TPSM265R1V3SILR [TI]

采用 2.8mm x 3.7mm 封装的 3V 至 65V 输入、100mA 降压电源模块

| SIL | 10 | -40 to 125;
TPSM265R1V3SILR
型号: TPSM265R1V3SILR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2.8mm x 3.7mm 封装的 3V 至 65V 输入、100mA 降压电源模块

| SIL | 10 | -40 to 125

电源电路
文件: 总35页 (文件大小:2204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
TPSM265R1  
具有超低 IQ TPSM265R1 65V 输入、100mA 电源模块  
1 特性  
3 说明  
3V 65V 的宽输入电压范围  
TPSM265R1 是一款紧凑、易用的模块其运行时具有  
宽输入电压范围最大连续输入电压高达 65V。该模  
块完全集成了一个控制器、多个 MOSFET 和一个输出  
电感器。该模块设计用于在小型 PCB 封装中快速、简  
便地实施电源设计。此模块具有 3.3V 5V 两种固定  
输出电压选项和一个 1.223V 15V 的可调节输出  
电压选项。每种选项的负载电流额定值均为 100mA。  
TPSM265R1 在脉冲频率调制 (PFM) 模式下运行从  
而提高了轻载条件下的效率。其控制方案无需环路补  
并可提供出色的线路和负载瞬态响应。  
输出电压选项:  
– 可调节电压1.223V 15V  
– 固定电压3.3V 5V  
100mA 输出电流  
10.5µA 静态电流  
±1% 内部电压基准  
PFM 运行模式  
40°C 125°C 的环境温度范围  
可实现低 EMI 的有效压摆率控制  
符合 CISPR11 (EN55011) EMI 标准  
单调启动至预偏置输出  
虽然 TPSM265R1 采用简易的小尺寸设计但其可提  
供多种功能。精密使能端、可调 UVLO 和迟滞功能可  
满足特定的上电和断电要求。可选/可调的启动时序选  
项包括最短延迟无软启动、内部固定值 (900µs) 以  
及可使用电容器进行外部编程的软启动。可以使用开漏  
PGOOD 指示器进行排序和输出电压监控。其超小型  
2.8mm × 3.7mm × 1.9mm 封装非常适合空间受限型应  
用。  
电源正常状态标志  
具有迟滞功能的精密使能和输入 UVLO  
具有迟滞功能的热关断保护  
2.8mm x 3.7mm x 1.9mm 封装  
使用 WEBENCH® Power Designer 并借助  
TPSM265R1 创建定制稳压器设计  
器件信息  
器件型号(1)  
输出  
1.223V 15V  
3.3V  
封装  
2 应用  
TPSM265R1  
TPSM265R1V3  
TPSM265R1V5  
现场发送器和过程传感器  
位置 接近传感器  
uSiP  
5V  
PLCDCS PAC  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
伺服驱动器电源模块  
负输出应用  
100  
90  
80  
70  
60  
50  
40  
TPSM265R1V5  
VIN  
VIN  
PGOOD  
VOUT  
EN  
VOUT  
CIN  
HYS  
SS  
SENSE+  
30  
20  
10  
0
VIN  
24 V  
36 V  
48 V  
60 V  
COUT  
GND  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
15VO  
典型效率 (VOUT = 15V)  
典型原理图固定输出)  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBF6  
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................17  
8 Applications and Implementation................................18  
8.1 Application Information............................................. 18  
8.2 Typical Applications.................................................. 18  
9 Power Supply Recommendations................................21  
10 Layout...........................................................................22  
10.1 Layout Guidelines................................................... 22  
10.2 Layout Example...................................................... 22  
11 Device and Documentation Support..........................26  
11.1 Device Support........................................................26  
11.2 Documentation Support.......................................... 26  
11.3 Receiving Notification of Documentation Updates..26  
11.4 Support Resources................................................. 26  
11.5 Trademarks............................................................. 27  
11.6 Electrostatic Discharge Caution..............................27  
11.7 Glossary..................................................................27  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics (VIN = 5 V)............................. 7  
6.7 Typical Characteristics (VIN = 12 V)........................... 8  
6.8 Typical Characteristics (VIN = 24 V)........................... 9  
6.9 Typical Characteristics (VIN = 48 V)......................... 10  
6.10 Typical Characteristics (VIN = 65 V)....................... 11  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
Information.................................................................... 27  
4 Revision History  
Changes from Revision A (November 2019) to Revision B (December 2020)  
Page  
更新了整个文档的表、图和交叉参考的编号格式。.............................................................................................1  
将器件状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
5
10  
VOUT  
PGOOD  
9
8
7
6
SS  
EN  
SENSE+  
/ FB  
11  
GND  
GND  
VIN  
HYS  
VIN  
GND  
5-1. 10-Pin uSiP Exposed Thermal Pad SIL-10C Package (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
Output voltage pin. The VOUT pin is connected to the internal output inductor. Connect the VOUT pin  
to an external output capacitor and the output load. The output capacitor connections must be made  
as close as possible to the VOUT and GND pin 11 of the module. See 10.2.  
1
VOUT  
O
Soft-start programming pin. If the SS pin is floating, the output voltage ramp up time is approximately  
1 ms after the device is enabled by the EN pin. If a 100-kΩ resistor is placed from the SS pin to GND,  
the internal soft start is disabled and the output voltage ramps up immediately after the device is  
enabled with the EN pin. Other output voltage ramp up times can be obtained by connecting an  
appropriate capacitance from the SS pin to GND.  
2
SS  
I
Ground pins. Connect all GND pins to the system ground plane. Pin 3 is not connected to GND  
internal to the module. Connect pin 3 directly to pin 11 on the host PCB. See 10.2.  
3, 6, 11  
4, 5  
GND  
VIN  
G
I
Input supply pins. The VIN pins are connected to the internal controller and power MOSFETs. Connect  
the VIN pins to an external input capacitor and the input power source. The input capacitor  
connections must be made as close as possible to the VIN pins and GND pin 6 of the module. See 节  
10.2.  
Enable hysteresis pin. The open-drain HYS pin can be used along with external resistors to program  
the hysteresis of a user-defined UVLO using the EN pin. HYS is internally pulled to GND when EN is  
below its turnon threshold and HYS goes open drain when EN is above its turnon threshold.  
7
HYS  
O
Output voltage feedback pin. For fixed output voltage options, the SENSE+ pin must be externally  
connected to VOUT. For the adjustable output voltage option, the FB pin must be connected to an  
external resistor divider that is connected between VOUT and GND.  
8
9
SENSE+/FB  
EN  
I
I
Enable pin. The module is enabled when the EN pin is pulled high and disabled when the EN pin is  
pulled low. An external resistor divider can be connected to the EN pin to act as an external UVLO.  
Power Good pin. The open-drain PGOOD pin is pulled low when the SENSE+ or FB pin is below the  
VOUT regulation target. An external 10-kΩ to 100-kΩ pullup resistor can be used to pull the PGOOD  
pin high when VOUT meets the regulation target.  
10  
PGOOD  
O
(1) G = Ground, I = Input, O = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM265R1  
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating junction temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
55  
MAX  
68  
UNIT  
V
VIN, EN  
SENSE+, PGOOD  
Input voltage  
HYS  
16  
V
7
V
FB, SS  
3.6  
16  
V
Output voltage  
VOUT  
V
Operating junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
260  
3
°C  
°C  
°C  
Peak reflow case temperature  
Maximum number of reflows allowed  
Mechanical shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
1500  
20  
G
G
Mechanical vibration  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
65  
12  
5
UNIT  
V
VIN  
3(1)  
Input voltage  
PGOOD  
HYS  
V
V
Adjustable option  
Fixed 5 V option  
Fixed 3.3 V option  
1.223  
15  
V
Output voltage  
VOUT  
5
V
3.3  
V
Output current  
Iout  
100  
125  
mA  
°C  
µF  
µF  
TA  
Operating ambient temperature  
Input capacitance  
Output capacitance  
40  
1(2)  
CIN  
Ceramic  
Ceramic  
COUT  
10(3)  
(1) The minimum input voltage is 3.0 V or (VOUT + 1 V), whichever is greater.  
(2) See 8.2.2.3 of the data sheet for more information.  
(3) See 7.3.3 of the data sheet for more information.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
 
 
 
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.4 Thermal Information  
TPSM265R1  
THERMAL METRIC(1)  
SIL-10C  
10 PINS  
49.7  
UNIT  
RθJA  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
°C/W  
°C/W  
°C/W  
2.3  
28.7  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report.  
6.5 Electrical Characteristics  
Limits apply over TA = 40°C to +125°C, VIN = 12 V, VOUT = 5 V, (unless otherwise noted); CIN1 = 1 µF, 100-V, 1206  
ceramic, CIN2 = 33 µF, 100-V, electrolytic (optional), and COUT = 47 µF, 16-V, 1210 ceramic. Minimum and maximum limits  
are specified through production test or by design. Typical values represent the most likely parametric norm and are provided  
for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
VIN  
Input supply voltage range  
VIN UVLO rising threshold  
VIN UVLO falling threshold  
Over IOUT range  
VIN rising  
3(1)  
2.60  
2.35  
65  
2.95  
2.60  
V
V
V
2.75  
2.45  
UVLO  
VIN falling  
VIN operating non-switching supply  
current  
IQ(VIN)  
VFB = 1.5 V, TA = 25°C  
VEN = 0 V, TA = 25°C  
10.5  
4.6  
15  
µA  
µA  
ISD(VIN)  
ENABLE  
VEN(rise)  
VEN(fall)  
VEN(hyst)  
VEN(sd)  
VIN shutdown supply current  
6.0  
EN voltage rising threshold  
EN voltage falling threshold  
EN voltage hysteresis  
EN voltage rising  
EN voltage falling  
1.163  
1.109  
1.212  
1.144  
68  
1.262  
1.178  
V
V
mV  
V
EN shutdown threshold  
HYS on-resistance  
EN voltage falling  
VEN = 1 V  
0.3  
0.6  
RHYS  
80  
200  
100  
Ω
IHYS(LKG)  
HYS off-state leakage current  
VEN = 1.5 V, VHYS = 5.5 V  
10  
nA  
FEEDBACK (Adjustable option)  
Lower regulation threshold  
Upper regulation threshold  
Hysteresis  
1.205  
1.220  
1.223  
1.233  
10  
1.241  
1.246  
V
V
Feedback voltage(2) (4)  
mV  
VFB  
Line regulation  
Over VIN range, TA = 25°C, IOUT = 0 A  
Over IOUT range, TA = 25°C  
-40°C TA = TJ 125°C, IOUT = 0 A  
VFB = 1 V  
0.3%  
0.3%  
0.5%  
Load regulation  
Temperature variation  
IFB  
Input bias current into FB pin  
100  
5.1  
nA  
V
OUTPUT VOLTAGE (Fixed 5 V option)  
Output voltage set-point  
SENSE+ connected to VOUT  
4.9  
5.0  
0.3%  
0.3%  
0.5%  
6.7  
Line regulation  
VOUT  
Over VIN range, TA = 25°C, IOUT = 0 A  
Over IOUT range, TA = 25°C  
Load regulation  
Temperature variation  
-40°C TA = TJ 125°C, IOUT = 0 A  
ISENSE+  
eff  
SENSE+ input current  
Efficiency  
µA  
V
VOUT = 5.0 V, IOUT = 50 mA  
83.0%  
OUTPUT VOLTAGE (Fixed 3.3 V option)  
Output voltage set-point  
SENSE+ connected to VOUT  
3.23  
3.3  
0.3%  
0.3%  
0.5%  
3.9  
3.37  
Line regulation  
VOUT  
Over VIN range, TA = 25°C, IOUT = 0 A  
Over IOUT range, TA = 25°C  
Load regulation  
Temperature variation  
-40°C TA = TJ 125°C, IOUT = 0 A  
ISENSE+  
SENSE+ input current  
µA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM265R1  
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Limits apply over TA = 40°C to +125°C, VIN = 12 V, VOUT = 5 V, (unless otherwise noted); CIN1 = 1 µF, 100-V, 1206  
ceramic, CIN2 = 33 µF, 100-V, electrolytic (optional), and COUT = 47 µF, 16-V, 1210 ceramic. Minimum and maximum limits  
are specified through production test or by design. Typical values represent the most likely parametric norm and are provided  
for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
eff  
Efficiency  
VOUT = 3.3 V, IOUT = 50 mA  
77.2%  
CURRENT  
IOUT  
Output current  
See SOA curves for any thermal derating  
VOUT foldback  
0
100  
mA  
mA  
IOCL  
Overcurrent limit threshold  
130  
SOFT-START  
ISS  
Soft-start charge current  
Soft-start rise time  
VSS = 1 V  
10  
µA  
µs  
TSS  
SS pin open  
900  
POWER GOOD  
PGOOD  
PGOOD  
PGOOD threshold  
PGOOD threshold  
PGOOD high, VOUT rising  
PGOOD low, VOUT falling  
VPGOOD = 5.5 V, PGOOD high  
PGOOD low  
94%  
87%  
10  
IPGOOD(LKG) PGOOD leakage current  
100  
200  
nA  
RPGOOD  
PGOOD ON-resistance  
80  
Ω
Min VIN for valid PGOOD output  
IPGOOD = 0.1 mA, VPGOOD < 0.5 V  
1.2  
1.65  
V
THERMAL SHUTDOWN  
TSDN  
Thermal shutdown threshold (3)  
Thermal shutdown hysteresis (3)  
Temperature rising  
170  
10  
°C  
°C  
THYST  
(1) The recommended minimum input voltage is 3.0 V or (VOUT + 1 V), whichever is greater.  
(2) The FB pin has both lower and upper thresholds associated with the hysteretic control scheme of the module.  
(3) Specified by design. Not production tested.  
(4) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics (VIN = 5 V)  
Refer to 8.2 for circuit designs. TA = 25°C unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
3.3 V  
2.5 V  
1.2 V  
VOUT  
3.3 V  
2.5 V  
1.2 V  
0.1  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
Output Current (mA)  
D002  
D001  
6-2. Efficiency Log Scale  
6-1. Efficiency  
160  
120  
80  
40  
0
120  
100  
80  
60  
40  
20  
0
VOUT  
VOUT  
3.3 V  
2.5 V  
1.2 V  
3.3 V  
2.5 V  
1.2 V  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
D003  
D004  
COUT = 47 µF, 16-V, ceramic  
6-3. Power Dissipation  
6-4. Output Voltage Ripple  
135  
125  
115  
105  
95  
85  
75  
VOUT  
3.3 V  
2.5 V  
1.2 V  
65  
55  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
D005  
Applies to a device soldered to a 50-mm × 75-mm, 4-layer PCB  
6-5. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.7 Typical Characteristics (VIN = 12 V)  
Refer to 8.2 for circuit designs. TA = 25°C unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.2 V  
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.2 V  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0.1  
1
10  
100  
Output Current (mA)  
D007  
D008  
6-6. Efficiency  
6-7. Efficiency Log Scale  
200  
150  
100  
50  
140  
120  
100  
80  
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.2 V  
VOUT  
5.0 V  
3.3 V  
2.5 V  
1.2 V  
60  
40  
20  
0
0
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
D009  
D010  
COUT = 47 µF, 16-V, ceramic  
6-8. Power Dissipation  
6-9. Output Voltage Ripple  
135  
125  
115  
105  
95  
85  
VOUT  
5 V  
75  
3.3 V  
2.5 V  
1.2 V  
65  
55  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
D011  
Applies to a device soldered to a 50-mm × 75-mm, 4-layer PCB  
6-10. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics (VIN = 24 V)  
Refer to the 8.2 for circuit designs. TA = 25°C unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
15 V  
12 V  
5 V  
3.3 V  
2.5 V  
VOUT  
15 V  
12 V  
5 V  
3.3 V  
2.5 V  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0.1  
1
10  
100  
Output Current (mA)  
D013  
D014  
6-11. Efficiency  
6-12. Efficiency Log Scale  
200  
160  
120  
80  
280  
240  
200  
160  
120  
80  
VOUT  
VOUT  
15 V  
12 V  
5 V  
3.3 V  
2.5 V  
15 V  
12 V  
5 V  
3.3 V  
2.5 V  
40  
40  
0
0
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
D015  
D016  
COUT = 47 µF, 16-V, ceramic  
6-13. Power Dissipation  
6-14. Output Voltage Ripple  
135  
125  
115  
105  
95  
85  
VOUT  
15 V  
12 V  
5 V  
75  
65  
3.3 V  
2.5 V  
55  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
D017  
Applies to a device soldered to a 50 mm × 75 mm, 4-layer PCB  
6-15. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.9 Typical Characteristics (VIN = 48 V)  
Refer to 8.2 for circuit designs. TA = 25°C unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
15 V  
12 V  
5 V  
3.3 V  
VOUT  
15 V  
12 V  
5 V  
3.3 V  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0.1  
1
10  
100  
Output Current (mA)  
D019  
D020  
6-16. Efficiency  
6-17. Efficiency Log Scale  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VOUT  
15 V  
12 V  
5 V  
3.3 V  
VOUT  
15 V  
12 V  
5 V  
3.3 V  
0
0
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
D022  
D021  
COUT = 47 µF, 16-V, ceramic  
6-19. Output Voltage Ripple  
6-18. Power Dissipation  
135  
125  
115  
105  
95  
85  
VOUT  
15 V  
12 V  
5 V  
75  
65  
3.3 V  
55  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
D023  
Applies to a device soldered to a 50-mm × 75-mm, 4-layer PCB  
6-20. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.10 Typical Characteristics (VIN = 65 V)  
Refer to 8.2 for circuit designs. TA = 25°C unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
15 V  
12 V  
5 V  
VOUT  
15 V  
12 V  
5 V  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
0.1  
1
10  
100  
Output Current (mA)  
D025  
D026  
6-21. Efficiency  
6-22. Efficiency Log Scale  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VOUT  
VOUT  
15 V  
12 V  
5 V  
15 V  
12 V  
5 V  
0
0
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Output Current (mA)  
50  
60  
70  
80  
90 100  
D027  
D028  
COUT = 47 µF, 16-V, ceramic  
6-23. Power Dissipation  
6-24. Output Voltage Ripple  
135  
125  
115  
105  
95  
85  
75  
VOUT  
15 V  
12 V  
5 V  
65  
55  
0
10  
20  
30  
40  
50  
60  
Output Current (mA)  
70  
80  
90 100  
D029  
Applies to a device soldered to a 50-mm × 75-mm, 4-layer PCB  
6-25. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM265R1 converter is an easy-to-use, synchronous buck, DC-DC power module that operates from a 3-  
V to 65-V supply voltage. The device is intended for step-down conversions from 3.3-V, 5-V, 12-V, 24-V, and 48-  
V unregulated, semi-regulated, or fully-regulated supply rails. With integrated power controller, inductor, and  
MOSFETs, the TPSM265R1 delivers up to 100-mA DC load current, with high efficiency and ultra-low input  
quiescent current, in a very small solution size. Although designed for simple implementation, this device offers  
flexibility to optimize its usage according to the target application. Operation in pulse frequency modulation  
(PFM) mode achieves exceptional light-load efficiency performance. Control-loop compensation is not required,  
reducing design time and external component count.  
The TPSM265R1 incorporates several features for comprehensive system requirements, including an open-  
drain Power Good circuit for power-rail sequencing and fault reporting, internally-fixed, or externally-adjustable  
soft start, monotonic start-up into prebiased loads, precision enable with customizable hysteresis for  
programmable line undervoltage lockout (UVLO), and thermal shutdown with automatic recovery. These features  
enable a flexible and easy-to-use platform for a wide range of applications. The pin arrangement is designed for  
simple layout, requiring as few as two external components.  
7.2 Functional Block Diagram  
Thermal  
Shutdown  
EN  
1.212V  
1.144V  
UVLO  
LDO  
HYS  
VIN  
ENABLE  
CURRENT  
LIMIT  
47 µH  
VOUT  
Control  
Logic  
ZERO CROSS  
DETECT  
+
ZC  
SENSE+/FB  
HYSTERETIC  
MODE  
R1(1)  
+
+
R2(1)  
Vref  
1.223V  
UV  
SOFT-  
START  
PGOOD  
SS  
Note:  
(1) R1, R2 are implemented in the fixed output voltage versions only.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adjustable Output Voltage (FB)  
The TPSM265R1 has three voltage feedback options: fixed 3.3 V, fixed 5 V, and adjustable 1.223 V to 15 V. The  
fixed 3.3-V and 5-V versions include internal feedback resistors that sense the output directly through the  
SENSE+ pin; the adjustable voltage option senses the output through an external resistor divider connected  
from the output to the FB pin.  
Setting the output voltage of the adjustable option requires two resistors: RFBT and RFBB (see 7-1). Connect  
RFBT between VOUT, at the regulation point, and the FB pin. Connect RFBB between the FB pin and GND (pin 6).  
A resistor divider programs the ratio from output voltage VOUT to FB. The recommended value of RFBT is 100  
kΩ. The value for RFBB can be calculated using 方程式 1.  
1.223  
RFBB  
=
× RFBT  
1.223  
VOUT  
(1)  
VOUT  
RFBT  
100 k  
FB  
RFBB  
GND  
7-1. FB Resistor Divider  
7-1. Standard RFBB Values  
RFBB (kΩ) (1)  
RFBB (kΩ) (1)  
59.0  
VOUT (V)  
1.223  
1.5  
VOUT (V)  
open  
442  
3.3  
5.0  
7.5  
10  
32.4  
1.8  
210  
19.6  
2.0  
158  
14.0  
2.5  
95.3  
68.1  
12  
11.3  
3.0  
15  
8.87  
(1) RFBT = 100 kΩ  
Selecting an RFBT value of 100 kΩ is recommended for most applications. A larger RFBT consumes less DC  
current, which is mandatory if light-load efficiency, is critical. However, RFBT larger than 1 MΩ is not  
recommended as the feedback path becomes more susceptible to noise. High feedback resistance generally  
requires more careful layout of the feedback path. It is important to keep the feedback trace as short as possible  
while keeping the feedback trace away from the noisy area of the PCB. For more layout recommendations, see  
10.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM265R1  
 
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7.3.2 Input Capacitor Selection  
The TPSM265R1 requires a minimum of 1 µF of ceramic type input capacitance. Use only high-quality ceramic  
type X5R or X7R capacitors with sufficient voltage rating. TI recommends adding additional capacitance for  
applications with transient load requirements. The voltage rating of input capacitors must be greater than the  
maximum input voltage. To compensate for the derating of ceramic capacitors, TI recommends a voltage rating  
of twice the maximum input voltage or placing multiple capacitors in parallel. 7-2 includes a preferred list of  
capacitors by vendor.  
7-2. Recommended Input Capacitors  
CAPACITOR CHARACTERISTICS  
TEMPERATURE  
VENDOR(1)  
PART NUMBER  
CASE SIZE  
CAPACITANCE (2)  
(µF)  
COEFFICIENT(3)  
WORKING VOLTAGE (V)  
Murata  
TDK  
X7R  
X7R  
X7S  
X7S  
X7S  
X7S  
X7R  
X7R  
GCJ21BR71H105KA01L  
0805  
0805  
0805  
0805  
1206  
1206  
1206  
1206  
50  
50  
1
1
CGA4J3X7R1H105K125AB  
GRJ21BC72A105KE11L  
CGA4J3X7S2A105K125AB  
GCM31CC72A225KE02L  
C3216X7S2A225K160AB  
CGA5L3X7R1H475K160AE  
GRM31CR71H475KA12L  
Murata  
TDK  
100  
100  
100  
100  
50  
1
1
Murata  
TDK  
2.2  
2.2  
4.7  
4.7  
TDK  
Murata  
50  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values  
(3) Maximum ESR at 100 kHz, 25°C  
7.3.3 Output Capacitor Selection  
The minimum amount of required output capacitance for the TPSM265R1 is 10 µF of ceramic type. TI  
recommends adding additional capacitance for applications with transient load requirements. See 7-3 for a  
preferred list of output capacitors by vendor.  
7-3. Recommended Output Capacitors  
CAPACITOR CHARACTERISTICS  
TEMPERATURE  
COEFFICIENT  
VENDOR(1)  
TDK  
PART NUMBER  
CASE SIZE  
VOLTAGE (V)  
CAPACITANCE (µF)(2)  
X7R  
X7R  
X7R  
X7S  
X5R  
X5R  
X5R  
X6S  
X7R  
X5R  
X5R  
CGA5L1X7R1C106K160AC  
1206  
1206  
1206  
1206  
1210  
1210  
1206  
1206  
1210  
1210  
1210  
16  
16  
25  
25  
16  
16  
25  
25  
25  
10  
16  
10  
10  
10  
10  
22  
22  
22  
22  
22  
47  
47  
Murata  
TDK  
GCM31CR71C106KA64L  
C3216X7R1E106K160AB  
GCJ31CC71E106KA15L  
C3225X5R1C226M  
Murata  
TDK  
Murata  
TDK  
GRM32ER61C226K  
C3216X5R1E226M160AB  
GRM31CC81E226K  
GRM32ER71E226M  
C3225X5R1A476M  
Murata  
Murata  
TDK  
Murata  
GRM32ER61C476K  
(1) Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in 7-3.  
(2) Specified capacitance values  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
 
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7.3.4 Precision Enable (EN), Undervoltage Lockout (UVLO), and Hysteresis (HYS)  
The EN pin provides precision ON and OFF control for the TPSM265R1. Once the EN pin voltage exceeds the  
threshold voltage, the device starts operation. The simplest way to enable the TPSM265R1 is to connect EN  
directly to VIN. This allows the TPSM265R1 to start up when VIN is within its valid operating range. An external  
logic signal can also be used to drive the EN input to toggle the output on and off and for system sequencing or  
protection.  
The TPSM265R1 implements internal undervoltage lockout (UVLO) circuitry on the VIN pin. The device is  
disabled when the VIN pin voltage is below the internal VIN UVLO threshold. The internal VIN UVLO rising  
threshold is 2.95 V (max) with a typical hysteresis of 300 mV.  
If an application requires a higher UVLO threshold, the EN input supports adjustable UVLO by connecting a  
resistor divider from VIN to the EN pin. The EN pin connects to an internal comparator referenced to a 1.212-V  
bandgap voltage with 68-mV hysteresis. However, applications requiring specific power-up and power-down  
requirements can program the hysteresis voltage independently using the HYS pin. 7-2 shows the resistor  
divider connection to establish a precision UVLO level with fixed internal hysteresis. 7-3 shows the resistor  
divider connection used to set the precision UVLO level as well as the adjustable hysteresis.  
VIN  
VIN  
VIN  
EN  
VIN  
EN  
RUV1  
RUV1  
Enable  
Comparator  
Enable  
Comparator  
RUV2  
1.212V  
1.144V  
RUV2  
1.212V  
1.144V  
HYS  
RHYS  
80Ω  
7-2. Programmable VIN UVLO with Fixed  
Hysteresis  
7-3. Programmable VIN UVLO with Adjustable  
Hysteresis  
Use 方程式 2 and 方程式 3 to calculate the input UVLO voltages turnon and turnoff voltages, respectively.  
÷
RUV1  
RUV2  
V
= 1.212V 1+  
IN(on)  
«
(2)  
(3)  
÷
RUV1  
V
= 1.144V 1+  
IN(off)  
RUV2 + RHYS  
«
There is also a low IQ shutdown mode when EN is pulled below 0.6 V (typ). If EN is below this shutdown  
threshold, the internal LDO regulator powers off, shutting down the bias currents of the TPSM265R1. The  
TPSM265R1 operates in standby mode when the EN voltage is between the shutdown and precision enable  
thresholds.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM265R1  
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7.3.5 PFM Operation  
The TPSM265R1 operates in Pulse Frequency Modulation (PFM) mode. The TPSM265R1 behaves as a  
hysteretic voltage regulator operating within upper and lower feedback regulation thresholds with typical 10 mV  
of hysteresis. 7-4 is a representation of the relevant voltage waveforms and inductor current waveform. The  
TPSM265R1 provides the required switching pulses to recharge the output capacitance, followed by a sleep  
period where most of the internal circuits are shut off. The load current is supported by the output capacitor  
during this time, and the TPSM265R1 current consumption approaches the sleep quiescent current of 10.5 μA  
(typ). The sleep period duration depends on load current and output capacitance.  
VIN  
SW  
Voltage  
(internal)  
VOUT  
VREF = 1.233V  
10mV  
FB  
Voltage  
(internal)  
ILIM  
Inductor  
Current  
IOUT2  
t
IOUT1  
ACTIVE  
SLEEP  
ACTIVE SLEEP  
ACTIVE SLEEP ACTIVE  
7-4. PFM Mode SW Node Voltage, Feedback Voltage, and Inductor Current Waveforms  
7.3.6 Power Good (PGOOD)  
The TPSM265R1 provides a PGOOD signal to indicate when the output voltage is within regulation. Use the  
PGOOD signal for output monitoring, fault protection, or start-up sequencing of downstream converters. PGOOD  
is an open-drain output that requires a pullup resistor to a DC supply not greater than 12 V. Typical range of  
pullup resistance is 10 kto 100 k. If necessary, use a resistor divider to decrease the voltage from a higher  
voltage pullup rail.  
When the output voltage exceeds 94% of the setpoint, the internal PGOOD switch turns off and PGOOD can be  
pulled high by the external pullup. If the FB voltage falls below 87% of the setpoint, the internal PGOOD switch  
turns on, and PGOOD is pulled low to indicate that the output voltage is out of regulation. The rising edge of  
PGOOD has a built-in deglitch delay of 5 µs.  
7.3.7 Configurable Soft Start (SS)  
The TPSM265R1 has a flexible and easy-to-use soft-start control pin, SS. The soft-start feature prevents inrush  
current when power is first applied. Soft start is achieved by slowly ramping up the target regulation voltage  
when the device is powered up or enabled. Selectable and adjustable start-up timing options include minimum  
delay (no soft start), 900-µs internally fixed soft start, and an externally programmable soft start.  
Leaving the SS pin open enables the internal soft-start control ramp with a soft-start interval of 900 µs. The soft-  
start time can be increased by connecting an external capacitor, CSS, from SS to GND. Applications with a large  
amount of output capacitance or higher output voltage can benefit from increasing the soft-start time. Longer  
soft-start time reduces the supply current needed to charge the output capacitors and supply any output loading.  
An internal current source, ISS, of 10 µA charges CSS and generates a ramp to control the ramp rate of the  
output voltage. Use 方程式 4 to calculate the CSS capacitance for a desired soft-start time, tSS  
.
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
CSS nF = 8.1t  
ms  
»
»
ÿ
ÿ
SS  
(4)  
CSS is discharged by an internal FET when VOUT is shut down by EN, UVLO, or thermal shutdown.  
It is desirable in some applications for the output voltage to reach its nominal setpoint in the shortest possible  
time. Connecting a 100-kΩ resistor from SS to GND disables the soft-start circuit, and the TPSM265R1  
operates in current limit during start-up to rapidly charge the output capacitance.  
7.3.7.1 Prebiased Start-up  
To prevent discharge of a prebiased output voltage, the TPSM265R1 is capable of start-up into prebiased output  
conditions. When a prebiased voltage is present at start-up, the TPSM265R1 waits until the soft-start ramp  
voltage is above the prebiased voltage before it begins switching and then follows the soft-start ramp to the  
regulation setpoint.  
7.3.8 Overcurrent Protection (OCP)  
The TPSM265R1 is protected from overcurrent conditions using cycle-by-cycle current limiting of the peak  
inductor current. The current is compared every switching cycle to the current limit threshold. During an  
overcurrent condition, the output voltage decreases.  
7.3.9 Thermal Shutdown  
Thermal shutdown is an integrated self-protection used to limit junction temperature and prevent damage related  
to overheating. Thermal shutdown turns off the device when the junction temperature exceeds 170°C (typ) to  
prevent further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
TPSM265R1 restarts when the junction temperature falls to 160°C (typ).  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN pin provides ON and OFF control for the TPSM265R1. When VEN is below approximately 0.6 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 4.6 µA at VIN = 12 V. The TPSM265R1 also employs internal bias rail undervoltage  
protection. If the internal bias supply voltage is below its UV threshold, the regulator remains off.  
7.4.2 Standby Mode  
The internal bias rail LDO has a lower enable threshold than the regulator itself. When VEN is above 0.6 V and  
below the precision enable threshold (1.212 V typically), the internal LDO is on and regulating. The precision  
enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action and voltage  
regulation are not enabled until VEN rises above the precision enable threshold.  
7.4.3 Active Mode  
The TPSM265R1 is in active mode when VEN and the internal bias rail are above their relevant thresholds, FB  
has fallen below the lower hysteresis level, and boundary conduction mode is recharging the output capacitor to  
the upper hysteresis level. There is a 4-µs wake-up delay from sleep to active states.  
7.4.4 Sleep Mode  
The TPSM265R1 is in sleep mode when VEN and the internal bias rail are above the relevant threshold levels,  
VFB has exceeded the upper hysteresis level, and the output capacitor is sourcing the load current. In sleep  
mode, the TPSM265R1 operates with very low quiescent current.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM265R1  
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8 Applications and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPSM265R1 only requires a few external components to convert from a wide range of supply voltages to a  
fixed output voltage. To expedite and streamline the process of designing of a TPSM265R1, WEBENCH® online  
software is available to generate complete designs, leveraging iterative design procedures and access to  
comprehensive component databases. The following section describes the design procedure to configure the  
TPSM265R1 power module.  
As mentioned previously, the TPSM265R1 also integrates several optional features to meet system design  
requirements, including precision enable, UVLO, programmable soft start, and PGOOD indicator. The application  
circuit detailed below shows TPSM265R1 configuration options suitable for several application use cases. Refer  
to the TPSM265R1EVM User's Guide for more detail.  
8.2 Typical Applications  
8-1 shows the schematic diagram of a 5-V, 100-mA converter.  
PGOOD  
VIN  
VIN  
RUV1  
100kQ  
VOUT  
CIN  
1µF  
50V  
VOUT  
COUT  
10µF  
TPSM265R1  
RFBT  
100kQ  
EN  
16V  
RUV2  
21.0kQ  
HYS  
SS  
FB  
RFBB  
32.4kQ  
GND  
8-1. TPSM265R1 Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters and follow the design  
procedures in the 8.2.2.  
8-1. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
24 V typical  
5 V  
Input voltage VIN  
Output voltage VOUT  
Output current rating  
100 mA (50 Ω)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM265R1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the TPSM265R1 device is externally adjustable using a resistor divider. The recommended  
value of RFBT is 100 kΩ. The value for RFBB can be selected from 7-1 or calculated using 方程式 5:  
1.223  
RFBB  
=
× RFBT  
1.223  
VOUT  
(5)  
For the desired output voltage of 5 V, the formula yields a value of 32.38 kΩ. Choose the closest available  
standard value of 32.4 kΩ for RFBB  
.
8.2.2.3 Input Capacitors  
The TPSM265R1 requires a minimum input capacitance of 1-µF ceramic type. High-quality ceramic type X5R or  
X7R capacitors with sufficient voltage rating are recommended. The voltage rating of input capacitors must be  
greater than the maximum input voltage.  
For this design, a single, 1-µF, 50-V ceramic capacitor is selected.  
8.2.2.4 Output Capacitor Selection  
The TPSM265R1 requires a minimum of 10 µF of ceramic output capacitance for proper operation. Additional  
output capacitance can be added to reduce ripple voltage or for applications with transient load requirements.  
For this design example, a single 10-µF, 16-V, ceramic capacitor is used.  
8.2.2.5 UVLO Programming  
Applications requiring a higher UVLO threshold can benefit from applying a resistor divider on the EN pin. The  
values for the resistors can be calculated using 方程式 6 and 方程式 7.  
÷
RUV1  
RUV2  
V
= 1.212V 1+  
IN(on)  
«
(6)  
(7)  
÷
RUV1  
V
= 1.144V 1+  
IN(off)  
RUV2 + RHYS  
«
For this application, the UVLO was raised to 7 V (RUV1 = 100 kΩ, RUV2 = 21.0 kΩ, and RHYS = 0 (not used)).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM265R1  
 
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8.2.2.6 Soft-Start Capacitor CSS  
In this application, the SS pin was left open, resulting in a 900 µs soft-start rise time. Applications requiring a  
longer soft-start time can calculate the soft-start capacitor value using 方程式 8:  
CSS nF = 8.1t  
ms  
»
»
ÿ
ÿ
SS  
(8)  
8.2.3 Application Curves  
VIN = 24 V  
VOUT = 5 V  
RUV2 = 21.0 kΩ  
RLOAD = 50 Ω  
VIN = 24 V  
VOUT = 5 V  
COUT = 10 µF  
RUV1 = 100  
RLOAD = 50 Ω  
kΩ  
8-3. Output Voltage Ripple  
8-2. Start-up Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPSM265R1 is designed to operate from an input voltage supply range between 3 V and 65 V. This input  
supply must be able to provide the maximum input current and maintain a voltage above the set UVLO voltage.  
Ensure that the resistance of the input supply rail is low enough that an input current transient does not cause a  
high enough drop at the TPSM265R1 supply rail to cause a false UVLO fault triggering and system reset. If the  
input supply is located more than a few inches from the TPSM265R1, additional bulk capacitance can be  
required in addition to the ceramic input capacitance. A 4.7-μF electrolytic capacitor is a typical choice for this  
function, whereby the capacitor ESR provides a level of damping against input filter resonances. A typical ESR  
of 0.5 Ω provides enough damping for most input circuit configurations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. Use the following guidelines to design a PCB with the best power conversion performance, optimal  
thermal performance, and minimal generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 10-1 and 10-2  
show a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and GND) to minimize conduction loss and thermal  
stress.  
Connect all GND pins together using copper plane or thick copper traces.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Place RFBT and RFBB as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Example  
10-1. Typical Top-Layer Layout  
10-2. Typical Bottom-Layer Layout  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
10.2.1 Theta JA versus PCB Area  
The amount of PCB copper affects the thermal performance of the device. 10-3 shows the effects of copper  
area on the junction-to-ambient thermal resistance (RθJA) of the TPSM265R1. The junction-to-ambient thermal  
resistance is plotted for a 4-layer PCB with an area from 0.5 cm2 to 39 cm2.  
To determine the required copper area for an application:  
1. Determine the maximum power dissipation of the device in the application by referencing the power  
dissipation graphs in 6.6 to 6.10.  
2. Calculate the maximum θJA using 方程式 9 and the maximum ambient temperature of the application.  
(125˘C œ TA(max)  
)
JA  
=
(˘C/W)  
PD(max)  
(9)  
3. Reference 10-3 to determine the minimum required PCB area for the application conditions.  
64  
60  
56  
52  
48  
44  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
PCB Area (cm2)  
D030  
10-3. θJA versus PCB Area  
10.2.2 Package Specifications  
10-1. Package Specifications Table  
TPSM265R1  
VALUE  
UNIT  
Weight  
37.7  
mg  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
139  
MHrs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM265R1  
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
10.2.3 EMI  
The TPSM265R1 is compliant with EN55011 radiated emissions. 10-4, 10-5, and 10-6 show typical  
examples of radiated emission plots for the TPSM265R1. The graphs include the plots of the antenna in the  
horizontal and vertical positions.  
EMI plots were measured using the standard TPSM265R1EVM with no input filter.  
10-4. Radiated Emissions 12-V Input, 5-V Output, 100-mA Load  
10-5. Radiated Emissions 24-V Input, 5-V Output, 100-mA Load  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
10-6. Radiated Emissions 24-V Input, 12-V Output, 100-mA Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM265R1  
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 Development Support  
For development support, see the following:  
For TI's reference design library, visit TI reference designs.  
For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center.  
To view a related device of this product, see the LM5166.  
11.1.3 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM265R1 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TPSM265R1EVM User's Guide  
Texas Instruments, Using the TPSM265R1 in an Inverting Buck-Boost Topology Application Report  
Texas Instruments, Using New Thermal Metrics Application Report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
 
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® are registered trademarks of Texas Instruments.  
is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this datasheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM265R1  
 
 
 
 
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
PACKAGE OUTLINE  
SIL0010C  
uSIPTM - 1.9 mm max height  
S
C
A
L
E
4
.
0
0
0
MICRO SYSTEM IN PACKAGE  
2.9  
2.7  
A
B
PIN 1 INDEX  
AREA  
PICK AREA  
NOTE 3  
3.8  
3.6  
(3.5)  
(1.8)  
POSSIBLE LASER  
MARKING AREA  
2X  
2X (0.075)  
2X (0.2)  
1.9  
1.7  
C
SEATING PLANE  
0.08 C  
2.2  
SYMM  
(0.1) TYP  
(0.05) TYP  
6
5
SYMM  
2X  
11  
3.62  
3.58  
3.2  
8X 0.8  
10  
1
0.32  
0.28  
PIN 1 ID  
(OPTIONAL)  
10X  
0.42  
0.38  
0.1  
C A B  
0.52  
0.48  
10X  
0.05  
C
4223804/B 06/2019  
MicroSiP is a trademark of Texas Instruments  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pick and place nozzle 1.3 mm or smaller recommended.  
4. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
SIL0010C  
uSIPTM - 1.9 mm max height  
MICRO SYSTEM IN PACKAGE  
SYMM  
(1.65) TYP  
(0.45) TYP  
COPPER  
KEEP-OUT AREA  
TYP  
2X (0.3)  
11  
(
0.2) VIA TYP  
10  
1
(R0.05) TYP  
(0.05) TYP  
2X (4.2)  
(4.1)  
SYMM  
2X (3.2)  
7X (0.3)  
8X (0.8)  
2X (1)  
10X (0.3)  
5
6
10X (0.75)  
(0.4)  
10X (1.225)  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
(R0.05) TYP  
METAL UNDER  
SOLDER MASK  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223804/B 06/2019  
NOTES: (continued)  
5. This package is designed to be soldered to thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSM265R1  
TPSM265R1  
ZHCSK64B OCTOBER 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
SIL0010C  
uSIPTM - 1.9 mm max height  
MICRO SYSTEM IN PACKAGE  
SYMM  
SOLDER MASK EDGE  
TYP  
10X (0.75)  
10  
1
11  
10X (0.3)  
2X  
(1.5)  
8X (0.8)  
2X  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
(R0.05) TYP  
4X  
(0.8)  
5
6
4X (0.4)  
(1.225)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
78% SOLDER COVERAGE BY PRINTED  
AREA ON CENTER THERMAL PAD  
SCALE:20X  
4223804/B 06/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPSM265R1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM265R1SILR  
TPSM265R1V3SILR  
TPSM265R1V5SILR  
ACTIVE  
ACTIVE  
ACTIVE  
uSiP  
uSiP  
uSiP  
SIL  
SIL  
SIL  
10  
10  
10  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
ENEPIG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
TPSM265R1  
Samples  
Samples  
Samples  
ENEPIG  
ENEPIG  
TPSM265R1V3  
TPSM265R1V5  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jan-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPSM265R1SILR  
TPSM265R1V3SILR  
TPSM265R1V5SILR  
uSiP  
uSiP  
uSiP  
SIL  
SIL  
SIL  
10  
10  
10  
3000  
3000  
3000  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
3.15  
3.15  
3.15  
4.05  
4.05  
4.05  
2.15  
2.15  
2.15  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPSM265R1SILR  
TPSM265R1V3SILR  
TPSM265R1V5SILR  
uSiP  
uSiP  
uSiP  
SIL  
SIL  
SIL  
10  
10  
10  
3000  
3000  
3000  
383.0  
383.0  
383.0  
353.0  
353.0  
353.0  
58.0  
58.0  
58.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM265R1V5SILR

采用 2.8mm x 3.7mm 封装的 3V 至 65V 输入、100mA 降压电源模块

| SIL | 10 | -40 to 125
TI

TPSM33615

3-36V 输入 1-15V 输出 1.5A 同步降压电源模块
TI

TPSM33615FRDNR

3-36V 输入 1-15V 输出 1.5A 同步降压电源模块 | RDN | 11 | -40 to 125
TI

TPSM33615RDNR

3-36V 输入 1-15V 输出 1.5A 同步降压电源模块 | RDN | 11 | -40 to 125
TI

TPSM33625

3-36V 输入 1-15V 输出 2.5A 同步降压电源模块
TI

TPSM33625FRDNR

3-36V 输入 1-15V 输出 2.5A 同步降压电源模块 | RDN | 11 | -40 to 125
TI

TPSM33625RDNR

3-36V 输入 1-15V 输出 2.5A 同步降压电源模块 | RDN | 11 | -40 to 125
TI

TPSM365R3

3-65V 输入 1-13V 输出 0.3A 同步降压转换器电源模块
TI

TPSM365R3FRDNR

3-65V 输入 1-13V 输出 0.3A 同步降压转换器电源模块 | RDN | 11 | -40 to 125
TI

TPSM365R3RDNR

3-65V 输入 1-13V 输出 0.3A 同步降压转换器电源模块 | RDN | 11 | -40 to 125
TI

TPSM365R6

3-65V 输入 1-13V 输出 0.6A 同步降压转换器电源模块
TI

TPSM365R6FRDNR

3-65V 输入 1-13V 输出 0.6A 同步降压转换器电源模块 | RDN | 11 | -40 to 125
TI