TPSM53603 [TI]

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小尺寸的 36V、3A 降压电源模块;
TPSM53603
型号: TPSM53603
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小尺寸的 36V、3A 降压电源模块

电源电路
文件: 总35页 (文件大小:2394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM53603  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
TPSM53603 Enhanced HotRod™ QFN 封装36V 输入、3A 电源模块  
1 特性  
3 说明  
提供功能安全  
TPSM53603 电源模块是一款高度集成的 3A 电源解决  
方案在热增强型 QFN 封装内整合了一个带有功率  
MOSFET 36V 输入降压直流/直流转换器、一个屏  
蔽式电感器和多个无源器件。此 5mm × 5.5mm ×  
4mm15 引脚封装采用增强HotRod QFN 技术来实  
现增强的热性能、小尺寸和低 EMI。该封装尺寸的所  
有引脚均分布在外围具有单个大散热垫实现简单的  
布局和制造中的轻松处理。  
可帮助进行功能安全系统设计的文档  
5mm × 5.5mm × 4mm 增强HotRodQFN 封装  
– 业界超小36V3A 外形尺寸:  
85mm2 解决方案尺寸单面)  
EMICISPR11 辐射发射标准  
– 优异的热性能:  
85°C 且无气流的情况下具有高18W 的输  
出功率  
– 标准封装尺寸单个大型散热焊盘和所有引脚均  
分布在封装外围  
总体解决方案仅需四个外部组件并且省去了设计流程  
中的环路补偿和磁性元件选择过程。TPSM53603 具有  
全套功能集包括正常电源状态指示、可编UVLO、  
预偏置启动、过流和过热保护因此是为各种应用供电  
的出色器件。  
• 输入电压范围3.8V 36V  
• 输出电压范围1 V 7 V  
• 效率高95%  
• 电源正常状态标志  
器件信息  
器件型(1)  
TPSM53603  
封装尺寸标称值)  
封装  
• 精密使能端  
• 内置断续模式短路保护、过热保护、启动至预偏置  
输出、软启动UVLO  
IC 工作结温范围40°C +125°C  
• 工作环境温度范围-40°C +105°C  
• 通过Mil-STD-883D 冲击和振动测试  
• 与以下器件引脚兼容4A TPSM53604  
2A TPSM53602  
B3QFN (15)  
5.0mm × 5.5mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 下EVM 设计文件以快速进行电路板设计  
• 使TPSM53603 并借WEBENCH® Power  
Designer 创建定制设计方案  
2 应用  
增强HotRod QFN 和典型布局  
通用宽输入电压电源  
工厂自动化和控制  
测试和测量  
航天和国防  
负输出电压应用  
100  
95  
90  
85  
80  
75  
70  
65  
60  
PGOOD  
VIN  
VIN  
EN  
CIN  
VOUT  
VOUT  
TPSM53603  
COUT  
RFBT  
VOUT = 5 V  
55  
50  
V5V  
FB  
45  
VIN  
12 V  
24 V  
40  
RFBB  
35  
PGND  
AGND  
30  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
EFF2  
GND  
5VOUT 效率  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB77  
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
Table of Contents  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
9 Power Supply Recommendations................................22  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Examples.................................................... 23  
10.3 Theta JA versus PCB Area.....................................24  
10.4 Package Specifications...........................................25  
10.5 EMI..........................................................................25  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 接收文档更新通知................................................... 27  
11.4 支持资源..................................................................27  
11.5 Trademarks............................................................. 27  
11.6 静电放电警告...........................................................27  
11.7 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics (VIN = 5 V)..............................7  
6.7 Typical Characteristics (VIN = 12 V)............................8  
6.8 Typical Characteristics (VIN = 24 V)............................9  
6.9 Typical Characteristics (VIN = 36 V)..........................10  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................19  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (July 2020) to Revision B (September 2021)  
Page  
• 添加了功能安全项目符号.................................................................................................................................... 1  
Changes from Revision * (December 2019) to Revision A (July 2020)  
Page  
• 将封装信息更新为正确的封装类型......................................................................................................................1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
5 Pin Configuration and Functions  
VIN  
VIN  
1
14  
V5V  
AGND  
NC  
2
13  
12  
11  
10  
9
EN  
NC  
3
4
5
6
15  
DNC  
PGND  
NC  
DNC  
PGOOD  
FB  
7
VOUT  
VOUT  
8
5-1. 15-Pin QFN RDA Package (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Analog ground. Zero voltage reference for internal references and logic. All electrical parameters are  
measured with respect to this pin. This pin must be connected to PGND at a single point. See 10  
for a recommended layout.  
12  
AGND  
G
Do not connect. Do not connect these pins to ground, to another DNC pin, or to any other voltage. These  
pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.  
4, 5  
2
DNC  
EN  
Enable pin. This pin turns the converter on when pulled high and turns off the converter when pulled low.  
This pin can be connected directly to VIN. Do not float. This pin can be used to set the input under  
voltage lockout with two resistors. See 7.3.6.  
I
Feedback input. Connect the mid-point of the feedback resistor divider to this pin. Connect the upper  
resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the lower  
resistor (RFBB) of the feedback divider to AGND.  
9
3, 10, 11  
15  
FB  
NC  
I
Not connected. These pins are not connected to any circuitry within the module. It is recommended that  
these pins be connected to the PGND plane on the application board to enhance shielding and thermal  
performance.  
Power ground. This is the return current path for the power stage of the device. Connect this pad to the  
input supply return, the load return, and the capacitors associated with the VIN and VOUT pins. See 节  
10 for a recommended layout.  
PGND  
G
Power-good pin. Open-drain output that asserts low if the feedback voltage is not within the specified  
window thresholds. A 10-kΩto 100-kΩpullup resistor is required and can be tied to the V5V pin or other  
DC voltage less than 22 V. If not used, this pin can be left open or connected to PGND.  
6
PGOOD  
O
Input supply voltage. Connect the input supply to these pins. Connect input capacitors between these  
pins and PGND in close proximity to the device.  
1, 14  
7, 8  
13  
VIN  
VOUT  
V5V  
I
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the  
output load and connect external output capacitors between these pins and PGND.  
O
O
Internal 5-V LDO output. Supplies internal control circuits. Do not connect to external loads. This pin can  
be used as logic supply for PGOOD pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range(1)  
PARAMETER  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
-0.3  
MAX  
UNIT  
VIN to PGND  
38  
VIN + 0.3  
22  
EN to AGND(2)  
Input voltage  
PGOOD to AGND(2)  
FB to AGND  
V
5.5  
AGND to PGND  
VOUT to PGND(2)  
0.3  
VIN + 0.3  
5.5  
Output voltage  
V
V5V to AGND  
0
(3)  
Operating IC junction temperature, TJ  
Storage temperature, Tstg  
150  
°C  
°C  
°C  
40  
55  
150  
Peak reflow case temperature  
Maximum number or reflows allowed  
245  
3
Mechanical vibration  
Mechanical shock  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
20  
G
G
500  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
(3) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating  
area (SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the  
module is never exceeded.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM)(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM)(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
V
Input voltage, VIN  
3.8 (3)  
36  
7 (4)  
3
Output voltage, VOUT  
Output current, IOUT  
1
0
0
0
V
A
(2)  
EN voltage, VEN  
VIN  
18  
V
(2)  
PGOOD pullup voltage, VPGOOD  
PGOOD sink current  
V
3
mA  
°C  
µF  
µF  
Operating ambient temperature, TA  
105  
40  
20  
(5)  
Input capacitance, CIN  
Output capacitance, COUT  
min (6)  
1000  
(1) Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure specific  
performance limits. For ensured specifications, see 6.5.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
(3) The recommended minimum VIN is 3.8 V or (VOUT + 1 V), whichever is greater. See the 7.3.9 section for more information.  
(4) The recommended maximum output voltage varies depending input voltage. See the 7.3.9 section for more information.  
(5) Minimum CIN of 20 µF must be ceramic type.  
(6) The minimum amount of required output capacitance varies depending on the output voltage. See 7-1.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
6.4 Thermal Information  
TPSM53603  
THERMAL METRIC(1)  
RDA (QFN)  
15 PINS  
19.5  
UNIT  
RθJA  
ψJT  
Junction-to-ambient thermal resistance (2)  
°C/W  
°C/W  
°C/W  
°C  
Junction-to-top characterization parameter (3)  
Junction-to-board characterization parameter (4)  
Thermal shutdown temperature  
1.0  
5.5  
ψJB  
165  
TSHDN  
Recovery temperaure  
148  
°C  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 75-mm x 75-mm four-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow and PCB copper area reduces RθJA. For more information see the 10.3  
section.  
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB  
is the temperature of the board 1mm from the device.  
6.5 Electrical Characteristics  
Limits apply over TA = 40°C to +105°C, VIN = 12 V, VOUT = 3.3 V, IOUT = IOUT maximum, (unless otherwise noted); CIN1  
=
2x10 µF, 50-V, 1206 ceramic; CIN2 = 100 nF, 50-V, 0603 ceramic; COUT = 3x22 µF, 25-V, 1210 ceramic. Minimum and  
maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm  
and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (VIN  
)
Input voltage range  
VIN turn on  
Over IOUT range  
3.8 (1)  
36  
V
V
VIN  
VIN increasing, IOUT = 0 A  
VIN decreasing, IOUT = 0 A  
Non-switching, VFB = 1.2 V  
VEN = 0 V, IOUT = 0 A  
3.55  
3.05  
24  
VIN turn off  
V
IQ  
Quiescient current  
Shutdown supply current  
µA  
µA  
ISHDN  
5
10  
5.25  
INTERNAL LDO (V5V)  
Internal LDO output voltage appearing  
at the V5V pin  
V5V  
4.75  
5
V
6 V VIN 36 V  
FEEDBACK  
Feedback voltage(2)  
Load regulation  
0.985  
1
0.06  
0.15  
0.2  
1.015  
V
%
40°C TJ +125°C, IOUT = 0.75 A  
TA = +25°C, 0.5 A IOUT 3 A  
TA = +25°C, IOUT = 0.75 A, Over VIN range  
FB = 1 V  
VFB  
Line regulation  
%
IFB  
Current into FB pin  
50  
3
nA  
CURRENT  
IOUT  
Output current  
TA = 25°C  
0
A
A
IOUT  
Over-current threshold  
4.5  
0.4  
94  
FB pin voltage required to trip short-  
circuit hiccup mode  
VHC  
tHC  
V
Time between current-limit hiccup burst  
ms  
ENABLE (EN PIN)  
EN input level required to turn on  
internal LDO  
VEN-VCC-H  
VEN-VCC-L  
Rising threshold  
Falling threshold  
1
V
V
EN input level required to turn off  
internal LDO  
0.3  
1.2  
VEN-H  
EN input level required to start switching Rising threshold  
1.23  
100  
1.26  
V
VEN-HYS  
Hysteresis below VEN-H  
Falling  
mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM53603  
 
 
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
Limits apply over TA = 40°C to +105°C, VIN = 12 V, VOUT = 3.3 V, IOUT = IOUT maximum, (unless otherwise noted); CIN1  
=
2x10 µF, 50-V, 1206 ceramic; CIN2 = 100 nF, 50-V, 0603 ceramic; COUT = 3x22 µF, 25-V, 1210 ceramic. Minimum and  
maximum limits are specified through production test or by design. Typical values represent the most likely parametric norm  
and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ILKG-EN  
Enable input leakage current  
VEN = 3.3 V  
0.2  
nA  
POWER GOOD (PGOOD PIN)  
VPG-HIGH-UP  
VPG-HIGH-DN  
VPG-LOW-UP  
VPG-LOW-DN  
RPG  
VOUT rising (fault)  
VOUT falling (good)  
VOUT rising (good)  
VOUT falling (fault)  
Power-good flag RDSON  
% of FB voltage  
% of FB voltage  
% of FB voltage  
% of FB voltage  
VEN = 0 V  
107  
105  
94  
%
%
%
%
92  
35  
Minimum input voltage for proper  
PGOOD function  
VIN-PG  
VPG  
50-µA, EN = 0 V  
2
V
V
PGOOD logic low output  
50-µA, EN = 0 V, VIN = 2 V  
0.2  
PERFORMANCE  
Efficiency  
IOUT = 2 A, TA = 25°C  
91  
4
%
η
SOFT START  
tSS  
Internal soft-start time  
ms  
SWITCHING FREQUENCY  
Max switching frequency  
IOUT = 2 A, TA = 25°C  
1.4(3)  
MHz  
ƒSW-MAX  
(1) The recommended minimum VIN is 3.8 V or (VOUT + 1 V), whichever is greater. See Voltage Dropout for more information.  
(2) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
(3) The typical switching frequency of this device will change based on operating conditions. See the 7.4.2 section for more information.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
6.6 Typical Characteristics (VIN = 5 V)  
The typical characteristic data has been developed from actual products tested at TA = 25°C. This data is  
considered typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0.001  
0.01  
0.1  
Output Current (A)  
1
3
D001  
D002  
VIN = 5 V  
Linear Scale  
VIN = 5 V  
Log Scale  
6-1. Efficiency versus Output Current  
6-2. Efficiency versus Output Current  
1.5  
24  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
20  
1.2  
16  
0.9  
0.6  
0.3  
0.0  
12  
8
4
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D003  
D004  
VIN = 5 V  
VIN = 5 V  
COUT = 4x 47µF  
6-3. Power Dissipation versus Output Current  
6-4. Voltage Ripple versus Output Current  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
Airflow  
45  
45  
200LFM  
100LFM  
Nat conv  
Airflow  
Nat conv  
35  
25  
35  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D005  
D006  
VIN = 5 V  
VIN = 5 V  
VOUT = 3.3 V  
V
OUT 2.5 V  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
6-6. Safe Operating Area  
6-5. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
6.7 Typical Characteristics (VIN = 12 V)  
The typical characteristic data has been developed from actual products tested at TA = 25°C. This data is  
considered typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
7.0 V  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0.001  
0.01  
0.1  
Output Current (A)  
1
3
D007  
D008  
VIN = 12 V  
Linear Scale  
VIN = 12 V  
Log Scale  
6-7. Efficiency versus Output Current  
6-8. Efficiency versus Output Current  
1.8  
21  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.0 V  
18  
1.5  
15  
12  
9
1.2  
1.0 V  
0.9  
0.6  
0.3  
0.0  
6
3
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D009  
D010  
VIN = 12 V  
VIN = 12 V  
COUT = 4x 47µF  
6-9. Power Dissipation versus Output Current  
6-10. Voltage Ripple versus Output Current  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
Airflow  
400LFM  
200LFM  
45  
45  
Airflow  
Nat conv  
100LFM  
100LFM  
Nat conv  
35  
25  
35  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D011  
D012  
VIN = 12 V  
VOUT = 1.8 V  
VIN = 12 V  
VOUT = 5 V  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
6-11. Safe Operating Area  
6-12. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
6.8 Typical Characteristics (VIN = 24 V)  
The typical characteristic data has been developed from actual products tested at TA = 25°C. This data is  
considered typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0.001  
0.01  
0.1  
Output Current (A)  
1
3
D013  
D014  
VIN = 24 V  
VIN = 24 V  
6-13. Efficiency versus Output Current  
6-14. Efficiency versus Output Current  
2.4  
21  
VOUT  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
18  
15  
12  
9
6
3
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D015  
D016  
VIN = 24 V  
VIN = 24 V  
COUT = 4x 47µF  
6-15. Power Dissipation versus Output Current  
6-16. Voltage Ripple versus Output Current  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
Airflow  
Airflow  
400LFM  
200LFM  
400LFM  
200LFM  
45  
45  
100LFM  
Nat conv  
100LFM  
Nat conv  
35  
25  
35  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D017  
D018  
VIN = 24 V  
VOUT = 1.8 V  
VIN = 24 V  
VOUT = 5 V  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
6-17. Safe Operating Area  
6-18. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
6.9 Typical Characteristics (VIN = 36 V)  
The typical characteristic data has been developed from actual products tested at TA = 25°C. This data is  
considered typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0.001  
0.01  
0.1  
Output Current (A)  
1
3
D019  
D020  
VIN = 36 V  
VIN = 36 V  
6-19. Efficiency versus Output Current  
6-20. Efficiency versus Output Current  
3.2  
21  
VOUT  
VOUT  
7.0 V  
5.0 V  
3.3 V  
2.5 V  
7.0 V  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
18  
5.0 V  
3.3 V  
2.5 V  
15  
12  
9
6
3
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D021  
D022  
VIN = 36 V  
VIN = 36 V  
COUT = 4x 47µF  
6-21. Power Dissipation versus Output Current  
6-22. Voltage Ripple versus Output Current  
115  
105  
95  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
Airflow  
Airflow  
400LFM  
200LFM  
400LFM  
200LFM  
45  
45  
100LFM  
Nat conv  
100LFM  
Nat conv  
35  
25  
35  
25  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
D023  
D024  
VIN = 36 V  
VOUT = 1.8 V  
VIN = 36 V  
VOUT = 5 V  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
PCB = 85 mm × 65 mm, 4-layer, 2 oz. copper  
6-23. Safe Operating Area  
6-24. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
7 Detailed Description  
7.1 Overview  
The TPSM53603 is a full-featured, 36-V input, 3-A, synchronous step-down converter with PWM, MOSFETs,  
shielded inductor, and control circuitry integrated into a low-profile, over-molded package. The device integration  
enables small designs while providing the ability to adjust key parameters to meet specific design requirements.  
The TPSM53603 provides an output voltage range of 1 V to 7 V. An external resistor divider is used to adjust the  
output voltage to the desired value. The device provides accurate voltage regulation over a wide load range by  
using a precision internal voltage reference. Input undervoltage lockout is internally set at 3.55 V (typical), but  
can be adjusted upward using a resistor divider on the EN pin of the device. The EN pin can also be pulled low  
to put the device into standby mode to reduce input current draw. A power-good signal is provided to indicate  
when the output is within its nominal voltage range. Thermal shutdown and current limit features protect the  
device during an overload condition. A 15-pin, QFN package that includes exposed bottom pads provides a  
thermally enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
Thermal  
Shutdown  
UVLO  
LDO  
V5V  
VIN  
Shutdown  
Logic  
Enable  
Logic  
EN  
OCP  
PGOOD  
PGOOD  
Logic  
Power  
Stage  
and  
2.2 µH  
FB  
Oscillator  
VOUT  
Control  
Logic  
œ
Soft Start  
+
+
Comp  
VREF  
AGND  
PGND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM53603  
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
A resistor divider connected to the FB pin (pin 9) sets the output voltage of the TPSM53603. The output voltage  
adjustment range is from 1 V to 7 V. 7-1 shows the feedback resistor connections for setting the output  
voltage. The recommended value of RFBT is 10 kΩ. The value for RFBB can be calculated using 方程式 1. 7-1  
lists the standard resistor values for several output voltages. The minimum required output capacitance for each  
output voltage is also included in 7-1. The capacitance values listed represent the effective capacitance,  
taking into account the effects of DC bias and temperature variation.  
10  
(k)  
RFBB  
=
(VOUT œ 1)  
(1)  
VOUT  
RFBT  
10k  
FB  
RFBB  
AGND  
7-1. Setting the Output Voltage  
7-1. Setting the Output Voltage  
COUT(MIN) (µF)  
(EFFECTIVE)  
COUT(MIN) (µF)  
(EFFECTIVE)  
RFBB (k)(1)  
RFBB (k)(1)  
VOUT (V)  
VOUT (V)  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
2.0  
2.5  
open  
100  
150  
140  
128  
117  
108  
101  
83  
3.0  
3.3  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
4.99  
4.32  
3.32  
2.87  
2.49  
2.21  
2.00  
1.82  
1.65  
48  
43  
35  
31  
28  
25  
23  
21  
19  
49.9  
33.2  
24.9  
20.0  
12.4  
10.0  
6.65  
74  
58  
(1) RFBT = 10.0 kΩ  
7.3.2 Switching Frequency  
The switching frequency of the TPSM53603 is set to 1.4 MHz, internal to the device. The switching frequency  
cannot be adjusted. When the load current is high enough and the device is operating in PWM mode, the device  
operates at a fixed frequency. As the load current drops and the device switches to PFM mode, the switching  
frequency is reduced, resulting in reduced power dissipation. See 7.4.2 for typical information on when the  
device switches from PWM mode to PFM mode.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
7.3.3 Input Capacitors  
The TPSM53603 requires a minimum input capacitance of 20 μF (2 × 10 μF) of ceramic type. High-quality,  
ceramic-type X5R or X7R capacitors with sufficient voltage rating are recommended. TI recommends an  
additional 47 µF of non-ceramic capacitance for applications with transient load requirements. The voltage rating  
of input capacitors must be greater than the maximum input voltage.  
7-2. Recommended Input Capacitors  
CAPACITOR CHARACTERISTICS  
VENDOR(1)  
SERIES  
SIZE  
PART NUMBER  
VOLTAGE RATING  
(V)  
CAPACITANCE (3)  
(µF)  
Murata  
X5R  
X5R  
X7R  
X7R  
X7R  
1206  
1206  
1206  
1210  
1210  
GRT31CR61H106ME01L  
CGA5L3X5R1H106M160AB  
CGA5L1X7R1H106K160AC  
GRM32ER71H106KA12L  
C3225X7R1H106M250AC  
50  
50  
50  
50  
50  
10  
10  
10  
10  
10  
TDK  
TDK  
Murata  
TDK  
(1) Capacitor Supplier Verification, RoHS, Lead-free, and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Maximum ESR at 100 kHz, 25°C.  
(3) Standard capacitance values  
7.3.4 Output Capacitors  
7-1 lists the TPSM53603 minimum output capacitance. The effects of DC bias and temperature variation must  
be considered when using ceramic capacitance. For ceramic capacitors, the package size, voltage rating, and  
dielectric material contribute to differences between the standard rated value and the actual effective value of the  
capacitance.  
When adding additional capacitance above COUT(min), the capacitance can be ceramic type, low-ESR polymer  
type, or a combination of the two. See 7-3 for a preferred list of output capacitors by vendor.  
7-3. Recommended Output Capacitors  
CAPACITOR CHARACTERISTICS  
VENDOR(1)  
SERIES  
PART NUMBER  
ESR(2)  
(m)  
VOLTAGE RATING  
(V)  
CAPACITANCE (2)  
(µF)  
TDK  
X5R  
X7R  
C3225X5R0J476K  
6.3  
6.3  
10  
47  
47  
2
2
Murata  
GCM32ER70J476KE19L  
GRM21BR61A476ME15L  
C3216X5R1A476M160AB  
GRM32ER71A476KE15L  
GRM32ER61C476K  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
C1210C107M4PAC7800  
6TPE100MI  
Murata  
X5R  
47  
2
TDK  
X5R  
10  
47  
2
Murata  
X7R  
10  
47  
2
Murata  
X5R  
16  
47  
3
TDK  
X5R  
6.3  
6.3  
10  
100  
100  
100  
100  
100  
150  
220  
330  
470  
2
Murata  
X5R  
2
Murata  
X5R  
2
Kemet  
X5R  
16  
2
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
6.3  
10  
18  
15  
9
10TPF150ML  
6TPF220M9L  
6.3  
6.3  
6.3  
6TPF330M9L  
9
6TPE470MAZU  
35  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Standard capacitance values.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM53603  
 
 
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
7.3.5 Output On/Off Enable (EN)  
The voltage on the EN pin provides electrical ON/OFF control of the device. This input features precision  
thresholds, allowing the use of an external voltage divider to provide a programmable UVLO (see 7.3.6).  
Applying a voltage of VEN VEN-LDO_H causes the device to enter standby mode, powering the internal LDO,  
but not producing an output voltage. Increasing the EN voltage to VEN-H fully enables the device, allowing it to  
enter start-up mode and begin the soft-start period. When the EN input is brought below VEN-H by VEN-HYS, the  
regulator stops running and enters standby mode. Further decrease in the EN voltage to below VEN-LDO-L  
completely shuts down the device. 7-2 shows this behavior. The values for the various EN thresholds can be  
found in 6.5.  
EN  
VEN-H  
VEN-H œ VEN-HYS  
VEN-LDO-H  
VEN-LDO-L  
V5V  
5V  
0
VOUT  
VOUT  
0
7-2. Precision Enable Behavior  
The EN pin cannot be open circuit or floating. The simplest way to enable the operation of the TPSM53603 is to  
connect the EN pin to VIN directly as shown in 7-3. This allows self start-up of the TPSM53603 when VIN is  
within the operation range.  
If an application requires controlling the EN pin, an external logic signal can be used to drive the EN pin as  
shown in 7-4. Applications using an open-drain/collector device to interface with this pin require a pullup  
resistor to a voltage above the enable threshold.  
VIN  
VIN  
EN  
EN  
PGND  
PGND  
7-4. Typical Enable Control  
7-3. Enabling the Device  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
7.3.6 Programmable Undervoltage Lockout (UVLO)  
The TPSM53603 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin  
voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 3.55 V (typical)  
with a typical hysteresis of 500 mV.  
If an application requires a higher UVLO threshold, a resistor divider can be placed between VIN, the EN pin,  
and AGND as shown in 7-5. The enable rising threshold (VEN-H) is 1.23 V (typ) with 100 mV (typ) hysteresis.  
7-4 lists recommended resistor values for RENT and RENB to adjust the ULVO voltage.  
To ensure proper start-up and reduce input current surges, TI recommends to set the UVLO threshold to  
approximately 80% to 85% of the minimum expected input voltage.  
VIN  
VIN  
RENT  
EN  
RENB  
AGND  
7-5. Adjustable UVLO  
7-4. Resistor Values for Adjusting UVLO  
VIN UVLO (V)  
RENT (kΩ)  
6.5  
100  
23.7  
10  
15  
20  
25  
30  
100  
14.3  
100  
9.09  
100  
6.65  
100  
5.23  
100  
4.32  
RENB (kΩ)  
7.3.7 Power Good (PGOOD)  
The TPSM53603 has a built-in power-good signal (PGOOD) which indicates whether the output voltage is within  
its regulation range. The PGOOD pin is an open-drain output that requires a pullup resistor to a nominal voltage  
source of 18 V or less. The internal 5-V LDO output (V5V pin) can be used as the pullup voltage source. A  
typical pullup resistor value is between 10 kΩ and 100 kΩ. The maximum recommended PGOOD sink current  
is 3 mA.  
Once the output voltage rises above 94% of the set voltage, the PGOOD pin rises to the pullup voltage level.  
The PGOOD pin is pulled low when the output voltage drops lower than 92% or rises higher than 107% of the  
nominal set voltage. See 7-6 for typical power-good thresholds.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM53603  
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
VFB  
107%  
105%  
94%  
92%  
PGOOD  
High  
Low  
7-6. Power-good Flag  
7.3.8 Light Load Operation  
In light load conditions, the device turns on the high-side MOSFET until the inductor current reaches a controlled  
minimum value of approximately 1 A. As the input voltage decreases, reducing the voltage headroom between  
VIN and VOUT, the amount of time required to reach this minimum current increases. During this time, additional  
energy flows from VIN to VOUT, resulting in increased output voltage ripple. To eliminate this behavior, the EN  
UVLO function must be used to maintain at least 1 V of headroom above VOUT. Alternatively, additional output  
capacitance can be added to reduce the output voltage ripple in applications that operate at light loads with very  
low VIN to VOUT headroom.  
7.3.9 Voltage Dropout  
Voltage dropout is the difference between the input voltage and output voltage that is required to maintain output  
voltage regulation while providing the rated output current.  
To ensure the TPSM53603 maintains output voltage regulation over the operating temperature range, the  
minimum VIN is 3.8 V or (VOUT + 1 V), whichever is greater.  
The TPSM53603 operates in a frequency foldback mode when the dropout voltage is less than the  
recommendation above. Frequency foldback reduces the switching frequency to allow the output voltage to  
maintain regulation as input voltage decreases. At light load, the TPSM53603 operates in PFM mode, which is a  
reduced frequency operation. See 7.4.2 for more information on PFM mode. 7-7 through 7-12 show  
typical dropout voltage and frequency foldback curves for 3.3 V, 5 V, and 7 V outputs at TA = 25°C.  
Note  
As ambient temperature increases, dropout voltage and frequency foldback occur at higher input  
voltage.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
3.6  
1500  
1400  
1300  
1200  
1100  
1000  
900  
IOUT  
IOUT  
2 A  
3 A  
3.5  
3.4  
3.3  
3.2  
3.1  
3
0 A  
1.5 A  
3 A  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
800  
700  
600  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
3.5  
3.6  
3.7  
3.8  
3.9  
4
4.1  
4.2  
4.3  
Input Voltage (V)  
D041  
Input Voltage (V)  
D044  
VOUT = 3.3 V  
VOUT = 3.3 V  
7-7. Voltage Dropout  
7-8. Frequency Foldback  
5.2  
5.1  
5
1500  
1400  
1300  
1200  
1100  
1000  
900  
IOUT  
IOUT  
2 A  
3 A  
0 A  
1.5 A  
3 A  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
800  
700  
3.9  
600  
3.8  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6
4.5  
4.6  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Input Voltage (V)  
D045  
Input Voltage (V)  
D042  
VOUT = 5 V  
VOUT = 5 V  
7-10. Frequency Foldback  
7-9. Voltage Dropout  
7.2  
7.1  
7
1500  
1400  
1300  
1200  
1100  
1000  
900  
IOUT  
IOUT  
2 A  
3 A  
0 A  
1.5 A  
3 A  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6
800  
5.9  
5.8  
5.7  
700  
600  
7.6  
7.65  
7.7  
7.75  
7.8  
7.85  
7.9  
7.95  
8
6.5  
6.6  
6.7  
6.8  
6.9  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Input Voltage (V)  
D046  
Input Voltage (V)  
D043  
VOUT = 7 V  
VOUT = 7 V  
7-12. Frequency Foldback  
7-11. Voltage Dropout  
7.3.10 Overcurrent Protection (OCP)  
The TPSM53603 is protected from overcurrent conditions. Cycle-by-cycle current limit is used for overloads  
while hiccup mode is used for short circuits. Hiccup mode is activated if a fault condition persists on the output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM53603  
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
Hiccup mode reduces power dissipation under severe overcurrent conditions and prevents overheating and  
potential damage to the device. In hiccup mode, the regulator is shut down and kept off for 94 ms typical before  
the TPSM53603 tries to start again. If overcurrent or short-circuit fault condition still exist, hiccup repeats until the  
fault condition is removed. Once the fault is removed, the module automatically recovers with a normal soft-start  
power up.  
The typical current limit threshold for the TPSM53603 varies slightly as a function of input voltage and output  
voltage. 7-13 shows the typical current limit threshold for several output voltages over the input voltage range.  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
VOUT  
1 V  
1.8 V  
3.3  
3.3 V  
5 V  
7 V  
3.0  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
D024  
7-13. Current Limit Threshold  
7.3.11 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
165°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 148°C  
typically.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The TPSM53603 is in active mode when VIN is above the turnon threshold and the EN pin voltage is above the  
EN high threshold. The most direct way to enable the TPSM53603 is to connect the EN pin to VIN. This allows  
self start-up of the TPSM53603 when the input voltage is in the operation range of 3.8 V to 36 V. Connecting a  
resistor divider between VIN, EN, and AGND adjusts the UVLO to delay the turn on until VIN is closer to its  
regulated voltage.  
7.4.2 Auto Mode  
In auto mode, the device moves between Pulse-Width Modulation (PWM) and Pulse-Frequency Modulation  
(PFM) as the load changes. At light loads, the regulator operates in PFM mode. At higher loads, the mode  
changes to PWM mode. The typical load current for which the device moves from PFM to PWM can be found in  
7-14 and 7-15. The output current at which the device changes modes depends on the input voltage and  
the output voltage. For output currents above the curve, the device is in PWM mode. If the curve is a solid line,  
the PWM switching frequency is 1.4 MHz nominal. If the curve is a dashed line, the PWM switching frequency is  
reduced due to the minimum on-time of the internal controller to maintain output voltage regulation. For currents  
below the curves, the device is in PFM mode. For applications where the switching frequency must be known for  
a given condition, the above mentioned effects must be carefully tested before the design is finalized.  
In PWM mode, the regulator operates at a constant frequency using PWM to regulate the output voltage. While  
operating in this mode, the output voltage is regulated by switching at a constant frequency and modulating the  
duty cycle to control the power to the load. This provides excellent line and load regulation and low output  
voltage ripple.  
In PFM mode, the high-side MOSFET is turned on in a burst of one or more pulses to provide energy to the load.  
The duration of the burst and the actual switching frequency depends on the input voltage, output voltage, and  
load current. The frequency of these bursts is adjusted to regulate the output while diode emulation is used to  
maximize efficiency. This mode provides high light-load efficiency by reducing the amount of input supply current  
required to regulate the output voltage at small loads. However, in this mode, expect larger output voltage ripple  
and variable switching frequency.  
7-15. PFM/PWM Thresholds (1 V and 1.8 V)  
7-14. PFM/PWM Thresholds (3.3 V, 5 V, and 7 V)  
7.4.3 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPSM53603. When the EN pin voltage is below the  
EN low threshold, the device is in shutdown mode. In shutdown mode, the standby current is 5 μA typical.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM53603  
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPSM53603 is a synchronous, step-down, DC/DC power module. It is used to convert a higher DC voltage  
to a lower DC voltage with a maximum output current of 3 A. The TPSM53603 can be configured in a negative  
output voltage, inverting buck-boost (IBB) topology. For more details, see the Negative Output Voltage using the  
TPSM53602/3/4 application note. The following design procedure can be used to select components for the  
TPSM53603. Alternately, the WEBENCH® software can be used to generate complete designs. When  
generating a design, the WEBENCH® software uses an iterative design procedure and accesses comprehensive  
databases of components. See www.ti.com for more details.  
8.2 Typical Application  
The TPSM53603 only requires a few external components to convert from a wide input voltage supply range to a  
wide range of output voltages. 8-1 shows a basic TPSM53603 schematic for a typical design.  
V5V  
100 kO  
VIN = 24 V  
PGOOD  
VOUT  
VIN  
VOUT = 5 V  
10 µF  
50 V  
10 µF  
50 V  
TPSM53603  
10 kO  
47 µF  
10 V  
47 µF  
10 V  
100 kO  
FB  
EN  
PGND  
AGND  
2.49 kO  
8-1. TPSM53603 Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters and follow the design  
procedures in 8.2.2.  
8-1. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
24 V typical  
5 V  
Input voltage VIN  
Output voltage VOUT  
Output current rating  
3 A  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM53603 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the TPSM53603 device is externally adjustable using a resistor divider. The recommended  
value of RFBT is 10 kΩ. The value for RFBB can be selected from 7-1 or calculated using 方程2:  
10  
(k)  
RFBB  
=
(VOUT œ 1)  
(2)  
For the desired output voltage of 5 V, the formula yields a value of 2.5 kΩ. Choose the closest available value of  
2.49 kΩfor RFBB  
.
8.2.2.3 Input Capacitors  
The TPSM53603 requires a minimum input capacitance of 20 µF (or 2 × 10 μF) ceramic type. High-quality  
ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 47 µF of non-  
ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of the  
input capacitors must be greater than the maximum input voltage.  
For this design example, two 10-µF, 50-V, ceramic capacitors are used.  
8.2.2.4 Output Capacitor Selection  
The TPSM53603 requires a minimum amount of output capacitance for proper operation. The minimum amount  
of required output varies depending on the output voltage. See 7-1 for the required output capacitance.  
For this design example, two 47-µF, 10-V, ceramic capacitors are used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM53603  
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
8.2.3 Application Curves  
VIN  
VIN  
EN  
EN  
VOUT  
VOUT  
PGOOD  
PGOOD  
VIN = 24 V  
VOUT = 5 V  
COUT = 2 × 47 µF  
VIN = 24 V  
VOUT = 5 V  
COUT = 2 × 47 µF  
8-3. Enable Turn-OFF  
8-2. Enable Turn-ON  
VOUT  
IOUT  
VIN = 24 V  
VOUT = 5 V  
COUT = 2 × 47 µF  
IOUT = 0.75 A to 2.25 A  
Slew rate: 1 A/µs  
8-4. Transient Response  
9 Power Supply Recommendations  
The TPSM53603 is designed to operate from an input voltage supply range between 3.8 V and 36 V. This input  
supply must be well-regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the TPSM53603 supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few centimeters from the TPSM53603, additional bulk capacitance can  
be required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 47-µF  
electrolytic capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. The following guidelines help users design a PCB with the best power conversion performance,  
optimal thermal performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 10-1 through 图  
10-3 show a typical PCB layout. The following are some considerations for an optimized layout.  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Connect AGND to PGND at a single point.  
Place RFBT and RFBB as close as possible to the FB pin.  
Use multiple vias to connect the power planes to internal layers.  
Download the EVM Design Files for fast board design  
10.2 Layout Examples  
10-1. Typical Top-Layer Layout  
10-2. Typical Layer-2 Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM53603  
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
10-3. Typical PGND Layer  
10.3 Theta JA versus PCB Area  
The amount of PCB copper affects the thermal performance of the device. 10-4 shows the effects of copper  
area on the junction-to-ambient thermal resistance (RθJA) of the TPSM53603. The junction-to-ambient thermal  
resistance is plotted for a 4-layer PCB with PCB area from 30 cm2 to 80 cm2.  
To determine the required copper area for an application:  
1. Determine the maximum power dissipation of the device in the application by referencing the power  
dissipation graphs in 6.6 through 6.9.  
2. Calculate the maximum RθJA using 方程3 and the maximum ambient temperature of the application.  
(
125èC - TA(max))  
RqJA  
=
(èC / W)  
P
D(max)  
(3)  
3. Reference 10-4 to determine the minimum required PCB area for the application conditions.  
24  
4-layer PCB  
23  
22  
21  
20  
19  
18  
30  
40  
50  
60  
70  
80  
PCB Area (cm²)  
D047  
10-4. RθJA versus PCB Area (per Layer)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
10.4 Package Specifications  
TPSM53603  
VALUE  
UNIT  
Weight  
429  
mg  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
89.3  
MHrs  
10.5 EMI  
The TPSM53603 is compliant with EN55011 Class-B radiated emissions. 10-5 and 10-6 show typical  
examples of radiated emissions plots for the TPSM53603. The graphs include the plots of the antenna in the  
horizontal and vertical positions.  
EMI plots were measured using the standard TPSM53603EVM with no input filter.  
10-5. Radiated Emissions 24-V Input, 5-V Output, 3-A Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM53603  
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
10-6. Radiated Emissions 12-V Input, 5-V Output, 3-A Load  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM53603 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Negative Output Voltage using the TPSM53602/3/4 application report  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
11.5 Trademarks  
HotRodand TI E2Eare trademarks of Texas Instruments.  
are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM53603  
 
 
 
 
 
 
 
TPSM53603  
www.ti.com.cn  
ZHCSKO1B DECEMBER 2019 REVISED SEPTEMBER 2021  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPSM53603  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM53603RDAR  
ACTIVE  
B3QFN  
RDA  
15  
1000 RoHS & Green  
NIPDAU  
Level-3-245C-168 HR  
-40 to 125  
TPSM53603  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPSM53603RDAR  
B3QFN  
RDA  
15  
1000  
330.0  
16.4  
5.28  
5.78  
4.28  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
B3QFN RDA 15  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.0 336.0 48.0  
TPSM53603RDAR  
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RDA0015A  
B3QFN - 4.1 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
A
B
PIN 1 INDEX AREA  
5.6  
5.4  
4.1 MAX  
0.08 C  
C
SEATING PLANE  
2.5 0.05  
PKG  
0.45  
0.25  
0.1  
2X  
1.5 0.05  
10X  
C A B  
1.3  
1.1  
3X  
(0.16) TYP  
0.05  
C
7
8
2X 0.725  
2.6 TYP  
1.43  
PKG  
4.6 0.05  
15  
2.5 0.05  
8X 0.65  
2X 0.975  
14  
1
0.6  
0.4  
4X  
0.6  
0.4  
10X  
0.1  
C A B  
C
1.3  
1.1  
0.05  
PIN 1 ID  
4224086/C 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RDA0015A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.5)  
(1.5)  
4X (1.4)  
PKG  
4X (0.5)  
14  
1
2X (0.975)  
10X (0.7)  
10X (0.35)  
(4.6)  
PKG  
15  
(1)  
TYP  
(2.5)  
2X (1.43)  
8X (0.65)  
2X (0.725)  
7
8
(R0.05) TYP  
(1) TYP  
(
0.2) VIA  
TYP  
2X (4)  
(4.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 16X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL EDGE  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
S
C
A
L
E
3
0
.
0
0
0
SOLDER MASK DETAILS  
4224086/C 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RDA0015A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
PKG  
4X (1.35)  
4X (0.6)  
4X (0.45)  
14  
1
4X  
(1.15)  
2X (0.975)  
10X (0.65)  
15  
10X (0.3)  
PKG  
4X (0.475)  
4X  
(0.95)  
4X  
(0.65)  
2X (1.43)  
8X (0.65)  
4X (1.675)  
2X (0.725)  
7
8
(R0.05) TYP  
4X (0.425)  
4X (0.625)  
2X (4)  
(4.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15:  
56% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 16X  
4224086/C 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

TPSM53603RDAR

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小尺寸的 36V、3A 降压电源模块 | RDA | 15 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM53604

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小外形尺寸的 36V、4A 降压电源模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM53604RDAR

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小外形尺寸的 36V、4A 降压电源模块 | RDA | 15 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5

采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 6V 输出、1.5A 降压模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5H

TPSM5601R5Hx, 60-V Input, 1-V to 16-V Output, 1.5-A Power Module in Enhanced HotRod™ QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5HE

TPSM5601R5Hx, 60-V Input, 1-V to 16-V Output, 1.5-A Power Module in Enhanced HotRod™ QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5HEXTRDAR

TPSM5601R5Hx, 60-V Input, 1-V to 16-V Output, 1.5-A Power Module in Enhanced HotRod™ QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5HRDAR

TPSM5601R5Hx, 60-V Input, 1-V to 16-V Output, 1.5-A Power Module in Enhanced HotRod™ QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5HSRDAR

TPSM5601R5Hx, 60-V Input, 1-V to 16-V Output, 1.5-A Power Module in Enhanced HotRod™ QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5HX

TPSM5601R5Hx, 60-V Input, 1-V to 16-V Output, 1.5-A Power Module in Enhanced HotRod™ QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5RDAR

采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 6V 输出、1.5A 降压模块 | RDA | 15 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM5601R5SRDAR

采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 6V 输出、1.5A 降压模块 | RDA | 15 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI