL, PA or PB (Px). A logic low on Px sets the output voltage of the regulator to  
3.3 V; a logic high sets it to 3 V.  
Each LDO contains a current limit circuit. When the current demand on the regulator exceeds the current limit,  
the output voltage drops in proportion to the excess current. When the excess load current is removed, the  
output voltage returns to regulation. Exceeding the current limit on VL can disable the TPS9111. If enough  
current demand is placed on VL, the output voltage drops below the reset threshold voltage causing RESET  
to go low, effectively unlatching the enable.  
VL is intended to be the primary supply voltage for the microprocessor and other system logic functions. VA and  
VB can power low-noise analog circuits and/or implement system power management. The enable terminals  
EN_A and EN_B are utilized to power down circuitry when it is not required. EN_A and EN_B are  
TTL-compatible inputs with 10-µA active current-source pullups. A logic low enables the respective regulator  
while a logic high pulls the regulator output voltage to ground and reduces the regulator quiescent current to  
leakage levels. EN_A and EN_B are not active until RESET is logic high.  
Stability of the LDOs is ensured by the addition of compensation terminals CL, CA, and CB, which connect to  
the output of the regulator through an internal 1-resistor. This compensation scheme allows for capacitors  
with equivalent series resistance (ESR) of up to 15 , eliminating the need for expensive, low-ESR capacitors.  
reset generator  
RESET is a microprocessor reset signal that goes to logic low at power-up, or whenever VL drops below 2.93 V  
(2.6 V for 3-V applications), and remains in that state for 250 ms after VL exceeds the RESET threshold (see  
Figure 5). The open-drain output has a 30-µA pullup that eliminates the need for an external pullup resistor and  
still allows it to be connected with other open-drain or open-collector signals. RESET is valid for supply voltages  
as low as 1.5 V.  
ON, OFF, ON, ON_REM and EN functions  
The ON input is intended to be the main enable for the TPS9111 and should be connected to ground through  
a pushbutton switch. Once the switch is pressed, internal logic pulls EN low. EN is designed to sink 3.2 mA and  
canbeused asapulldowntoenableotherfunctionsontheTPS9111orothersystemcircuitry. WhenENispulled  
low, the TPS9111 checks to make sure the supply voltage is above the undervoltage lockout (UVLO) threshold  
voltage and the die temperature is below 160°C. If both of these conditions are met, the reference circuitry,  
regulator L, reset generator, and other support circuitry are enabled. When RESET goes high, the system can  
respond with a logic high on OFF, which latches the TPS9111 on, and the ON pushbutton can then be released.  
The TPS9111 is disabled in a similar manner. If the ON pushbutton is pressed while the TPS9111 is enabled,  
ON responds with a logic high. Once this logic high is detected, the system can respond with a logic low on OFF,  
disabling the TPS9111 and reducing supply currents to 1 µA (see Figure 1).  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
ON, OFF, ON, ON_REM and EN functions (continued)  
ON_REM can be used in the same manner as ON in enabling or disabling the TPS9111. The signal is provided  
as a system interface to increase the flexibility of the system. EN can also be used as an input wired-OR open  
collector/drain to enable the TPS9111; however, it does not produce a logic signal on ON and, therefore, cannot  
be used in the disable sequence described above. It is not recommended that EN be used as the primary enable  
signal for the TPS9111.  
Enable Sequence  
Disable Sequence  
ON Must Be Held Low Until  
System Responds With A High  
Signal At OFF.  
ON Is Pressed To Turn Off  
The System (Phone).  
ON  
ON  
Once EN Goes Low, The Status Of The  
UVLO And The OTP Are Checked.  
EN  
VL  
If The UVLO And OTP Are Valid, VL  
And Other Functions Are Enabled.  
250 ms  
RESET  
250 ms After VL Rises Above The Reset  
Threshold Voltage, RESET Goes High.  
The System Can Now  
Respond With A High Signal  
At OFF.  
Once OFF And RESET Are High,  
The Enable Input Is Latched On.  
OFF  
System Detects The High  
Signal At ON And  
Responds With A Low  
Signal At OFF.  
VA  
VB  
EN_A And EN_B Are both Active And  
Low.  
Figure 1. Recommended Enable and Disable Sequence  
undervoltage lockout (UVLO)  
UVLOpreventsoperationofthefunctionsintheTPS9111untilthesupplyvoltageexceedsthethresholdvoltage,  
eliminating abnormal power-up conditions internally and externally, and providing an orderly turn-on.  
overtemperature shutdown  
When the die temperature exceeds 160°C, the thermal protection circuit shuts off the TPS9111. When the die  
temperature drops below 150°C, the device can be restarted with the ON input.  
charge pump driver  
An unregulated inverting or doubler charge pump is implemented by connecting a network of two capacitors  
and two diodes to CP. In the inverting configuration, the charge pump can power a liquid-crystal display (LCD)  
or provide gate bias for a GaAs power amplifier. A 5-V supply for flash-memory programming or powering the  
subscriber identity module (SIM) European applications can be achieved using the doubler configuration and  
an external LDO. A logic-low input to the charge-pump enable, EN_CP, turns on the oscillator and driver; a logic  
high turns them off. EN_CP input is disabled when RESET is asserted. EN_CP has a 10-µA internal pullup.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
DISSIPATION RATING TABLE 1 – Free-Air Temperature  
25°C DERATING FACTOR = 70°C  
T
A
T
A
T = 85°C  
A
POWER RATING  
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
PW  
700 mW  
5.6 mW/°C  
448 mW  
364 mW  
DISSIPATION RATING TABLE 2 – Case Temperature  
25°C DERATING FACTOR = 70°C  
T
C
T
C
T = 85°C  
POWER RATING  
C
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
C
PW  
4025 mW  
32.2 mW/°C  
2576 mW  
2093 mW  
MAXIMUM CONTINUOUS POWER DISSIPATION  
MAXIMUM CONTINUOUS POWER DISSIPATION  
vs  
vs  
FREE-AIR TEMPERATURE  
CASE TEMPERATURE  
1000  
5000  
800  
600  
400  
4000  
3000  
2000  
R
= 178°C/W  
θJA  
R
= 57°C/W  
θJC  
200  
0
1000  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
T
A
– Free-Air Temperature – °C  
T
C
– Case Temperature – °C  
Figure 3  
Figure 2  
†‡  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V , VCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 12 V  
CC  
Input voltage range at OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
Input voltage range at PL, PA, PB, EN, EN_A, EN_B,  
ON, ON_REM, EN_CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
CC  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See dissipation rating tables  
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead Temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltages are with respect to GND.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
recommended operating conditions  
MIN  
3
MAX  
10  
UNIT  
V
Supply voltage, V , VCP  
CC  
Input voltage, OFF  
0
5
V
Input voltage at PL, PA, PB, EN, EN_A, EN_B, ON, ON_REM, EN_CP  
Reference output current  
0
V
V
CC  
2
0
mA  
mA  
°C  
Continuous regulator output current  
Operating free-air temperature  
0
100  
85  
–40  
electrical characteristics over recommended operating free-air temperature range,  
= VCP = 4 V, Px = 0 V, I = 35 mA, OFF = VL, ON open, ON_REM = 0 V, Cx = 10 µF  
V
CC  
O(Vx)  
(unless otherwise noted)  
voltage reference (REF)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
T
A
= 25°C,  
I
O
= 0  
1.185  
Output voltage  
4 V V  
10 V,  
0 I 2 mA  
1.161  
1.209  
V
CC  
O
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effect must be  
taken into account separately.  
LDO regulators  
PARAMETER  
TEST CONDITIONS  
MIN  
3.25  
3.2  
TYP  
MAX  
3.35  
3.4  
UNIT  
T
= 25°C  
3.3  
V
V
V
A
0 I  
100 mA,  
3.5 V V  
10 V  
O(Vx)  
CC  
= 25°C  
A
Output voltage at VA, VB, VL (Vx)  
Px = V  
,
T
2.95  
3
3.05  
CC  
Px = V  
3.2 V V  
0 I  
O(Vx)  
100 mA,  
CC,  
CC  
2.9  
3.10  
200  
V
10 V  
Dropout voltage  
I
I
I
= 100 mA,  
V
= 3.2 V  
100  
30  
mV  
mV  
mV  
dB  
O(Vx)  
O(Vx)  
O(Vx)  
CC  
CC  
Load regulation  
= 0 mA to 100 mA  
= 100 mA,  
Line regulation  
V
= 3.5 V to 10 V  
10  
Ripple rejection  
f = 120 Hz  
60  
Quiescent current (each regulator)  
100  
µA  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effect must be  
taken into account separately.  
charge pump driver  
PARAMETER  
MIN  
TYP  
100  
50%  
15  
MAX  
UNIT  
Frequency  
50  
150  
kHz  
Duty cycle  
Output resistance  
30  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
RESET  
PARAMETER  
TEST CONDITIONS  
MIN  
2.871  
2.548  
125  
TYP  
MAX  
UNIT  
V
Input threshold voltage  
Input threshold voltage  
VL voltage decreasing  
2.93 2.989  
2.6 2.652  
VL voltage decreasing, PL = V  
See Figure 5  
V
CC  
Timeout delay at RESET  
High-level output voltage  
250  
375  
ms  
V
I
O
I
O
I
O
= –40 µA  
= 1 mA,  
2.4  
V
= 1.5 V  
0.4  
0.4  
CC  
Low-level output voltage  
V
= 3.2 mA  
Hysteresis  
40  
mV  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effect must be  
taken into account separately.  
logic inputs at EN_A, EN_B  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
High-level input voltage  
Low-level input voltage  
Input current  
2
0.8  
1
V
–20  
–10  
µA  
logic inputs at PL, PA, PB, OFF, ON_REM  
PARAMETER  
MIN  
MAX  
UNIT  
V
High-level input voltage  
Low-level input voltage  
Input current  
2
0.8  
1
V
–1  
µA  
logic inputs at ON  
PARAMETER  
MIN  
MAX  
UNIT  
V
High-level input voltage  
Low-level input voltage  
Input current  
2
0.8  
1
V
–20  
µA  
High and low level voltages are dependent on V  
(see Figure 17).  
CC  
logic inputs at EN  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
0.8  
UNIT  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
2.4  
V
V
V
V
I
I
= –50 µA OFF = 0  
2.4  
O
= 3.2 mA, ON = 0  
0.4  
O
High and low-level input voltages are dependent on V  
(see Figure 18).  
CC  
logic outputs at ON  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
High-level output voltage  
Low-level output voltage  
1-mA source current  
1-mA sink current  
2.4  
0.4  
V
overtemperature shutdown  
PARAMETER  
MIN  
TYP  
160  
10  
MAX  
UNIT  
°C  
Temperature threshold  
Temperature hysteresis  
°C  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
undervoltage lockout (UVLO)  
PARAMETER  
TEST CONDITIONS  
increasing  
MIN  
TYP  
MAX  
UNIT  
V
Threshold voltage  
V
1.80  
2.52  
CC  
Hysteresis  
50  
mV  
supply current  
PARAMETER  
Shutdown  
TEST CONDITIONS  
OFF = 0 V  
MIN  
TYP  
0.5  
MAX  
10  
UNIT  
µA  
Operating  
EN_CP = VCP  
0.7  
1
mA  
TPS9111Y electrical characteristics, T = 25°C, V  
= VCP = 4 V, Px = 0 V, I  
= 35 mA,  
J
CC  
O(Vx)  
OFF = VL, ON open, ON_REM = 0 V, Cx 10 µF (unless otherwise noted)  
=
voltage reference (REF)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
TEST CONDITIONS  
Output voltage  
I
O
= 0  
1.185  
V
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; the thermal effect must  
be taken into account separately.  
LDO regulators  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
UNIT  
V
Output voltage at VA, VB, VL (Vx)  
Dropout voltage  
P = V  
2.95  
3.05  
x
CC  
I
I
I
= 100 mA,  
V
= 3.2 V  
CC  
100  
30  
mV  
mV  
mV  
dB  
O(Vx)  
O(Vx)  
O(Vx)  
Load regulation  
= 0 mA to 100 mA  
= 100 mA,  
Line regulation  
V
CC  
= 3.5 V to 10 V  
10  
Ripple rejection  
f = 120 Hz  
60  
Quiescent current (each regulator)  
100  
µA  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effect must be  
taken into account separately.  
charge-pump driver  
PARAMETER  
MIN  
TYP  
100  
50%  
15  
MAX  
UNIT  
Frequency  
kHz  
Duty cycle  
Output resistance  
RESET  
PARAMETER  
TEST CONDITIONS  
VL voltage decreasing  
MIN  
TYP  
2.93  
2.6  
MAX  
UNIT  
Threshold voltage  
V
VL voltage decreasing, PL = V  
See Figure 5  
CC  
Delay  
250  
40  
ms  
Hysteresis  
mV  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effect must be  
taken into account separately.  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
V
CP  
14  
28  
2
4
3
22  
Voltage  
Reference  
Charge-Pump  
Driver  
REF  
0.1 µF  
20  
REF  
19  
+
Regulator  
B
10 µF  
5
16  
13  
15  
9
10  
+
Regulator  
A
10 µF  
11  
VL  
23  
24  
+
Regulator  
L
27  
10 µF  
Reset  
Generator  
1
RESET  
7
EN  
ON  
21  
25  
OFF  
8
ON  
18  
ON_REM  
6
12  
17  
26  
Figure 4. Test Circuit  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
PARAMETER MEASUREMENT INFORMATION  
VL  
V
IT+  
t
RESET  
RESET  
Timeout Delay  
t
Figure 5. RESET Timing Diagram  
5
4
3
V
= 4 V  
CC  
Px = 0 V  
Enable  
T
= 25°C  
= 0 mA  
A
O
2
1
I
Cx = 10 µF  
0
4
3
2
1
0
V
O
0
4
8
12  
16  
20  
t – Time – ms  
Figure 6. LDO-Regulator Output-Voltage Rise Time and Fall Time  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
PARAMETER MEASUREMENT INFORMATION  
125  
100  
75  
V
= 4 V  
CC  
Px = 0 V  
= 25°C  
T
A
Cx = 10 µF  
50  
25  
0
3.5  
3.4  
3.3  
3.2  
3.1  
0
0.5  
1
1.5  
2
t – Time – ms  
Figure 7. LDO-Regulator Load Transient, 1 mA to 100 mA Pulsed Load  
4.4  
4.2  
4
3.8  
3.6  
3.4  
3.3  
Px = 0 V  
3.2  
T
= 25°C  
= 10 mA  
A
I
O
Cx = 10 µF  
3.1  
0
0.3  
0.5  
0.8  
1
t – Time – ms  
Figure 8. LDO-Regulator Line Transient  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
9
I
Quiescent current  
Dropout voltage  
vs Supply voltage  
CC  
vs Output current  
vs Junction temperature  
vs Junction temperature  
vs Supply voltage  
vs Supply voltage  
vs Output current  
vs Supply voltage  
vs Supply voltage  
vs Supply voltage  
vs Supply voltage  
vs Frequency  
10  
11  
V  
Change in output voltage  
Output voltage, VL  
12  
O
V
13  
O
V  
Change in output voltage  
Change in output voltage  
Shutdown current  
14  
O
O
V  
15  
I
16  
CC  
Input threshold voltage, ON  
Input threshold voltage, EN  
Input threshold voltage, ON_REM  
Ripple rejection  
17  
18  
19  
20  
Output spectral noise density  
Change in frequency, CP  
Output resistance into CP  
Output resistance out of CP  
vs Frequency  
21  
vs Junction temperature  
vs Supply voltage  
vs Supply voltage  
22  
r
r
23  
O
24  
O
LDO REGULATORS  
DROPOUT VOLTAGE  
vs  
QUIESENT CURRENT  
vs  
SUPPLY VOLTAGE  
OUTPUT CURRENT  
160  
140  
120  
100  
80  
1
T
A
= 25°C  
Px = 0  
= 0  
I
O
0.9  
0.8  
0.7  
Px = V  
CC  
85°C  
60  
25°C  
Px = 0  
–40°C  
40  
0.6  
0.5  
20  
0
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
– Output Current – mA  
V
CC  
– Supply Voltage – V  
I
O
Figure 9  
Figure 10  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
TYPICAL CHARACTERISTICS  
LDO REGULATORS  
CHANGE IN OUTPUT VOLTAGE  
vs  
LDO REGULATORS  
DROPOUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
10  
8
140  
130  
120  
110  
V
= 4 V  
CC  
I
= 100 mA  
O
Px = 0  
Px = 0  
6
I
O
= 0 mA  
4
2
0
100  
90  
–2  
–4  
–6  
I
O
= 100 mA  
80  
70  
–8  
–10  
60  
–50  
–50 –25  
0
T
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100 125  
– Temperature – °C  
T
– Temperature – °C  
J
J
Figure 11  
Figure 12  
REGULATOR L  
LDO REGULATORS  
OUTPUT VOLTAGE  
vs  
CHANGE IN OUTPUT VOLTAGE  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
3.5  
3
4
Px = 0  
Px = 0 or  
Px = V  
T
A
= 25°C  
3
2
CC  
EN = 0  
T
I
= 25°C  
= 35 mA  
A
O
2.5  
2
1
0
1.5  
1
–1  
–2  
–3  
–4  
0.5  
0
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
3
4
5
6
7
8
9
10  
V
CC  
– Supply Voltage – V  
V
CC  
– Supply Voltage – V  
Figure 14  
Figure 13  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
TYPICAL CHARACTERISTICS  
LDO REGULATORS  
CHANGE IN OUTPUT VOLTAGE  
vs  
SHUTDOWN CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
4
3.5  
3
20  
V
= 4 V  
OFF = 0  
CC  
Px = 0 or Px = V  
T
A
CC  
15  
10  
= 25°C  
2.5  
2
5
0
–5  
1.5  
1
0.5  
0
–10  
–15  
–20  
T
= 25°C  
A
T
= 85°C  
A
T
A
= 40°C  
2
3
4
5
6
7
8
9
10  
0
10 20 30 40 50 60 70 80 90 100  
V
CC  
– Supply Voltage – V  
I
O
– Output Current – mA  
Figure 15  
Figure 16  
INPUT THRESHOLD VOLTAGE, ON  
INPUT THRESHOLD VOLTAGE, EN  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
1.8  
1.6  
1.4  
1.2  
1
4.9  
4.4  
OFF = 0 V  
EN = Open  
ON_REM = 0 V  
OFF = 0 V  
ON = Open  
ON_REM = 0 V  
–40°C  
3.9  
25°C  
85°C  
3.4  
2.9  
2.4  
1.9  
1.4  
0.8  
2
4
6
8
10  
2
3
4
5
6
7
8
9
10  
V
CC  
– Supply Voltage – V  
V
CC  
– Supply Voltage – V  
Figure 17  
Figure 18  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
TYPICAL CHARACTERISTICS  
LDO REGULATORS  
INPUT THRESHOLD VOLTAGE, ON_REM  
RIPPLE REJECTION  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
4
80  
60  
EN = Open  
ON = Open  
OFF = 0 V  
3.5  
3
2.5  
2
1.5  
1
40  
20  
V
T
= 4 V  
CC  
= 25°C  
A
Cx = 10 µF  
= 35 mA  
I
O
2
3
4
5
6
7
8
9
10  
0.01  
0.1  
1
10  
100  
1000  
V
CC  
– Supply Voltage – V  
f – Frequency – kHz  
Figure 19  
Figure 20  
REGULATOR L  
OUTPUT SPECTRAL NOISE DENSITY  
CHANGE IN FREQUENCY, CP  
vs  
vs  
FREQUENCY  
JUNCTION TEMPERATURE  
100  
10  
1
4
3
V
= 4 V  
VCP = 4 V  
CC  
Px = 0 V  
T
= 25°C  
= 35 mA  
A
O
I
2
1
0
–1  
–2  
–3  
1
10  
100  
1000  
10000  
–50  
–25  
0
25  
50  
75  
100  
125  
f – Frequency – Hz  
T
J
– Temperature – °C  
Figure 21  
Figure 22  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
TYPICAL CHARACTERISTICS  
OUTPUT RESISTANCE, CP  
vs  
OUTPUT RESISTANCE, CP  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
30  
25  
30  
25  
20  
Current Out of CP  
Current Into CP  
20  
15  
10  
85°C  
25°C  
15  
85°C  
10  
5
25°C  
–40°C  
5
0
–40°C  
0
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
V
– Supply Voltage – V  
V
– Supply Voltage – V  
CC(VCP)  
CC(VCP)  
Figure 23  
Figure 24  
THERMAL INFORMATION  
Using thermal resistance, junction-to-ambient (R  
equation:  
), maximum power dissipation can be calculated with the  
θJA  
T
T
J(max)  
R
A
P
D(max)  
JA  
Where T  
is the maximum allowable junction temperature or 150°C.  
J(max)  
This limit should then be applied to the internal power dissipation of the TPS9111. The equation for calculating  
total internal power dissipation of the TPS9111 is:  
P
V
V
I
V
I
D(max)  
I
X
X
I
Q
x
Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces,  
andthepresenceofotherheat-generatingcomponentsaffectthepowerdissipationlimitsofagivencomponent.  
Three basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PWB design  
Improving the thermal coupling of the component to the PWB  
Introducing airflow in the system  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
APPLICATION INFORMATION  
BATTERY  
1 µF  
Voltage  
Reference  
REF  
0.1 µF  
Charge Pump  
4.7 µF  
RF  
Section  
REF  
Regulator  
B
3.3 V  
7–13 µF  
Analog  
Section  
Regulator  
A
3.3 V  
7–13 µF  
Regulator  
L
3.3 V  
7–13 µF  
Reset  
Generator  
Processor  
and  
Logic  
RESET  
OFF  
Section  
EN  
ON  
ON  
ON_REM  
GND  
Figure 25. Typical Application  
LDOs (VL, VA, VB) output capacitors  
A 10-µF capacitor must be tied to Cx (CL, CA, or CB). The Cx terminal is connected internally to the output of  
the LDO through a 1-resistor. The stability of LDOs is dependent on the ESR of the output filter capacitor. Most  
LDOs are designed to be stable over a narrow range of ESR with lower limits and upper limits, thus limiting the  
type of capacitor that can be used. With the use of the internal 1-resistor, the lower ESR limit of the capacitor  
is eliminated, permitting the upper limit to be raised. Therefore, almost any tantalum or ceramic capacitor can  
be used, provided the ESR does not exceed 15 over operating temperature range.  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
APPLICATION INFORMATION  
charge pump design  
V
CC  
V
CC  
VCP  
CP  
VCP  
CP  
C1  
C1  
V
O
V
O
+
C2  
C2  
+
GND_CP  
GND_CP  
a. Voltage Inverter  
b. Voltage Doubler  
Figure 26. Charge-Pump Configurations  
The charge-pump terminal can drive either a voltage inverter or a voltage doubler. In either case only two  
capacitors and two signal diodes are needed. The output voltage is unregulated and a regulator may be added  
if needed.  
The charge transfer of C1 is:  
(
)
V
O
q
C1  
V
CC  
This occurs f times a second and the charge transfer per unit time (current) is:  
(
)
V
I
f
C1  
V
O
CC  
Rewriting this equation in the form of I = V/R gives:  
V
V
CC  
f
O
I
1
C1  
1
where  
is an equivalent resistor.  
f
C1  
An equivalent circuit can now be drawn taking the diodes into account.  
R
R
R
R
equiv  
internal  
equiv  
internal  
–(V  
–V  
)
2V  
–V  
CC diode  
CC diode  
+
C2  
C2  
+
a. Voltage Inverter  
b. Voltage Doubler  
Figure 27. Equivalent Circuit for Charge Pump  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
APPLICATION INFORMATION  
charge-pump design (continued)  
The output voltage for the doubler is then:  
V
2
V
2
V
I
R
CC  
diode  
O
total  
O
and the output voltage for the inverter is:  
(
)
V
V
2
V
I
R
CC  
diode  
O
total  
O
To determine the size of C1 use:  
I
C
f
V
where f = 100,000 and V = ripple voltage.  
For an output current of 10 mA calculate:  
0.01 A  
C1  
1 F  
100 kHz  
0.1 V  
ripple  
Because of losses caused by diode switching and ESR, the calculated capacitance should be multiplied by 1.5  
to 2. A 2-µF capacitance should drive a 10-mA voltage doubler or inverter.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS9111  
CELLULAR SUBSCRIBER TERMINAL  
POWER SUPPLY  
SLVS134A – NOVEMBER 1996 – REVISED APRIL 1998  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,19  
0,65  
M
0,10  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
1,20 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor  
product or service without notice, and advises its customers to obtain the latest version of relevant information  
to verify, before placing orders, that the information being relied on is current and complete.  
TI warrants performance of its semiconductor products and related software to the specifications applicable at  
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are  
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each  
device is not necessarily performed, except those mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death, personal injury, or  
severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED  
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI  
products in such applications requires the written approval of an appropriate TI officer. Questions concerning  
potential risk applications should be directed to TI through a local SC sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards should be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either  
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property  
right of TI covering or relating to any combination, machine, or process in which such semiconductor products  
or services might be or are used.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TPS9125

5 V/3 V SIM SUPPLY AND LEVEL SHIFTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS9125PW

5 V/3 V SIM SUPPLY AND LEVEL SHIFTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS9125PWR

5 V/3 V SIM SUPPLY AND LEVEL SHIFTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92001

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92001D

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92001DGK

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92001DGKR

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92001DR

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92002

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92002D

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92002DGK

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS92002DGKR

GENERAL PURPOSE LED LIGHTING PWM CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI