TPS92633-Q1 [TI]

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器;
TPS92633-Q1
型号: TPS92633-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器

驱动 驱动器
文件: 总49页 (文件大小:5405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
具有热共享和非板载分级功能TPS92633-Q1 三通道汽车高LED 驱动器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准  
车外尾灯尾灯、中央高位刹车灯、侧标志灯  
车外小灯门把手、盲点检测指示灯、充电口  
车内灯顶灯、阅读灯  
– 温度等1: 40 ° C 125 ° C T A  
• 宽输入电压范围4.5V 40V  
• 通过外部分流电阻器实现热共享功能  
• 故障模式下具有低电源电流  
• 通LED 驱动器应用  
3 说明  
• 三通道高精度电流调节:  
TPS92633-Q1 三通道 LED 驱动器采用独特的热管理  
设计可减少器件温升。TPS92633-Q1 是由汽车电池  
直接供电的线性驱动器具有宽电压范围每个通道可  
输出高达 150mA 的满电流负载。外部分流电阻器可用  
来共享输出电流并由驱动器驱动。TPS92633-Q1 还驱  
LED 单元和非板载亮度分级电阻器从而简化制造  
过程并降低整体系统成本。它具有全面的诊断功能包  
LED 开路、LED 接地短路和单LED 短路检测。  
– 每个通道的电流输出高150mA  
– 在整个温度范围内精度±5%  
– 通过电阻器独立设置电流  
– 用于亮度控制的独PWM 引脚  
– 支持非板载亮度分级电阻  
– 支持外NTC 进行电流降额  
• 低压降:  
– 最大压降150mA 600mV  
• 诊断和保护  
TPS92633-Q1 器件的连带失效功能可与其他 LED 驱  
动 器 TPS9261x-Q1 TPS92630/8-Q1 和  
TPS92830-Q1 器件一起工作从而满足不同的要  
求。  
LED 开路具有自动恢复功能  
LED 接地短路具有自动恢复功能  
LED 短路检测及自动恢复  
– 支持诊断并具有可调阈值  
– 可配置为连带失效或仅失效通道关闭的故障总线  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
(N-1)  
– 热关断  
TPS92633-Q1  
HTSSOP (20)  
6.50mm × 4.40mm  
• 工作结温范围40°C 150°C  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
4
4.5V to 40V  
TPS92633-Q1  
C(OUT1)  
C(OUT2)  
C(OUT3)  
P(DEVICE) R(RESx) = 82 W  
P(RESx) R(RESx) = 82 W  
P(DEVICE) R(RESx) = 64.9 W  
P(RESx) R(RESx) = 64.9 W  
R(RES1)  
R(RES2)  
R(RES3)  
SUPPLY  
RES1  
3.2  
EN  
IN1  
IN2  
IN3  
C(SUPPLY)  
OUT1  
RES2  
R(SNS1)  
R(SNS2)  
R(SNS3)  
2.4  
OUT2  
RES3  
OUT3  
DIAGEN  
PWM1  
PWM2  
1.6  
0.8  
0
R(ICTRL2)  
C(IREF)  
GND  
LED Board  
R(IREF)  
IREF  
R(SLS_REF)  
SLS_REF  
PWM3  
FAULT  
R(ICTRL1)  
ICTRL  
4
8
12 16  
Supply Voltage (V)  
20  
24  
C(ICTRL)  
器件功耗  
典型应用图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSF65  
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................30  
8 Application and Implementation..................................31  
8.1 Application Information............................................. 31  
8.2 Typical Applications.................................................. 31  
9 Power Supply Recommendations................................38  
10 Layout...........................................................................39  
10.1 Layout Guidelines................................................... 39  
10.2 Layout Example...................................................... 39  
11 Device and Documentation Support..........................40  
11.1 接收文档更新通知................................................... 40  
11.2 支持资源..................................................................40  
11.3 Trademarks............................................................. 40  
11.4 Electrostatic Discharge Caution..............................40  
11.5 Glossary..................................................................40  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Timing Requirements .................................................6  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
Information.................................................................... 41  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (May 2021)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
SUPPLY  
EN  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RES1  
OUT1  
RES2  
OUT2  
RES3  
OUT3  
GND  
IN1  
IN2  
IN3  
Thermal  
Pad  
DIAGEN  
PWM1  
PWM2  
PWM3  
FAULT  
IREF  
SLS_REF  
ICTRL  
Not to scale  
5-1. PWP Package 20-Pin HTSSOP With PowerPADPackage Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SUPPLY  
EN  
NO.  
1
I
I
I
I
I
Device power supply.  
2
Device enable pin.  
IN1  
3
Current input for channel 1.  
Current input for channel 2.  
Current input for channel 3.  
IN2  
4
IN3  
5
Enable pin for LED open-circuit detection and single LED short detection to avoid false open  
and single LED short diagnostics during low-dropout operation.  
DIAGEN  
6
I
PWM1  
PWM2  
7
8
I
I
PWM input for OUT1 and RES1 current output ON/OFF control.  
PWM input for OUT2 and RES2 current output ON/OFF control.  
PWM input for OUT3 and RES3 current output ON/OFF control.  
Fault output, support one-failsall-fail fault bus.  
PWM3  
9
I
FAULT  
10  
11  
12  
I/O  
O
O
ICTRL  
Resistor programmable voltage reference pin for LED binning resistor or NTC resistor.  
Resistor programmable voltage reference pin for single LED short threshold.  
SLS_REF  
Current reference pin. A 12.3-kΩresistor is recommended to be connected between IREF  
pin and ground.  
IREF  
13  
O
GND  
OUT3  
RES3  
OUT2  
RES2  
OUT1  
RES1  
14  
15  
16  
17  
18  
19  
20  
Ground.  
O
O
O
O
O
O
Current output for channel 3. A 10-nF capacitor is recommended between the pin to GND.  
Current output for channel 3 with external thermal resistor.  
Current output for channel 2. A 10-nF capactitor is recommended between the pin to GND.  
Current output for channel 2 with external thermal resistor.  
Current output for channel 1. A 10-nF capacitor is recommended between the pin to GND.  
Current output for channel 1 with external thermal resistor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
40  
MAX  
UNIT  
V
Supply  
SUPPLY  
45  
V(SUPPLY)+0.3  
V(SUPPLY)+0.3  
V(SUPPLY)+0.3  
5.5  
High-voltage input  
High-voltage output  
Fault bus  
DIAGEN, IN1, IN2, IN3, EN, PWM1, PWM2, PMW3  
OUT1, OUT2, OUT3, RES1, RES2, RES3, ICTRL  
FAULT  
V
V
V
Low-voltage pin  
TJ  
SLS_REF, IREF  
V
Operating junction temperature  
Storage temperature  
150  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
Corner pins (SUPPLY,  
RES1, FAULT, ICTRL)  
±750  
CDM ESD Classification Level  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY  
IN1, IN2, IN3  
EN  
Device supply voltage  
Sense voltage  
4.5  
40  
V
V
V
V
V
V(SUPPLY) - V(CS_REG)  
Device EN pin  
0
0
0
V(SUPPLY)  
V(SUPPLY)  
V(SUPPLY)  
PWM1, PWM2, PWM3 PWM inputs  
DIAGEN  
Diagnostics enable pin  
OUT1, OUT2, OUT3,  
RES1, RES2, RES3  
Driver output  
0
V(SUPPLY)  
V
FAULT  
ICTRL  
SLS_REF  
IREF  
Fault bus  
0
0
V(SUPPLY)  
2.75  
V
V
Output current control  
Single LED short-circuit reference  
Current reference  
0
3.5  
V
50  
250  
µA  
°C  
Operating ambient temperature, TA  
125  
40  
6.4 Thermal Information  
TPS92633-Q1  
THERMAL METRIC(1)  
PWP  
20 PINS  
40.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
RθJC(top)  
Junction-to-case (top) thermal resistance  
34  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
 
 
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.4 Thermal Information (continued)  
TPS92633-Q1  
THERMAL METRIC(1)  
PWP  
20 PINS  
18.3  
UNIT  
RθJB  
ψJT  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.1  
18.2  
ψJB  
RθJC(bot)  
5.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
6.5 Electrical Characteristics  
V(SUPPLY) = 5 V to 40 V, V(EN) = 5V, TJ = 40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BIAS  
V(POR_rising)  
V(POR_falling)  
I(SD)  
Supply voltage POR rising threshold  
Supply voltage POR falling threshold  
Device shutdown current  
3.6  
3.4  
14  
4
V
V
3.0  
V(EN) = 0 V  
26  
µA  
I(Quiescent)  
Device standby ground current  
PWM = HIGH  
1.5  
2.5 mA  
PWM = HIGH, FAULT externally pulled  
LOW  
I(Fault)  
Device supply current in fault mode  
0.21 0.330  
0.45 mA  
LOGIC INPUTS (EN, DIAGEN, PWM)  
VIL(EN)  
Input logic-low voltage, EN  
Input logic-high voltage, EN  
EN pulldown current  
0.7  
4.5  
V
V
VIH(EN)  
2.0  
I(EN_pulldown)  
VIL(DIAGEN)  
VIH(DIAGEN)  
VIL(PWM)  
VIH(PWM)  
V(EN) = 12 V  
1.5  
1.045  
1.14  
3.3  
µA  
V
Input logic-low voltage, DIAGEN  
Input logic-high voltage, DIAGEN  
Input logic-low voltage, PWM  
Input logic-high voltage, PWM  
1.1 1.155  
1.2 1.26  
1.1 1.155  
V
1.045  
1.14  
V
1.2  
1.26  
V
CONSTANT-CURRENT DRIVER  
I(OUTx_Tot) Device output-current for each channel  
100% duty cycle  
5
46  
150 mA  
54  
50  
100  
200  
400  
TA = 40°C to +125°C, ICTRL ground  
TA = 40°C to +125°C, V(ICTRL) = 0.68 V  
TA = 40°C to +125°C, V(ICTRL) = 1.365 V  
TA = 40°C to +125°C, V(ICTRL) = 2.75 V  
95  
105  
mV  
208  
V(CS_REG)  
Sense-resistor regulation voltage  
Channel to channel mismatch  
192  
384  
416  
ΔV(CS_c2c) = 1 V(CS_REGx)/Vavg(CS_REG)  
V(ICTRL) = 0.68 V  
,
+3  
%
3  
3  
4  
ΔV(CS_c2c)  
ΔV(CS_c2c) = 1 V(CS_REGx)/Vavg(CS_REG)  
V(ICTRL) = 1.365 V  
,
+3  
ΔV(CS_d2d) = 1 Vavg(CS_REG)  
Vnom(CS_REG), V(ICTRL) = 0.68 V  
/
+4  
%
Device to device mismatch  
Sense-resistor range  
ΔV(CS_d2d)  
ΔV(CS_d2d) = 1 Vavg(CS_REG)  
Vnom(CS_REG), V(ICTRL) = 1.365 V  
/
+4  
4  
R(CS_REG)  
0.65  
20  
400  
600  
600  
900  
Ω
current setting of 100 mA  
current setting of 150 mA  
current setting of 100 mA  
current setting of 150 mA  
200  
300  
280  
400  
Voltage dropout from INx to OUTx, RESx  
open  
mV  
V(DROPOUT)  
Voltage dropout from INx to RESx, OUTx  
open  
mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
V(SUPPLY) = 5 V to 40 V, V(EN) = 5V, TJ = 40°C to +150°C unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
I(RESx)  
Ratio of RESx current to total current  
IREF voltage  
95  
%
I(RESx)/I(OUTx_Tot), V(INx) V(RESx) > 1 V  
V(IREF)  
1.235  
10  
V
N(ICTRL)  
ICTRL current output ratio  
ICTRL saturated voltage  
I(ICTRL)/I(IREF)  
9.7  
10.3  
V
V(ICTRL_SAT)  
V(CS_SAT)  
V(CS_REG) = 400 mV  
V(ICTRL) = 3 V  
2.75  
400  
mV  
V
(SUPPLY) V(IN)  
DIAGNOSTICS  
V(OPEN_th_rising)  
V(OPEN_th_falling)  
180  
300  
450  
420 mV  
mV  
LED open rising threshold, V(IN) V(OUT)  
LED open falling threshold, V(IN) V(OUT)  
Channel output short-to-ground rising  
threshold  
V(SG_th_rising)  
V(SG_th_falling)  
1.14  
1.2  
1.26  
V
V
Channel output short-to-ground falling  
threshold  
0.855  
0.9 0.945  
N(SLS_REF)  
N(OUT)  
SLS_REF current output ratio  
OUT voltage attenuation ratio  
I(SLS_REF)/I(IREF)  
0.97  
3.84  
1
4
1.03  
4.16  
V(OUT) = 3 to 14 V.  
Channel output V(OUT) short-to-ground  
retry current  
I(Retry)  
0.64  
1.08 1.528 mA  
I(IREF_OPEN_th)  
IREF open threshold  
8
0.6  
µA  
V
V(IREF_SHORT_th) IREF short-to-ground threshold  
I(IREF_ST_Clamp) Current clamp for IREF shor-to-GND  
FAULT  
418  
µA  
VIL(FAULT)  
Logic input low threshold  
0.7  
V
V
VIH(FAULT)  
Logic input high threshold  
2
t(FAULT_rising)  
t(FAULT_falling)  
Fault detection rising edge deglitch time  
Fault detection falling edge deglitch time  
10  
10  
3
µs  
µs  
mA  
µA  
µA  
I(FAULT_pulldown) FAULT internal pulldown current  
V(FAULT) = 0.4 V  
V(FAULT) = 40 V  
2
6
4
14  
2
I(FAULT_pullup)  
FAULT internal pullup current  
FAULT leakage current  
10  
1
I(FAULT_leakage)  
THERMAL PROTECTION  
Thermal shutdown junction temperature  
threshold  
T(TSD)  
157  
172  
15  
187  
°C  
°C  
Thermal shutdown junction temperature  
hysteresis  
T(TSD_HYS)  
6.6 Timing Requirements  
MIN  
NOM  
MAX UNIT  
PWM rising edge delay, VIH(PWM) voltage to 10% of output when V(SUPPLY) = 12 V,  
V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t1 as shown  
in 7-5  
3
µs  
t(PWM_delay_rising)  
PWM rising edge delay, VIH(PWM) voltage to 10% of output when V(SUPPLY) = 12 V,  
V(OUT) = 6V, V(CS_REG) = 50 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t1 as shown  
in 7-5  
4
µs  
Output current rising from 10% to 90% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG)  
= 100 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t2 as shown in 7-5  
2
µs  
µs  
t(Current_rising)  
Output current rising from 10% to 90% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG)  
= 50 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t2 as shown in 7-5  
2.5  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.6 Timing Requirements (continued)  
MIN  
NOM  
MAX UNIT  
PWM falling edge delay, VIL(PWM) voltage to 90% of output current when V(SUPPLY) = 12  
V, V(OUT) = 6 V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t3 as  
shown in 7-5  
2.4  
µs  
t(PWM_delay_falling)  
PWM falling edge delay, VIL(PWM) voltage to 90% of output current when V(SUPPLY) = 12  
V, V(OUT) = 6 V, V(CS_REG) = 50 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t3 as shown  
in 7-5  
2.6  
µs  
Output current falling from 90% to 10% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG)  
= 100 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t4 as shown in 7-5  
5
1
µs  
µs  
µs  
t(Current_falling)  
Output current falling from 90% to 10% when V(SUPPLY) = 12 V, V(OUT) = 6 V, V(CS_REG)  
= 50 mV, R(SNSx) = 0.665and R(RESx) = 56 , t4 as shown in 7-5  
SUPPLY rising edge to 10% output current when C(IREF) = C(ICTRL)= 10 pF, V(OUT) = 6  
V, V(CS_REG) = 100 mV, R(SNSx) = 0.665 and R(RESx) = 56 , t5 as shown in 7-5  
t(STARTUP)  
85  
t(IREF_deg)  
IREF pin open and short to GND detection deglitch time  
125  
125  
125  
125  
135  
10000  
300  
50  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
t(OPEN_deg)  
LED-open fault-deglitch time, t7 as shown in 7-8  
t(SG_deg)  
Output short-to-ground detection deglitch time, t8 as shown in 7-7  
Open and Short fault recovery deglitch time, t10 as shown in 7-8 and 7-7  
Single LED short-circuit detection deglitch time, t9 as shown in 7-10  
Single LED short-circuit failure retry interval time, t11 as shown in 7-10  
Single LED short-circuit failure retry period time, t12 as shown in 7-10  
Single LED short-circuit failure retry deglitch time, t13 as shown in 7-10  
Fault recovery delay time, t14 as shown in 7-8, 7-7 and 7-10  
Thermal over temperature deglitch time  
t(Recover_deg)  
t(SLS_deg)  
t(SLS_retry_interval)  
t(SLS_retry_period)  
t(SLS_retry_deg)  
t(FAULT_recovery)  
t(TSD_deg)  
50  
50  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
225  
225  
200  
175  
150  
125  
100  
75  
I(OUTx_Tot) = 50 mA  
I(OUTx_Tot) = 100 mA  
I(OUTx_Tot) = 150 mA  
I(OUTx_Tot) = 50mA  
I(OUTx_Tot) = 100mA  
I(OUTx_Tot) = 150mA  
200  
175  
150  
125  
100  
75  
50  
50  
25  
25  
0
0
4
8
12 16  
Supply Voltage (V)  
20  
24  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (oC)  
6-1. Output Current vs Supply Voltage  
6-2. Output Current vs Temperature  
225  
200  
175  
150  
125  
100  
75  
225  
200  
175  
150  
125  
100  
75  
I(OUTx_Tot) = 150 mA -40oC  
I(OUTx_Tot) = 150 mA 25oC  
I(OUTx_Tot) = 150 mA 125oC  
I(OUTx_Tot) = 50 mA  
I(OUTx_Tot) = 100 mA  
I(OUTx_Tot) = 150 mA  
50  
50  
25  
25  
0
0
0
0.4  
0.8 1.2  
Dropout Voltage (V)  
1.6  
2
0
0.4  
0.8 1.2  
Dropout Voltage (V)  
1.6  
2
6-3. Output Current vs Dropout Voltage  
6-4. Output Current vs Dropout Voltage  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
10  
1
Temperature = -40oC  
Temperature = 25oC  
Temperature = 125oC  
0.1  
0
0.5  
1
1.5 2  
ICTRL Voltage (V)  
2.5  
3
3.5  
0.1  
1 10  
Input PWM Duty Cycle (%)  
100  
6-5. V(CS_REG) vs ICTRL Voltage  
6-6. PWM Output Duty Cycle vs PWM Input Duty Cycle  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(EN)  
Ch3 = V(PWM1)  
Ch3 = V(PWM1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(EN)  
Ch3 = V(PWM1)  
Ch3 = V(PWM1)  
Ch3 = V(FAULT)  
Ch5 = I(OUT_Tot)  
Ch5 = I(OUT_Tot)  
6-7. Power Up Sequency  
6-8. Supply Dimming at 200 Hz  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(EN)  
Ch1 = V(SUPPLY)  
Ch4 = V(OUT1)  
Ch2 = V(EN)  
Ch5 = I(OUT_Tot)  
Ch5 = I(OUT_Tot)  
6-9. PWM Dimming at 200 Hz  
6-10. PWM Dimming at 1 kHz  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-11. LED Open Protection  
Ch2 = V(OUT1)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-12. LED Open Protection Recovery  
Ch2 = V(OUT1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
6-13. LED Short-Circuit Protection  
6-14. LED Short-Circuit Protection Recovery  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
6-15. Single LED Short-Circuit Protection  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
6-16. Single LED Short-Circuit Protection Recovery  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High  
DIAGEN = High  
6-17. Transient Undervoltage  
6-18. Transient Overvoltage  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High  
DIAGEN = High  
6-19. Slow Decrease and Quick Increase of Supply Voltage  
6-20. Slow Decrease and Slow Increase of Supply Voltage  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High  
DIAGEN = High  
6-21. Superimposed Alternating Voltage 15 Hz  
6-22. Superimposed Alternating Voltage 1 kHz  
Ch1 = V(SUPPLY)  
Ch4 = I(OUT_Tot)  
Ch2 = V(OUT1)  
Ch3 = V(FAULT)  
DIAGEN = High  
6-23. Jump Start  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS92633-Q1 three-channel LED driver includes an unique thermal management design to reduce  
temperature rising on the device. The TPS92633-Q1 is a linear driver directly powered by automotive batteries  
with large voltage variations to output full current loads up to 150 mA per channel. The current output at each  
channel can be independently set by external R(SNS) resistors. Current flows from the supply through the R(SNSx)  
resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and RESx pin. All three-  
channel current is configurable by an external resistor connected to the ICTRL pin. Either a NTC resistor for LED  
temperature monitor or a LED brightness binning resistor can be connected to ICTRL pin in same board or off-  
board. The TPS92633-Q1 device supports both supply control and EN/PWM control to turn LED ON/OFF. The  
LED brightness is also adjustable by voltage dutycycle applied on either SUPPLY or EN/PWM with frequency  
above 100 Hz. The TPS92633 provides full diagnostics to keep the system operating reliably including LED  
open/short circuit detection, single LED short circuit detection, supply POR and thermal shutdown protection.  
The TPS92633-Q1 device is in a HTSSOP package with total 20 leads. The TPS92633-Q1 can be used with  
other TPS9261x-Q1, TPS92630-Q1 and TPS92830-Q1 family devices together to achieve one-fails-all-fail  
protection by tying all FAULT pins together as a fault bus.  
7.2 Functional Block Diagram  
VSUPPLY  
R(SNS1)  
TPS92633-Q1  
IN1  
SUPPLY  
RES1  
OUT1  
EN  
DIAGEN  
PWM1  
IN2  
RES2  
PWM2  
PWM3  
Channel 2  
Channel 3  
OUT2  
IN3  
Logic  
RES3  
OUT3  
GND  
VCC  
VCC  
FAULT  
IREF  
ICTRL  
SLS_REF  
+
COMP  
œ
OUTx  
7.3 Feature Description  
7.3.1 Power Supply (SUPPLY)  
7.3.1.1 Power-On Reset  
The TPS92633-Q1 device has an internal power-on-reset (POR) function. When power is applied to the  
SUPPLY pin, the internal POR circuit holds the device in reset state until V(SUPPLY) is above V(POR_rising)  
.
7.3.1.2 Supply Current in Fault Mode  
The TPS92633-Q1 device consumes minimal quiescent current, I(Fault), into SUPPLY when the FAULT pin is  
externally pulled LOW. At the same time, the device shuts down all three output drivers, IREF and ICTRL.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
If device detects a fault, it pulls down the FAULT pin by an internal constant current, I(FAULT_pulldown) as a fault  
indication to the fault bus.  
7.3.2 Enable and Shutdown (EN)  
The TPS92633-Q1 device has an enable input. When EN is low, the device is in sleep mode with ultra low  
quiescent current I(SD). This low current helps to save system-level current consumption in applications where  
battery voltage directly connects to the device without high-side switches.  
7.3.3 Reference Current (IREF)  
The TPS92633-Q1 device has IREF pin to generate a high accuracy and low temperature shift current  
reference. The calculated result for I(IREF) is 100 µA when R(IREF) is 12.3 kΩ. The I(IREF) can be programmed by  
external resistor, R(IREF) in the range from 25 µA to 250 µA. The voltage on the IREF pin is regulated to the  
1.235 V typically, and the current output on IREF pin can be calculated by using 方程1.  
V
(IREF)  
I(IREF)  
=
R(IREF)  
(1)  
where  
V(IREF) = 1.235 V (typical)  
R(IREF) = 12.3 kΩrecommended  
The R(IREF) resistor needs to be placed as close as possible to the IREF pin with a 1-nF ceramic capacitor in  
parallel to achieve the noise immunity. The off-board R(IREF) setup is not allowed due to the concern of reference  
current instability.  
7.3.4 Constant-Current Output and Setting (INx)  
The TPS92633-Q1 device is a high-side current driver for driving LEDs. The device controls each output current  
through regulating the voltage drop on an external high-side current-sense resistor, R(SNSx) between SUPPLY  
and INx independently for each channel. An integrated error amplifier drives an internal power transistor to  
maintain the voltage drop on the current-sense resistor R(SNSx) to V(CS_REG), therefore regulates the current  
output to target value. When the output current is in regulation, the current value for each channel can be  
calculated by using 方程2.  
V
(CS _REG)  
I(OUTx _ Tot)  
=
R(SNSx)  
(2)  
where  
V(CS_REG) is variable according to 方程3  
x = 1, 2 or 3 for output channel 1, 2 or 3  
When the supply voltage drops below total LED string forward voltage plus required headroom voltage, the sum  
of V(DROPOUT) and V(CS_REG), the TPS92633-Q1 is not able to deliver enough current output as set by the value  
of R(SNSx), and the voltage across the current-sense resistor R(SNSx) is less than V(CS_REG)  
.
7.3.5 Analog Current Control (ICTRL)  
The TPS92633-Q1 supports analog constant current control for all three output channels together through  
adjusting the V(CS_REG) voltage. As described in Constant-Current Output and Setting (INx), the TPS92633-Q1  
regulates each channel output current by maintaining the voltage drop on each R(SNSx) same to V(CS_REG). The  
V(CS_REG) voltage is adjustable by an external resistor on ICTRL pin. The TPS92633-Q1 outputs a constant  
current, I(ICTRL), on the ICTRL pin and measures the voltage on the ICTRL pin, V(ICTRL), to determine the  
V(CS_REG). The I(ICTRL) current is 10 times of the I(IREF), and the V(ICTRL) is multiplied result of I(ICTRL) and R(ICTRL)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS92633-Q1  
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
The TPS92633-Q1 internally clamps the V(ICTRL) to maximum 2.75 V. The V(CS_REG) voltage can be calculated  
by using 方程3.  
I(IREF) ìR(ICTRL) ì 25  
V
=
(CS _REG)  
17  
(3)  
where  
I(IREF) is in A unit  
R(ICTRL) is in Ωunit  
V(CS_REG) is in V unit  
The minimum voltage of V(CS_REF) is 50 mV typically to maintain the high accurate current output.  
The final total output current for each channel can be calculated by using 方程式 4 which is combination of 方程  
1, 方程2 and 方程3.  
V
(IREF) ìR(ICTRL) ì 25  
I(OUTx _ Tot)  
=
R(IREF) ìR(SNSx) ì17  
(4)  
where  
V(IREF) = 1.235 V  
R(IREF) is in kΩunit  
R(ICTRL) is in Ωunit  
R(SNSx) is in Ωunit  
I(OUTx_Tot) is in mA unit  
The calculated result for I(OUTx_Tot) is 147.7 mA when R(IREF) is 12.3 kΩ, R(ICTRL) is 1000 Ωand R(SNSx) is 1Ω.  
7.3.5.1 Off-Board Brightness Binning Resistor  
With analog current control feature, a LED brightness binning resistor can be connected to ICTRL pin to set the  
output current according to LED brightness bin. The binning resistor can be placed in off-board with LED units. In  
order to achieve the best performance for the noise rejection, two resistors in serial can be adopted. One resistor  
is placed as closed as possible to the ICTRL pin in the same PCB board with device, and another one real  
binning resistor is placed in the other PCB board with LED units together.  
As 7-1 illustrated, the R(ICTRL1) resistor and C(ICTRL) ceramic capacitor need to be placed as close as possible  
to the ICTRL pin for noise decoupling. The off-board R(ICTRL2) resistor can be placed in LED board as real  
binning resistor. TI recommends a 10-nF ceramic capacitor for C(ICTRL)  
.
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
4.5V to 40V  
TPS92633-Q1  
R(RES1)  
R(RES2)  
R(RES3)  
SUPPLY  
RES1  
EN  
IN1  
IN2  
IN3  
C(SUPPLY)  
OUT1  
RES2  
R(SNS1)  
R(SNS2)  
R(SNS3)  
OUT2  
RES3  
OUT3  
DIAGEN  
PWM1  
PWM2  
GND  
R(IREF)  
IREF  
R(SLS_REF)  
R(ICTRL1)  
SLS_REF  
PWM3  
FAULT  
R(ICTRL2)  
ICTRL  
Off-board  
C(ICTRL)  
*: 10nF ceramic capacitor is recommended for each OUT  
7-1. Application Schematic For Off-Board Brightness Binning Resistor  
The V(CS_REG) is 50 mV typically when the ICTRL pin is short to GND.  
7.3.5.2 NTC Resistor  
The analog current control feature also allows to connect a NTC thermistor on ICTRL pin to achieve the LED  
current derating based on measured PCB board temperature or LED unit temperature. The resistance of NTC  
thermistor depends on the environment temperature. The resistance of NTC thermistor is decreasing with the  
temperature rising. It leads to the decreasing of the equivalent resistance of R(ICTRL) on ICTRL pin and the output  
current reduction from the calculation based on 方程2 and 方程3.  
TI recommends to connect a resistor network including NTC thermistor (e.g. NCU18XH103F6SRB) to ICTRL pin  
as illustrated in below 7-2. The resistor value of R1 and R2 work with NTC thermistor to adjust the equivalent  
resistance curve depending on the temperature to achieve the system required current derating.  
4.5V to 40V  
TPS92633-Q1  
R(RES1)  
SUPPLY  
RES1  
EN  
IN1  
IN2  
IN3  
C(SUPPLY)  
OUT1  
RES2  
R(RES2)  
R(SNS1)  
R(SNS2)  
R(SNS3)  
OUT2  
R(RES3)  
RES3  
OUT3  
DIAGEN  
PWM1  
PWM2  
GND  
R(IREF)  
R(SLS_REF)  
R1  
IREF  
SLS_REF  
PWM3  
FAULT  
ICTRL  
RNTC  
R2  
*: 10nF ceramic capacitor is recommended for each OUT  
7-2. Application Schematic For External NTC Thermistor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.3.6 Thermal Sharing Resistor (OUTx and RESx)  
The TPS92633-Q1 device provides two current output paths for each channel. Current flows from the supply  
through the R(SNSx) resistor into the integrated current regulation circuit and to the LEDs through OUTx pin and  
RESx pin. The current output on both OUTx pin and RESx pin is independently regulated to achieve total  
required current output. The summed current of OUTx and RESx is equal to the current through the R(SNSx)  
resistor in the channel. The OUTx connects to anode of LEDs load in serial directly, however RESx connects to  
the LEDs through an external resistor to share part of the power dissipation and reduce the thermal  
accumulation in TPS92633-Q1.  
The integrated independent current regulation in TPS92633-Q1 dynamically adjusts the output current on both  
OUTx and RESx output to maintain the stable summed current for LED. The TPS92633-Q1 always regulates the  
current output to the RESx pin as much as possible until the RESx current path is saturated, and the rest of  
required current is regulated from the OUTx. As a result, the most of the current to LED outputs through the  
RESx pin when the voltage dropout is relatively high between SUPPLY and LED required total forward voltage.  
In the opposite case, the most of the current to LED outputs through the OUTx pin when the voltage headroom  
is relatively low between SUPPLY and LED required forward voltage. 7-3 and 7-4 shows the curve of  
current and power dissipation distributor depending on supply voltage when R(RESx) is 68.5 Ω.  
225  
200  
175  
150  
125  
100  
75  
8
7
6
5
4
3
2
1
0
I(OUTx) R(RESx) = 68.5 W  
I(RESx) R(RESx) = 68.5 W  
I(OUTx_Tot) R(RESx) = 68.5 W  
P(DEVICE) R(RESx) = 68.5 W  
P(RESx) R(RESx) = 68.5 W  
P(TOTAL) R(RESx) = 68.5 W  
50  
25  
0
4
8
12 16  
Supply Voltage (V)  
20  
24  
4
8
12 16  
Supply Voltage (V)  
20  
24  
7-3. Output Current Distribution vs Supply  
7-4. Power Dissipation vs Supply Voltage  
Voltage  
7.3.7 PWM Control (PWMx)  
The pulse width modulation (PWM) input of the TPS92633-Q1 functions as enable for the output current. When  
the voltage applied on the PWM pin is higher than VIH(PWM), the relevant output current is enabled. When the  
voltage applied on PWM pin is lower than VIL(PWM), the output current is disabled as well as the diagnostic  
features. Besides output current enable and disable function, the PWM input of TPS92633-Q1 also supports  
adjustment of the average current output for brightness control when the frequency of applied PWM signal is  
higher than 100 Hz, which is out of visible frequency range of human eyes. TI recommends a 200-Hz PWM  
signal with 1% to 100% duty cycle input for brightness control. Please refer to 7-5 for typical timming  
information and 8-4 for typical PWM dimming application.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
SUPPLY  
EN  
PWMx  
t3  
t1  
tt5t  
tt6t  
t2  
t4  
IOUTx  
7-5. Power On Sequency and PWM Dimming Timing  
The detailed information and value of each time period in 7-5 is described in Timing Requirements.  
The TPS92633-Q1 device has three total PWM input pins, PWM1, PWM2 and PWM3, to control each of current  
output channel independently. PWM1 input controls the output channel1 for both OUT1 and RES1, PWM2 input  
controls the output channel2 for both OUT2 and RES2, and PWM3 input controls the output channel3 for both  
OUT3 and RES3.  
7.3.8 Supply Control  
The TPS92633-Q1 can support supply control to turn ON and OFF output current. When the voltage applied on  
the SUPPLY pin is higher than the LED string forward voltage plus needed headroom voltage at required  
current, and the PWM pin voltage is high, the output current is turned ON and well regulated. However, when the  
voltage applied on the SUPPLY pin is lower than V(POR_falling), the output current is turned OFF. With this feature,  
the power supply voltage in designed pattern can control the output current ON/OFF. The brightness is  
adjustable if the ON/OFF frequency is fast enough. Because of the high accuracy design of PWM threshold in  
TPS92633-Q1, it enables a resistor divider on the PWM pin to set the SUPPLY threshold higher than LED  
forward voltage plus required headroom voltage as shown in 7-6. The headroom voltage is basically the  
summation of V(DROPOUT) and V(CS_REG). When the voltage on the PWM pin is higher than VIH(PWM), the output  
current is turned ON. However, when the voltage on the PWM is lower than VIL(PWM), the output current is turned  
OFF. The SUPPLY threshold voltage can be calculated by using 方程5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
4.5V to 40V  
TPS92633-Q1  
R(RES1)  
R(RES2)  
R(RES3)  
SUPPLY  
RES1  
EN  
IN1  
IN2  
IN3  
C(SUPPLY)  
OUT1  
RES2  
R(SNS1)  
R(SNS2)  
R(SNS3)  
OUT2  
RES3  
OUT3  
DIAGEN  
PWM1  
PWM2  
R(UPPER)  
GND  
R(IREF)  
R(LOWER)  
IREF  
R(SLS_REF)  
R(ICTRL)  
SLS_REF  
PWM3  
FAULT  
ICTRL  
*: 10nF ceramic capacitor is recommended for each OUT  
7-6. Application Schematic For Supply Control LED Brightness  
«
R(UPPER)  
V
= V  
ì 1+  
÷
÷
(SUPPLY _PWM_ th _rising)  
IH(PWM)  
R(LOWER)  
(5)  
where  
VIH(PWM) = 1.26 V (maximum)  
7.3.9 Diagnostics  
The device is able to detect and protect fault from LED-string short-to-GND, LED-string open-circuit, single LED  
short-circuit and junction over-temperature scenarios. It also supports one-failsall-fail fault bus design that can  
flexibly fit different regulatory requirements.  
7.3.9.1 IREF Short-to-GND Detection  
The TPS92633-Q1 device has IREF short-to-GND detection through monitoring the voltage on the IREF pin. The  
IREF pin short-to-GND fault is reported by constantly pulling down the FAULT pin, if the IREF pin voltage, V(IREF)  
is lower than V(IREF_SHORT_th) for longer than the deglitch time of t(IREF_deg). The current for all output channels  
and ICTRL pin are turned off and the current out of IREF pin is clamped to I(IREF_ST_Clamp) when IREF pin short-  
to-GND fault is detected.  
The TPS92633-Q1 recovers to normal operating if the V(IREF) voltage rises up over V(IREF_SHORT_th)  
.
7.3.9.2 IREF Open Detection  
The TPS92633-Q1 device has IREF open detection through monitoring the current through the IREF pin. The  
IREF pin open fault is reported by constantly pulling down the FAULT pin, when the current through IREF pin,  
I(IREF) is lower than I(IREF_OPEN_th) for longer than the deglitch time of t(IREF_deg). The current for all output  
channels and ICTRL pin are turned off when IREF pin open fault is detected.  
The TPS92633-Q1 recovers to normal operating if the I(IREF) current rises up over I(IREF_OPEN_th)  
.
7.3.9.3 LED Short-to-GND Detection  
The TPS92633-Q1 device has LED short-to-GND detection. The LED short-to-GND detection monitors the  
output voltage when the output current is enabled. Once a short-to-GND LED failure is detected, the device turns  
off the faulty channel and retries automatically, regardless of the state of the PWM input. When the retry  
mechanism detects the removal of the LED short-to-GND fault, the device resumes to normal operation.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
The TPS92633-Q1 monitors the V(OUTx) voltage and V(RESx) voltage of each channel and compares it with the  
internal reference voltage to detect a short-to-GND failure. When V(OUTx) or V(RESx) voltage falls below  
V(SG_th_falling) longer than the deglitch time of t(SG_deg), the device asserts the short-to-GND fault and pulls low the  
FAULT pin. During the deglitch time period, if V(OUTx) and V(RESx) rises above V(SG_th_rising), the timer is reset.  
Once the TPS92633-Q1 has asserted a short-to-GND fault, the device turns off the faulty output channel and  
retries automatically with a small current. During retrying the device sources a small current I(Retry) from SUPPLY  
to OUT to pull up the LED loads continuously. Once auto-retry detects output voltage rising above V(SG_th_rising)  
,
it clears the short-to-GND fault and resumes to normal operation. 7-7 illustrates the timing for LED short-  
circuit detection, protection, retry and recovery.  
SUPPLY  
EN  
PWMx  
Short  
Removed  
LED  
Short  
Short  
Removed  
VOUTx  
IOUTx  
LED  
Short  
tt8t  
tt8t  
tt8t  
I(retry)  
tt10  
t
tt10  
t
tt14t  
FAULT  
No external  
pullup  
7-7. LED Short-to-GND Detection and Recovery Timing Diagram  
The detailed information and value of each time period in 7-7 is described in Timing Requirements.  
7.3.9.4 LED Open-Circuit Detection  
The TPS92633-Q1 device has LED open-circuit detection. The LED open-circuit detection monitors the output  
voltage when the current output is enabled. The LED open-circuit detection is only enabled when DIAGEN is  
HIGH. A short-to-battery fault is also detected and recognized as an LED open-circuit fault.  
The TPS92633-Q1 monitors dropout-voltage differences between the IN and OUT pins for each LED channel  
when PWM is HIGH. The voltage difference V(INx) V(OUTx) is compared with the internal reference voltage  
V(OPEN_th_rising) to detect LED open-circuit incident. When V(OUTx) rises causing V(INx) V(OUTx) less than the  
V(OPEN_th_rising) voltage and lasts longer the deglitch time of t(OPEN_deg), the device asserts an open-circuit fault.  
Once a LED open-circuit failure is detected, the internal constant-current sink pulls down the FAULT pin voltage.  
During the deglitch time period, when V(OUTx) falls and makes V(INx) V(OUTx) larger than V(OPEN_th_falling), the  
deglitch timer is reset.  
The TPS92633-Q1 shuts down the output current regulation for the faulty channel after LED open-circuit fault is  
detected. The device sources a small current I(Retry) from SUPPLY to OUT when DIAGEN input is logic High.  
Once the fault condition is removed, the device resumes normal operation and releases the FAULT pin. 7-8  
illustrates the timing for LED open-circuit detection, protection, retry and recovery.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
SUPPLY  
EN  
PWMx  
Open  
Removed  
LED  
Open  
Open  
Removed  
VOUTx  
LED  
Open  
tt7t  
tt7t  
tt7t  
I(retry)  
IOUTx  
tt10  
t
tt10  
t
tt14t  
FAULT  
No external  
pullup  
7-8. LED Open-Circuit Detection and Recovery Timing Diagram  
The detailed information and value of each time period in 7-8 is described in Timing Requirements.  
7.3.9.5 Single LED Short-Circuit Detection (SLS_REF)  
The TPS92633-Q1 device has single LED short-circuit detection. The single LED short-circuit detection monitors  
the output voltage when the output current is enabled. Once a single LED short-circuit failure is detected, the  
device turns off the faulty channel and retries automatically, regardless of the state of the PWM input. If the retry  
mechanism detects the removal of the single LED short-circuit fault, the device resumes to normal operation.  
The TPS92633-Q1 monitors the V(OUTx) voltage of each channel and internally compares the scale down voltage  
of V(OUTx) with an external resistor programmable reference voltage on SLS_REF to detect a single LED short-  
circuit failure. When the voltage of V(OUTx) falls below V(SLS_th_falling) longer than the deglitch time of t(SLS_deg), the  
device asserts the single LED short-circuit fault and pulls low the FAULT pin. During the deglitch time period, if  
the scale down voltage of V(OUTx) rises above V(SLS_th_rising), the timer is reset.  
Once the TPS92633-Q1 has asserted a single LED short-circuit fault, the device turns off the faulty output  
channel and retries automatically. During retrying the device sources full current from IN to OUT to pull up the  
LED loads every 10 ms for 300-µs period when the PWM input is logic high for the faulty channel. Once auto-  
retry detects the voltage of V(OUTx) rising above V(SLS_th_rising), it clears the single LED short-circuit fault and  
resumes to normal operation. The V(SLS_th_rising) is 2.5% higher the V(SLS_th_falling). The scale down ratio for  
V(OUTx) is N(OUT). 7-9 describes internal diagram for single LED short-circuit detection circuit. And the  
V
(SLS_th_falling) threshold voltage for single LED short-circuit is calculated by using 方程6.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
VCC  
1:1  
1/N  
OUT1  
OUT2  
OUT3  
œ
SLS  
IREF  
COMP  
+
R(IREF)  
1/N  
œ
SLS  
COMP  
+
SLS_REF  
R(SLS_REF)  
1/N  
œ
SLS  
COMP  
+
7-9. Single LED Short-Circuit Detection Block Diagram  
N(OUT) ìR(SLS _REF) ì V(IREF) ìN(SLS _REF)  
V
=
(SLS _ th _ falling)  
R(IREF)  
(6)  
where  
V(IREF) = 1.235 V (typical)  
R(IREF) = 12.3 kΩrecommended  
R(SLS_REF) is in kΩunit  
N(OUT) = 4 (typical)  
N(SLS_REF) = 1 (typical)  
The calculated result for V(SLS_th_falling) is 5.34 V when R(IREF) is 12.3 kΩand R(SLS_REF) is 13.3 kΩ.  
7-10 illustrates the timing for single-LED short-circuit detection, protection, retry and recovery.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
SUPPLY  
EN  
PWMx  
Single LED  
Short  
Removed  
VOUTx  
Single LED  
Short  
tt9t  
tt9t  
tt11t  
tt12t  
IOUTx  
tt13  
t
tt14t  
FAULT  
No external  
pullup  
7-10. Single LED Short-Circuit Detection and Recovery Timing Diagram  
The detail information and value of each time period in 7-10 is described in Timing Reqquirements.  
7.3.9.6 LED Open-Circuit and Single LED Short-Circuit Detection Enable (DIAGEN)  
The TPS92633-Q1 device supports the DIAGEN pin with an accurate threshold to disable the LED open-circuit  
and single LED short-circuit diagnostic functions. The DIAGEN pin can be used to enable or disable LED open-  
circuit detection and single LED short-circuit detection based on SUPPLY pin voltage sensed by an external  
resistor divider as illustrated in 7-11. When the voltage applied on DIAGEN pin is higher than the threshold  
VIH(DIAGEN), the device enables LED open-circuit and single LED short-circuit diagnosis. When V(DIAGEN) is lower  
than the threshold VIL(DIAGEN), the device disables LED open-circuit and single LED short-circuit detection.  
Only LED open-circuit detection and single LED short-circuit detection can be disabled by pulling down the  
DIAGEN pin. The LED short-to-GND detection and over-temperature protection cannot be turned off by pulling  
down the DIAGEN pin. The SUPPLY threshold voltage can be calculated by using 方程7.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
4.5V to 40V  
TPS92633-Q1  
R(RES1)  
R(RES2)  
R(RES3)  
SUPPLY  
RES1  
EN  
IN1  
IN2  
IN3  
C(SUPPLY)  
OUT1  
RES2  
R(SNS1)  
R(SNS2)  
R(SNS3)  
OUT2  
RES3  
R(UPPER)  
OUT3  
DIAGEN  
PWM1  
PWM2  
GND  
R(LOWER)  
R(IREF)  
IREF  
R(SLS_REF)  
R(ICTRL)  
SLS_REF  
PWM3  
FAULT  
ICTRL  
*: 10nF ceramic capacitor is recommended for each OUT  
7-11. Application Schematic For DIAGEN  
«
R(UPPER)  
V
= V  
ì 1+  
÷
÷
(SUPPLY _DIAGEN_ th _ falling)  
IL(DIAGEN)  
R(LOWER)  
(7)  
where  
VIL(DIAGEN) = 1.045 V (minimum)  
7.3.9.7 Low Dropout Operation  
When the supply voltage drops below LED string total forward voltage plus headroom voltage at required  
current, the TPS92633-Q1 device operates in low-dropout conditions to deliver current output as close as  
possible to target value. The actual current output is less than preset value due to insufficient headroom voltage  
for power transistor. As a result, the voltage across the sense resistor fails to reach the regulation target. The  
headroom voltage is the summation of V(DROPOUT) and V(CS_REG)  
.
If the TPS92633-Q1 is designed to operate in low-dropout condition, the open-circuit diagnostics and single LED  
short-circuit detection must be disabled by pulling the DIAGEN pin voltage lower than VIL(DIAGEN). Otherwise, the  
TPS92633-Q1 detects an open-circuit fault or single LED short-circuit fault and reports a fault on the FAULT pin.  
The DIAGEN pin is used to avoid false diagnostics due to low supply voltage.  
7.3.9.8 Over-Temperature Protection  
The TPS92633-Q1 device monitors device junction temperature. When the junction temperature reaches  
thermal shutdown threshold T(TSD), the output shuts down. Once the junction temperature falls below T(TSD)  
T(TSD_HYS), the device recovers to normal operation. During over-temperature protection, the FAULT pin is pulled  
low.  
7.3.10 FAULT Bus Output With One-FailsAll-Fail  
During normal operation, The FAULT pin of TPS92633-Q1 is weakly pulled up by an internal pullup current  
source, I(FAULT_pullup). If any fault scenario occurs, the FAULT pin is strongly pulled low by the internal pulldown  
current sink, I(FAULT_pulldown) to report out the fault alarm.  
Meanwhile, the TPS92633-Q1 also monitors the FAULT pin voltage internally. If the FAULT pin of the TPS92633-  
Q1 is pulled low by external current sink below VIL(FAULT), the current output is turned off even though there is no  
fault detected on owned outputs. The device does not resume to normal operation until the FAULT pin voltage  
rises above VIH(FAULT)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
Based on this feature, the TPS92633-Q1 device is able to construct a FAULT bus by tying FAULT pins from  
multiple TPS92633-Q1 devices to achieve one-fails-all-fail function as 7-12 showing. The lower side  
TPS92633-Q1 (B) detects any kind of LED fault and pulls low the FAULT pin. The low voltage on FAULT pin is  
detected by upper side TPS926133-Q1 (A) because the FAULT pins are connected of two devices. The upper  
side TPS92633-Q1 (A) turns off all output current for each channel as a result. If the FAULT pins of each  
TPS92633-Q1 are all connected to drive the base of an external PNP transistor as illustrated in 7-13, the one-  
failsall-fail function is disabled and only the faulty channel is turned off.  
TPS92633-Q1  
A
TPS92633-Q1  
A
VCC  
VCC  
VSUPPLY  
VSUPPLY  
10 k  
20 kΩ  
20 k  
FAULT  
FAULT  
10 kΩ  
Logic  
Logic  
10 kΩ  
TPS92633-Q1  
B
VCC  
TPS92633-Q1  
B
VCC  
FAULT  
FAULT  
Logic  
Logic  
7-13. FAULT Bus For One-Fails-Others-On  
7-12. FAULT Bus For One-Fails-All-Fail  
Application  
Application  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.3.11 FAULT Table  
7-1. FAULT Table With DIAGEN = HIGH (Full Function)  
FAULT BUS  
STATUS  
DETECTION CONTROL DEGLITCH  
FAULT  
ACTION  
FAULT HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT TYPE  
MECHANISM  
INPUT  
TIME  
Device turns all output  
off. IREF current clamps  
Constant-  
current  
pulldown  
IREF short-to-  
GND  
V(IREF)  
V(IREF_SHORT_th)  
<
EN = H  
t(IREF_deg)  
to I(IREF_ST_Clamp)  
.
Auto recovery  
Auto recovery  
ICTRL current output  
are turned off.  
Constant-  
current  
pulldown  
Device turns all output  
off. ICTRL current are  
turned off too.  
I(IREF)  
<
IREF open  
EN = H  
t(IREF_deg)  
I(IREF_OEPN_th)  
No detection  
No detection  
SLS_REF short-  
to-GND  
EN = H  
EN = H  
N/A  
N/A  
No Action  
No Action  
V(SLS_th_falling)= 0 V.  
Auto recovery  
Auto recovery  
Disable single-LED  
short-circuit detection.  
SLS_REF open  
ICTRL short-to-  
GND  
No detection  
No detection  
EN = H  
EN = H  
N/A  
N/A  
No Action  
No Action  
V(CS_REG) = 50 mV.  
V(CS_REG) = 400 mV.  
Auto recovery  
Auto recovery  
ICTRL open  
Device turns failed  
output off and retries  
with constant current  
I(retry), ignoring the PWM  
input.  
FAULT = H  
EN = H  
and  
PWMx = H  
Constant-  
current  
pulldown  
Open-circuit or  
short-to-supply  
V
(IN) V(OUT)  
<
t(OPEN_deg)  
Auto recovery  
Auto recovery  
V(OPEN_th_rising)  
V(OUT)  
V(SG_th_falling)  
OR  
V(RES)  
V(SG_th_falling)  
<
Device turns failed  
output off and retries  
with constant current  
I(retry), ignoring the PWM  
input.  
EN = H  
and  
PWMx = H  
Constant-  
current  
pulldown  
Short-to-ground  
t(SG_deg)  
<
Device turns failed  
output off and retries  
every 10 ms by turning  
output on for 300 µs  
when PWM input is  
logic high.  
V
(IN) V(OUT)  
>
V(OPEN_th_falling)  
&
V(SG_th_falling)  
< V(OUT)  
EN = H  
and  
PWMx = H  
Constant-  
current  
pulldown  
Single LED short-  
circuit  
t(SLS_deg)  
Auto recovery  
<
V(SLS_th_falling)  
Constant-  
current  
pulldown  
Device turns all output  
channels off, SLS_REF Auto recovery  
and ICTRL off.  
Over-temperature TJ > T(TSD)  
Fault is detected  
EN = H  
t(TSD_deg)  
Device turns off remained channels in operation.  
FAULT = L  
No fault is  
detected  
Device turns all output channels off, IREF, SLS_REF and ICTRL off.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7-2. FAULT Table With DIAGEN = LOW (Full Function)  
FAULT BUS  
STATUS  
DETECTION CURRENT DEGLITCH  
FAULT HANDLING  
ROUTINE  
FAULT  
RECOVERY  
FAULT TYPE  
FAULT BUS  
MECHANISM  
OUTPUT  
TIME  
Device turns all output  
off. IREF current clamps  
Constant-  
current  
pulldown  
IREF short-to-  
GND  
V(IREF)  
V(IREF_SHORT_th)  
<
EN = H  
t(IREF_deg)  
to I(IREF_ST_Clamp)  
.
Auto recovery  
Auto recovery  
ICTRL current output  
are turned off.  
Constant-  
current  
pulldown  
Device turns all output  
off. ICTRL current are  
turned off too.  
I(IREF)  
<
IREF open  
EN = H  
t(IREF_deg)  
I(IREF_OPEN_th)  
No detection  
No detection  
SLS_REF short-  
to-GND  
EN = H  
EN = H  
N/A  
N/A  
No Action  
No Action  
V(SLS_th_falling)= 0 V.  
Auto recovery  
Auto recovery  
Disable single-LED  
short-circuit detection.  
SLS_REF open  
ICTRL short-to-  
GND  
No detection  
No detection  
EN = H  
EN = H  
N/A  
N/A  
No Action  
No Action  
V(CS_REG) = 50 mV.  
V(CS_REG) = 400 mV.  
Auto recovery  
Auto recovery  
FAULT= H  
ICTRL open  
Open-circuit or  
short-to-supply  
Ignored  
Single LED short-  
circuit  
V(OUT)  
V(SG_th_falling)  
OR  
V(RES)  
V(SG_th_falling)  
<
Device turns output off  
and retries with constant  
current I(retry), ignoring  
the PWM input.  
EN = H  
and  
PWMx = H  
Constant-  
current  
pulldown  
Short-to-ground  
t(SG_deg)  
Auto recovery  
<
Constant-  
current  
pulldown  
Device turns all output  
channels off, SLS_REF Auto recovery  
and ICTRL off.  
Over-temperature TJ > T(TSD)  
EN = H  
t(TSD_deg)  
FAULT= L  
Fault is detected  
Device turns all output channels off and keeps retry on the failed channels.  
Device turns all output channels off, IREF, SLS_REF and ICTRL off.  
No fault is  
detected  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.3.12 LED Fault Summary  
7-3. LED Connection Fault Summary  
Case 1  
Case 2  
Case 3  
Case 4  
LED Short-to-GND Fault  
LED Short-to-GND Fault  
LED Open Fault  
LED Open Fault  
Case 5  
Case 6  
Case 7  
Case 8  
Single-LED-Short Fault  
No Fault  
No Fault  
LED Open Fault  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.3.13 IO Pins Inner Connection  
SUPPLY  
SUPPLY  
EN  
PWMx  
GND  
GND  
7-14. EN Pin  
7-15. PWM1, PWM2 and PWM3 Pins  
SUPPLY  
SUPPLY  
DIAGEN  
FAULT  
GND  
GND  
7-16. DIAGEN Pin  
7-17. FAULT Pin  
SUPPLY  
INx  
ICTRL  
OUTx  
GND  
GND  
7-18. ICTRL pin  
7-19. OUT1, OUT2 and OUT3 Pins  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
INx  
SUPPLY  
RESx  
INx  
GND  
OUTx  
7-20. RES1, RES2 and RES3 Pins  
7-21. IN1, IN2 and IN3 Pins  
SUPPLY  
SUPPLY  
2 k  
4 k  
IREF  
SLS_REF  
GND  
GND  
7-22. IREF Pin  
7-23. SLS_REF Pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS92633-Q1  
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Undervoltage Lockout, V(SUPPLY) < V(POR_rising)  
When the device is in undervoltage lockout status, the TPS92633-Q1 device disables all functions until the  
supply rises above the V(POR_rising) threshold.  
7.4.2 Normal Operation V(SUPPLY) 4.5 V  
The device drives an LED string in normal operation. With enough voltage drop across SUPPLY and OUT, the  
device is able to drive the output in constant-current mode.  
7.4.3 Low-Voltage Dropout Operation  
When the device drives an LED string in low-dropout operation, if the V(DROPOUT) is less than the open-circuit  
detection threshold, the device may report a false open-circuit fault or single LED short-circuit fault. TI  
recommends only enabling the open-circuit detection and single LED short-circuit detection when SUPPLY  
voltage is enough higher than LED string voltage to avoid a false open-circuit detection.  
7.4.4 Fault Mode  
When the device detects any fault, the device tries to pull down the FAULT pin with a constant current. If the  
FAULT bus is pulled down, the device switches to fault mode and consumes a fault current of I(Fault)  
.
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
In automotive lighting applications, thermal performance and LED diagnostics are always design challenges for  
linear LED drivers.  
The TPS92633-Q1 device is capable of detecting LED open-circuit, LED short-circuits and single-LED short-  
circuit. To increase current driving capability, the TPS92633-Q1 device supports using an external shunt resistor  
to help dissipate heat as following section Thermal Sharing Resistor describes. This method provides a low-cost  
solution of using external resistors to minimize thermal accumulation on the device itself due to large voltage  
difference between input voltage and LED string forward voltage, while still keeping high accuracy of the total  
current output.  
8.2 Typical Applications  
8.2.1 BCM Controlled Rear Lamp with One-Fails-All-Fail Setup  
The multiple TPS92633-Q1 devices are capable to drive different functions for automotive rear lamp including  
stop, turn indicator, tail, fog, reverse and center-high-mounted-stop-lamp. The One-Fails-all-Fail single lamp  
mode can be easily achieved by FAULT bus by shorting the FAULT pins.  
BCM_STOP  
TPS92633-Q1  
10nF  
10nF  
10nF  
R(RES1)  
R(RES2)  
R(RES3)  
C(SUPPLY)  
SUPPLY  
RES1  
10kΩ  
EN  
IN1  
IN2  
IN3  
OUT1  
RES2  
R(SNS1)  
R(SNS2)  
R(SNS3)  
OUT2  
R1  
R2  
RES3  
OUT3  
DIAGEN  
PWM1  
PWM2  
1nF  
R3  
R4  
GND  
R(IREF)  
IREF  
R(SLS_REF)  
SLS_REF  
PWM3  
FAULT  
20kΩ  
R(ICTRL)  
ICTRL  
1nF  
8-1. Typical Application Schematic  
8.2.1.1 Design Requirements  
Input voltage range is from 9 V to 16 V, and a total 9 LEDs, with 3 LEDs in each string required to achieve stop  
function. The LED maximum forward voltage, VF_MAX is 2.5 V for each LED, however the minimum forward  
voltage, VF_MIN is 1.9 V. The current requirement for each LED, I(LED) is 140 mA. The LED brightness and  
ON/OFF control is manipulated by body control module, BCM, directly by connecting and disconnecting the  
power supply to the LED load. Single-LED short-circuit detection is also required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS92633-Q1  
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
STEP 1: Determine the reference current setting resistor, R(IREF), by using 方程8.  
V
(IREF)  
R(IREF)  
=
I(IREF)  
(8)  
where  
V(IREF) = 1.235 V (typical)  
I(IREF) = 100 µA (recommended)  
TI recommends 100 µA current for reference current, I(IREF) if the ICTRL resistor is placed in the same board  
with TPS92633-Q1. The calculated result for R(IREF) is 12.3 kΩwhen I(IREF) = 100 µA.  
STEP 2: Design the ICTRL resistor, R(ICTRL), for setting the regulation voltage, V(CS_REG) by using 方程9.  
V
(CS _REG) ì17  
R(ICTRL)  
=
I(IREF) ì 25  
(9)  
where  
V(CS_REG) = 100 mV (recommended)  
I(IREF) = 100 µA (recommended)  
TI recommends 100 mV for reference voltage across current sensing resistor, R(SNSx) if the ICTRL pin is not  
used for driving off-board binning resistor or NTC resistor. The calculated result for R(ICTRL) is 680 Ω when  
V(CS_REG) = 100 mV.  
STEP 3: Determine the current sensing resistor, R(SNSx), by using 方程10.  
V
(IREF) ìR(ICTRL) ì 25  
R(SNSx)  
=
R(IREF) ìI(OUTx _ Tot) ì17  
(10)  
where  
V(IREF) = 1.235 V (typical)  
R(ICTRL) = 680 Ω  
R(IREF) = 12.3 kΩ  
I(OUTx_Tot) = 140 mA  
According to design requirements, output current for each channel is same so that the R(SNS1) = R(SNS2)  
=
R(SNS3) = 0.717 Ω. Two resistors in parallel are required to achieve equivalent 0.717-Ω resistance because  
0.717 Ωis not a standard decade resistance value.  
STEP 4: Design the current distribution between I(OUTx) and I(RESx), and calculate the current sharing resistor,  
R(RESx) by using 方程式 11. The R(RESx) value actually decides the current distribution for I(OUTx) path and I(RESx)  
path, basic principle is to design the R(RESx) to consume appropriate 50% total power dissipation at typical  
supply operating voltage.  
V
- V  
(OUTx)  
(SUPPLY)  
R(RESx)  
=
I(OUTx _ Tot) ì0.5  
(11)  
where  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
V(SUPPLY) = 12 V (typical)  
I(OUTx_Tot) = 140 mA  
The calculated result for R(RESx) resistor value including R(RES1), R(RES2) and R(RES3) is 75 Ω when V(OUTx) is  
typical 3 × 2.2 V = 6.6 V.  
STEP 5: Design the single-LED short-circuit threshold voltage and calculate the value of R(SLS_REF) resistor for  
setting single-LED short-circuit threshold by using 方程12.  
The total forward voltage for three LEDs in serial is 3 × 2.5 V = 7.5-V maximum and 3 × 1.9 V = 5.7-V minimum.  
Once anyone of three LEDs is defective with short-circuit behavior, the total forward voltage for remaining two  
LEDs in serial is 2 × 2.5 V = 5-V maximum and 2 × 1.9 V = 3.8-V minimum. So the 5.3 V is selected to be  
threshold for single-LED short-circuit, V(SLS_th_falling)  
.
V
(SLS _ th _ falling) ìR(IREF)  
R(SLS _REF)  
=
N(OUT) ì V(IREF) ìN(SLS _REF)  
(12)  
where  
V(IREF) = 1.235 V (typical)  
R(IREF) = 12.3 kΩ  
N(OUT) = 4  
N(SLS_REF) = 1  
The calculated result for R(SLS_REF) is 13.3 kΩfor V(SLS_th_falling) is 5.34 V.  
STEP 6: Design the threshold voltage of SUPPLY to enable the LED open-circuit and single-LED short-circuit  
diagnostics, and calculate voltage divider resistor value for R1 and R2 on DIAGEN pin.  
The maximum forward voltage of LED-string is 3 × 2.5 V = 7.5 V. To avoid the open-circuit fault or single-LED  
short-circuit reported in low-dropout operation conditions, additional headroom between SUPPLY and OUTx  
needs to be considered. The TPS92633-Q1 device must disable open-circuit detection and single-LED short-  
circuit detection when the supply voltage is below LED-string maximum forward voltage plus V(OPEN_th_rising) and  
V(CS_REG). The voltage divider resistor, R1 and R2 value can be calculated by 方程13.  
÷
V
+ V  
+ V  
(OUTx)  
(OPEN_ th_rising)  
(CS _REG)  
R =  
-1 ìR  
«
÷
1
2
V
IL(DIAGEN)  
(13)  
where  
V(OPEN_th_rising) = 210 mV (maximum)  
V(CS_REG) = 100 mV  
VIL(DIAGEN) = 1.045 V (minimum)  
R2 = 10 kΩ(recommended)  
The calculated result for R1 is 64.9 kΩwhen V(OUTx) maximum voltage is 7.5 V and V(CS_REG) is 100 mV.  
STEP 7: Design the threshold voltage of SUPPLY to turn on and off each channel of LED, and calculate voltage  
divider resistor value for R3 and R4 on PWM input pin.  
The minimum forward voltage of LED-string is 3 × 1.9 V = 5.7 V. To make sure the current output on each of  
LED-string is normal, each LED-string needs to be turned off when SUPPLY voltage is lower than LED minimum  
required forward voltage plus dropout voltage between INx to OUTx and V(CS_REG). The voltage divider resistor,  
R3 and R4 value can be calculated by 方程14.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS92633-Q1  
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
÷
V
+ V  
+ V  
(DROPOUT)  
(CS _REG) (OUTx)  
R =  
-1 ìR  
«
÷
3
4
V
IH(PWM)  
(14)  
where  
V(DROPOUT) = 300 mV (typical)  
V(CS_REG) = 100 mV  
VIH(PWM) = 1.26 V (maximum)  
R4 = 10 kΩ(recommended)  
The calculated result for R3 is 38.3 kΩwhen V(OUTx) minimum voltage is 5.7 V and V(CS_REG) is 100 mV.  
8.2.1.3 Application Curves  
Ch1 = V(SUPPLY)  
Ch4 = V(DIAGEN)  
Ch2 = V(EN)  
Ch3 = V(PWM1)  
Ch6 = I(OUT_Tot)  
Ch1 = V(SUPPLY)  
Ch4 = V(DIAGEN)  
Ch2 = V(EN)  
Ch3 = V(PWM1)  
Ch6 = I(OUT_Tot)  
Ch5 = V(OUT1)  
Ch5 = V(OUT1)  
8-2. Supply Dimming 80% Brightness  
8-3. Supply Dimming 20% Brightness  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.2.2 Independent PWM Controlled Rear Lamp with Off Board LED and Binning Resistor  
The TPS92633-Q1 device is able to drive the each current output channel independently by PWM input at  
PWM1, PWM2 and PWM3 pins. The LED and LED binning resistor can be placed in different PCB to the  
TPS92633-Q1 device. The LED binning resistor is connected to the ICTRL pin to set the LED current  
accordingly.  
BCM_TURN  
TPS92633-Q1  
10nF  
10nF  
10nF  
R(RES1)  
R(RES2)  
R(RES3)  
C(SUPPLY)  
SUPPLY  
RES1  
10kΩ  
EN  
IN1  
IN2  
IN3  
OUT1  
RES2  
R(SNS1)  
R1  
R2  
R(SNS2)  
R(SNS3)  
OUT2  
RES3  
OUT3  
DIAGEN  
PWM1  
PWM2  
R(ICTRL2)  
1nF  
MCU  
GPIO  
GPIO  
GPIO  
GPIO  
GND  
R(IREF)  
R(ICTRL1)  
1nF  
IREF  
SLS_REF  
PWM3  
FAULT  
ICTRL  
20kΩ  
VCC  
8-4. Typical Application Schematic  
8.2.2.1 Design Requirements  
Input voltage range is from 9 V to 16 V, and a total 6 LEDs, with 2 LEDs in each string required to achieve turn  
indicator function. The LED maximum forward voltage, VF_MAX is 2.5 V for each LED, however the minimum  
forward voltage, VF_MIN is 1.9 V. The binning resistor for LED is placed with LED units together in another PCB  
out of LED driver board. The LED current is 50 mA, 75 mA and 100 mA depending on the brightness bin. Each  
current output channel is independently controlled by MCU through individual GPIO. Single-LED short-circuit  
detection is not required.  
8.2.2.2 Detailed Design Procedure  
TI recommends to short the SLS_REF pin to GND when single-LED short-circuit is not required.  
STEP 1: Determine the reference current setting resistor, R(IREF), by using 方程15.  
V
(IREF)  
R(IREF)  
=
I(IREF)  
(15)  
where  
V(IREF) = 1.235 V (typical)  
I(IREF) = 200 µA (recommended for off-board binning resistor)  
TI recommends 200-µA current for reference current, I(IREF) if the ICTRL resistor is placed in the other board with  
TPS92633-Q1. The calculated result for R(IREF) is 6.19 kΩwhen I(IREF) = 200 µA.  
STEP 2: Design the ICTRL resistor, R(ICTRL1) and R(ICTRL2), for setting the regulation voltage, V(CS_REG), by using  
方程16.  
V
(CS _REG) ì17  
R(ICTRL1) + R(ICTRL2)  
=
I(IREF) ì 25  
(16)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS92633-Q1  
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
where  
I(IREF) = 200 µA (recommended for off-board binning resistor)  
TI recommends 80 mV, 120 mV and 160 mV or reference voltage across current sensing resistor, R(SNSx), for  
three different brightness binning LED. The calculated result for R(ICTRL1) and R(ICTRL2) for different brightness  
bin LED is listed in 8-1. It is recommended to choose as large as possible R(ICTRL1) to achieve the highest  
noise immunity.  
STEP 3: Determine the current sensing resistor, R(SNSx), by using 方程17.  
V
(IREF) ìR(ICTRL) ì 25  
R(SNSx)  
=
R(IREF) ìI(OUTx _ Tot) ì17  
(17)  
where  
V(IREF) = 1.235 V (typical)  
R(IREF) = 6.19 kΩ  
According to design requirements, output current for each channel is same so that the R(SNS1) = R(SNS2)  
(SNS3). The calculated result for R(SNSx) is listed in 8-1.  
=
R
8-1. Calculated Resistor Table  
LED Brightness Group A  
LED Brightness Group B  
LED Brightness Group C  
I(OUTx_Tot)  
V(CS_REG)  
R(ICTRL1) + R(ICTRL2)  
R(ICTRL1)  
50 mA  
80 mV  
272 Ω  
75 mA  
120 mV  
408 Ω  
270 Ω  
140 Ω  
1.6 Ω  
100 mA  
160 mV  
544 Ω  
R(ICTRL2)  
2 Ω  
274 Ω  
R(SNSx)  
STEP 4: Design the current distribution between I(OUTx) and I(RESx) and calculate the current sharing resistor,  
R(RESx), by using 方程式 18. The R(RESx) value actually decides the current distribution for I(OUTx) path and I(RESx)  
path, basic principle is to design the R(RESx) to consume appropriate 50% total power dissipation at typical  
supply operating voltage.  
V
- V  
(OUTx)  
(SUPPLY)  
R(RESx)  
=
I(OUTx _ Tot) ì0.5  
(18)  
where  
V(SUPPLY) = 12 V (typical)  
I(OUTx_Tot) = 100 mA (maximum)  
The calculated result for R(RESx) resistor value including R(RES1), R(RES2) and R(RES3) is 152 Ω when V(OUTx) is  
typical 2 × 2.2 V = 4.4 V.  
STEP 5: Design the threshold voltage of SUPPLY to enable the LED open-circuit and single-LED short-circuit  
diagnostics, and calculate voltage divider resistor value for R1 and R2 on DIAGEN pin.  
The maximum forward voltage of LED-string is 2 × 2.5 V = 5 V. To avoid the open-circuit fault reported in low-  
dropout operation conditions, additional headroom between SUPPLY and OUTx needs to be considered. The  
TPS92633-Q1 device must disable open-circuit detection when the supply voltage is below LED-string maximum  
forward voltage plus V(OPEN_th_rising) and V(CS_REG). The voltage divider resistor, R1 and R2 value can be  
calculated by 方程19.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
÷
V
+ V  
+ V  
(OUTx)  
(OPEN_ th_rising)  
(CS _REG)  
R =  
-1 ìR  
«
÷
1
2
V
IL(DIAGEN)  
(19)  
where  
V(OPEN_th_rising) = 210 mV (maximum)  
V(CS_REG) = 160 mV (maximum)  
VIL(DIAGEN) = 1.045 V (minimum)  
R2 = 10 kΩ(recommended)  
The calculated result for R1 is 41.2 kΩ when V(OUTx) maximum voltage is 5 V and V(CS_REG) is 160 mV  
maximum.  
8.2.2.3 Application Curves  
Ch1 = V(SUPPLY)  
Ch4 = V(DIAGEN)  
Ch2 = V(EN)  
Ch3 = V(PWM1)  
Ch6 = I(OUT_Tot)  
Ch1 = V(SUPPLY)  
Ch4 = V(DIAGEN)  
Ch2 = V(EN)  
Ch3 = V(PWM1)  
Ch6 = I(OUT_Tot)  
Ch5 = V(OUT1)  
Ch5 = V(OUT1)  
8-5. PWM Dimming 80% Dutycycle at 200 Hz  
8-6. PWM Dimming 20% Dutycycle at 600 Hz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPS92633-Q1 is designed to operate from an automobile electrical power system within the range specified  
in Power Supply. The V(SUPPLY) input must be protected from reverse voltage and load dump condition over 40  
V. The impedance of the input supply rail must be low enough that the input current transient does not cause  
drop below LED string required forward voltage. If the input supply is connected with long wires, additional bulk  
capacitance may be required in addition to normal input capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Thermal dissipation is the primary consideration for TPS92633-Q1 layout.  
TI recommends large thermal dissipation area in both top and bottom layers of PCB. The copper pouring  
area in same layer with TPS92633-Q1 footprint should directly cover the thermal pad land of the device with  
wide connection as much as possible. The copper pouring in opposite PCB layer or inner layers should be  
connected to thermal pad directly through multiple thermal vias.  
TI recommends to place R(RESx) resistors away from the TPS92633-Q1 device with more than 20-mm  
distance because R(RESx) resistors are dissipating some amount of the power as well as the TPS92633-Q1. It  
is better to place two heat source components apart to reduce the thermal accumulation concentrated at  
small PCB area. The large copper pouring area is also required surrounding the R(RESx) resistors for helping  
thermal dissipating.  
The noise immunity is the secondary consideration for TPS92633-Q1 layout.  
TI recommends to place the noise decoupling capacitors for SUPPLY, ICTRL and IREF pins as close as  
possible to the pins.  
TI recommends to place the R(SNSx) resistor as close as possible to the INx pins with the shortest PCB track  
to SUPPLY pin.  
10.2 Layout Example  
GND  
GND  
R(RES1)  
C(SUPPLY)  
LED String1  
GND  
SUPPLY  
EN  
RES1  
OUT1  
R(RNS1)  
IN1  
RES2  
OUT2  
R(RES2)  
R(RNS2)  
IN2  
IN3  
RES3  
LED String2  
R(RNS3)  
DIAGEN  
PWM1  
PWM2  
PWM3  
FUALT  
OUT3  
GND  
DIAGEN  
PWM1  
PWM2  
PWM3  
FUALT  
IREF  
SLS_REF  
R(RES3)  
ICTRL  
LED String3  
GND  
GND  
10-1. TPS92633-Q1 Example Layout Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS92633-Q1  
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
PowerPADis a trademark of TI.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS92633-Q1  
 
 
 
 
 
 
TPS92633-Q1  
ZHCSMI7A DECEMBER 2020 REVISED MAY 2021  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS92633-Q1  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92633QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
20  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
92633Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS92633QPWPRQ1 HTSSOP PWP  
20  
2000  
330.0  
16.4  
6.95  
7.0  
1.4  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TPS92633QPWPRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS92633MPWPR

具有热共享和非板载分级功能的三通道高侧 LED 驱动器 | PWP | 20 | -55 to 125
TI

TPS92633QPWPRQ1

具有热共享和非板载分级功能的汽车类三通道高侧 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92638-Q1

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器
TI

TPS92638QPWPRQ1

具有 PWM 调光功能的汽车类 8 通道线性 LED 驱动器 | PWP | 20 | -40 to 125
TI

TPS92640

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI

TPS92640PWP

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI

TPS92640PWP/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125
TI

TPS92640PWPR

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI

TPS92640PWPR/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125
TI

TPS92640PWPT

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI

TPS92640PWPT/NOPB

用于精密调光 LED 驱动器的同步降压控制器 | PWP | 14 | -40 to 125
TI

TPS92641

Synchronous Buck Controllers for Precision Dimming LED Drivers
TI