TPSM82864A [TI]

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、4A 薄型降压电源模块;
TPSM82864A
型号: TPSM82864A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、4A 薄型降压电源模块

电感器 电源电路
文件: 总35页 (文件大小:2966K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
TPSM82864A/TPSM82866A 具有集成电感器、采3.5mm × 4.0mm 薄超模压塑料  
QFN 封装2.4V 5.5V 输入、4A/6A 降压电源模块  
1 特性  
3 说明  
• 效率高96%  
优异的热性能  
• 符CISPR-11 B 类标准  
1% 的输出电压精度  
• 可实现快速瞬态响应DCS-Control 拓扑  
1.4mm 1.8mm 超薄QFN 封装  
• 输入电压范围2.4V 5.5V  
• 同一器件型号可提供  
– 可调输出电压0.6V VIN  
13 个集成式固定输出电压选项  
• 具有窗口比较器的电源正常状态指示器  
2.4MHz 开关频率  
• 强PWM 或省电模式  
4µA 工作静态电流  
• 输出电压放电  
100% 占空比模式  
• 断续短路保护  
• 热关断  
TPSM8286xA 器件系列包4A 6A 降压转换器电源  
模块该电源模块经优化可实现小解决方案尺寸和高效  
率。该电源模块集成了同步降压转换器和电感器可简  
化设计、减少外部元件并节省印刷电路板 (PCB) 面  
积。该器件采用紧凑的薄型封装适用于通过标准表面  
贴装设备进行自动组装。  
通过 DCS-Control 架构可实现严格的输出电压精度  
即使与小型输出电容搭配工作时也是如此),以及出  
色的负载瞬态性能。该转换器在中高负载条件下以  
PWM 模式运行并在轻负载时自动进入省电模式运  
从而在整个负载电流范围内保持高效率。此类器件  
还可强制进PWM 模式运行以实现超小的输出电压  
纹波。  
器件EN PG 引脚支持顺序配置可带来灵活的系  
统设计。集成的软启动功能降低了输入电源需要提供的  
浪涌电流。过热保护和断续短路保护功能使得该解决方  
案稳健且可靠。  
• –40°C 125°C 工作温度范围  
• 间距0.5mm 3.5mm × 4.0mm QFN 封装  
35mm2 解决方案尺寸  
器件信息  
封装尺寸标  
称值)  
封装(1)  
器件型号  
输出电流  
TPSM82864A  
TPSM82866A  
4A  
6A  
RDJ RDM  
B0QFN,  
23)  
2 应用  
3.50mm ×  
4.00mm  
适用FPGACPUASIC 的内核电源  
光学模块  
医疗成像  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
工业运输  
工厂自动化和控制  
航天和国防  
100  
95  
90  
85  
80  
75  
70  
65  
VIN  
VOUT  
1.8 V  
2.4 V to 5.5 V  
VIN  
EN  
VOUT  
VOS  
C2  
C1  
22 µF  
2 × 22 µF or  
1 × 47 µF  
R3  
FB  
VSET/  
MODE  
VPG  
60  
VOUT = 0.6V  
PG  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
55  
50  
45  
40  
R4  
133 k  
FPWM  
PSM  
AGND PGND  
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
典型应用原理- 固定输出电压选项  
TPSM82866AA0HRDMR 率与输出电流间的关系  
曲线VIN = 5.0V  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEF1  
 
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................12  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 14  
9.3 Power Supply Recommendations.............................21  
9.4 Layout....................................................................... 21  
10 Device and Documentation Support..........................24  
10.1 Device Support....................................................... 24  
10.2 Documentation Support.......................................... 24  
10.3 接收文档更新通知................................................... 24  
10.4 支持资源..................................................................24  
10.5 Trademarks.............................................................24  
10.6 Electrostatic Discharge Caution..............................24  
10.7 术语表..................................................................... 24  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................7  
8 Detailed Description........................................................8  
8.1 Overview.....................................................................8  
8.2 Functional Block Diagram...........................................8  
8.3 Feature Description.....................................................8  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2021) to Revision B (November 2022)  
Page  
Added TPSM8286xAA0HRDM to the data sheet............................................................................................... 3  
Changes from Revision * (September 2021) to Revision A (December 2021)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Device Options  
ORDERABLE PART NUMBER  
DEVICE HEIGHT  
OUTPUT CURRENT  
TPSM82864AA0SRDJR  
1.4 mm  
4 A  
TPSM82864AA0HRDMR  
TPSM82866AA0SRDJR  
TPSM82866AA0HRDMR  
1.8 mm  
1.4 mm  
1.8 mm  
6 A  
6 Pin Configuration and Functions  
TOP VIEW  
BOTTOM VIEW  
7
8
9
10  
11  
12  
12  
11  
10  
9
8
7
VOUT  
VOUT  
VOUT  
VOUT  
VOS  
SW  
SW  
PGND  
VOUT  
13  
6
5
4
3
2
13  
6
5
4
3
2
PGND  
PGND  
PGND  
VSET/MODE  
PG  
VOUT  
Exposed  
Thermal  
Pad  
23  
Exposed  
Thermal  
Pad  
23  
14  
15  
16  
17  
14  
PGND  
VOUT  
15  
PGND  
VOUT  
16  
VSET/MODE  
PG  
VOS  
17  
FB  
FB  
EN  
AGND  
EN  
AGND  
18  
19  
20  
21  
22  
1
1
22  
21  
20  
19  
18  
6-1. TPSM82864A, TPSM82866A - QFN (23 Pin)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
AGND  
18  
1
P
I
Analog ground pin. Must be connected to a common GND plane.  
Device enable pin. To enable the device, this pin must be pulled high. Pulling this pin low  
disables the device. Do not leave floating.  
EN  
FB  
Voltage feedback input. Connect the output voltage resistor divider to this pin. When using a  
fixed output voltage, connect directly to VOUT.  
17  
2
I
Power-good open-drain output pin. The pullup resistor can be connected to voltages up to 5.5 V.  
If unused, leave this pin floating. This pin is pulled to GND when the device is in shutdown.  
PG  
O
P
4, 5, 6, 8, 9,  
10, 11, 19, 20  
PGND  
Power ground pin. Must be connected to common GND plane.  
SW  
VIN  
7
21, 22  
O
P
I
Switch pin of the power stage. This pin can be left floating.  
Power supply input voltage pin  
VOS  
VOUT  
16  
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Output voltage pin  
12, 13, 14, 15  
P
Connecting a resistor to GND selects one of the fixed output voltages. Tying the pin high or low  
selects an adjustable output voltage. After the device has started up, the pin operates as a  
MODE input. Applying a high level selects forced PWM mode operation and a low level selects  
power save mode operation.  
VSET/MODE  
3
I
Exposed  
Thermal Pad  
Internally connected to PGND. Must be soldered to achieve appropriate power dissipation and  
mechanical reliability. Must be connected to common GND plane.  
23  
P
(1) I = Input, O = Output, P = Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
2.5  
MAX  
UNIT  
VIN, EN, VOS, FB, PG, VSET/MODE  
6
VIN + 0.3  
10  
Voltage(2)  
SW (DC), VOUT  
V
SW (AC, less than 10ns)(3)  
Sink current at PG  
ISINK_PG  
TJ  
2
mA  
°C  
Junction temperature  
Storage temperature  
125  
40  
40  
Tstg  
125  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
2.4  
NOM  
MAX  
5.5  
VIN  
10  
4
UNIT  
V
VIN  
Supply Voltage Range  
VOUT  
tF_VIN  
Output Voltage Range  
0.6  
V
Falling transition time at VIN (1)  
Output current, TPSM82864A  
Output current, TPSM82866A  
mV/µs  
IOUT  
A
6
Nominal resistance range for external voltage selection resistor (E96  
resistor series)  
10  
249  
1%  
kΩ  
RVSET  
External voltage selection resistor tolerance  
External voltage selection resistor temperature coefficient  
Junction temperature  
±200 ppm/°C  
125 °C  
TJ  
40  
(1) The falling slew rate of VIN should be limited if VIN goes below VUVLO (see Power Supply Recommendations).  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
 
 
 
 
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.4 Thermal Information  
TPSM8286x  
23 PINS  
THERMAL METRIC(1)  
UNIT  
RDM  
JEDEC 51-5  
RDJ  
JEDEC 51-5  
RDJ  
EVM  
RDM  
EVM  
RθJA  
Junction-to-ambient thermal resistance  
43.2  
42.5  
14.9  
6.8  
43.3  
34.3  
10.8  
3.6  
25.4  
n/a(2)  
n/a(2)  
2.4  
25.9  
n/a(2)  
n/a(2)  
3.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
14.8  
10.7  
10.9  
12.7  
ΨJB  
(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
(2) Not applicable to an EVM.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.5 Electrical Characteristics  
TJ = -40 °C to 125 °C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25 °C and VIN = 5 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
IQ_VIN  
Quiescent current into VIN pin  
Quiescent current into VOS pin  
Shutdown current  
EN = High, no load, device not switching  
4
8
10  
µA  
µA  
EN = High, no load, device not switching,  
VVOS = 1.8 V  
IQ_VOS  
ISD  
VUVLO  
0.24  
2.3  
2.2  
150  
20  
1
2.4  
2.3  
µA  
V
EN = Low, TJ = -40to 85℃  
VIN rising  
2.2  
2.1  
Under voltage lock out threshold  
VIN falling  
V
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
°C  
°C  
TJSD  
TJ falling  
LOGIC INTERFACE  
High-level input threshold voltage at EN  
and VSET/MODE  
VIH  
1.0  
V
Low-level input threshold voltage at  
EN and VSET/MODE  
VIL  
0.4  
0.1  
V
IEN,LKG  
Input leakage current into EN pin  
0.01  
µA  
START-UP, POWER GOOD  
Time from EN high to device starts switching with  
a 249-kresistor connected between VSET/  
MODE and GND  
tDelay  
tRamp  
Enable delay time  
420  
650 1100  
µs  
Output voltage ramp time  
Time from device starts switching to power good  
VFB referenced to VFB(nominal)  
VFB referenced to VFB(nominal)  
Isink = 1 mA  
0.8  
85  
1
91  
1.5  
96  
ms  
%
VPG(low) Power good lower threshold  
VPG(high) Power good upper threshold  
103  
111  
120  
0.4  
0.1  
%
VPG,OL  
Low-level output voltage  
Input leakage current into PG pin  
Power good delay  
V
IPG,LKG  
tPG,DLY  
VPG = 5.0 V  
0.01  
34  
µA  
µs  
Rising and falling edges  
OUTPUT  
Fixed voltage operation, FPWM, no load, TJ =  
0°C to 85°C  
1
%
1  
VOUT  
Output voltage accuracy  
Fixed voltage operation, FPWM, no load  
Adjustable voltage operation  
2
606  
0.4  
%
mV  
µA  
2  
VFB  
Feedback voltage  
594  
600  
0.01  
3.5  
IFB,LKG  
RDIS  
Input leakage into FB pin  
Output discharge resistor at VOS pin  
Load regulation  
Adjustable voltage operation, VFB = 0.6 V  
VOUT = 1.2 V, FPWM  
0.04  
%/A  
POWER SWITCH  
TPSM8286xAA0SRDJ  
100% mode. VIN = 3.3 V, TJ = 25°C  
28  
24  
35  
mΩ  
mΩ  
RDP  
Dropout resistance  
TPSM8286xAA0HRDM  
100% mode. VIN = 3.3 V, TJ = 25°C  
TPSM82864A  
TPSM82866A  
TPSM82864A  
TPSM82866A  
5
7
5.5  
7.9  
4.5  
6.5  
-3  
6
A
A
High-side FET forward current limit  
Low-side FET forward current limit  
8.5  
ILIM  
A
A
Low-side FET negative current limit  
PWM switching frequency  
A
fSW  
IOUT = 1 A, VOUT = 1.2 V  
2.4  
MHz  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
10  
9
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
TJ = -40°C  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ  
TJ  
=
=
25°C  
85°C  
TJ = 125°C  
8
7
6
5
4
3
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2 5.5  
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2 5.5  
Input Voltage (V)  
Input Voltage (V)  
7-2. Shutdown Current ISD  
7-1. Quiescent Current into VIN IQ_VIN  
10  
50  
45  
40  
35  
30  
25  
20  
15  
TJ = -40°C  
TJ  
TJ  
TJ  
=
=
=
-40°C  
25°C  
85°C  
TJ  
TJ  
=
=
25°C  
85°C  
9
8
7
6
5
4
3
2
TJ = 125°C  
TJ = 125°C  
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2 5.5  
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2 5.5  
Input Voltage (V)  
Input Voltage (V)  
TPSM8286xAA0SRDJ  
7-3. Output Discharge Resistance RDIS  
7-4. Dropout Resistance RDP  
50  
45  
40  
35  
30  
25  
20  
15  
T
T
J = -40°C  
J = 25°C  
TJ = 85°C  
TJ = 125°C  
2.4  
2.8  
3.2  
3.6  
4
4.4  
4.8  
5.2 5.5  
Input Voltage (V)  
TPSM8286xAA0HRDM  
7-5. Dropout Resistance RDP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM82864A TPSM82866A  
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPSM8286xA synchronous step-down converter power module is based on DCS-Control (Direct Control  
with Seamless transition into power save mode). This is an advanced regulation topology that combines the  
advantages of hysteretic, voltage, and current mode control. The DCS-Control topology operates in PWM (pulse  
width modulation) mode for medium-to-heavy load conditions and in PSM (power save mode) at light load  
currents. In PWM, the converter operates with its nominal switching frequency of 2.4 MHz, having a controlled  
frequency variation over the input voltage range. As the load current decreases, the converter enters power save  
mode, reducing the switching frequency and minimizing the quiescent current of the IC to achieve high efficiency  
over the entire load current range. DCS-Control supports both operation modes using a single building block  
and, therefore, has a seamless transition from PWM to PSM without effects on the output voltage. The  
TPSM8286xA offers excellent DC voltage regulation and load transient regulation, combined with low output  
voltage ripple, minimizing interference with RF circuits.  
8.2 Functional Block Diagram  
PG  
VIN  
VPG(high)  
+
EN  
Control Logic  
UVLO  
VFB  
PG  
delay  
Thermal Shutdown  
Start-up Ramp  
+
VPG(low)  
VSET/  
MODE  
VSW  
VIN  
HS-FET  
Forward Current Limit  
TON  
HICCUP  
Direct Control  
VSW  
and  
220 nH  
VREF  
selection  
Compensation  
VOUT  
SW  
Gate  
Drive  
Modulator  
+
EA  
_
Comparator  
FB  
VOS  
LS-FET  
RDIS  
Forward Current Limit  
Zero Current Detect  
Negative Current Limit  
PGND  
AGND  
8.3 Feature Description  
8.3.1 Power Save Mode  
As the load current decreases, the device seamlessly enters power save mode (PSM) operation. In PSM, the  
converter operates with a reduced switching frequency and a minimum quiescent current to maintain high  
efficiency. Power save mode is based on a fixed on-time architecture, as shown in 方程1.  
V
OUT  
t
416ns  
ON  
V
IN  
(1)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
The switching frequency in PSM is estimated as:  
(2)  
The load current at which PSM is entered is at one half of the ripple current of the inductor and it can be  
estimated as:  
(3)  
In power save mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized  
by increasing the output capacitance.  
8.3.2 Forced PWM Mode  
After the device has powered up and ramped up VOUT, the VSET/MODE pin acts as a digital input. With a high  
level on the VSET/MODE pin, the device enters forced PWM (FPWM) mode and operates with a constant  
switching frequency over the entire load range, even at very light loads. This reduces the output voltage ripple  
and allows simple filtering of the switching frequency for noise-sensitive applications but lowers efficiency at light  
loads.  
8.3.3 Optimized Transient Performance from PWM to PSM Operation  
For most converters, the load transient response in PWM mode is improved compared to PSM, because the  
converter reacts faster on the load step and actively sinks energy on the load release. As an additional feature,  
the TPSM8286xA automatically stays in PWM mode for 128 cycles after a heavy load release to bring the output  
voltage back to the regulation level faster. After these 128 cycles of PWM mode, it automatically returns to PSM  
(if VSET/MODE is low). See 8-1. Without this optimization, the output voltage overshoot is higher.  
VOUT  
PSM  
FPWM mode for  
mode  
128 switching cycles  
PSM  
Device operates in PWM  
mode  
because of high load current  
IOUT  
8-1. Optimized Transient Performance from PWM to PSM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM82864A TPSM82866A  
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.4 Low Dropout Operation (100% Duty Cycle)  
The device offers a low dropout operation by entering 100% duty cycle mode if the input voltage comes close to  
the target output voltage. In this mode, the high-side MOSFET switch is constantly turned on. This is particularly  
useful in battery-powered applications to achieve the longest operation time by taking full advantage of the  
whole battery voltage range. The minimum input voltage to maintain a minimum output voltage is given by:  
VIN (min) = VOUT (min) + IOUT (max) × RDP  
(4)  
where  
VOUT (min) = Minimum output voltage the load can accept  
IOUT (max) = Maximum output current  
RDP = Resistance from VIN to VOUT (high-side RDS(on) + RDC of the inductor)  
8.3.5 Soft Start  
After enabling the device, there is a 650-µs enable delay (tDelay) before the device starts switching. The tDelay  
time varies with the VSET/MODE resistor used and is longest with a resistance of 249 k or higher. After the  
enable delay, an internal soft-start circuit ramps up the output voltage in 1 ms (tRamp). This action avoids  
excessive inrush current and creates a smooth output voltage ramp up. This action also prevents excessive  
voltage drops of batteries that have a high internal impedance. 8-2 shows the start-up sequence.  
VIN  
EN  
VOUT  
tDelay  
tStart-up  
tRamp  
8-2. Start-Up Sequence  
The device is able to start into a pre-biased output capacitor. The device starts with the applied bias voltage and  
ramps the output voltage to its nominal value.  
8.3.6 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current can occur with a heavy load or shorted output circuit condition.  
If the inductor current reaches the threshold ILIM, cycle by cycle, the high-side MOSFET is turned off and the low-  
side MOSFET is turned on until the inductor current ramps down to the low-side MOSFET current limit.  
When the high-side MOSFET current limit is triggered 256 times, the device stops switching. The device then  
automatically re-starts with soft start after a typical delay time of 16 ms has passed. The device repeats this  
mode until the high load condition disappears. This HICCUP short-circuit protection reduces the current  
consumed from the input supply because the device only draws input current approximately 10% of the time  
during an overload condition. 9-29 shows the hiccup short-circuit protection.  
The low-side MOSFET also contains a negative current limit to prevent excessive current from flowing back  
through the inductor to the input. If the low-side sinking current limit is exceeded, the low-side MOSFET is turned  
off. In this scenario, both MOSFETs are off until the start of the next cycle. The negative current limit is only  
active in forced PWM mode.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.7 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, undervoltage lockout (UVLO) disables the device  
when the input voltage is lower than VUVLO. When the input voltage recovers, the device automatically returns to  
operation with soft start.  
8.3.8 Thermal Shutdown  
When the junction temperature exceeds TJSD, the device goes into thermal shutdown, stops switching, and  
activates the output voltage discharge. When the device temperature falls below the threshold by the hysteresis,  
the device returns to normal operation automatically with soft start.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM82864A TPSM82866A  
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Enable and Disable (EN)  
The device is enabled by setting the EN pin to a logic high. Accordingly, shutdown mode is forced if the EN pin is  
pulled low. In shutdown mode, the internal power switches as well as the entire control circuitry are turned off. An  
internal switch smoothly discharges the output through the VOS pin in shutdown mode. Do not leave the EN pin  
floating.  
The typical enable threshold value of the EN pin is 0.66 V for rising input signals and the typical shutdown  
threshold is 0.52 V for falling input signals.  
8.4.2 Output Discharge  
The purpose of the output discharge function is to ensure a defined down-ramp of the output voltage when the  
device is disabled and to keep the output voltage close to 0 V. The output discharge is active when the EN pin is  
set to a logic low and during thermal shutdown. The discharge is active down to an input voltage of 1.6 V  
(typical).  
8.4.3 Power Good (PG)  
The device has an open-drain power-good pin, which is specified to sink up to 2 mA. The power-good output  
requires a pullup resistor connected to any voltage rail less than 5.5 V. The PG signal can be used for  
sequencing of multiple rails by connecting it to the EN pin of other converters. Leave the PG pin unconnected  
when not used. 8-1 shows the typical PG pin logic.  
8-1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH IMPEDANCE  
LOW  
0.9 × VOUT_NOM VVOUT 1.1 × VOUT_NOM  
Enable  
VVOUT < 0.9 × VOUT_NOM or VVOUT > 1.1 × VOUT_NOM  
Shutdown  
EN = low  
Thermal shutdown  
UVLO  
TJ > TJSD  
1.8 V < VIN < VUVLO  
Power supply removal VIN < 1.8 V  
undefined  
The PG pin has a 34-μs delay time on the falling edge and a 34-μs delay before PG goes high. See 8-3.  
VPG(high)  
VO  
VPG(low)  
tPG,DLY  
tPG,DLY  
tPG,DLY  
tPG,DLY  
tPG,DLY  
tPG,DLY  
PG  
8-3. Power-Good Transient and Delay Behavior  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4.4 Output Voltage and Mode Selection (VSET/MODE)  
The TPSM8286xA family devices are configurable as either an adjustable output voltage or a fixed output  
voltage, depending on the needs of each individual application. This feature simplifies the logistics during mass  
production, as one part number offers several fixed output voltage options as well as an adjustable output  
voltage option. During the enable delay (tDelay), the device configuration is set by an external resistor connected  
to the VSET/MODE pin through an internal R2D (resistor to digital) converter. This configures the VREF input to  
the error amplifier (EA) to be either the VFB voltage (0.6-V typical) or the selected output voltage. 8-2 shows  
the options.  
8-2. Output Voltage Selection Table  
RESISTOR AT VSET/MODE PIN (E96 SERIES, ±1% ACCURACY,  
FIXED OR ADJUSTABLE OUTPUT VOLTAGE  
200 ppm OR BETTER)  
249 k or logic high  
205 k  
Adjustable (through a resistive divider on the FB pin)  
3.30 V  
162 k  
2.50 V  
133 k  
1.80 V  
105 k  
1.50 V  
68.1 k  
1.35 V  
56.2 k  
1.20 V  
44.2 k  
1.10 V  
36.5 k  
1.05 V  
28.7 k  
1.00 V  
23.7 k  
0.95 V  
18.7 k  
0.90 V  
15.4 k  
0.85 V  
0.80 V  
12.1 k  
10 k or logic low  
Adjustable (through a resistive divider on the FB pin)  
The R2D converter has an internal current source, which applies current through the external resistor, and an  
internal ADC, which reads back the resulting voltage level. Depending on the detected resistance, the output  
voltage is set. After this R2D conversion is finished, the current source is turned off to avoid current flowing  
through the external resistor. Make sure that the additional leakage current path is less than 20 nA and the  
capacitance is not greater than 30 pF from this pin to GND during R2D conversion, otherwise a false VOUT value  
is set. For more details, refer to the Benefits of a Resistor-to-Digital Converter in Ultra-Low Power Supplies  
White Paper. When the device is set to a fixed output voltage, the FB pin must be connected to the output  
directly. See 8-4.  
VIN  
VOUT  
2.4 V to 5.5 V  
1.8 V  
VIN  
EN  
VOUT  
VOS  
C2  
C1  
22 µF  
2 × 22 µF or  
1 × 47 µF  
R3  
FB  
VSET/  
MODE  
VPG  
PG  
R4  
133 k  
AGND PGND  
8-4. Fixed Output Voltage Application Circuit  
After the start-up period (tStart-up), a different operation mode can be selected. When VSET/MODE is set to high,  
the device is in forced PWM mode. Otherwise, the device is in power save mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPSM8286xA is a synchronous step-down converter power module family. The following section discusses  
the selection of the external components to complete the power supply design. The required power inductor is  
integrated inside the TPSM8286xA. The integrated shielded inductor has a value of 0.22 µH with a ±20%  
tolerance. The TPSM82864A and TPSM82866A are pin-to-pin and BOM-to-BOM compatible. The  
TPSM8286xAA0HRDMR devices give a higher efficiency than the TPSM8286xAA0SRDJR devices due to their  
increased height. For a given package height (RDM or RDJ), the 4A and 6A version give the same efficiency and  
performance and are different only in their rated output current.  
9.2 Typical Application  
VIN  
VOUT  
2.4 V to 5.5 V  
1.2 V  
VIN  
EN  
VOUT  
VOS  
C2  
C1  
22 µF  
2 × 22 µF or  
1 × 47 µF  
R3  
R1  
R2  
FB  
VPG  
PG  
VSET/  
MODE  
AGND PGND  
9-1. Typical Application  
9.2.1 Design Requirements  
For this design example, use 9-1 as the input parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
2.4 V to 5.5 V  
1.2 V  
Output voltage  
Maximum output current  
6 A  
9-2 lists the components used for the example.  
9-2. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
Murata  
C1  
22 µF, Ceramic capacitor, 6.3 V, X7R, size 0805, GRM21BZ70J226ME44  
47 µF, Ceramic capacitor, 6.3 V, X6S, size 0805, JMK212BC6476MG-T  
C2  
R1  
R2  
R3  
Taiyo Yuden  
Depending on the output voltage, Chip resistor, 1/16 W, 1%  
100 kΩ, Chip resistor, 1/16 W, 1%  
Std  
Std  
Std  
100 kΩ, Chip resistor, 1/16 W, 1%  
(1) See the Third-party Products disclaimer.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
 
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Setting The Output Voltage  
With the VSET/MODE pin set high or low, an adjustable output voltage is set by an external resistor divider  
according to 方程5:  
«
VOUT  
VFB  
V
OUT  
R1= R2ì  
-1 = R2ì  
-1  
÷
÷
«
0.6V  
(5)  
To keep the feedback (FB) net robust from noise, set R2 equal to or lower than 100 kΩ to have at least 6 µA of  
current in the voltage divider. Lower values of FB resistors achieve better noise immunity but lower light-load  
efficiency, as explained in the Design Considerations for a Resistive Feedback Divider in a DC/DC Converter  
Technical Brief.  
When a fixed output voltage is selected, connect the FB pin directly to the output. R1 and R2 are not needed, as  
V
OUT is set through a resistor on the VSET/MODE pin. Select the recommended resistor value from the list in 表  
8-2.  
9.2.2.2 Input and Output Capacitor Selection  
For the best output and input voltage filtering, low-ESR ceramic capacitors are required. The input capacitor  
minimizes input voltage ripple, suppresses input voltage spikes, and provides a stable system rail for the device.  
The input capacitor must be placed between VIN and PGND as close as possible to those pins. For most  
applications, 22 μF is sufficient, though a larger value reduces input current ripple. The input capacitor plays an  
important role in the EMI performance of the system as explained in the Simplify Low EMI Design With Power  
Modules White Paper.  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. The capacitor  
value can range from 2 × 22 µF up to 150 µF. The recommended typical output capacitors are 2 × 22 µF or 1 ×  
47 µF with an X5R or better dielectric. Values over 150 µF can degrade the loop stability of the converter.  
Ceramic capacitors have a DC-Bias effect, which has a strong influence on the final effective capacitance.  
Choose the right capacitor carefully in combination with considering its package size and voltage rating. Make  
sure that the effective input capacitance is at least 10 µF and the effective output capacitance is at least 22 µF.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM82864A TPSM82866A  
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.3 Application Curves  
VIN = 5.0 V, VOUT = 1.2 V, TA = 25°C, BOM = 9-2, unless otherwise noted. Solid lines show the FPWM mode and dashed  
lines show PSM.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
100u  
1m  
10m  
100m  
1
6
6
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6
6
Output Current (A)  
Output Current (A)  
TPSM8286xAA0SRDJ  
PSM and FPWM  
TPSM8286xAA0SRDJ  
FPWM  
9-2. Efficiency VIN = 5.0 V and TA = 25°C  
9-3. Efficiency VIN = 5.0 V and TA = 85°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
55  
50  
45  
40  
55  
50  
45  
40  
100u  
1m  
10m  
100m  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (A)  
Output Current (A)  
TPSM8286xAA0SRDJ  
PSM and FPWM  
TPSM8286xAA0SRDJ  
FPWM  
9-4. Efficiency VIN = 3.3 V and TA = 25°C  
9-5. Efficiency VIN = 3.3 V and TA = 85°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
55  
VOUT = 0.6V  
VOUT = 0.6V  
50  
45  
40  
50  
45  
40  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
100u  
1m  
10m  
100m  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Current (A)  
Output Current (A)  
TPSM8286xAA0SRDJ  
PSM and FPWM  
TPSM8286xAA0SRDJ  
FPWM  
9-6. Efficiency VIN = 2.8 V and TA = 25°C  
9-7. Efficiency VIN = 2.8 V and TA = 85°C  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
40  
100u  
1m  
10m  
100m  
1
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
Output Current (A)  
TPSM8286xAA0HRDM  
PSM and FPWM  
TPSM8286xAA0HRDM  
FPWM  
9-8. Efficiency VIN = 5.0 V and TA = 25°C  
9-9. Efficiency VIN = 5.0 V and TA = 85°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
55  
50  
45  
40  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
55  
50  
45  
40  
100u  
1m  
10m  
100m  
1
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
Output Current (A)  
TPSM8286xAA0HRDM  
FPWM  
TPSM8286xAA0HRDM  
PSM and FPWM  
9-11. Efficiency VIN = 3.3 V and TA = 85°C  
9-10. Efficiency VIN = 3.3 V and TA = 25°C  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
55  
VOUT = 0.6V  
VOUT = 0.6V  
50  
45  
40  
50  
45  
40  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
100u  
1m  
10m  
100m  
1
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Output Current (A)  
Output Current (A)  
TPSM8286xAA0HRDM  
PSM and FPWM  
TPSM8286xAA0HRDM  
FPWM  
9-12. Efficiency VIN = 2.8 V and TA = 25°C  
9-13. Efficiency VIN = 2.8 V and TA = 85°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM82864A TPSM82866A  
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
2
2
1
VOUT = 0.6V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
1
0
0
-1  
-1  
10u  
100u  
1m  
10m  
100m  
1
6
10u  
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
Output Current (A)  
TA = 25°C  
TA = 25°C  
9-14. Load Regulation VIN = 5.0 V and PSM  
9-15. Load Regulation VIN = 5.0 V and FPWM  
2
2
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
1
0
1
0
-1  
-1  
10u  
100u  
1m  
10m  
100m  
1
6
10u  
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
Output Current (A)  
TA = 25°C  
TA = 25°C  
9-16. Load Regulation VIN = 3.3 V and PSM  
9-17. Load Regulation VIN = 3.3 V and FPWM  
2
2
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
1
0
1
0
-1  
-1  
10u  
100u  
1m  
10m  
100m  
1
6
10u  
100u  
1m  
10m  
100m  
1
6
Output Current (A)  
Output Current (A)  
TA = 25°C  
TA = 25°C  
9-18. Load Regulation VIN = 2.8 V and PSM  
9-19. Load Regulation VIN = 2.8 V and FPWM  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
4
3
4
3
2
2
1
0.7  
0.5  
1
0.7  
0.5  
0.3  
0.2  
0.3  
0.2  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
0.1  
0.07  
0.05  
0.1  
0.07  
0.05  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
0.03  
0.03  
0.02  
10m  
0.02  
10m  
100m  
Output Current (A)  
1
6
100m  
Output Current (A)  
1
6
PSM and FPWM  
TA = 25°C  
PSM and FPWM  
TA = 25°C  
9-20. Switching Frequency VIN = 5.0 V  
9-21. Switching Frequency VIN = 3.3 V  
VIN  
VIN  
VOUT  
VOUT  
VSW  
VSW  
VIN = 5.0 V  
VOUT = 1.2 V  
TA = 25°C  
VIN = 5.0 V  
VOUT = 1.2 V  
TA = 25°C  
9-22. FPWM Operation IOUT = 6 A  
9-23. PSM Operation IOUT = 0.1 A  
VOUT  
VOUT  
IOUT  
IOUT  
VIN = 5.0 V  
VOUT = 1.2 V  
TA = 25°C  
VIN = 5.0 V  
VOUT = 1.2 V  
TA = 25°C  
9-24. Load Transient FPWM IOUT = 0 A 6 A  
9-25. Load Transient PSM IOUT = 0 A 6 A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM82864A TPSM82866A  
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
EN  
PG  
EN  
PG  
VOUT  
VOUT  
VSET / MODE  
VSET / MODE  
IOUT = 6.0 A  
IOUT = 0 A  
RVSET = 56.2 kΩ  
RVSET = 56.2 kΩ  
9-26. Start-Up into Full Load  
9-27. Start-Up with No Load  
PG  
VOUT  
VOUT  
IOUT  
IOUT  
RLOAD = 100 mΩ(during overload)  
VIN = 5.0 V  
VOUT = 1.2 V  
TA = 25°C  
9-29. HICCUP Short-Circuit Protection  
9-28. Load Sweep IOUT = 20 mA 6 A  
7
7
VOUT = 0.6V  
VOUT = 0.6V  
6.5  
6.5  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
6
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1.5  
1
1
75  
80  
85  
90  
95  
100 105 110 115 120  
75  
80  
85  
90  
95  
100 105 110 115 120  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
R
θJA = 25.4°C/W  
TJmax = 125°C  
R
θJA = 25.4°C/W TJmax = 125°C  
9-30. Safe Operating Area VIN = 5.0-V  
9-31. Safe Operating Area VIN = 3.3-V  
TPSM82866AA0HRDMR  
TPSM82866AA0HRDMR  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
7
6.5  
6
7
6.5  
6
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1.5  
1
1
75  
80  
85  
90  
95  
100 105 110 115 120  
75  
80  
85  
90  
95  
100 105 110 115 120  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
R
θJA = 25.4°C/W  
TJmax = 125°C  
R
θJA = 25.4°C/W  
TJmax = 125°C  
9-32. Safe Operating Area VIN = 5.0-V  
9-33. Safe Operating Area VIN = 3.3-V  
TPSM82866AA0SRDJR  
TPSM82866AA0SRDJR  
9.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. The average input  
current of the TPSM8286xA is calculated as:  
(6)  
Make sure that the input power supply has a sufficient current rating for the application. The power supply must  
avoid a fast ramp down. The falling ramp speed must be slower than 10 mV/μs if the input voltage drops below  
VUVLO  
.
9.4 Layout  
9.4.1 Layout Guidelines  
A proper layout is critical for the operation of any switched mode power supply, especially at high switching  
frequencies. Therefore, the PCB layout of the TPSM8286xA demands careful attention to ensure best  
performance. A poor layout can lead to issues like the following:  
Bad line and load regulation  
Instability  
Increased EMI radiation  
Noise sensitivity  
Refer to the Five Steps to a Great PCB Layout for a Step-Down Converter Technical Brief for a detailed  
discussion of general best practices. The following are specific recommendations for the TPSM8286xA:  
Place the input capacitor as close as possible to the VIN and PGND pins of the device. This placement is the  
most critical component placement. Route the input capacitor directly to the VIN and PGND pins avoiding  
vias.  
Place the output capacitor close to the VOUT and PGND pins and route it directly avoiding vias.  
Place the FB resistors R1 and R2 close to the FB and AGND pins and place R4 close to the VSET/MODE pin  
to minimize noise pickup.  
The sense traces connected to the VOS pin is a signal trace. Take special care to avoid noise being induced.  
Keep the trace away from SW.  
To improve thermal performance, use GND vias under the exposed thermal pad. Directly connect the AGND  
and PGND pins to the exposed thermal pad with copper on the top PCB layer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
Refer to 9-34 for an example of component placement, routing, and thermal design.  
The recommended land pattern for the TPSM8286xA is shown at the end of this data sheet. For best  
manufacturing results, create the pads as solder mask defined (SMD) when some pins (such as VIN, VOUT,  
and PGND) are connected to large copper planes. Using SMD pads keeps each pad the same size and  
avoids solder pulling the device during reflow.  
9.4.2 Layout Example  
R1  
R2  
VOUT  
GND  
U1  
AGND  
PGND  
PGND  
VIN  
PGND  
PGND  
PGND  
PGND  
GND  
VIN  
EN  
SW  
VIN  
35 mm²  
Total Solution Size  
R4  
9-34. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.2.1 Thermal Considerations  
The TPSM8286xA power module temperature must be kept less than the maximum rating of 125°C. The  
following are three basic approaches for enhancing thermal performance:  
Improve the power dissipation capability of the PCB design.  
Improve the thermal coupling of the component to the PCB.  
Introduce airflow into the system.  
To estimate the approximate module temperature of the TPSM8286xA, apply the typical efficiency stated in this  
data sheet to the desired application condition to compute the power dissipation of the module. Then, calculate  
the module temperature rise by multiplying the power dissipation by its thermal resistance. Using this method to  
compute the maximum device temperature, the Safe Operating Area (SOA) graphs demonstrate the required  
derating in maximum output current at high ambient temperatures. For more details on how to use the thermal  
parameters in real applications, see the Thermal Characteristics of Linear and Logic Packages Using JEDEC  
PCB Designs Application Report and Semiconductor and IC Package Thermal Metrics Application Report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM82864A TPSM82866A  
TPSM82864A, TPSM82866A  
ZHCSMK6B SEPTEMBER 2021 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
Application Report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report  
Texas Instruments, Benefits of a Resistor-to-Digital Converter in Ultra-Low Power Supplies White Paper  
Texas Instruments, Design Considerations for a Resistive Feedback Divider in a DC/DC Converter Technical  
Brief  
Texas Instruments, Simplify Low EMI Design With Power Modules White Paper  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPSM82864A TPSM82866A  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSM82864AA0HRDMR  
TPSM82864AA0SRDJR  
TPSM82866AA0HRDMR  
TPSM82866AA0SRDJR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
B0QFN  
B0QFN  
B0QFN  
B0QFN  
RDM  
RDJ  
RDM  
RDJ  
23  
23  
23  
23  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TM864AA0H  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TM864AA0S  
TM866AA0H  
TM866AA0S  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Dec-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPSM82864AA0HRDMR B0QFN  
TPSM82864AA0SRDJR B0QFN  
TPSM82866AA0HRDMR B0QFN  
TPSM82866AA0SRDJR B0QFN  
RDM  
RDJ  
RDM  
RDJ  
23  
23  
23  
23  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
17.6  
17.6  
17.6  
17.6  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
2.0  
2.0  
2.0  
2.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPSM82864AA0HRDMR  
TPSM82864AA0SRDJR  
TPSM82866AA0HRDMR  
TPSM82866AA0SRDJR  
B0QFN  
B0QFN  
B0QFN  
B0QFN  
RDM  
RDJ  
RDM  
RDJ  
23  
23  
23  
23  
3000  
3000  
3000  
3000  
336.0  
336.0  
336.0  
336.0  
336.0  
336.0  
336.0  
336.0  
48.0  
48.0  
48.0  
48.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
B0QFN - 1.85 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDM0023A  
3.6  
3.4  
B
A
4.1  
3.9  
PIN 1 INDEX AREA  
1.85  
1.75  
C
SEATING PLANE  
(0.10) TYP  
0.01  
0.00  
2X 2.5  
0.08  
C
(0.20) TYP  
1.6±0.1  
8X (0.125)  
8X (0.05)  
12  
7
2X (0.3)  
0.6  
0.4  
(0.125) TYP  
18X  
23  
1.8±0.1  
PKG  
2X (0.3)  
2X 3  
2X (0.45)  
26X (0.15)  
18X  
0.3  
0.2  
2X (0.9)  
0.1  
C
A
B
0.05  
C
1
18  
PIN 1 ID  
22  
0.55  
0.45  
8X  
SYMM  
22X 0.5  
0.1  
C
A B  
0.05  
C
4226712/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
B0QFN - 1.85 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDM0023A  
2X (2.5)  
SYMM  
26X (0.25)  
8X (0.5)  
22X (0.5)  
(0.55)  
22  
18  
1
18X (0.7)  
(0.35)  
2X (0.3)  
(0.95)  
PKG  
(3.65)  
2X (3)  
(1.8)  
23  
7
(R0.05) TYP  
(Ø0.2) TYP  
12  
(1.6)  
(3.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MAX  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226712/D 03/2023  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
B0QFN - 1.85 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDM0023A  
2X (2.5)  
26X (0.25)  
8X (0.5)  
SYMM  
22X (0.5)  
22  
18  
1
18X (0.7)  
PKG  
(3.65)  
2X (3)  
23  
(1.63)  
(0.3)  
7
(R0.05) TYP  
12  
(1.47)  
(3.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD:  
83% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
4226712/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
B0QFN - 1.45 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDJ0023A  
3.6  
3.4  
B
A
4.1  
3.9  
PIN 1 INDEX AREA  
1.45  
1.35  
C
SEATING PLANE  
0.01  
0.00  
0.08  
C
(0.10) TYP  
(0.20) TYP  
2X 2.5  
1.6±0.1  
8X (0.125)  
8X (0.05)  
12  
7
2X (0.3)  
0.6  
0.4  
(0.125) TYP  
18X  
23  
1.8±0.1  
PKG  
2X (0.3)  
2X 3  
2X (0.45)  
26X (0.15)  
18X  
0.3  
0.2  
2X (0.9)  
0.1  
C
A
B
0.05  
C
1
18  
PIN 1 ID  
22  
0.55  
0.45  
8X  
SYMM  
22X 0.5  
0.1  
C
A B  
0.05  
C
4226407/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
B0QFN - 1.45 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDJ0023A  
2X (2.5)  
SYMM  
26X (0.25)  
8X (0.5)  
22X (0.5)  
(0.55)  
22  
18  
1
18X (0.7)  
(0.35)  
2X (0.3)  
(0.95)  
PKG  
(3.65)  
2X (3)  
(1.8)  
23  
7
(R0.05) TYP  
(Ø0.2) TYP  
12  
(1.6)  
(3.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MAX  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226407/D 03/2023  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
B0QFN - 1.45 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RDJ0023A  
2X (2.5)  
26X (0.25)  
8X (0.5)  
SYMM  
22X (0.5)  
22  
18  
1
18X (0.7)  
PKG  
(3.65)  
2X (3)  
23  
(1.63)  
(0.3)  
7
(R0.05) TYP  
12  
(1.47)  
(3.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD:  
83% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
4226407/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM82864AA0HRDMR

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、4A 薄型降压电源模块 | RDM | 23 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82864AA0SRDJR

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、4A 薄型降压电源模块 | RDJ | 23 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82866A

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、6A 薄型降压电源模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82866AA0HRDMR

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、6A 薄型降压电源模块 | RDM | 23 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82866AA0SRDJR

具有集成电感器、采用 3.5mm x 4mm QFN 封装的 2.4V 至 5.5V 输入、6A 薄型降压电源模块 | RDJ | 23 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82901

具有集成电感器的 3V 至 17V、1A 高效率、低 IQ 同步降压转换器模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82901SISR

具有集成电感器的 3V 至 17V、1A 高效率、低 IQ 同步降压转换器模块 | SIS | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82902

具有集成电感器的 3V 至 17V、2A 高效率、低 IQ 同步降压转换器模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82902SISR

具有集成电感器的 3V 至 17V、2A 高效率、低 IQ 同步降压转换器模块 | SIS | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82903

具有集成电感器的 3V 至 17V、3A 高效率、低 IQ 同步降压转换器模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82903SISR

具有集成电感器的 3V 至 17V、3A 高效率、低 IQ 同步降压转换器模块 | SIS | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPSM82913

17-V VIN, 3-A low-noise and low-ripple buck module with integrated ferrite bead filter compensation

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI