TPS92519-Q1 [TI]

汽车 2A 双路同步降压 LED 驱动器;
TPS92519-Q1
型号: TPS92519-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车 2A 双路同步降压 LED 驱动器

驱动 驱动器
文件: 总47页 (文件大小:4531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
TPS92519-Q1 4.5V 65V、双路、汽车2A 同步降LED 驱动器  
TPS92519-Q1 包含高级故障保护功能逐周期开关电  
流限制、自举欠压和热关断。该器件包括一个开漏故障  
输出以指示输出开路和短路情况。  
1 特性  
• 符合面向汽车应用AEC-Q100 标准  
1 40°C 125°C 的工作环境温度范围  
– 器HBM 分类等H1C  
– 器CDM 分类等C2  
提供功能安全  
TPS92519-Q1 采用 8.1mm × 11mm 热增强型 32 引脚  
HTSSOP 封装具有 2.75mm × 3.45mm 的底部外露  
焊盘。  
器件信息  
– 可帮助进行功能安全系统设计的文档  
4.5V 65V 的宽输入电压范围  
• 输出电流高2A精度4%  
• 自适应导通时间平均电流控制  
• 标称开关频率  
器件型号(1)  
封装尺寸标称值)  
封装  
TPS92519-Q1  
HTSSOP  
8.1mm × 11mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 通1 和通2 385kHz 435kHz  
– 通1 和通2 2MHz 2.1MHz  
• 高级调光操作  
LED+  
CCOMP2  
1
2
32  
COMP2  
UDIM2  
CSN2  
COUT2  
RCS2  
31  
30  
CSP2  
BST2  
CUV2  
3
– 精确模拟调光  
RUV22  
RUV21  
PGND  
PGND  
– 支持外PWM 调光输入  
– 针对外部分流调光LED 矩阵管理器进  
行优化  
L2  
4
GND  
VBST  
CBST2  
29  
28  
SW2  
SW2  
CIN2  
5V  
5
6
7
VIN2  
VIN2  
GND  
V5A  
27  
26  
25  
24  
23  
22  
RADJ21  
• 开关逐周期过流保护  
• 开关过热保护  
LED 开路和短路故障监控和报告  
FLT2  
IADJ2  
FSET  
EN  
CV5D  
5V  
Supply  
8
9
V5D  
RADJ11 RADJ22  
CV5A  
IADJ1  
FLT1  
2 应用  
10  
11  
12  
GND  
VIN1  
VIN1  
RADJ12  
汽车前照灯和自适LED 驱动模块  
21  
20  
VBST  
SW1  
SW1  
CIN1  
3 说明  
13  
GND  
PGND  
PGND  
CBST1  
L1  
14  
CUV1  
15  
19  
18  
RUV11  
BST1  
CSP1  
RUV12  
TPS92519-Q1 是一款单片双路同步降压 LED 驱动  
4.5V 65V 宽工作输入电压范围可独立为  
两串串联LED 供电。  
UDIM1  
RCS1  
CCOMP1  
COUT1  
16  
17  
COMP1  
CSN1  
TPS92519-Q1 实施自适应导通时间平均电流模式控制  
功能经设计可与分流 FET 调光技术和基于 LED 矩阵  
管理器的动态光束前照灯兼容。自适应导通时间控制功  
能可提供近乎恒定的开关频率可使用 FSET 输入来  
设置该开关频率。电感器电流感应和闭环反馈功能可在  
较宽的输入电压、输出电压和环境温度范围内实现  
±4% 以上的精度。  
LED+  
简化版原理图  
高性能 LED 驱动器可使用模拟调光或 PWM 调光技术  
来单独调制 LED 电流。通过在高阻抗模拟调整 (IADJ)  
输入范围内将电压从 140mV 改变为 2.45V可获得超  
16:1 范围的线性模拟调光响应。通过使用所需占空  
比和频率直接调制对应的 UDIM 输入引脚实现 LED  
电流的 PWM 调光。该器件支持高频分流 FET 调光,  
并与使LED 矩阵管理器的像素控制技术兼容。  
TPS92519-Q1 支持两个或更多通道的并行运行从而  
实现驱动大电流 LED 或激光二极管所需的灵活性。电  
流基于 IADJ 输入在并行通道之间共享不受元件容差  
和寄生效应的影响。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEG1  
 
 
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................27  
8 Application and Implementation..................................28  
8.1 Application Information............................................. 28  
8.2 Typical Application.................................................... 32  
9 Power Supply Recommendations................................37  
10 Layout...........................................................................37  
10.1 Layout Guidelines................................................... 37  
10.2 Layout Example...................................................... 38  
11 Device and Documentation Support..........................39  
11.1 Documentation Support.......................................... 39  
11.2 Receiving Notification of Documentation Updates..39  
11.3 支持资源..................................................................39  
11.4 Trademarks............................................................. 39  
11.5 术语表..................................................................... 39  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................9  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
Information.................................................................... 39  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (August 2021) to Revision A (December 2021)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
COMP2  
UDIM2  
PGND  
PGND  
VIN2  
1
32  
CSN2  
CSP2  
BST2  
SW2  
2
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
3
4
5
SW2  
VIN2  
6
FLT2  
IADJ2  
FSET  
EN  
GND  
7
V5A  
8
V5D  
9
GND  
10  
11  
12  
13  
14  
15  
16  
IADJ1  
FLT1  
SW1  
VIN1  
VIN1  
PGND  
PGND  
UDIM1  
COMP1  
SW1  
BST1  
CSP1  
CSN1  
5-1. DAP Package 32-Pin HTSSOP Top View  
5-1. Pin Functions  
PIN  
NO.  
DAP  
19  
I/O  
DESCRIPTION  
NAME  
BST1  
BST2  
P
Supply input for high-side MOSFET gate drive circuit. Connect a ceramic capacitor  
between BSTx and SWx pins. An internal diode is connected between V5D and BSTx.  
30  
P
COMP1  
COMP2  
CSN1  
CSN2  
CSP1  
16  
I/O  
Output of internal transconductance error amplifier. Connect an integral compensation  
network to ensure stability.  
1
I/O  
17  
I
I
I
I
Negative input () of internal rail-to-rail transconductance error amplifier. Connect  
directly to the negative node of the LED current sense resistor, RCS  
.
32  
18  
Positive input (+) of internal rail-to-rail transconductance error amplifier. Connect  
directly to the positive node of the LED current sense resistor, RCS  
.
CSP2  
31  
An active high logic input enables the devices. Pull this pin low to enter low power sleep  
state.  
EN  
24  
I
FLT1  
FLT2  
22  
27  
O
O
Open-drain fault indicator. Connect to V5D with a resistor to create an active low fault  
signal output.  
Frequency select input. Connect to V5D to operate at nominal frequency of 440 kHz.  
Connect to GND to operate at nominal frequency of 2.1 MHz.  
FSET  
GND  
25  
I
Signal ground. Return for the internal voltage reference and analog circuits. Connect to  
circuit ground to complete return path.  
7, 10  
G
IADJ1  
IADJ2  
23  
26  
I
I
Analog adjust input. Input below 100 mV disables the channel. The analog input can be  
varied between 140 mV to 2.4 V to set current reference from 10 mV to 173 mV.  
Connect a 0.1-μF capacitor from pin to GND.  
PGND  
SW1  
3, 4, 13, 14  
20, 21  
G
P
P
Ground returns for low-side MOSFETs  
Switching output of the regulator. Internally connected to both power MOSFETs.  
Connect to the power inductor.  
SW2  
28, 29  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
NO.  
DAP  
15  
I/O  
DESCRIPTION  
NAME  
UDIM1  
UDIM2  
I
I
Undervoltage lockout and external PWM dimming input. Connect to VIN through a  
resistor divider to implement input undervoltage protection. Diode couple external PWM  
signal to enable dimming. Locally decouple to GND using a 1-nF ceramic capacitor. Do  
not float.  
2
Analog supply voltage. Locally decouple to GND using a 100-nF to 1-µF ceramic  
capacitor located close to the controller.  
V5A  
V5D  
8
9
P
P
Digital supply voltage. Locally decouple to GND using a 2.2-µF to 4.7-µF ceramic  
capacitor located close to the controller.  
VIN1  
VIN2  
11, 12  
5, 6  
P
P
Power inputs and connections to high-side MOSFET drain node. Connect to the power  
supply and bypass capacitors CIN. The path from the VIN pin to high frequency bypass  
CIN and PGND must be as short as possible.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.5  
3.5  
0.3  
MAX  
5.5  
5.5  
70  
UNIT  
V
Supply Voltage  
Boot voltage  
V5A, V5D to GND  
BSTx to SWx  
V
BSTx to PGND  
V
SWx to PGND  
65  
V
Switch node voltage  
Drain node voltage  
Current  
SWx to PGND (< 10ns)  
VINx to PGND  
V
65  
1.5  
430  
0.5  
65  
V
CSNx to VINx (< 10µs)  
GND to CSPx, GND to CSNx (< 10µs)  
CSNx - VINx  
A
mA  
V
CSPx, CSNx to GND  
CSPx to CSNx  
V
0.5  
0.3  
0.3  
0.3  
0.3  
0.3  
65  
V
Inputs  
UDIMx to GND  
V
COMPx, IADJx, FSET, EN to GND  
FLTx to GND  
5.5  
5.5  
150  
260  
150  
V
Outputs  
V
Junction temperature  
Lead temperature  
Storage temperature  
TJ  
°C  
°C  
°C  
Soldering, 10 s  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±750  
±500  
V(ESD) Electrostatic discharge  
Corner pins (1, 16, 17, and 32)  
Other pins  
V
Charged device model (CDM), per  
AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
20  
NOM  
MAX  
63  
UNIT  
V
VIN  
Input voltage  
V5A, V5D  
dV5x/dt  
Bias supply  
5
5.3  
V
Bias supply slew-rate  
V/s  
V(CSP-  
CSN)  
Sensed inductor current ripple  
20  
mV  
dvCSP/dt  
ILED  
CSP slew-rate  
10  
2
V/µs  
A
LED current  
fUDIM  
TA  
External PWM dimming frequency  
Ambient temperature  
Junction temperature  
1000  
125  
150  
Hz  
°C  
°C  
40  
40  
TJ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS92519-Q1  
 
 
 
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
DEVICE  
DAP (HTSSOP)  
32  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance(2) (3)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
26.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
16.3  
8.3  
0.2  
8.2  
1.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The package thermal impedance is calculated in accordance with JESD51-7 standard with a 4-layer board and 2 W power dissipation.  
(3) A heatsink or airflow would yield a much better RθJA  
.
6.5 Electrical Characteristics  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL ANALOG AND GATE DRIVE SUPPLIES (V5D, V5A)  
Rising  
4.10  
4.00  
100  
4
4.26  
V
VV5D,A(UVLO) V5D and V5A UVLO threshold  
Falling  
3.84  
V
Hysteresis  
mV  
mA  
mA  
nA  
µA  
μA  
IV5A(STBY)  
IV5D(STBY)  
IV5A(SLEEP)  
IV5D(SLEEP)  
Analog supply stand-by current  
Gate drive supply stand-by current  
Analog supply sleep state current  
Gate drive supply sleep state current  
VUDIM1 = VUDIM2 = 0 V  
VUDIM1 = VUDIM2 = 0 V  
VEN = 0 V  
5.5  
1.3  
300  
24  
0.9  
14  
VEN = 0 V  
17  
IVINx(SLEEP) VIN pin sleep state current  
IV5D(SW) Gate drive supply switching current  
VINx = 15 V, VEN = 0 V  
2
4
VV5D = 5 V, VFSET = 5 V, CH1  
and CH2 switching  
6
10  
mA  
ENABLE INPUT (EN)  
Enable voltage rising threshold  
1.8  
V
VEN  
Enable voltgae falling threshold  
Enable input bias current  
0.8  
mV  
µA  
IEN  
10  
HIGH-SIDE FET (SWx, BOOTx)  
VINx = 6 V, VBSTx = 11 V, IHSx  
100 mA  
=
RDSx(ON-HS) High-side MOSFET on resistance  
240  
2.95  
184  
250  
465  
3.30  
245  
300  
mΩ  
V
Falling, VINx = 6 V, VSWx = 0 V  
2.60  
115  
200  
VBSTx(UV)  
Bootstrap UVLO threshold  
Hysteresis, VINx = 6 V, VSWx = 0  
V
mV  
µA  
IQ(xBST)  
Bootstrap pin quiescent current  
VBSTx = 5 V, VSWx = 0 V  
LOW-SIDE FET (SWx)  
RDSx(ON-LS) Low-side MOSFET on resistance  
HIGH-SIDE FET CURRENT LIMIT  
VINx = 6 V, ILSx = 100 mA  
240  
465  
mΩ  
IHSx(ILIM)  
tHSx(LEB)  
tHSx(RES)  
High-side current limit threshold  
VINx = 6 V  
VINx = 6 V  
VINx = 6 V  
2.8  
35  
3.5  
60  
20  
4.2  
80  
A
High-side current sense leading-edge  
blanking period  
ns  
ns  
Current limit response time  
LOW-SIDE FET CURRENT LIMIT  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
 
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILSx(ILIM)  
tLSx(LEB)  
Low-side sinking current limit threshold VINx = 6 V  
1.67  
2.50  
3.5  
A
Low-side current sense leading-edge  
VINx = 6 V  
76  
ns  
blanking period  
SWITCHING FREQUENCY (FSET)  
Frequency set input rising threshold  
1.8  
V
V
VFSET  
Frequency set input falling threshold  
Frequency set input bias current  
0.8  
IFSET  
10  
µA  
VFSET = 0 V, VIN = 50 V, VCSP  
38 V  
=
=
=
=
384  
ns  
µs  
ns  
µs  
tON(SW1)  
Channel 1 on-time  
Channel 2 on-time  
VFSET = 5 V, VIN = 50 V, VCSP  
25 V  
1.36  
365  
VFSET = 0 V, VIN = 50 V, VCSP  
38 V  
tON(SW2)  
VFSET = 5 V, VIN = 50 V, VCSP  
25 V  
1.20  
ANALOG ADJUST SETTING AND CURRENT SENSE AMPLIFIER (IADJx, CSPx, CSNx)  
VIADJx(CLP)  
IADJx internal limit  
2.38  
2.45  
140  
100  
2.52  
V
Rising, VINx = 6 V  
Falling, VINx = 6 V  
mV  
mV  
VIADJx(SD)  
Shutdown threshold  
VCSPx = 6 V,  
VIADJx > 2.45V  
167.5  
83.0  
29.0  
6.5  
173.0  
88.5  
34.5  
12.5  
178.5  
94.0  
40.0  
18.5  
mV  
mV  
mV  
mV  
VCSPx = 6 V,  
VIADJx = 1.22V  
V(CSPx-CSNx) Current sense threshold  
VCSPx = 6 V,  
VIADJx = 460mV  
VCSPx = 6 V,  
VIADJx = 150mV  
gmx(LV)  
Level shift amplifier transconductance VINx = 63 V, VCSNx = 5 V  
50  
1.71  
1.50  
µA/V  
V
Rising  
Output short circuit detection threshold  
Falling  
VCSPx(SHT)  
V
ON-TIME GENERATOR  
tONx(MIN)  
Minimum on-time.  
VINx = 4.5 V  
VINx = 4.5 V  
90  
57  
110  
78  
130  
86  
ns  
ns  
OFF-TIME GENERATOR  
tOFFx(MIN)  
Minimum off-time  
PWM DIMMING and PROGRAMMABLE UVLO INPUT (DIMx)  
Rising  
2.45  
2.35  
1.22  
1.02  
2.52  
1.27  
V
V
V
V
VUDIMx(DO)  
UDIM dropout detection threshold  
Falling  
Rising  
Falling  
1.95  
VUDIMx(EN)  
UDIM undervoltage lockout threshold  
0.97  
6.3  
UDIM source current (UVLO  
hysteresis)  
IUDIMx(UVLO)  
VUDIMx = 1.5 V  
10  
12  
µA  
ERROR AMPLIFIER (COMPx)  
gM Transconductance  
VINx = 63 V  
450  
45  
µA/V  
µA  
VINx = 63 V, V(CSPxCSNx) = 0 V,  
VIADJx = 1.4 V  
ICOMPx(SRC) COMPx current source capacity  
ICOMPx(SINK) COMPx current sink capacity  
VINx = 63 V, V(CSPxCSNx) = 200  
mV, VIADJx = 1.4 V  
45  
µA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
-40°C TJ 150°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D =CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx  
100 mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
mV  
V
EAx(BW)  
EA(VD)  
EA(CM)  
Bandwidth  
Unity gain  
3
Input differential sense range  
Input common mode range  
225  
225  
VINx = 63 V  
VUDIMx = 0 V  
Rising  
0
VINx 0.5  
ICOMPx(LKG) COMPx leakage current  
2.5  
2.45  
425  
3.2  
nA  
V
VCOMPx(ST) COMPx startup threshold  
Hysteresis  
Rising  
mV  
V
3.0  
COMPx over-voltage detection  
VCOMPx(OV)  
threshold  
Hysteresis  
75  
mV  
RCOMPx(DCH) COMPx discharge FET resistance  
VCOMPx(RST) Reset voltage  
230  
100  
Ω
Falling  
mV  
FAULT INDICATOR (FLT)  
R(FLTx)  
TOC  
Fault pin pull-down resistance  
Hiccup retry delay time  
3
7
Ω
3.6  
ms  
THERMAL SHUTDOWN  
TSD Thermal shutdown threshold  
175  
°C  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
174.5  
174  
10  
7.5  
5
173.5  
173  
2.5  
0
-2.5  
-5  
172.5  
172  
-7.5  
-10  
171.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
0.024  
0.524  
1.024  
1.524  
2.024  
2.524  
Temperature (°C)  
VIADJ (V)  
VCSN = 3 V  
VCSN = 3 V  
VIN = 60 V  
6-1. V(CSPCSN) Current Sense Threshold vs Temperature  
6-2. V(CSPCSN) Current Sense Error vs IADJ Count  
24  
1000  
1 LED  
3 LED  
6 LED  
9 LED  
12 LED  
15 LED  
21  
18  
15  
12  
9
800  
600  
400  
200  
0
6
3
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
-200  
Average Inductor Current (A)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
CSN Voltage, VCSN (V)  
3
L = 68 µH  
VIN = 60 V  
VIADJ =0 V  
6-4. Minimum Ripple Voltage vs Average Inductor Current  
6-3. CSN Source Current vs CSN Voltage  
4.22  
4.18  
4.14  
4.1  
19.8  
19.5  
19.2  
18.9  
18.6  
18.3  
18  
Rising  
Falling  
4.06  
4.02  
3.98  
3.94  
3.9  
17.7  
17.4  
17.1  
16.8  
16.5  
16.2  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
Temperature (°C)  
6-5. V5D,A POR Threshold vs Temperature  
6-6. V5D Sleep Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
2.965  
2.955  
2.945  
2.935  
2.925  
2.915  
2.905  
2.895  
2.885  
2.875  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
6-7. High Side MOSFET On Resistance vs Temperature  
6-8. Bootstrap UVLO Threshold vs Temperature  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
155  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
Temperature (°C)  
6-9. Bootstrap UVLO Hysteresis vs Temperature  
400  
6-10. High-Side Current Limit Threshold vs Temperature  
3
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
2.8  
2.6  
2.4  
2.2  
2
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
6-11. Low-Side MOSFET On Resistance vs Temperature  
6-12. Low-Side Sinking Current Limit Threshold vs  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
2.452  
2.451  
2.45  
113  
112.5  
112  
2.449  
2.448  
2.447  
2.446  
2.445  
111.5  
111  
110.5  
110  
109.5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
Temperature (°C)  
6-13. IADJ Internal Limit vs Temperature  
6-14. Minimum On-time vs Temperature  
80  
79  
78  
77  
76  
75  
74  
1.4  
1.3  
1.2  
1.1  
1
Rising  
Falling  
0.9  
0.8  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
Temperature (°C)  
6-16. UDIM Undervoltage Lockout Threshold vs Temperature  
6-15. Minimum Off-time vs Temperature  
2.58  
2.53  
2.48  
2.43  
2.38  
2.33  
2.28  
3.24  
3.23  
3.22  
3.21  
3.2  
Rising  
Falling  
3.19  
3.18  
3.17  
3.16  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
Temperature (°C)  
6-17. UDIM Dropout Detection Threshold vs Temperature  
6-18. COMP Overvoltage Detection Threshold vs  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
TA = TJ = 25°C, V5D = V5A = 5 V, VIN = 24 V, VUDIMx = 5 V, CV5D = CV5A = 4.7 µF CBSTx = 0.1 µF, CCOMPx = 1 nF, RCSx = 100  
mΩ, no load on SWx, FLTx pin floating (unless otherwise noted)  
0.975  
0.95  
0.925  
0.9  
30  
27.5  
25  
22.5  
20  
0.875  
0.85  
0.825  
0.8  
17.5  
15  
12.5  
10  
3 LEDs  
6 LEDs  
9 LEDs  
12 LEDs  
7.5  
5
0.775  
0.75  
0
200 400 600 800 1000 1200 1400 1600 1800  
LED Current (mA)  
2.5  
0
-40 -20  
VFPIN = 5 V  
VIN = 60 V  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
6-20. Efficiency vs LED Current  
6-19. COMP Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92519-Q1 is a dual synchronous buck LED driver with a 4.5-V to 65-V input voltage range. The device  
can deliver up to 2 A of continuous current per channel and power two independent strings of one to 16 series-  
connected LEDs. The device implements an adaptive on-time current regulation control technique to achieve  
fast transient response. This architecture uses a comparator and a one-shot on-timer that varies inversely with  
input and output voltage to maintain a near-constant frequency. With the FSET pin connected to V5D the on-time  
generator ensure near constant frequency of 385 kHz for channel 1 and 440 kHz for channel 2. With the FSET  
pin grounded the on-time generator is programmed to operate channel 1 at approximately 2 MHz and channel 2  
at 2.15 MHz. The on-time between two channels is offset to ensure low EMI signature. The integrated low offset  
rail-to-rail error amplifier enables closed-loop regulation of LED current and ensures better than 4% accuracy  
over a wide input, output, and temperature range.  
The LED current reference is set by forcing voltage on IADJ input and can be varied from 140 mV to 2.45 V to  
achieve over a 16:1 linear analog dimming range. Pulse Width Modulation (PWM) dimming of the LED current is  
achieved by modulating the duty cycle of external voltage signal at UDIMx input. The external UDIMx input acts  
as an enable and directly controls the LED current. This device optimizes the inductor current response and is  
capable of achieving over a 1000:1 PWM dimming ratio.  
The device incorporates an enhanced programmable fault feature including the following:  
Cycle-by-cycle switch overcurrent limit  
Input undervoltage protection  
Boot undervoltage protection  
Comp overvoltage protection  
Output open circuit indication  
Output short circuit indication  
In addition, Thermal Shutdown (TSD) protection is implemented to limit the junction temperature at 175°C  
(typical). The open-drain fault output, FLTx, indicates the status of the LEDs and is forced low whenever an  
output open or short fault is detected by the device.  
Toggling the enable input, EN, low forces the device in low-power sleep state. In this state, both channels are  
disabled and analog supply, V5A, is disconnected to reduce the bias current drawn by the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS92519-Q1  
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
V5D  
BST1  
VIN1  
+
UVLO  
por  
Rising: 4.1 V  
Falling: 4.0 V  
Hys: 100 mV  
uvlo  
VBG  
ch1_en  
V5A  
Analog Supply  
Sleep Enable  
Bandgap  
2VBG  
LEB  
bstuv1  
lsilim1  
hsilim1  
slp_o  
slp_o  
Control  
and  
Switch  
Fault  
Thermal  
Sensor  
Current  
Limit  
Circuit  
+
œ
3 V  
Logic  
SW1  
VIADJ1  
+
IADJ1  
Current  
Limit  
Circuit  
VBG  
PWM &  
Dropout  
Detection  
pwm1  
dropout1  
+
+
V5D  
LEB  
V5A  
2VBG  
VIN1  
PGND  
On Time  
Control  
VIN1  
10 A  
ton1  
UDIM1  
EN  
CSP1  
CSN1  
Valley Current  
Control  
2VBG  
Toffmin1  
slp  
R
V-I Converter  
VIADJ1  
VCSN1  
+
FSET  
FLT1  
+
ton1  
ton2  
pwm1  
open1  
LED Fault  
Detection  
short1  
Logic  
14R  
COMP1  
open1  
Channel 1  
short1  
open2  
short2  
FLT2  
BST2  
VIN2  
SW2  
VIADJ2  
+
IADJ2  
PGND  
CSP2  
CSN2  
COMP2  
Channel 2  
Input  
UVLO &  
PWM  
pwm2  
dropout2  
UDIM2  
7.3 Feature Description  
7.3.1 Buck Converter Switching Operation  
The following operating description of the TPS92519-Q1 refers to the Functional Block Diagram and the  
waveforms in 7-1. The main control loop of the TPS92519-Q1 is based on an adaptive on-time pulse width  
modulation (PWM) technique that combines a constant on-time control with an inductor valley current sense  
circuit for pseudo-fixed frequency operation. This proprietary control technique enables closed-loop regulation of  
LED current and fast dynamic response necessary to meet the requirements for LED pixel control and LED  
matrix beam applications.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
V(CSP-CSN)  
IL(PK) ìRCS  
V
IN - VCSN  
L
VCSN  
ìRCS  
L
ìRCS  
VVAL  
t
VSW  
VIN  
0
t
tON  
tOFF  
tSW  
7-1. Adaptive On Time Control Buck Converter Waveforms  
In steady state, the high-side MOSFET is turned on at the beginning of each cycle. The on-time duration of this  
MOSFET is controlled by an internal one-shot timer and the high-side MOSFET is turned off after the timer  
expires. The one-shot timer duration is set by the output voltage measured at the CSP pin, VCSP, and the input  
voltage measured at the VIN pin, VIN, to maintain a pseudo-fixed frequency. During the on-time interval, the  
inductor current increases with a slope proportional to the voltage applied across its terminals (VIN VCSP).  
The low-side MOSFET is turned on after a fixed deadtime and the inductor current then decreases with the  
constant slope proportional to the output voltage, VCSP. Inductor current measured by the external sense resistor  
is compared to the valley threshold, VVAL, by an internal high-speed comparator. This MOSFET is turned off and  
the one-shot timer is initiated when the sensed inductor current falls below the valley threshold voltage. The  
high-side MOSFET is turned on again after a fixed deadtime.  
The internal rail-to-rail error amplifier sets the valley threshold voltage and regulates the average inductor current  
based on a reference set by IADJx input. A simple integral loop compensation circuit consisting of a capacitor  
connected from the COMP pin to GND provides a stable and high-bandwidth response. As the inductor current  
is directly sensed by an external resistor, the device operation is not sensitive to the ESR of the output  
capacitors and is compatible with common multi-layered ceramic capacitors (MLCC).  
7.3.2 Switching Frequency and Adaptive On-Time Control  
The TPS92519-Q1 uses an adaptive on-time control scheme and does not have a dedicated on-board oscillator.  
The one-shot timer is programmed by the voltage on FSET input. The on-time is calculated internally using 方程  
1 and is inversely proportional to the measured input voltage, VIN, and proportional to the measured CSP  
voltage, VCSP  
.
VCSP  
tON = k ì  
V
IN  
(1)  
Constant, κ, is set by the FSET pin logic.  
2.606ì10-6 for channel 1  
2.285ì10-6 for channel 2  
¤
Œ
k =  
k =  
VFSET > 1.8 V  
Œ
4.890ì10-7 for channel 1  
4.676ì10-7 for channel 2  
¤
Œ
VFSET < 0.8 V  
Œ
(2)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS92519-Q1  
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
Given the duty ratio of the buck converter is VCSP / VIN, the switching period, TSW, remains nearly constant over  
all operating points. Use 方程3 to calculate the switching period.  
V
IN  
TSW = tON  
ì
= k  
VCSP  
(3)  
(4)  
Use 方程4 to calculate the switching frequency.  
1
fSW  
=
k
7.3.3 Minimum On-Time, Off-Time, and Inductor Ripple  
Buck converter operation is impacted by minimum on-time, minimum off-time, and minimum peak-to-peak  
inductor ripple limitations. The converter reaches the minimum on-time when operating with high input voltage  
and low-output voltage. In this control scheme, the off-time continues to increase and the switching frequency  
reduces to regulate the inductor current and LED current to the desired value.  
VOUT(MIN)  
fSW(MIN)  
=
; tON = tON(MIN)  
tON(MIN) ì V  
IN(MAX)  
(5)  
The converter reaches the minimum off-time when operating in dropout (low input voltage and high output  
voltage). As the on-time and off-time are fixed, the duty cycle is constant and the buck converter operates in  
open-loop mode. The inductor current and LED current are not in regulation. The converter continues to switch  
unless disabled by the IADJx input.  
The behavior and response of valley comparator is dependent on sensed peak-to-peak voltage ripple,  
ΔV(CSP-CSN), and is a function of current sense resistor, RCS, and peak-to-peak inductor current ripple,  
ΔiL(PK-PK). To ensure periodic switching, the sensed peak-to-peak ripple must exceed the minimum value. At  
high (near 100%) or low (near 0%) duty cycles, the inductor current ripple is not sufficient to ensure periodic  
switching. Under such operating conditions, the converter transitions from periodic switching to a burst  
sequence, forcing multiple on-time and off-time cycles at a rate higher than the programmed frequency. Although  
the converter cannot operate in a periodic manner, the closed-loop control continues regulating the average LED  
current with a larger ripple value corresponding to higher peak-to-peak inductor ripple. TI recommends choosing  
an inductor, output capacitor, and switching frequency to ensure minimum sensed peak-to-peak ripple voltage  
under nominal operating condition is greater than 20 mV. The Application and Implementation section  
summarizes the detailed design procedure.  
7.3.4 Enable  
The TPS92519-Q1 has an enable input EN for start-up and shutdown control of the output. If the enable input is  
greater than 1.8 V then both channels are enabled. If the enable pin is pulled below 0.8 V, the channels are  
disabled and the TPS92519-Q1 is switched to a low IQ shutdown mode. In this mode, the device draws a 2-μA  
typical current from the VIN pin and 17-μA typical from V5D pin. TI does not recommend leaving EN pin  
floating.  
7.3.5 LED Current Regulation and Error Amplifier  
The reference voltage, VIADJ, is internally scaled by a gain factor of 1/14 through a resistor network. An internal  
rail-to-rail error amplifier generates an error signal proportional to the difference between the scaled reference  
voltage (VIADJ / 14) and the inductor current measured by the differential voltage drop between CSP and CSN,  
V(CSP-CSN). This error drives the COMP pin voltage, VCOMP, and directly controls the valley threshold of the  
inductor current. Zero average DC error and closed-loop regulation is achieved by implementing an integral  
compensation network consisting of a capacitor connected from the output of the error amplifier to GND. As a  
good starting point, TI recommends a capacitor value between 1 nF and 10 nF between the COMP pin and  
GND. The choice of compensation network must ensure a minimum of 60° of phase margin and 10 dB of gain  
margin. The Application and Implementation section summarizes the detailed design procedure.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
CSPx  
CSNx  
Current Sense Amplifier  
gM  
Valley Current  
Control  
10k  
10k  
+
COMPx  
VIADJx(CLP)  
Division by 14  
V-I Converter  
+
VIADJx  
0.14 V to 2.45 V  
140k  
7-2. Closed-loop LED Current Regulation  
LED current is dependent on the current sense resistor, RCS. Use 方程6 to calculate the LED current.  
V CSP-CSN  
V
(
)
IADJ  
ILED  
=
=
RCS  
14ìRCS  
(6)  
LED current accuracy is a function of the tolerance of the external sense resistor, RCS, and the variation in the  
sense threshold, V(CSP-CSN), caused by internal mismatch and temperature dependency of the analog  
components. The TPS92519-Q1 is capable of achieving LED current accuracy of ±4% at full scale over  
common-mode range and a junction temperature range of 40°C to 150°C.  
7.3.6 Start-up Sequence  
The start-up circuit allows the COMP pin voltage to gradually increase, thus reducing the LED current overshoot  
and current surges. The switching operation is initiated after the COMP pin voltage exceeds 2.45 V. A 450-mV  
hysteresis window allows the device to operate when COMP voltage is within the expected operating range of  
2.2 V to 2.7 V. Switching is disabled on detection of low COMP voltage to avoid excessive negative inductor  
current.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
VIADJ  
0.1  
VUDIM  
2.45  
0
VCOMP  
2.45  
450 mV  
t
VSW  
VIN  
0
t
ILED  
t
7-3. Soft-Start Sequence  
The duration of soft start, tss, depends on the size of the compensation capacitor and the error amplifier source  
current, ICOMP(SRC)  
.
2.45ìCCOMP  
ICOMP(SRC)  
tSS  
=
(7)  
The source current, ICOMP(SRC) is a function of the transconductance, gM, of the error amplifier and error  
generated between the reference and the current sensed voltage.  
V
IADJ  
ICOMP(SRC) = gM ì  
- V  
(CSP-CSN) ÷  
«
14  
(8)  
With no current flowing through the LEDs, the soft start duration depends on the choice of compensation  
capacitor, CCOMP, and the reference voltage, VIADJ  
.
The open drain fault indicator, FLTx, is set low when the COMP voltage deviates from the nominal range and  
exceeds VCOMP(OV) threshold. This setting indicates a fault condition where the converter is operating in open-  
loop and the LED current is out of regulation. The corresponding channel can be disabled by setting IADJx input  
below 100 mV or controlling the UDIMx input.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
7.3.7 Analog Dimming and Forced Continuous Conduction Mode  
Analog dimming is accomplished by modulating the voltage connected to IADJx input. The TPS92519-Q1  
improves the linear range of analog dimming by supporting forced continuous conduction mode of operation.  
With synchronous MOSFETs, the inductor current is allowed to go negative for part of the switching cycle, thus  
enabling linear dimming with over 16:1 dimming range.  
7.3.8 External PWM Dimming and Input Undervoltage Lockout (UVLO)  
The UDIM pin is a multi-function input that features an accurate input voltage detection based on bandgap  
thresholds with programmable hysteresis as shown in 7-4. This pin functions as the external PWM dimming  
input for the LEDs and monitors VIN to detect dropout and undervoltage conditions. When the rising pin voltage  
exceeds the 2.45-V threshold, 10 µA (typical) of current is driven out of the UDIM pin into the resistor divider  
providing programmable hysteresis. TI recommends a bypass capacitor value of 1 nF between the UDIMx pin  
and GND to improve noise immunity.  
200 mV  
VIN  
VBG  
PWM &  
Dropout  
Detection  
PWM  
Standard  
PWM  
+
+
Dropout  
V5A  
RUVx2  
2VBG  
10 A  
DDIM  
UDIM  
RUVH  
10 kΩ  
RUVx1  
CUVx  
QDIM  
Inverted  
PWM  
7-4. External PWM Dimming  
The brightness of LEDs can be varied by modulating the duty cycle of the signal directly connected to the UDIM  
input. In addition, either an n-channel MOSFET or a Schottky diode can be used to couple an external PWM  
signal when using UDIM input in conjunction with UVLO functionality. With an n-channel MOSFET, the  
brightness is proportional to the negative duty cycle of the external PWM signal. With a Schottky diode, the  
brightness is proportional to the positive duty cycle of the external PWM signal.  
Dropout and input undervoltage protection is achieved by connecting the resistor divider network from VIN to  
UDIM pin and UDIM pin to GND. Dropout protection is activated when UDIM pin voltage drops below  
VUDIMx(DO, FALLING) threshold but is held above VUDIMx(EN) threshold. In dropout protection mode, the device  
disables the error amplidier and disconnects the COMP pin to maintain charge on the compensation network.  
The device continues switching, ensuring fast response with minimum LED current overshoot as the converter  
recovers from dropout condition. The minimum input voltage, below which dropout protection is activated is  
programmed using 方程9.  
+10ì103 ì RUVx1 + RUVx2  
÷
R
(
)
)
(
UVHx  
V
= VINx(DO,RISE) -IUDIMx(DO) ì RUVx2  
+
INx(DO,FALL)  
÷
÷
RUVx1  
«
(9)  
方程式 10 shows the input voltage rising threshold. When VIN exceeds the rising threshold, the error amplifier is  
enabled and COMP pin is connected to compensation network to regulate LED current.  
RUVx1 + RUVx2  
RUVx1  
V
= VUDIMx(DO,RISE) ì  
INx(DO,RISE)  
(10)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS92519-Q1  
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
Additional hysteresis to internal 100 mV is programmed by connecting an extra resistor, RUVHx, in series with  
UDIM pin. This connection allows the standard resistor divider to have smaller values, minimizing PWM delays.  
Input undervoltage protection is triggered when UDIM pin voltage drops below VUDIMx(EN) threshold. The device  
responds to very low VIN voltage or to the external PWM input signal by disabling the error amplifier,  
disconnecting the COMP pin and tri-stating the switch node. With switching disabled, inductor current and the  
LED current drop to zero and the charge on the compensation network is maintained. On rising edge of PWM or  
when VIN exceeds the internal hystersis of 200 mV, the converter resumes switching operation ramping inductor  
current to the previous steady-state value.  
方程11 defines the VIN UVLO rising threshold.  
RUVx1 + RUVx2  
RUVx1  
V
= VUDIMx(EN,RISE) ì  
INx(UVLO,RISE)  
(11)  
Use 方程12 to determine the VIN UVLO falling threshold.  
+10ì103 ì RUVx1 +RUVx2  
÷
R
(
)
)
(
UVHx  
«
÷
RUVx1 +RUVx2  
RUVx1  
V
= VUDIMx(EN,FALL)  
ì
-IUDIMx(DO) ì RUVx2  
+
INx(UVLO,FALL)  
÷
÷
RUVx1  
«
(12)  
7.3.9 Shunt FET Dimming or Matrix Beam Application  
VCSN  
VLED12  
VLED1  
t
V(CSP-CSN)  
VVAL  
0
t
7-5. Shunt FET Dimming Transient Response  
The TPS92519-Q1 is compatible with shunt FET dimming and LED Matrix Manager devices. The fast dynamic  
response and adaptive on-time control topology ensure near ideal current source behavior with minimum  
inductor current overshoot or undershoot. In contrast to constant off-time control, the control loop is able to  
maintain LED current regulation under shorted output condition. The off-time of the converter naturally adapts to  
the inductor slope and valley command while keeping the average LED current constant. 7-5 shows the  
shunt-FET dimming transient with all LEDs switched from on to off.  
The device behavior is impacted by the falling slew-rate of CSN node, VCSN. A large slew-rate in conjunction  
with the parasitic capacitances from CSP and CSN to GND results in differential voltage forcing the converter to  
burst with minimum on-time and minimum off-time. To avoid switch node bursting TI recommends a maximum  
slew-rate (dv/dt) of 15 V/µs.  
7.3.10 Bias Supply  
The device is powered by an external 5-V supply connected to V5D and V5A pins. Operation is enabled when  
V5D and V5A exceed the 4.1-V (typical) rising threshold and is disabled when either V5D or V5A drops below  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
the 4-V (typical) falling threshold. The comparator provides 100 mV of hysteresis to avoid chatter during  
transitions. The V5D supply powers the internal digital logic and the high-side and low-side gate driver circuits.  
The V5A supply powers sensitive analog circuits. The two bias pins can be connected together on the PCB or  
through a series 10-Ω resistor between V5D and V5A with 5-V external supply connected directly to the V5D  
pin. TI recommends a capacitor from each pin to GND . The recommended range for the bypass capacitor from  
V5D pin to ground is between 1 µF and 4.7 µF. The recommended range from the V5A pin to ground is between  
100 nF and 1 µF. The bypass capacitor from V5D to GND must be 10 times larger than the bootstrap capacitor,  
CBST, to support proper operation during PWM dimming. The voltage on V5D and V5A must never exceed 5.5 V.  
In device sleep state, the V5A input is internally disconnected to reduce power consumption.  
7.3.11 Bootstrap Supply  
The TPS92519-Q1 contains both high-side and low-side N-channel MOSFETs. The high-side gate driver works  
in conjunction with an internal bootstrap diode and an external bootstrap capacitor, CBST. During the on-time of  
the low-side MOSFET, the SW pin voltage is approximately 0 V and CBST is charged from the V5D supply  
through the internal diode. TI recommends a 0.1-µF to 1-µF capacitor connected with short traces between the  
BST and SW pins. A larger capacitor is required to prevent a bootstrap undervoltage fault when operating at low  
PWM dimming frequencies.  
7.3.12 Faults and Diagnostics  
7-1 summarizes the device behavior under fault conditions.  
7-1. Fault Description  
FAULT  
DETECTION  
DESCRIPTION  
Each channel is protected by an individual thermal sensor located close to the  
switching MOSFETs. The thermal protection is activated in the event the maximum  
MOSFET temperature exceeds the typical value of 175°C. The corresponding channel  
is forced into shutdown mode. This feature is designed to prevent overheating and  
damage to the internal switching MOSFETs.  
Thermal protection  
TJ > 175°C  
V5D(RISE) < 4.1 V  
V5D(FALL) > 4 V  
V5A(RISE) < 4.1 V  
V5D undervoltage  
lockout  
The device enters the Undervoltage Lockout (UVLO). The switching operation is  
disabled, the COMP capacitor is discharged.  
In sleep mode, the internal V5A node is disconnected to reduce the current  
consumption. The switching operation is disabled and the COMP capacitor is  
discharged.  
V5A undervoltage  
lockout  
V5A(FALL) > 4 V  
The device disables error amplifier and disconnects the compensation network for the  
corresponding channel. Error amplifier is enabled and compensation network is  
internally connected when the input voltage rises above the dropout rising threshold,  
VINx dropout  
protection  
VUDIMx < 2.35 V  
VINx(DO,RISE)  
The device disables switching operation for the corresponding channel. Switching is  
enabled when the input voltage rises above the turn-on threshold, VINx(UVLO,RISE)  
.
VINx undervoltage  
lockout  
VUDIMx < 1.02 V  
.
VBSTx(RISE) > 3.14 V  
VBSTx(FALL) < 2.95 V  
The device turns off the high-side MOSFET and turns on the low-side MOSFET for the  
corresponding channel. Normal switching operation is resumed after the bootstrap  
voltage exceeds 3.14 V.  
BSTx undervoltage  
lockout  
COMPx  
overvoltage  
The FLTx flag is set low to indicate that the COMP voltage exceeded the normal  
operating range. This condition indicates output open circuit fault.  
VCOMPx > 3.2 V  
VCSNx < 2.45 V  
The FLTx flag is set low to indicate an output short circuit condition based on sensed  
CSNx voltage.  
Short CHx output  
The device turns off the high-side MOSFET and discharges the COMP capacitor when  
the drain current exceeds 3.5-A typical. The low-side switch is turned on to discharge  
the inductor and output capacitor. The device attempts to restart after delay of 3.6 ms  
High-side switch  
current limit  
IHS > 3.5 A  
ILS > 2.5 A  
The device turns off both high-side and low-side MOSFETs and discharges the COMP  
capacitor when the drain current exceeds 2.5 A typical. The device attempts to restart  
after delay of 3.6 ms.  
Low-side switch  
current limit  
The TPS92519-Q1 triggers an auto-restart on detection of the thermal shutdown, high-side, or low-side current  
limit faults. In the case of thermal shutdown fault, the restart is initiated after the MOSFET temperature  
decreases by the fixed hysteresis of 10°C. A soft-start sequence is initiated and switching operation is enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
For a high-side or low-side current limit fault, a fixed 3.6-ms timer is initiated on detection of the fault. A restart is  
initiated by the expiration of the fault timer and switching operation is enabled.  
The output open circuit and short circuit faults force the FLTx pin low when biased through an external resistor  
and connected to a 5-V supply. The FLTx output can be used in conjunction with a microcontroller or system  
basis chip (SBC) as an interrupt and can be used to aid in fault diagnostics.  
7-2. Faults and Diagnostic Summary  
FAULT OR  
DIAGNOSTIC  
ENABLE FAULT  
TIMER  
LIST  
DESCRIPTION  
FLT INDICATION  
Thermal protection  
VIN supply dropout protection  
VIN supply undervoltage lockout  
BST supply undervoltage lockout  
COMP overvoltage  
Fault  
Diagnostics  
Fault  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
VINx(DO)  
VINx(UVLO)  
CHxBSTUV  
CHxCOMPOV  
CHxSHORT  
CHxHSILIM  
CHxLSILIM  
V5AUV  
Fault  
Diagnostics  
Diagnostics  
Fault  
Short circuit detected  
High-side current limit  
Low-side current limit  
Fault  
V5A undervoltage  
Diagnostics  
7.3.13 Output Short Circuit Fault  
The TPS92519-Q1 monitors the CSNx voltage to detect output short circuit faults. A short failure is indicated  
when the CSNx voltage drops below 1.5 V. The corresponding is FLTx flag is set low. The device continues to  
regulate current and operate without interruption in case of short circuit.  
CSNx  
CSPx  
VINx  
LPAR  
RCS  
LED+  
SWx  
tSH  
COUT  
LPAR  
PGNDx  
LEDÅ  
7-6. Cable Harness Parasitic Inductance  
The voltage transient imposed on CSPx and CSNx inputs during short circuit is dependent on the output  
capacitance and is influenced by the cable harness impedance. The inductance associated with a long cable  
harness resonates with the charge stored on the output capacitor and forces CSPx and CSNx voltage to ring  
below ground. The negative voltage and current are dependent on the parasitic cable harness inductance and  
resistance.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
VCSN  
VLED  
0
tSH  
t
7-7. Short Circuit Fault Transient Behavior  
When using a long cable harness, TI recommends a diode to clamp the negative voltage across CSPx and  
CSNx input, as shown in 7-8. TI recommends a low forward voltage Schottky diode or a fast recovery silicon  
diode with reverse blocking voltage rating greater than the maximum output voltage. The diode is required to be  
placed close to the output capacitor and must ensure that the current flowing through CSP and CSN nodes  
under negative transient condition is below the absolute maximum rating of the device.  
VINx  
LED+  
SWx  
COUT  
DRP  
PGNDx  
LEDÅ  
7-8. CSP and CSN Transient Protection Using an External Diode  
7.3.14 Output Open Circuit Fault  
An LED open circuit fault ultimately causes the output voltage to increase and settle close to the input voltage.  
When this occurs, the TPS92519-Q1 switching operation is then controlled by the fixed on-time and minimum  
off-time resulting in a duty cycle close to 100%. Under this condition, COMP voltage exceeds VCOMPx(OV)  
threshold forcing FLTx flag low.  
The dynamic behavior of the device and buck converter is influenced by the input voltage, VIN, and the output  
capacitor, COUT, value. The device response to open circuit can be categorized into the following three distinct  
cases.  
Case 1: For a Buck converter design with a small output capacitor, the switching operation in open load  
condition excites the inductor and the output capacitor resonance, forcing the output voltage to oscillate. The  
frequency and amplitude of the oscillation are based on the resonant frequency and Q-factor of the tank.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
VCSN  
VIN  
t
VCOMP  
tOC  
VCOMPx(OV)  
t
7-9. Open Circuit Condition With Output Voltage Oscillation  
Case 2: For a buck converter design with larger output capacitor, the inductor Q-factor and resonant frequency  
are much lower than the switching frequency. In this case, output voltage rises to input voltage and the converter  
continues to switch with minimum off-time.  
VCSN  
VIN  
t
7-10. Open Circuit Condition With Minimum Off-time Operation  
7.3.15 Parallel Operation  
The adaptive on-time control technique enables parallel operation of two or more channels with independent  
current sharing and regulation. Each channel operates independently and delivers current based on the  
corresponding IADJx set point. To equally share current amongst channels, the IADJx for all channels must be  
connected to the external reference voltage.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
VIADJ  
IADJx  
COMPx  
CSNx  
CSPx  
SWx  
CCOMPx  
CHx  
VEN  
EN  
ILED  
PWM  
UDIMx  
Lx  
RCSx  
COUTx  
COMPy  
EN  
CSNy  
CSPy  
SWy  
CCOMPy  
CHy  
UDIMy  
IADJy  
Ly  
RCSy  
COUTy  
VIADJ  
7-11. Parallel Channel Configuration  
Startup requires all channels to be enabled simultaneously by synchronizing the rising edge of IADJx voltage  
above VIADJx(SD) rising threshold. This simultaneous enabling ensures that the soft-start ramp is synchronized  
and current sharing is achieved after COMP voltage increases above the rising startup threshold, VCOMPx(ST)  
.
PWM dimming is achieved by connecting the external PWM signal to UDIMx pin of all parallel channels. All  
parallel channels have to be controlled by single PWM dimming reference. TI does not recommend to PWM dim  
individual parallel channels.  
Additional considerations are necessary to account for bootstrap capacitor tolerance and the impact of the  
capacitor variation when PWM dimming multiple parallel channels. Ensure that bootstrap capacitor voltage is  
above the undervoltage threshold, VBSTx(UV) for all operating conditions. For application requiring very low PWM  
duty cycle or low PWM dimming frequency, TI recommends to connect the COMPx pin of all parallel channels  
using nonparallel diodes, as shown in 7-12. This connection allows the parallel channels to respond and  
recovery from bootstrap undervoltage fault when operating at low PWM dimming duty cycles.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
VIADJ  
IADJx  
COMPx  
CSNx  
CSPx  
SWx  
CCOMPx  
CHx  
ILED  
D
Lx  
RCSx  
COUTx  
COMPy  
CSNy  
CSPy  
SWy  
CCOMPy  
CHy  
Ly  
RCSy  
COUTy  
VIADJ  
IADJy  
7-12. Parallel Channel Configuration for PWM Dimming Operation  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
The device has three functional modes: Power On Reset (POR) state, run mode and sleep mode.  
7.4.1 Power On Reset (POR)  
The device is in POR state when V5A or V5D input is below the undervoltage lockout threshold. In POR, both  
channels are turned off. The device exits POR and enters functional modes when the V5D supply exceeds 4.1 V  
(typical).  
7.4.2 Run Mode  
The device advances to run mode EN input is set high. In this mode, all the necessary conditions for initiating the  
soft-start sequence are checked. If a fault occurs in this state, the device attempts to resume operation after  
waiting for the fault timer to timeout.  
Transition to sleep mode is by pulling EN input low. This action causes the device to enter a low-power state.  
7.4.3 Sleep Mode  
In sleep mode, the following occurs:  
1. The internal regulators are disconnected from the V5A pin.  
2. The oscillator is disabled.  
3. The channels are disabled.  
4. The high side and low side MOSFETs are turned off.  
In sleep mode, the output voltage rises above 3 V as all internal loads are switched off and the leakage current  
associated with high-side gate drive is forced through the switch node, SWx.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8-1 shows a schematic of a typical application for the TPS92519-Q1.  
LED+  
CCOMP2  
1
2
32  
COMP2  
UDIM2  
CSN2  
COUT2  
RCS2  
31  
30  
CSP2  
BST2  
CUV2  
3
RUV22  
RUV21  
PGND  
PGND  
L2  
4
GND  
VBST  
CBST2  
29  
28  
SW2  
SW2  
CIN2  
5V  
5
6
7
VIN2  
VIN2  
GND  
V5A  
27  
26  
25  
24  
23  
22  
RADJ21  
FLT2  
IADJ2  
FSET  
EN  
CV5D  
5V  
Supply  
8
9
V5D  
RADJ11 RADJ22  
CV5A  
IADJ1  
FLT1  
10  
11  
12  
GND  
VIN1  
VIN1  
RADJ12  
21  
20  
VBST  
SW1  
SW1  
CIN1  
13  
GND  
PGND  
PGND  
CBST1  
L1  
14  
CUV1  
15  
19  
18  
RUV11  
BST1  
CSP1  
RUV12  
UDIM1  
RCS1  
CCOMP1  
COUT1  
16  
17  
COMP1  
CSN1  
LED+  
8-1. Buck LED Driver  
8.1.1 Duty Cycle Consideration  
The switch duty cycle, D, defines the converter operation and is a function of the input and output voltages. In  
steady state, the duty cycle is defined using 方程13:  
VCSN  
D =  
V
IN  
(13)  
There is no limitation for small duty cycles, because at low duty cycles, the switching frequency is reduced as  
needed to always ensure current regulation. The maximum duty cycle attainable is limited by the minimum off-  
time duration and is a function of switching frequency.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
 
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
8.1.2 Switching Frequency Selection  
Nominal switching frequency (tON > tON(MIN)) is set by input voltage, VIN, output voltage, VCSP and the FSET pin.  
The switching varies slightly over operating range and temperature based on converter efficiency. 8-1 shows  
the nominal switching frequency for channel 1 and channel 2 based on FSET pin setting.  
8-1. Frequency Setting  
FSET  
CHANNEL  
Channel 1  
Channel 2  
Channel 1  
Channel 2  
FREQUENCY  
384 kHz  
VFSET > 1.8 V  
438 kHz  
2.04 MHz  
2.14 MHz  
VFSET < 0.8 V  
8.1.3 LED Current Set Point  
The LED current is set by the external resistor, RCS, and the IADJx pin. The current sense resistor, RCS, is  
selected to meet the maximum LED current specification and 90% of the full-scale range of IADJx clamp voltage.  
0.9ì V  
IADJx(CLP)  
RCS  
=
14ìILEDx(MAX)  
(14)  
The LED current can be varied between minimum and maximum specified limits by modulating the voltage on  
IADJx pin.  
8.1.4 Inductor Selection  
The inductor is sized to meet the ripple specification at 50% duty cycle. TI recommends a minimum of 30%  
peak-to-peak inductor ripple to ensure periodic switching operation. Use 方程式 15 to calculate the inductor  
value.  
V
IN(TYP)  
L =  
4ì DiL ì fSW  
(15)  
Use 方程式 16 and 方程式 17 to calculate the RMS and peak currents through the inductor. Make sure that the  
inductor is rated to handle these currents.  
2
÷
DiL(MAX)  
2
iL(RMS)  
=
ILED(MAX) +  
«
÷
12  
(16)  
(17)  
DiL(MAX)  
iL(PK) = ILED(MAX)  
+
2
8.1.5 Output Capacitor Selection  
The output capacitor value depends on the total series resistance of the LED string, rD, and the switching  
frequency, fSW. 方程18 calculates the capacitance required for the target LED ripple current.  
DiL(MAX)  
COUT  
=
8ì fSW ìrD ì DiLED  
(18)  
For applications where the converter supports pixel beam or matrix LED loads, additional design considerations  
influence the selection of output capacitor. The size of the output capacitor depends on the slew-rate control of  
the LED bypass switches and must be carefully selected while considering the overshoot current created by the  
dv/dt of the bypass switch.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS92519-Q1  
 
 
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
When choosing the output capacitors, it is important to consider the ESR and ESL characteristics because they  
directly impact the LED current ripple. Ceramic capacitors are the best choice due to the following:  
Low ESR  
High ripple current rating  
Long lifetime  
Good temperature performance  
With ceramic capacitor technology, it is important to consider the derating factors associated with higher  
temperature and DC bias operating conditions. TI recommends an X7R dielectric with a voltage rating greater  
than maximum LED stack voltage.  
8.1.6 Input Capacitor Selection  
The input capacitor buffers the input voltage for transient events and decouples the converter from the supply. TI  
recommends a 2.2-µF input capacitor across the VIN pin and PGND placed close to the device, and connected  
using wide traces. X7R-rated ceramic capacitors are the best choice due to the low ESR, high ripple current  
rating, and good temperature performance. Additional capacitance can be required to further limit the input  
voltage deviation during PWM dimming operation.  
8.1.7 Bootstrap Capacitor Selection  
The bootstrap capacitor biases the high-side gate driver during the high-side FET on-time. The required  
capacitance depends on the PWM dimming frequency, PWMFREQ, and is sized to avoid boot undervoltage and  
fault during PWM dimming operation. 方程19 calculates the bootstrap capacitance, CBST  
.
IQ(BST)  
CBST  
=
V
+ VBST(HYS) - VBST(UV) ìPWM  
(
)
5D  
FREQ  
(19)  
8-2 summarizes the TI recommended bootstrap capacitor value for different PWM dimming frequencies.  
8-2. Bootstrap Capacitor Value  
PWM DIMMING FREQUENCY (Hz)  
BOOTSTRAP CAPACITOR (µF)  
1507  
1318  
1055  
879  
0.1  
0.15  
0.22  
0.22  
0.33  
0.47  
1
659  
439  
215  
108  
2
8.1.8 Compensation Capacitor Selection  
A simple integral compensator is recommended to achieve stable operation across the wide operating range.  
The bode plot of the loop gain with different compensation capacitors is shown in 8-2. The buck converter  
behaves as a single pole system with additional phase lag caused by the switching behavior. The gain and  
phase margin is then determined by the choice of the switching frequency and is independent of other design  
parameters. TI recommends a 1-nF to 10-nF capacitor to achieve bandwidth between 4 kHz and 40 kHz. The  
choice of compensation capacitor impacts the transient response, the shunt FET dimming behavior and PWM  
dimming performance. A larger compensation capacitor (lower bandwidth) is recommended to limit the LED  
current overshoot on the rising edge of internal or external PWM signal. A smaller compensation capacitor  
(higher bandwidth) is recommend to improve shunt FET dimming response.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
60  
100  
2.2 nF  
1 nF  
40  
20  
75  
3.3 nF  
4.7 nF  
6.8 nF  
50  
10 nF  
25  
0
-20  
-40  
-60  
-80  
-100  
0
-25  
-50  
-75  
-100  
-125  
-120  
1000  
2000 3000 5000  
10000  
20000  
50000 100000 200000  
Frequency (Hz)  
500000 1000000 2000000  
5000000 1E+7  
L = 68 µH, fSW = 438 kHz  
8-2. Simulated Bode Plot of Loop Gain  
8.1.9 Input Undervoltage Protection  
8-1 shows that the undervoltage protection threshold is programmed using a resistor divider, RUV1 and RUV2  
,
from the input voltage, VIN, to ground. Use 方程20 and 方程21 to calculate the resistor values.  
2ì V  
V
INx(DO,FALL)  
INx(UVLO,RISE)  
RUVx2  
=
-
-10ì103  
IUDIMx(HYS)  
IUDIMx(HYS)  
(20)  
(21)  
VUDIMx(EN,RISE)  
INx(UVLO,RISE) - VUDIM(EN,RISE)  
RUVx1  
=
ìRUVx2  
V
8.1.10 CSN Protection Diode  
An external Schottky diode is selected to protect the CSP / CSN node by clamping the negative voltage during  
short circuit transient. The Schottky diode must be selected based on the length of the cable harness and the  
choice of output capacitor. TI recommends a Schottky diode with low forward voltage drop at room-temperature  
and non-repetitive peak surge current rating of 10 A for duration of 5 µs. The diode must be located close to the  
CSN pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS92519-Q1  
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
8.2 Typical Application  
8-3. Application Schematic  
8.2.1 Design Requirements  
8-3. Design Parameters  
PARAMETER  
CONDITIONS  
MIN  
TYP  
60  
MAX  
UNIT  
V
VIN  
Input Voltage  
58  
62  
VIN(DO)  
NS  
VFLED  
rD  
VOUT  
ILED  
Dropout protection threshold  
Number of LEDs  
Falling  
55  
V
1
16  
3.4  
LED forward voltage drop  
LED string series resistance  
Output voltage  
2.8  
0.1  
2.8  
100  
3
V
N × rD(LED)  
Ns × VFLED  
1.6  
Ω
V
54.4  
1600  
LED current  
mA  
Defined as percentage peak-to-peak at maximum  
LED current. 5 % of maximum LED current.  
LED current ripple  
80  
mA  
ΔiLED  
Defined as percentage peak-to-peak at maximum  
LED current  
Inductor current ripple  
Start input voltage  
30  
28.5  
5
%
V
ΔiL  
VIN(UVLO,RISE)  
VIN(UVLO,HYS)  
Input voltage rising  
Input voltage undervoltage lockout  
hysteresis  
V
fPWM  
DPWM  
VSW  
TA  
PWM frequency  
439  
Hz  
%
PWM dimming duty cycle  
Switching frequency  
Ambient temperature  
4
100  
438  
25  
kHz  
°C  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Calculating Duty Cycle  
Solve for duty cycle D, DMAX, and DMIN  
:
VOUT(MAX)  
54.4  
58  
DMAX  
=
=
= 0.938  
V
IN(MIN)  
(22)  
(23)  
VOUT(MIN)  
2.8  
DMIN  
=
=
= 0.0452  
V
62  
IN(MAX)  
8.2.2.2 Calculating Minimum On-Time and Off-Time  
Solve for minimum on-time, tON(DMIN) at minimum duty cycle and maximum on-time, tON(DMAX) at maximum duty  
cycle:  
VOUT(MIN)  
1
2.8  
62  
1
tON(DMIN)  
=
ì
=
ì
= 103.1ì10-9  
= 2.141ì10-6  
438ì103  
V
fSW  
IN(MAX)  
(24)  
(25)  
VOUT(MAX)  
1
54.4  
58  
1
tON(DMAX)  
=
ì
=
ì
438ì103  
V
fSW  
IN(MIN)  
8.2.2.3 Minimum Switching Frequency  
Confirm minimum switching frequency at tON(DMIN), fSW(MIN)  
:
VOUT(MIN)  
2.8  
103.1ì10-9 ì 62  
fSW(MIN)  
=
=
= 438ì103  
tON(DMIN) ì V  
IN(MAX)  
(26)  
(27)  
(28)  
For the design specification, tON(DMIN) > tON(MIN) and fSW(MIN) = fSW  
.
8.2.2.4 LED Current Set Point  
Solve for sense resistor, RCS  
:
0.9ì V  
0.9ì 2.45  
14ì1.6  
IADJ(CLP)  
RCS  
=
=
= 0.0984  
14ìILED(MAX)  
A standard resistor of 100 mΩwith tolerance better than 1 % and low temperature coefficient is selected.  
8.2.2.5 Inductor Selection  
The inductor is selected to meet the recommended 30% peak-to-peak inductor ripple specification:  
V
V
IN(TYP)  
60  
4ì0.3ì1.6ì 438x103  
IN(TYP)  
L =  
=
=
= 71.3ì10-6  
4ì DiL ì fSW 4ì 0.3ìILED(MAX) ì fSW  
The closest standard capacitor is 68 µH.  
Lower inductor values increase the peak-to-peak inductor current, which minimizes size and cost at the  
expense of reduced efficiency and larger output capacitor.  
Higher inductance values decrease the peak-to-peak inductor current, which increases efficiency but reduces  
the operating range based on minimum sense voltage ripple, ΔV(CSP-CSN) specification.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
8.2.2.6 Output Capacitor Selection  
The minimum output capacitance is selected to meet the LED current ripple specification:  
DiL(MAX)  
0.48  
8ì 438ì103 ì1.6 ì80 ì10-3  
COUT  
=
=
= 1.07ì10-6  
8ì fSW ìrD(MAX) ì DiLED(MAX)  
(29)  
A standard 1-µF, 100-V X7R capacitor is selected.  
8.2.2.7 Bootstrap Capacitor Selection  
Referring to 8-2, a standard 470-nF, 16-V X7R capacitor is selected to support PWM frequency of 439 Hz.  
8.2.2.8 Compensation Capacitor Selection  
A compensation capacitor of 2.2 nF is selected to achieve balanced transient response between PWM dimming  
and shunt FET dimming.  
60  
100  
2.2 nF  
1 nF  
3.3 nF  
4.7 nF  
6.8 nF  
10 nF  
40  
75  
20  
50  
0
25  
-20  
-40  
-60  
-80  
-100  
-120  
0
-25  
-50  
-75  
-100  
-125  
1000  
2000 3000 5000  
10000  
20000  
50000 100000 200000  
Frequency (Hz)  
500000 1000000 2000000  
5000000 1E+7  
8-4. Simulated Buck Converter Bode Plot  
8.2.2.9 PWM Dimming and Input Voltage Protection  
The device channel enable function and external PWM signal is achieved by controlling UDIM input. The device  
modulates the LED current based on the PWM duty cycle of the external signal.  
Input undervoltage lockout function is implemented by selecting RUV1 and RUV2 resistor along with internal  
hysteresis.  
2ì V  
V
IN(DO,FALL)  
2ì28.5  
55  
IN(UVLO,RISE)  
RUV2  
=
-
-10ì103 =  
-
-10ì103 = 190ì103  
10ì10-6 10ì10-6  
IUDIM(DO)  
IUDIM(DO)  
(30)  
(31)  
A standard 191-kΩresistor is selected for RUV2  
.
VUDIM(EN,RISE)  
1.22  
28.5 -1.22  
RUV1  
=
ìRUV2  
=
ì191ì103 = 8.54ì103  
VIN(UVLO,RISE) - VUDIM(EN,RISE)  
A standard 8.45-kΩresistor is selected for RUV1  
.
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
8.2.3 Application Curves  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Time: 1 µs/div  
Ch1: SW voltage (10 V/div); Ch3: Inductor current (200 mA/  
div); Ch4: COMP voltage (400 mV/div); Time: 50 µs/div  
8-6. Normal Operation  
8-5. Start-up Transient  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 500 µs/div  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 5 µs/div  
8-7. PWM Dimming Transient  
8-8. PWM Dimming (Rising Edge)  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 400 µs/div  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 5 µs/div  
8-10. Shunt Dimming With Matrix Manager  
8-9. PWM Dimming (Falling Edge)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 400 µs/div  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 50 µs/div  
8-11. Shunt Dimming (LEDs ON-OFF Transient)  
8-12. Shunt Dimming (LEDs OFF to LEDs ON)  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch4: LED current (200 mA/div); Time: 50 µs/div  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 50 µs/div  
8-13. Shunt Dimming (LEDs ON to LEDs OFF)  
8-14. Output Short Circuit Fault  
Ch1: SW voltage (10 V/div); Ch2: Output voltage (4 V/div);  
Ch3: Inductor current (200 mA/div); Ch4: LED current (200  
mA/div); Time: 40 µs/div  
Ch1: SW voltage (10 V/div); Ch2:  
Output voltage (4 V/div); Ch3: Inductor  
current (400 mA/div); Ch4: LED current  
(200 mA/div); Time: 40 µs/div  
8-15. Output Short Circuit Fault Recovery  
8-16. Output Open Circuit Fault  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
This device is designed to operate from an input voltage supply range between 4.5 V and 65 V. The input can be  
a car battery or another preregulated power supply. Additional bulk capacitance or an input filter can be required  
in addition to the ceramic bypass capacitors to address converter stability, noise, and EMI concerns.  
10 Layout  
10.1 Layout Guidelines  
The performance of any switching converter depends as much on the layout of the PCB as the component  
selection. The following guidelines can help you design a PCB with the best power converter performance:  
Place ceramic high-frequency bypass capacitors as close as possible to the TPS92519-Q1 VIN and PGND  
pins. Grounding for both the input and output capacitors must consist of localized top side planes that  
connect to the PGND pins.  
Place bypass capacitors for V5D and V5A close to the pins and ground the capacitors to device ground.  
Differentially route the CSP and CSN pins to sense resistor. Route the traces away from noisy nodes,  
preferably through a layer on the other side of a shielding or ground layer.  
Use ground plane in one of the middle layers for noise shielding.  
Make VIN and ground connection as wide as possible. This action reduces any voltage drops on the input of  
the converter and maximizes efficiency.  
10.1.1 Compact Layout for EMI Reduction  
Radiated EMI is generated by the high di/dt from pulsing currents in switching converters. The larger the area  
covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to minimize  
radiated EMI is to identify the pulsing current path and minimize the area of the path. In buck converters, the  
pulsing current path is from the VIN side of the input capacitors through the HS switch, through the LS switch,  
and then returns to the ground of the input capacitor.  
High-frequency ceramic bypass capacitors at the input side provide primary path for the high di/dt components of  
the pulsing current. Placing ceramic capacitors as close as possible to the VIN and PGND pins is the key to EMI  
reduction.  
The PCB copper connection of the SW pin to the inductor must be as short as possible and just wide enough to  
carry the LED current without excessive heating. Short, thick traces or, copper pours (shapes), must be used for  
high current conduction path to minimize parasitic resistance. Place the output capacitor close to the CSN pin  
and grounded closely to the PGND pin.  
10.1.1.1 Ground Plane  
TI recommends using one of the middle layers as a solid ground plane. The ground plane provides shielding for  
sensitive circuits and traces. The ground plane also provides a quiet reference potential for the control circuitry.  
Connect the GND and PGND pins to the ground plane using vias right next to the bypass capacitors. PGND pins  
are connected to the source of the internal LS switch. The pins must be connected directly to the grounds of the  
input and output capacitors. The PGND net contains noise at the switching frequency and can bounce due to  
load variations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS92519-Q1  
 
 
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
10.2 Layout Example  
COMP2  
UDIM2  
PGND  
PGND  
VIN2  
CSN2  
CSP2  
BST2  
SW2  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
3
4
SW2  
5
VIN2  
FLT2  
IADJ2  
FSET  
EN  
6
GND  
7
V5A  
8
V5D  
9
GND  
IADJ1  
FLT1  
SW1  
10  
11  
12  
13  
14  
15  
16  
VIN1  
VIN1  
PGND  
PGND  
UDIM1  
COMP1  
SW1  
BST1  
CSP1  
CSN1  
10-1. TPS92519-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS92519-Q1  
 
TPS92519-Q1  
ZHCSMX7A AUGUST 2021 REVISED DECEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS92519-Q1 Evaluation Module User's Guide  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS92519-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92519QDAPRQ1  
ACTIVE  
HTSSOP  
DAP  
32  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
125 to -40  
92519Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92519QDAPRQ1 HTSSOP  
DAP  
32  
2500  
330.0  
24.4  
8.8  
11.8  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DAP 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
TPS92519QDAPRQ1  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DAP 32  
8.1 x 11, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225303/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
DAP0032F  
PowerPAD TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC SMALL OUTLINE  
8.3  
7.9  
TYP  
A
PIN 1 ID AREA  
30X 0.65  
32  
1
11.1  
10.9  
NOTE 3  
2X  
9.75  
16  
B
17  
0.30  
32X  
0.19  
6.2  
6.0  
0.1 C  
0.1  
C A B  
SEATING PLANE  
(0.15) TYP  
C
SEE DETAIL A  
4.11  
3.29  
EXPOSED  
THERMAL PAD  
0.25  
4.06  
3.16  
1.2 MAX  
GAGE PLANE  
0.75  
0.50  
0.15  
0.05  
2X (0.9)  
NOTE 5  
0 - 8  
2X (0.15)  
NOTE 5  
DETAIL A  
TYPICAL  
4226056/A 07/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
DAP0032F  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(5.2)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(4.11)  
32X (1.5)  
SYMM  
SEE DETAILS  
1
32  
32X (0.45)  
30X (0.65)  
(11)  
NOTE 9  
SYMM  
(4.06)  
(1.2 TYP)  
(R0.05) TYP  
(
0.2) TYP  
VIA  
16  
17  
(0.65) TYP  
(1.3) TYP  
(7.5)  
METAL COVERED  
BY SOLDER MASK  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4226056/A 07/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
DAP0032F  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(4.11)  
BASED ON  
0.125 THICK  
STENCIL  
32X (1.5)  
1
32  
32X (0.45)  
30X (0.65)  
(4.06)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
17  
16  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(7.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
4.60 X 4.54  
4.11 X 4.06 (SHOWN)  
3.75 X 3.71  
0.125  
0.15  
0.175  
3.47 X 3.43  
4226056/A 07/2020  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS92519QDAPRQ1

汽车 2A 双路同步降压 LED 驱动器 | DAP | 32 | 125 to -40
TI

TPS92520-Q1

具有 SPI 的 1.6A 双路同步降压 LED 驱动器
TI

TPS92520QDADRQ1

具有 SPI 的 1.6A 双路同步降压 LED 驱动器

| DAD | 32 | -40 to 125
TI

TPS92520QDAPRQ1

具有 SPI 的 1.6A 双路同步降压 LED 驱动器

| DAP | 32 | -40 to 125
TI

TPS92550

450mA 14W Constant Current Buck LED Driver Micro- Module
TI

TPS92550TZ

450mA 14W Constant Current Buck LED Driver Micro-Module
TI

TPS92550TZ/NOPB

450mA 14W 恒流降压型 LED 驱动器微型模块 | NDW | 7 | -40 to 125
TI

TPS92550TZE

450mA 14W Constant Current Buck LED Driver Micro-Module
TI

TPS92550TZX

450mA 14W Constant Current Buck LED Driver Micro-Module
TI

TPS92550TZX/NOPB

450mA 14W 恒流降压型 LED 驱动器微型模块 | NDW | 7 | -40 to 125
TI

TPS92551

450mA 23W Constant Current Buck LED Driver Micro-Module
TI

TPS92551TZ

450mA 23W Constant Current Buck LED Driver Micro-Module
TI