TPSM82913 [TI]

17-V VIN, 3-A low-noise and low-ripple buck module with integrated ferrite bead filter compensation;
TPSM82913
型号: TPSM82913
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

17-V VIN, 3-A low-noise and low-ripple buck module with integrated ferrite bead filter compensation

文件: 总38页 (文件大小:4533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
TPSM8291x 具有集成式铁氧体磁珠滤波器补偿3V 17V2A/3A 低噪声和低  
纹波降压电源模块  
1 特性  
3 说明  
• 低输出噪< 20µVRMS  
TPSM8291x 器件是一系列高效、低噪声和低纹波电流  
模式同步降压电源模块。这些器件非常适合通常使用  
LDO 现后置稳压的噪声敏感型应用如高速  
ADC、时钟和抖动清除器、串行器、解串器和雷达应  
用。  
100Hz 100kHz)  
• 采用铁氧体磁珠后低输出电压纹< 10µVRMS  
• 大65dB PSRR100kHz)  
2.2MHz 1MHz 定频峰值电流模式控制  
• 可与外部时钟同步可选)  
• 集成环路补偿支持铁氧体磁珠适用于具30dB  
衰减的二L-C 滤波器可选)  
• 展频调制可选)  
3.0V 17V 输入电压范围  
0.8V 5.5V 输出电压范围  
57mΩ/20mΩRDSon  
这些器件在 2.2MHz 1MHz 的固定开关频率下工  
并可与外部时钟同步。  
为了进一步减小输出电压纹波器件集成了环路补偿,  
可与可选的第二级铁氧体磁珠 L-C 滤波器一起工作。  
该功能可将输出电压纹波降10µVRMS 以下。  
通过使用 NR/SS 引脚上的集成电容器对内部电压基准  
进行滤波来实现类似于低噪声 LDO 的低频噪声水平。  
可以在模块中添加一个外部电容器以进行额外的滤波。  
• 输出电压精度±1%  
• 精密使能输入可实现  
– 用户定义的欠压锁定  
– 准确排序  
• 可调节软启动  
• 电源正常状态输出  
• 输出放电可选)  
-40°C 125°C 的结温范围  
可选展频调制方案扩展了更宽范围内的直流/直流开关  
频率从而降低了混合毛刺。  
器件信息  
封装尺寸标称  
)  
封装(1)  
器件名称  
输出电流  
TPSM82912(2)  
2A  
-ET 版本55°C 125°C  
• 使TPSM8291x 并借WEBENCH® Power  
Designer 创建定制设计  
RDU  
QFN,  
28)  
4.50 mm × 5.50  
mm × 1.80 mm  
TPSM82913、  
TPSM82913E  
3A  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布。  
电信基础设施  
测试和测量  
航天和国防雷达、航空电子设备)  
医疗  
10 nH  
10  
Vin  
12 V  
5
Vout  
3.3 V / 3 A  
VIN  
OUT  
2
1
0.5  
3x  
22 µF  
CIN  
10 µF  
EN/SYNC  
S-CONF  
NR/SS  
22 µF  
15.4 k  
4.87 k  
FB  
0.2  
0.1  
0.05  
PG  
PGND  
0.02  
0.01  
CNRSS = open, 19.6 VRMS  
CNRSS = 220 nF, 17 VRMS  
CNRSS = 470 nF, 16.6 VRMS  
CNRSS = 2.2 F, 16.3 VRMS  
0.005  
0.002  
0.001  
典型应用  
0.0005  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
Frequency (Hz)  
输出噪声与频率间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGJ4  
 
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Applications.................................................. 21  
8.3 Power Supply Recommendations.............................28  
8.4 Layout....................................................................... 28  
9 Device and Documentation Support............................31  
9.1 Device Support......................................................... 31  
9.2 Documentation Support............................................ 31  
9.3 接收文档更新通知..................................................... 31  
9.4 支持资源....................................................................31  
9.5 Trademarks...............................................................31  
9.6 静电放电警告............................................................ 32  
9.7 术语表....................................................................... 32  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................16  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2022) to Revision B (May 2023)  
Page  
• 从器件信息 表中删除了 TPSM82912-ET............................................................................................................1  
• 在器件信息 表中TPSM82913-ET 更新TPSM82913E 并删除了预发布状态.............................................. 1  
Added -ET temp range in the Electrical Characteristics table............................................................................ 4  
Changes from Revision * (October 2022) to Revision A (December 2022)  
Page  
• 将数据表状态从“预告信息”更改为“混合量产”............................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
2
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. 28-Pin QFN RDU Package (Top View)  
5-1. Pin Functions  
PIN  
NAME  
VIN  
I/O  
DESCRIPTION  
NO.  
18  
I
Power supply input voltage pin  
Power ground connection  
1, 2, 3, 5,  
6, 7, 8, 9,  
16, 17, PGND  
25, 26,  
28  
10, 11,  
12, 13,  
VOUT  
14, 15,  
O
Output connection. Connect recommended output capacitance from VOUT to PGND.  
27  
4
SW  
PG  
NC Switch pin of the power stage. Do not connect, leave floating.  
Open-drain power-good output. This pin is pulled to GND when VOUT is below the power-good threshold. It requires a pull-up  
19  
O
resistor to output a logic high. It can be left open or tied to GND if not used.  
20  
21  
22  
23  
PSNS  
NR/SS  
FB  
I
Power sense ground. Connect directly to the ground plane.  
O
I
A capacitor connected to this pin sets the soft-start time and low frequency noise level of the device.  
Feedback pin of the device  
S-CONF  
O
Smart Configuration pin. This pin configures the operation modes of the device. See 7-1.  
Enable/Disable pin including threshold-comparator. Connect to logic low to disable the device. Pull high to enable the device.  
This pin has an internal pull-down resistor of typically 500 kΩwhen the device is disabled. Apply a clock to this pin to  
synchronize the device.  
24  
EN/SYNC  
I
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
2.5  
0.3  
0.3  
MAX  
18  
UNIT  
V
VIN, EN/SYNC, PG, S-CONF  
SW (DC)  
VIN + 0.3  
21  
V
Voltage(2)  
SW (AC, less than 10ns)(3)  
VOUT, FB, NR/SS  
PSNS  
V
6
V
0.3  
V
Sink Current  
PG  
10  
mA  
°C  
°C  
TJ  
Junction temperature, -ET versions only  
Storage temperature  
125  
125  
55  
65  
Tstg  
Mechanical  
shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
1500  
20  
G
G
Mechanical  
vibration  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal  
(3) While switching  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
3.0  
0.8  
5
NOM  
MAX  
17  
UNIT  
VIN  
VOUT  
CIN  
COUT  
Lf  
Input voltage  
V
V
Output voltage  
5.5  
Effective input capacitance  
Effective output capacitance  
Effective filter inductance  
Effective filter capacitance  
10  
47  
10  
40  
µF  
µF  
nH  
µF  
µF  
A
40  
0
80  
50  
Cf  
20  
40  
0
160  
200  
3
COUT + Cf Effective total output capacitance, including first and second L-C filter  
IOUT  
IOUT  
Output current for TPSM82913  
Output current for TPSM82912  
Junction temperature  
0
2
A
(1)  
TJ  
TJ  
125  
125  
°C  
°C  
40  
55  
(1)  
Junction temperature, -ET versions only  
(1) Operating lifetime is derated at junction temperatures above 125°C.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
4
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
 
 
 
 
 
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.4 Thermal Information  
TPSM8291x  
THERMAL METRIC(1)  
RDU 30-pin QFN  
JEDEC 51-7 PCB TPSM8291xEVM-213  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
31.3  
22.4  
7.2  
30.2  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
n/a (2)  
n/a (2)  
-3.0 (3)  
9.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
-4.9 (3)  
7.1  
YJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM  
(3) This is a negative value because the case temperature is higher than the die junction temperature due to the integrated inductor  
having the highest power dissipation in the module.  
6.5 Electrical Characteristics  
Over recommended input voltage range, TJ = -40 to 125 , (TJ = -55 to 125 for -ET parts). Typical values are at Vin  
= 12 V andTJ = 25 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN = High, no load, device switching, fsw  
= 1 MHz  
IQ  
Quiescent current  
5
mA  
ISD  
Shutdown current  
EN = GND  
VIN rising  
VIN rising  
0.3  
70  
3.0  
µA  
V
VUVLO  
VUVLO  
VHYS  
Under voltage lockout  
2.85  
2.92  
Under voltage lockout  
3.04  
V
Under voltage lockout hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
200  
170  
20  
mV  
°C  
°C  
TJ rising  
TJ falling  
TJSD  
CONTROL and INTERFACE  
High-level input-threshold voltage at EN/  
SYNC  
VH_EN  
0.97  
0.87  
1.1  
1.01  
0.9  
1.04  
0.93  
V
V
V
V
Low-level input-threshold voltage at EN/  
SYNC  
VL_EN  
High-level input-threshold clock signal on  
EN/SYNC  
VH_SYNC  
VL_SYNC  
EN/SYNC = clock  
EN/SYNC = clock  
Low-level input-threshold clock signal on  
EN/SYNC  
0.4  
IEN,LKG  
RPD  
Input leakage current into EN/SYNC  
Pull-down resistor on EN/SYNC  
EN/SYNC = GND or VIN  
EN/SYNC = Low  
5
160  
nA  
330  
500  
kΩ  
Time from EN/SYNC high to device starts  
switching, RS-CONF = 80.6 kΩ  
tdelay  
Enable delay time  
1
ms  
µA  
%
INR/SS  
NR/SS source current  
67.5  
-4  
75  
82.5  
+4  
RS-CONF tolerance for all settings  
according to 7-1  
RS-CONF S-CONF resistor step range accuracy  
Maximum capacitance connected to S-  
CONF pin  
CS-CONF  
30  
pF  
VPG  
Power good threshold  
VFB rising, referenced to VFB nominal  
VFB falling, referenced to VFB nominal  
ISINK = 1 mA  
93  
88  
95  
90  
98  
93  
%
%
V
VPG  
Power good threshold  
VPG,OL  
IPG,LKG  
Low-level output voltage at PG pin  
Input leakage current into PG pin  
0.4  
500  
VPG = 5 V  
5
nA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Over recommended input voltage range, TJ = -40 to 125 , (TJ = -55 to 125 for -ET parts). Typical values are at Vin  
= 12 V andTJ = 25 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tPG,DLY  
OUTPUT  
ton  
Power good delay time  
VFB falling  
8
µs  
Minimum on-time  
35  
50  
0.8  
1
70  
60  
ns  
ns  
V
VIN 5 V, Iout = 1 A  
VIN 5 V, Iout = 1 A  
40TJ 125℃  
VFB = 0.8 V  
toff  
Minimum off-time  
VFB  
Feedback regulation accuracy  
Input leakage current into FB  
0.792  
0.808  
70  
IFB,LKG  
nA  
VIN = 12 V, 1.2 VOUT, 1 A, CNR/SS = 220  
nF, fsw = 1 MHz, CFF = open, COUT = 3 x  
22 µF, f 100 kHz  
PSRR  
VNRMS  
VNRMS  
Vopp  
Power supply rejection ratio  
Output voltage RMS noise  
Output voltage RMS noise  
Output ripple voltage at fSW  
Output ripple voltage at fSW  
65  
27.4  
13.3  
9
dB  
VIN = 12 V, BW = 100 Hz to 100 kHz, CNR/  
SS = 220 nF, fSW = 1 MHz, VOUT = 1.2 V,  
CFF = open, COUT = 3 x 22 µF  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
VIN = 5 V, BW = 100 Hz to 100 kHz, CNR/  
SS = 220 nF, fSW = 2.2 MHz, VOUT = 1.2 V,  
CFF = open, COUT = 3 x 22 µF  
VIN = 12 V, fSW = 1 MHz, VOUT = 1.2 V,  
COUT = 3 x 22 µF, Lf = 10 nH, Cf = 2 x 22  
µF  
VIN = 5 V, fSW = 2.2 MHz, VOUT = 1.2V,  
COUT = 3 x 22 µF, Lf = 10 nH, Cf = 2 x 22  
uF  
Vopp  
< 3  
EN/SYNC = GND, VOUT = 1.2 V, VIN 5  
V. See 6.6 for plot.  
RDIS  
Output discharge resistance  
Output discharge resistance  
7
EN/SYNC = GND, VOUT = 5 V, VIN 5 V.  
See 6.6 for plot.  
RDIS  
32  
fSW  
Switching frequency  
2.2-MHz setting  
2.2-MHz setting  
1-MHz setting  
1-MHz setting  
1.98  
1.9  
2.2  
2.2  
1
2.42  
2.42  
1.18  
1.2  
MHz  
MHz  
MHz  
MHz  
%
fSW  
Synchronization range  
Switching frequency  
fSW  
0.9  
fSW  
Synchronization range  
Synchronization duty cycle  
0.86  
45  
1
DSYNC  
55  
Phase delay from EN/SYNC rising edge  
to SW rising edge  
tsync_delay Synchronization phase delay  
90  
ns  
ISWpeak  
ISWpeak  
Peak switch current limit  
Peak switch current limit  
TPSM82912(1)  
TPSM82913  
TPSM82912(1)  
TPSM82913  
2.9  
3.7  
3.5  
4.3  
4.0  
5.1  
A
A
ISWvalley Valley switch current limit  
ISWvalley Valley switch current limit  
Inegvalley Negative valley current limit  
3.4  
A
4.2  
A
-1.39  
57  
-0.96  
95  
A
High-side FET on-resistance  
RDS(ON)  
VIN 5 V  
VIN 5 V  
mΩ  
mΩ  
Low-side FET on-resistance  
20  
39  
(1) Preview information  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
6
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Spread Spectrum Modulation  
OFF  
Random  
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
BW = 10 kHz  
2.2 μH, 1 MHz  
1 s/div  
12 V to 1.2 V, 1 A  
First L-C Only  
2.2 μH, 1 MHz  
12 V to 1.2 V, 1 A  
First L-C Only  
6-1. VOUT Ripple After the First L-C Filter  
6-2. VOUT Ripple FFT After the First L-C Filter  
20  
Spread Spectrum Modulation  
18  
16  
14  
12  
10  
8
OFF  
Random  
6
4
2
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
BW = 10 kHz  
2.2 μH, 1 MHz  
1 s/div  
12 V to 1.2 V, 1 A  
First and second L-C  
2.2 μH, 1 MHz  
12 V to 1.2 V, 1 A  
First and second L-C  
6-3. VOUT Ripple After the Second L-C Filter  
6-4. VOUT Ripple FFT After the Second L-C Filter  
650  
Spread Spectrum Modulation  
600  
OFF  
Random  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
BW = 10 kHz  
2.2 μH, 1 MHz  
1 s/div  
12 V to 1.8 V, 1 A  
First L-C Only  
2.2 μH, 1 MHz  
12 V to 1.8 V, 1 A  
First L-C Only  
6-5. VOUT Ripple After the First L-C Filter  
6-6. VOUT Ripple FFT After the First L-C Filter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
20  
18  
16  
14  
12  
10  
8
Spread Spectrum Modulation  
OFF  
Random  
6
4
2
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
BW = 10 kHz  
2.2 μH, 1 MHz  
1 s/div  
12 V to 1.8 V, 1 A  
First and second L-C  
2.2 μH, 1 MHz  
12 V to 1.8 V, 1 A  
First and second L-C  
6-7. VOUT Ripple After the Second L-C Filter  
6-8. VOUT Ripple FFT After the Second L-C Filter  
400  
Spread Spectrum Modulation  
360  
OFF  
Random  
320  
280  
240  
200  
160  
120  
80  
40  
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
2.2 μH, 2.2 MHz  
6-9. VOUT Ripple After the First L-C Filter  
BW = 10 kHz  
12 V to 3.3 V, 1 A  
First L-C Only  
12 V to 3.3 V, 1 A  
First L-C Only  
2.2 μH, 2.2 MHz  
6-10. VOUT Ripple FFT After the First L-C Filter  
20  
Spread Spectrum Modulation  
18  
OFF  
Random  
16  
14  
12  
10  
8
6
4
2
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
BW = 10 kHz  
12 V to 3.3 V, 1 A  
First and second L-C  
2.2 μH, 2.2 MHz  
12 V to 3.3 V, 1 A  
First and second L-C  
2.2 μH, 2.2 MHz  
6-11. VOUT Ripple After the Second L-C Filter  
6-12. VOUT Ripple FFT After the Second L-C Filter  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
200  
180  
160  
140  
120  
100  
80  
Spread Spectrum Modulation  
OFF  
Random  
60  
40  
20  
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
BW = 10 kHz  
5 V to 1.2 V, 1 A  
First L-C Only  
2.2 μH, 2.2 MHz  
5 V to 1.2 V, 1 A  
First L-C Only  
2.2 μH, 2.2 MHz  
6-13. VOUT Ripple After the First L-C Filter  
6-14. VOUT Ripple FFT After the First L-C Filter  
20  
Spread Spectrum Modulation  
18  
OFF  
Random  
16  
14  
12  
10  
8
6
4
2
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
2.2 μH, 2.2 MHz  
6-15. VOUT Ripple after the Second L-C Filter  
BW = 10 kHz  
5 V to 1.2 V, 1 A  
First and second L-C  
5 V to 1.2 V, 1 A  
First and second L-C  
2.2 μH, 2.2 MHz  
6-16. VOUT Ripple FFT After the Second L-C Filter  
200  
Spread Spectrum Modulation  
180  
OFF  
Random  
160  
140  
120  
100  
80  
60  
40  
20  
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
2.2 μH, 2.2 MHz  
6-17. VOUT Ripple After the First L-C Filter  
BW = 10 kHz  
5 V to 1.8 V, 1 A  
First L-C Only  
5 V to 1.8 V, 1 A  
First L-C Only  
2.2 μH, 2.2 MHz  
6-18. VOUT Ripple FFT After the First L-C Filter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
20  
18  
16  
14  
12  
10  
8
Spread Spectrum Modulation  
OFF  
Random  
6
4
2
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
BW = 10 kHz  
5 V to 1.8 V, 1 A  
First and second L-C  
2.2 μH, 2.2 MHz  
5 V to 1.8 V, 1 A  
First and second L-C  
2.2 μH, 2.2 MHz  
6-19. VOUT Ripple After the Second L-C Filter  
6-20. VOUT Ripple FFT After the Second L-C Filter  
200  
Spread Spectrum Modulation  
180  
OFF  
Random  
160  
140  
120  
100  
80  
60  
40  
20  
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
2.2 μH, 2.2 MHz  
6-21. VOUT Ripple After the First L-C Filter  
BW = 10 kHz  
5 V to 3.3 V, 1 A  
First L-C Only  
5 V to 3.3 V, 1 A  
First L-C Only  
2.2 μH, 2.2 MHz  
6-22. VOUT Ripple FFT After the First L-C Filter  
20  
Spread Spectrum Modulation  
18  
OFF  
Random  
16  
14  
12  
10  
8
6
4
2
0
0x100  
2x107  
4x107  
6x107  
8x107  
1x108  
Frequency (Hz)  
1 s/div  
2.2 μH, 2.2 MHz  
BW = 10 kHz  
5 V to 3.3 V, 1 A  
First and second L-C  
5 V to 3.3 V, 1 A  
First and second L-C  
2.2 μH, 2.2 MHz  
6-23. VOUT Ripple After the Second L-C Filter  
6-24. VOUT Ripple FFT After the Second L-C Filter  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
6 V to 1.2 V, 1 A  
BW = 50 Hz  
12 V to 1.2 V, 2 A  
BW = 10 kHz  
2.2 μH, 1 MHz  
2.2 μH, 1 MHz  
S-CONF = OFF, Triangular, Random  
S-CONF = OFF, Triangular, Random  
6-25. Spread Spectrum FFT - 50-Hz BW  
6-26. Spread Spectrum FFT - 10-kH BW  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
CNRSS = open, 25.8 VRMS  
CNRSS = 220 nF, 27.4 VRMS  
CNRSS = 470 nF, 27.3 VRMS  
CNRSS = 2.2 F, 25 VRMS  
CNRSS = open, 27.5 VRMS  
CNRSS = 220 nF, 25.7 VRMS  
CNRSS = 470 nF, 25.9 VRMS  
CNRSS = 2.2 F, 25.9 VRMS  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
Frequency (Hz)  
Frequency (Hz)  
12 V to 1.2 V  
1 MHz  
After ferrite bead filter  
12 V to 1.8 V  
1 MHz  
After ferrite bead filter  
NR/SS = Open, 220 nF, 470 nF, 2.2 μF, BW = 100 Hz to 100 kHz  
6-27. Output Noise Density vs Frequency  
NR/SS = Open, 220 nF, 470 nF, 2.2 μF, BW = 100 Hz to 100 kHz  
6-28. Output Noise Density vs Frequency  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
CNRSS = open, 13.8 VRMS  
CNRSS = 220 nF, 13.3 VRMS  
CNRSS = 470 nF, 13.2 VRMS  
CNRSS = 2.2 F, 13.2 VRMS  
0.005  
CNRSS = open, 19.6 VRMS  
CNRSS = 220 nF, 17 VRMS  
CNRSS = 470 nF, 16.6 VRMS  
CNRSS = 2.2 F, 16.3 VRMS  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
Frequency (Hz)  
Frequency (Hz)  
5 V to 1.2 V  
2.2 MHz  
After ferrite bead filter  
12 V to 3.3 V  
2.2 MHz  
After ferrite bead filter  
NR/SS = Open, 220 nF, 470 nF, 2.2 μF, BW = 100 Hz to 100 kHz  
6-30. Output Noise Density vs Frequency  
NR/SS = Open, 220 nF, 470 nF, 2.2 μF, BW = 100 Hz to 100 kHz  
6-29. Output Noise Density vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
CNRSS = open, 15.3 VRMS  
CNRSS = 220 nF, 14.3 VRMS  
CNRSS = 470 nF, 14.3 VRMS  
CNRSS = 2.2 F, 14.2 VRMS  
CNRSS = open, 19.1 VRMS  
CNRSS = 220 nF, 16.6 VRMS  
CNRSS = 470 nF, 16.1 VRMS  
CNRSS = 2.2 F, 15.9 VRMS  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
1x101  
1x102  
1x103  
1x104  
1x105  
1x1063x106  
Frequency (Hz)  
Frequency (Hz)  
5 V to 1.8 V  
2.2 MHz  
After ferrite bead filter  
5 V to 3.3 V  
2.2 MHz  
After ferrite bead filter  
NR/SS = Open, 220 nF, 470 nF, 2.2 μF, BW = 100 Hz to 100 kHz  
6-31. Output Noise Density vs Frequency  
NR/SS = Open, 220 nF, 470 nF, 2.2 μF, BW = 100 Hz to 100 kHz  
6-32. Output Noise Density vs Frequency  
120  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
12Vin 1.2Vout 1A  
12Vin 1.2Vout 2A  
12Vin 1.2Vout 3A  
12Vin 1.8Vout 1A  
12Vin 1.8Vout 2A  
12Vin 1.8Vout 3A  
1x101  
1x102  
1x103  
1x104  
1x105  
1x101  
1x102  
1x103  
1x104  
1x105  
Frequency (Hz)  
Frequency (Hz)  
12 V to 1.2 V  
1 A, 2 A, 3 A  
12 V to 1.8 V  
1 A, 2 A, 3 A  
2.2 μH, 1 MHz  
2.2 μH, 1 MHz  
After ferrite bead filter  
After ferrite bead filter  
6-33. PSRR vs Frequency  
6-34. PSRR vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
12  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
12Vin 3.3Vout 1A  
12Vin 3.3Vout 2A  
30  
12Vin 3.3Vout 3A  
20  
1x101  
1x102  
1x103  
1x104  
1x105  
Frequency (Hz)  
VIN = 5 V  
12 V to 3.3 V  
1 A, 2 A, 3 A  
2.2 μH, 2.2 MHz  
After ferrite bead  
filter  
6-36. High-Side RDS(ON) vs Junction Temperature  
6-35. PSRR vs Frequency  
1 MHz, 2 A  
VIN = 5 V  
6-38. FB Pin Voltage Error vs Input Voltage  
6-37. Low-Side RDS(ON) vs Junction Temperature  
5 VIN to 0.8 VOUT  
1 MHz  
12 VIN  
1 MHz  
6-39. Output Voltage Error vs Load  
6-40. Oscillator Frequency vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
VIN = 12 V, VOUT = 1.2 V, TA = 25°C, BOM = 8-1, (unless otherwise noted)  
12 VIN  
2.2 MHz  
VIN: 3 V, 5 V, 12 V  
6-41. Oscillator Frequency vs Temperature  
6-42. Shutdown Current vs Temperature  
VIN: 12 V  
25°C  
6-43. Output Discharge Resistance vs Output Voltage  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM8291x low-noise, low-ripple synchronous buck converter module is a fixed frequency current mode  
converter module. The converter module has a filtered internal reference to achieve a low-noise output similar to  
low-noise LDOs. The converter module achieves lower output voltage ripple by using a switching frequency of  
either 2.2 MHz or 1 MHz and an integrated 2.2-μH inductor. The output voltage ripple can be further reduced by  
adding a small second stage L-C filter to the output. This can be a ferrite bead or a small inductor, followed by an  
output capacitor. Internal compensation maintains stability with an external filter inductor up to 50 nH. To avoid  
voltage drops across this second stage filter, the device regulates the output voltage after the filter. The  
TPSM8291x family supports an optional spread spectrum modulation. For example, when powering ADCs,  
spread spectrum modulation reduces the mixing spurs. Switching frequency, spread spectrum modulation, and  
output discharge are set using the S-CONF pin.  
7.2 Functional Block Diagram  
PG  
VIN  
High Side  
Current Sense  
+
VPG  
VFB  
t
Slope  
Compensation  
Undervoltage  
lockout  
+
EN/SYNC  
G
t
1.0V  
Thermal shutdown  
Clock  
Detector  
MUX  
MOSFET Driver  
Anti Shoot Through  
2.2 µH  
EN/SYNC  
Converter Control Logic  
VOUT  
1MHz/2.2MHz  
MODE  
MODE  
Spread Spectrum  
Modulation  
Low Side  
Current Sense  
PGND  
VIN  
Comparator  
FB  
2nd stage filter  
compensation  
t
GM  
Start-up readout  
ADC  
+
S-CONF  
Register  
Selection  
VIN  
MODE  
S-CONF  
GM Amplifier  
Iss  
Softstart  
Rf  
RDIS  
VREF  
0.8V  
Output voltage  
MODE  
discharge  
logic  
220 nF  
PSNS  
NR/SS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Smart Config (S-CONF)  
This S-CONF pin configures the device based on the resistor value. This pin is read after EN/SYNC goes high.  
The device configuration cannot be changed during operation. The S-CONF value is re-read if EN is pulled  
below 200 mV or if VIN falls below UVLO. 7-1 shows the configuration options of the following:  
Switching frequency  
Spread spectrum modulation  
Output discharge  
Synchronization  
7-1. S-CONF Device Configuration Modes  
SWITCHING  
FREQUENCY  
OUTPUT  
DISCHARGE  
S-CONF  
SPREAD SPECTRUM  
SYNCHRONIZATION  
VIN  
2.2 MHz  
1 MHz  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Discharge On  
ON  
No  
GND  
No  
2.2 MHz  
2.2MHz  
2.2 MHz  
1 MHz  
OFF  
1.9 MHz to 2.42 MHz  
4.87 kΩ  
6.04kΩ  
7.5 kΩ  
9.31 kΩ  
11.5kΩ  
14.3 kΩ  
Triangle  
Random  
OFF  
No  
No  
0.9 MHz to 1.2 MHz  
1 MHz  
Triangle  
Random  
No  
No  
1 MHz  
2.2 MHz  
1 MHz  
OFF  
OFF  
No  
18.2 kΩ  
22.1 kΩ  
27.4 kΩ  
34 kΩ  
ON  
No  
2.2 MHz  
2.2 MHz  
2.2 MHz  
1 MHz  
OFF  
ON  
1.9 MHz to 2.42 MHz  
Triangle  
Random  
OFF  
ON  
No  
ON  
No  
42.2 kΩ  
52.3 kΩ  
64.9kΩ  
80.6 kΩ  
ON  
0.9 MHz to 1.2 MHz  
1 MHz  
Triangle  
Random  
ON  
No  
No  
1 MHz  
ON  
7.3.2 Device Enable (EN/SYNC)  
The device is enabled by pulling the EN/SYNC pin high and has an accurate rising threshold voltage of typically  
1.01 V. After the device is enabled, the operation mode is set by the configuration of the S-CONF pin. This  
occurs during the device start-up delay time tdelay. After tdelay expires, the internal soft-start circuitry ramps up the  
output voltage over the soft-start time set by the CNR/SS capacitor. The start-up delay time tdelay varies depending  
on the selected S-CONF value. the time is shortest with smaller S-CONF resistors.  
The EN/SYNC pin has an active pulldown resistor RPD. This resistor prevents an uncontrolled start-up of the  
device, in case the EN/SYNC pin cannot be driven to a low level. The pulldown resistor is disconnected after  
start-up. With EN set to a low level, the device enters shutdown and the pulldown resistor is activated again.  
7.3.3 Device Synchronization (EN/SYNC)  
The EN/SYNC pin is also used for device synchronization. After a clock signal is applied to this pin, the device is  
enabled and reads the configuration of the S-CONF pin. The external clock frequency must be within the clock  
synchronization frequency range set by the S-CONF pin. When the clock signal changes from a clock to a static  
high, then the device switches from external clock to internal clock. To shutdown the device when using an  
external clock, EN/SYNC must go low for at least 10 µs.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
16  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
The clock signal can be a logic signal with a logic level as specified in the electrical table, and can be applied  
directly to the EN/SYNC pin. External logic, such as an AND gate, can be used to combine separate enable and  
clock inputs, as shown in 7-1.  
EN  
EN/SYNC  
CLK  
7-1. Synchronization with Separate Enable Signal (Optional)  
7.3.4 Spread Spectrum Modulation  
Using the S-CONF pin enables or disables spread spectrum modulation. DC/DC converters generate an output  
voltage ripple at the switching frequency. When powering ADCs or an analog front end (AFE), the switching  
frequency generates high frequency mixing spurs as well as a low frequency spur in the output frequency  
spectrum. Using the optional second stage L-C filter reduces the ripple of the converter and spurs by up to 30  
dB.  
The device has integrated two different spread spectrum modulation (SSM) schemes that are selected by the  
resistor connected to the S-CONF pin according to 7-1. It is possible to select random or triangle modulation  
to spread the switching frequency over a larger frequency range. The triangular SSM is modulated based on the  
switching frequency, and results in 1.9-kHz for 1-MHz switching frequency and 4.3-kHz for 2.2-MHz switching  
frequency. The modulation spread is ±10% of the device switching frequency. This SSM provides high  
attenuation when the receiver bandwidth is less than the modulation frequency, typically the case for systems  
using Fast Fourier Transforms (FFT) post processing as in high speed ADC applications. For applications  
sensitive to noise at the modulation frequency, random SSM is used. Using a random spread spectrum  
modulation also reduces the spurs in the output spectrum as shown in 6-2. The random SSM operates with  
the same frequency spread and modulation period as the triangular SSM. The randomized modulation uses a  
Fibonacci Linear-Feedback Shift Register (LFSR) so that every tone is generated once during the pseudo-  
random generation period. The frequency spreading is shown in 7-2.The attenuation using random or triangle  
SSM is shown in 6-26.  
fSW  
Unmodulated  
(single tone)  
Spectral envelope of  
triangular modulation  
(+/- 10% fSW  
)
Spectral envelope of  
random modulation  
(+/- 10% fSW  
)
fMOD  
Triangular  
(single tone)  
Increased noise floor  
with random modulation  
7-2. Spread Spectrum Modulation  
7.3.5 Output Discharge  
Output discharge is enabled or disabled, depending on the S-CONF setting. With output discharge enabled, the  
output voltage is pulled low by a discharge resistor RDIS of typically 7 Ω. The output discharge function is  
enabled during thermal shutdown, UVLO, or when EN/SYNC is pulled low.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.3.6 Undervoltage Lockout (UVLO)  
To avoid misoperation of the device at low input voltages, the device is enabled after the input voltage is above  
the undervoltage lockout threshold. The device is disabled after the input voltage falls below the undervoltage  
threshold.  
7.3.7 Power-Good Output  
The device has a power-good output. The PG pin goes high impedance once the FB pin voltage is above 95% of  
the nominal voltage, and is driven low after the voltage falls below typically 90% of the nominal voltage. 7-2  
shows the typical PG pin logic. The PG pin is an open-drain output and is specified to sink up to 10 mA. The  
power-good output requires a pullup resistor connecting to any voltage rail less than 18 V. The PG signal can be  
used for sequencing of multiple rails by connecting to the EN pin of other converters. If not used, the PG pin can  
be left floating or connected to GND. PG has a deglitch time of typically 8 μs before going low.  
7-2. Power Good Pin Logic  
PG LOGIC STATUS  
DEVICE STATE  
HIGH IMPEDANCE  
LOW  
VFB VPG  
Enabled (EN/SYNC = High)  
VFB < VPG after tPG  
Shutdown (EN/SYNC = Low)  
UVLO  
0.7 V < VIN < VUVLO  
TJ > TJSD  
Thermal Shutdown  
Power Supply Removal  
VIN < 0.7 V  
7.3.8 Noise Reduction and Soft-Start Capacitor (NR/SS)  
A capacitor connected to this pin reduces the low frequency noise of the converter and sets the soft-start time.  
The larger the capacitor, the lower the noise and the longer the start-up time of the converter. The module has  
an internal 220-nF capacitor connected to the NR/SS pin. If no external capacitor is connected to the NR/SS pin,  
the default start-up time is 2.35 ms, although longer start-up times and additional noise reduction can be  
achieved with additional capacitance connected to the NR/SS pin. The maximum NR/SS cap is 3.3 µF for a  
start-up time of 35 ms.During soft start with a light load, the device skips switching pulses as needed to not  
discharge the output voltage. The device can start into a pre-biased output voltage.  
The device achieves low noise by adding an R-C filter to the reference voltage, as shown in Functional Block  
Diagram. During start-up, the NR/SS capacitor is charged with a constant current of 75 µA (typical) to 0.8 V.  
Larger NR/SS capacitors provide for lower low frequency noise, as shown in 6-29.  
7.3.9 Current Limit and Short-Circuit Protection  
The device is protected against short circuits and overcurrent. The switch current limit prevents the device from  
high inductor current and from drawing excessive current from the input voltage rail. Excessive current can occur  
with a shorted, saturated inductor or a heavy load, shorted output circuit condition. If the inductor current reaches  
the threshold ISWpeak, the high-side MOSFET is turned off and the low-side MOSFET is turned on to ramp down  
the inductor current. The high-side MOSFET is turned on again only when the low-side current is below the low-  
side sourcing current limit ISWvalley  
.
Due to internal propagation delay, the actual current can exceed the static current limit, especially if the input  
voltage is high and very small inductances are used. The dynamic current limit is calculated as follows:  
V
L
Ipeak(typ) = ISWpeak  
+
ìtPD  
«
÷
L
(1)  
where  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
18  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
ISWpeak is the static current limit, specified in Electrical Characteristics  
L is the inductance (2.2 μH for the TPSM8291x)  
VL is the voltage across the inductor (VIN VOUT)  
tPD is the internal propagation delay, typically 50 ns  
The low-side MOSFET also contains a negative current limit to prevent excessive current from flowing back  
through the inductor to the input. This can happen during light load conditions or a pre-biased output condition. If  
the low-side sinking current limit is exceeded, the low-side MOSFET is turned off. In this scenario, both  
MOSFETs are off until the start of the next cycle.  
7.3.10 Thermal Shutdown  
The device goes into thermal shutdown after the junction temperature exceeds typically 170°C with a 20°C  
hysteresis.  
7.4 Device Functional Modes  
7.4.1 Fixed Frequency Pulse Width Modulation  
To minimize output voltage ripple, the device operates in fixed frequency PWM operation down to no load. The  
switching frequency of 1 MHz or 2.2 MHz is selected using the S-CONF pin.  
7.4.2 Low Duty Cycle Operation  
For high input voltages or low output voltages, the 70-ns minimum on-time limits the maximum input to output  
voltage difference and the switching frequency selected. When the minimum on-time is reached, the output  
voltage rises above the regulation point. Refer to 8-2 for detailed design recommendations.  
7.4.3 High Duty Cycle Operation (100% Duty Cycle)  
The device offers a low input-to-output voltage differential by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on. The minimum input voltage to maintain output voltage  
regulation, depending on the load current and the output voltage level, is calculated as:  
V
IN(min) =VOUT(min) + IOUT ì(RDS(ON) + R  
L
)
(2)  
where  
VOUT(min) is the minimum output voltage the load can accept  
IOUT is the output current  
RDS(ON) is the RDS(ON) of the high-side MOSFET  
RL is the DC resistance of the inductor used,  
76 mΩfor the TPSM8291x  
To maintain fixed frequency switching, the device requires a minimum off-time of 50 ns (typical), 60 ns  
(maximum). If this limit is reached during a switching pulse, the device skips switching pulses to maintain output  
voltage regulation. If the input voltage decreases further, the device enters 100% mode.  
7.4.4 Second Stage L-C Filter Compensation (Optional)  
Most low-noise and low-ripple applications use a ferrite bead and bypass capacitor before the load. Using a  
second L-C filter is especially useful for low-noise and low-ripple applications with constant load current such as  
ADCs, DACs, and Jitter Cleaner. The second stage L-C filter is optional, and the device can be used without this  
filter. Without the filter, the device has a low output voltage noise of typically 16.6 μVRMS shown in 6-29 with  
an output voltage ripple of 280 μVRMS shown in 6-10. The second stage L-C filter attenuates the output  
voltage ripple by another approximately 30 dB shown in 6-12. To improve load regulation, the device can  
remote sense the output voltage after the second stage L-C filter and is internally compensated for the additional  
double pole generated by the L-C filter.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
To keep the second stage L-C filter as small as possible, the internal compensation is optimized for a 10-nH to  
50-nH inductance. A small ferrite bead or even a PCB trace provides sufficient inductance for output voltage  
ripple filtering. See 8.2.2.2.3 for details.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
20  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The family of devices are optimized for low noise and low output voltage ripple.  
8.2 Typical Applications  
Lf  
10 nH  
Vin  
12 V  
Vo  
1.2 V / 3 A  
VIN  
OUT  
COUT  
3x  
22 µF  
CIN  
2 x 10 µF  
EN/SYNC  
S-CONF  
NR/SS  
Cf  
2 x 22µF  
R1  
2.43 k  
FB  
PG  
R2  
4.87 k  
PGND  
8-1. Typical Schematic  
8-1 shows the list of components for the application curves in 8.2.3, unless otherwise noted.  
8-1. List of Components  
REFERENCE  
PART NUMBER  
DESCRIPTION  
MANUFACTURER(1)  
Low-noise and low-ripple buck  
module  
TPSM82913  
TPSM82913  
Texas Instruments  
Ceramic capacitors: 2 × 10 µF ±10%  
25-V ceramic capacitor X7S 0805  
CIN  
C2012X7S1E106K125AC  
TDK  
Ceramic capacitors: 3 × 22 µF, 10 V,  
±20%, X7S, 0805  
COUT  
Lf  
C2012X7S1A226M125AC  
BLE18PS080SN1  
TDK  
MuRata  
TDK  
Ferrite Bead  
Ceramic capacitor: 2 × 22 µF, 10 V,  
±20%, X7S, 0805  
Cf  
C2012X7S1A226M125AC  
CNR/SS, CFF  
R1, R2  
Optional, not shown  
Ceramic capacitor  
Resistor  
Standard  
Standard  
(1) See the Third-Party Products Disclaimer  
8.2.1 Design Requirements  
The external components have to fulfill the needs of the application, but also meet the stability criteria of the  
control loop of the device. The device is optimized to work within a range of external components, and can be  
optimized for the following:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Efficiency  
Output ripple  
Component count  
Lowest noise  
Typical applications that have input voltages of 6 V use a 2.2-MHz switching frequency. Applications that have  
input voltages > 6 V can be optimized for efficiency using a 1-MHz switching frequency. In this case, the output  
voltage ripple doubles, which is typically acceptable when powering high speed ADCs. Optimization for powering  
clock and PLL circuits that need a 3.3-V output use a 2.2-MHz switching frequency, minimizing output voltage  
ripple and low frequency noise.  
For the application cases that are not found in 8-2, there are two methods to design the TPSM8291x circuit.  
8.2.2.1 uses Webench to design the circuit automatically or the calculations in 8.2.2.2 can be used instead.  
8-2. Typical Single L-C Filter Design Recommendations  
DESIGN GOAL  
VIN  
VOUT  
FSW  
OUTPUT CAPACITORS 3  
2.0 V(1)  
Typical  
12 V(1)  
1 MHz  
3 × 22 µF, 10 V, 0805  
Higher efficiency (with  
higher ripple and noise)  
12 V  
12 V  
1 MHz  
3 × 22 µF, 10 V, 0805  
3 × 22 µF, 10 V, 0805  
2.0 V < VOUT 3.3 V  
2.6 V VOUT 3.3 V  
Low ripple, noise PLL and  
Clock Supply  
2.2 MHz  
Typical  
Typical  
12 V  
5 V  
> 3.3 V  
2.2 MHz  
2.2 MHz  
3 × 22 µF, 10 V, 0805  
3.3 V  
1 × 47 µF, 1210 and 2 ×  
22 µF, 10 V, 0805  
Typical  
5 V  
> 3.3 V  
2.2 MHz  
(1) The maximum input to output voltage difference is limited by the device maximum minimum on-time of 70 ns. This is especially  
important for input voltages above 12 V or output voltages below 1 V. See 8.2.2.2.1.  
(2) For output capacitor part numbers, see 8-4.  
The second stage L-C filter is optional, as the device can be used without this filter to achieve below 20-μVRMS  
noise typically. A second stage filter is added to provide additional attenuation of the output voltage ripple. The  
output voltage is sensed after the second L-C filter by connecting the FB resistors to the second stage L-C filter  
capacitor. This action provides remote sense, minimizing output voltage drop due to the ferrite bead. Refer to 表  
8-3 for second stage L-C filter recommendations based on the output voltage.  
8-3. Second Stage L-C (Ferrite Bead) Filter Design Recommendations  
VOUT (V)  
FERRITE BEAD IMPEDANCE (AT 100 MHZ)(2)  
OUTPUT CAPACITORS (1)  
2 × 22 µF, 10 V, 0805  
3 × 22 µF, 10 V, 0805  
3.3 V  
8 Ωto 20 Ω  
8 Ωto 20 Ω  
> 3.3 V  
(1) For output capacitor part numbers, see 8-4.  
(2) For second stage L-C filter part numbers, see 8-5.  
8.2.2 Detailed Design Procedure  
If the specific design is not found in the 8-2 section, TI recommends WEBENCH® to generate the design.  
Alternatively, the manual design procedure in External Component Selection can be followed.  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM8291x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost.  
3. Open the advanced tab to optimize for output voltage ripple.  
4. After in a TPSM8291x design, enable the second stage L-C filter and change other settings from the drop-  
down on the left.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
22  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
 
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 External Component Selection  
8.2.2.2.1 Switching Frequency Selection  
The switching frequency can be chosen to optimize efficiency (1 MHz) or ripple, noise (2.2 MHz). Using the 2.2-  
MHz setting increases the gain of the feedback loop and can result in lower output noise. However, additional  
considerations for minimum on-time and duty cycle must also be considered. First, calculate the duty cycle using  
方程式 3. Higher efficiency results in a shorter on-time, so a conservative approach is to use a higher efficiency  
than expected in the application.  
V
OUT  
D =  
VIN  
ì
h
(3)  
where  
ηis the estimated efficiency (use the value from the efficiency curves or 0.9 as an conservative assumption)  
Then, calculate the on-time with both 1 MHz and 2.2 MHz using 方程式 4. The on-time must always remain  
above the minimum on-time of 70 ns. Use the maximum input voltage and maximum efficiency to determine the  
minimum duty cycle, Dmin. Use the maximum switching frequency for fSW  
.
D
min  
=
SW _ max  
tON _ min  
f
(4)  
then  
If tON_min min < 70 ns with 2.2 MHz, use 1 MHz.  
If tON_min min < 70 ns with 1 MHz, reduce the maximum input voltage.  
If tON_min min 70 ns for both cases, use 1 MHz for highest efficiency, or 2.2 MHz for lowest noise and  
ripple.  
8.2.2.2.2 Output Capacitor Selection  
The effective output capacitance can range from 40 μF (minimum) up to 200 μF (maximum) for a single L-C  
system design. When using a second L-C filter, the first L-C filter must have output capacitance between 40 μF  
and 80 μF, the second stage L-C filter (if used) must have at least 20 μF of capacitance, and the total  
capacitance for both L-C filters must be less than 200 μF. Load transient testing and measuring the bode plot  
are good ways to verify stability.  
TI recommends ceramic capacitors (X5R or X7R). Ceramic capacitors have a DC-Bias effect, which has a strong  
influence on the final effective capacitance. Choose the right capacitor carefully in combination with considering  
its package size and voltage rating. The ESR and ESL of the output capacitor are also important considerations  
in selecting the output capacitors for low noise applications. Smaller package sizes typically have lower ESL and  
ESR. 0805 or smaller packages are recommended, as long as they provide the required capacitance and  
voltage rating for stable operation. 8-4 lists recommended output capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
PACKAGE  
8-4. Recommended Output Capacitors  
CAPACITOR TYPE  
Bulk Capacitor  
CAPACITOR VALUE  
MANUFACTURER  
TDK C2012X7S1A226M125AC  
Murata GRM32ER71A476ME15L  
VOLTAGE (V)  
10  
10  
0805  
1210  
22 μF, X7S  
Bulk Capacitor  
47 μF, X7R  
8.2.2.2.3 Ferrite Bead Selection for Second L-C Filter  
Using a ferrite bead for the second stage L-C filter minimizes the external component count because most of the  
noise sensitive circuits use a RF bead for high frequency attenuation as a default component at their inputs.  
Select a ferrite bead with sufficiently high inductance at full load, and with low DC resistance (below 10 m) to  
keep the converter efficiency as high as possible. The ferrite bead inductance decreases with increased load  
current. Therefore, the ferrite bead must have a current rating much higher than the desired load current.  
The recommendation is to choose a ferrite bead with an impedance of 8 to 20 at 100 MHz. Refer to 8-5  
for possible ferrite beads.  
8-5. Recommended Ferrite Beads  
INDUCTANCE AT  
100 MHz  
(CALCULATED)  
IMPEDANCE AT  
100 MHZ  
CURRENT  
RATING  
PART NUMBER  
MANUFACTURER  
SIZE  
DC RESISTANCE  
BLE18PS080SN1  
74279221100  
7427922808  
MuRata  
0603  
13.5 nH  
5 A  
8.5 Ω  
10 Ω  
8 Ω  
4 mΩ  
3 mΩ  
5 mΩ  
Wurth Elektronik  
Wurth Electronik  
1206  
0603  
15.9 nH  
12.7 nH  
10.5 A  
9.5 A  
The internal compensation has been designed to be stable with up to 50 nH of inductance in the second stage  
filter. To achieve low ripple, the second L-C filter requires only 5-nH to 10-nH inductance. The inductance can be  
estimated from the ferrite bead impedance specification at 100 MHz, with the assumption that the inductance is  
similar at the selected converter switching frequency of 1 MHz or 2.2 MHz, and can be verified through tools  
available on some manufacturer websites. The inductance of a ferrite bead is calculated using 方程5:  
Z
L =  
2ìp ì f  
(
)
(5)  
where  
Z is the impedance of the ferrite bead in ohms at the specified frequency (usually 100 MHz)  
f is the specified frequency (usually 100 MHz)  
8.2.2.2.4 Input Capacitor Selection  
For the best output and input voltage filtering, Ti recommends X5R or X7R ceramic capacitors. The input bulk  
capacitor minimizes input voltage ripple, suppresses input voltage spikes, and provides a stable system rail for  
the device. TI recommends a 10-μF or larger input capacitor. Having two in parallel further improves the input  
voltage ripple filtering, minimizing noise coupling into adjacent circuits. The voltage rating of the cap must also  
be taken into consideration, and must provide the required 5-μF minimum effective capacitance after DC bias  
derating.  
In addition to the bulk input cap, a smaller cap must be placed directly from the VIN pin to the PGND pin to  
minimize input loop parasitic inductance, thereby minimizing the high frequency noise of the device. The input  
cap placement affects the output noise, so care must be taken in placing both the bulk cap and bypass caps. 表  
8-6 lists recommended input capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
24  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8-6. Recommended Input Capacitors  
INPUT CAP TYPE  
CAPACITOR VALUE  
MANUFACTURER  
VOLTAGE RATING (V)  
25  
25  
PACKAGE SIZE  
TDK  
Bulk Cap  
0805  
0402  
10 μF, X7S  
C2012X7S1E106K125AC  
Murata  
GRM155R71E222KA01D  
Bypass Cap  
2.2 nF, X7R  
8.2.2.2.5 Setting the Output Voltage  
Choose resistors R1 and R2 to set the output voltage within a range of 0.8 V to 5.5 V, according to 方程式 6. To  
keep the feedback network robust from noise, and to reduce the self-generated noise of resistors, set R2 equal  
to or lower than 5 kΩ. Lower values of FB resistors achieve better noise immunity, and lower light load  
efficiency, as explained in the Design Considerations for a Resistive Feedback Divider in a DC/DC Converter  
technical brief.  
æ
ç
è
ö
VOUT  
VFB  
V
OUT  
æ
ö
R1 = R2 ´  
-1 = R2 ´  
- 1  
÷
÷
ç
0.8V  
è
ø
ø
(6)  
A feedforward capacitor (CFF) is not required for proper operation, but can further improve output noise.  
However, care must be taken in choosing the CFF, because the power-good (PG) function can not be valid with a  
large CFF during start-up, and can cause spurious triggering of the PG pin during a large load transient. Refer to  
the Pros and Cons Using a Feedforward Capacitor with a Low Dropout Regulator application report for a  
discussion of the pros and cons of using a feedforward capacitor.  
8.2.2.2.6 NR/SS Capacitor Selection  
As described in 7.3.8, the NR/SS cap affects both the total noise and the soft-start time. When no NR/SS cap  
is connected, there is a default 2.35-ms soft-start time. The recommended value for a 5-ms soft-start time and  
good noise performance is 220 nF, as there is an internal 220 nF capacitor already in the module. The maximum  
NR/SS cap is 3.3 μF for a start-up time of 35 ms. Values greater than 1 μF have minimal improvement in noise  
performance. Use 方程式 7 and 方程式 8 to calculate the soft-start time based on desired soft-start time or the  
chosen capacitor value. Note that the CNRSS in the equation below is the combination of the internal 220 nF cap  
and any external cap from the CNRSS pin to GND.  
C
× 0.8  
NRSS  
I
tss s =  
(7)  
(8)  
NRSS  
I
× t  
ss  
NRSS  
0.8  
C
F =  
NRSS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
VIN=12 V, VOUT=1.2 V, TA=25°C, BOM = 8-1, (unless otherwise noted)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5 Vin  
12 Vin  
17 Vin  
5 Vin  
12 Vin  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
Output Current (A)  
Output Current (A)  
0.8 Vout  
1st L-C Only  
1.2 Vout  
1st L-C Only  
2.2 μH, 1 MHz  
2.2 μH, 1 MHz  
8-2. Efficiency vs Load Current  
8-3. Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5 Vin  
12 Vin  
17 Vin  
5 Vin  
12 Vin  
17 Vin  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
3.3 Vout  
1st L-C Only  
2.2 μH, 2.2 MHz  
1.8 Vout  
1st L-C Only  
2.2 μH, 1 MHz  
8-5. Efficiency vs Load Current  
8-4. Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
12 Vin  
17 Vin  
5 Vin  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Output Current (A)  
3
5 Vout  
1st L-C Only  
1.2 Vout  
1st L-C Only  
2.2 μH, 2.2 MHz  
2.2 μH, 2.2 MHz  
8-6. Efficiency vs Load Current  
8-7. Efficiency vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
26  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
12 V to 1.2 V  
1 MHz  
1st L-C Only  
5 Vin  
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
300 mA to 3 A to 300 mA  
50  
0
3
8-9. Load Transient  
Output Current (A)  
1.8 Vout  
1st L-C Only  
2.2 μH, 2.2 MHz  
8-8. Efficiency vs Load Current  
12 V to 1.2 V  
1 MHz  
After 2nd L-C  
12 V to 1.8 V  
1 MHz  
1st L-C Only  
300 mA to 3 A to 300 mA  
300 mA to 3 A to 300 mA  
8-10. Load Transient  
8-11. Load Transient  
12 V to 1.8 V  
1 MHz  
After 2nd L-C  
12 V to 3.3 V  
2.2 MHz  
1st L-C Only  
300 mA to 3 A to 300 mA  
300 mA to 3 A to 300 mA  
8-12. Load Transient  
8-13. Load Transient  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
12 V to 3.3 V  
2.2 MHz  
After 2nd L-C  
300 mA to 3 A to 300 mA  
8-14. Load Transient  
8.3 Power Supply Recommendations  
The power supply to the TPSM8291x must have a current rating according to the supply voltage, output voltage,  
and output current of the TPSM8291x.  
8.4 Layout  
8.4.1 Layout Guidelines  
A proper layout is critical for the operation of any switched mode power supply, especially at high switching  
frequencies. Therefore, the PCB layout of the TPSM8291x demands careful attention to ensure best  
performance. A poor layout can lead to issues like bad line and load regulation, instability, increased EMI  
radiation, and noise sensitivity. Refer to the Five Steps to a Great PCB Layout for a Step-Down Converter  
technical brief for a detailed discussion of general best practices. Specific recommendations for the device are  
listed below.  
The TPSM8291x has an integrated input capacitor. However, placement of the input capacitors must be  
placed as close as possible to the VIN and PGND pins of the device. Route the input capacitors directly to  
the VIN and PGND pins avoiding vias.  
Place the output capacitor ground close to the PGND pin and route it directly avoiding vias.  
Sensitive traces, such as the connections to the NR/SS and FB pins must be connected with short traces and  
be routed away from any noise source.  
Connect the PSNS pin directly to the system GND plane with a via.  
The SW pin must not be connected and must be left floating. If the pin is soldered to PCB copper, the pour  
needs to be as small as possible with no inner layer connections. The pin is provided for probing the internal  
SW only, and not to be connected to any external component, as shown on the EVM.  
Place the second L-C filter, Lf and Cf, near the load to reduce any radiated coupling around the second L-C  
filter  
Place the FB resistors, R1 and R2, close to the FB pin and route the VOUT connection from R1 to the load as  
a remote sense trace. If a second L-C filter is used, this connection must be made after Lf.  
The recommended layout is implemented on the EVM and shown in the EVM user's guide.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
28  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
VIN  
CNRSS  
GND  
CIN  
Text Here  
R2  
R1  
Cff  
RSCONF  
COUT  
VOUT  
Text Here  
GND  
8-15. Recommended Layout for Single L-C Filter  
备注  
For a single L-C configuration, the feedback sense is placed near the VOUT capacitors. For a second  
L-C filter design, the feedback sense is placed near the load after the VOUT_FILT capacitors.  
VIN  
GND  
CIN  
Text Here  
CNRSS  
R2  
R1  
VOUT_FILT  
Cff  
RSCONF  
COUT  
VOUT  
Lf  
Cf  
Text Here  
Text Here  
GND  
8-16. Recommended Layout for Design with Second L-C Filter  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
备注  
The ferrite bead can be placed closer to the device as long as it is placed > 8 mm from the device.  
This placement avoids capacitive and electromagnetic coupling to the output of the ferrite bead. If the  
ferrite bead is placed < 8 mm, the filtering effect of the ferrite bead is greatly reduced. If the ferrite  
bead is routed through a via to the back side of the board, ensure adequate ground plane between the  
layers if the ferrite bead is in this area.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
30  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.1.2 Development Support  
9.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPSM8291x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost.  
3. Open the advanced tab to optimize for output voltage ripple.  
4. Once in a TPSM8291x design, you can enable the second stage L-C filter and change other settings from  
the drop-down on the left.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Design Considerations for a Resistive Feedback Divider in a DC/DC Converter technical  
brief  
Texas Instruments, Five Steps to a Great PCB Layout for a Step-Down Converter technical brief  
Texas Instruments, Pros and Cons Using a Feedforward Capacitor with a Low Dropout Regulator application  
report  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPSM82913 TPSM82913E  
English Data Sheet: SLVSGJ4  
 
 
 
 
 
 
 
TPSM82913, TPSM82913E  
ZHCSOW9B OCTOBER 2022 REVISED MAY 2023  
www.ti.com.cn  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGJ4  
32  
Submit Document Feedback  
Product Folder Links: TPSM82913 TPSM82913E  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPSM82913RDUR  
TPSM82913RDUR  
ACTIVE  
ACTIVE  
ACTIVE  
B0QFN  
B0QFN  
B0QFN  
RDU  
RDU  
RDU  
28  
28  
28  
1500 RoHS & Green  
1500 RoHS & Green  
1500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-55 to 125  
PTPSM2913  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
TPSM82913  
82913-ET  
TPSM82913RDUR-ET  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
RDU0028A  
B0QFN - 1.9 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.6  
4.4  
A
B
PIN 1 INDEX AREA  
5.6  
5.4  
0.01  
0.00  
(0.095) TYP  
A
30.000  
DETAIL A  
TYPICAL  
SEE DETAIL A  
1.9  
1.7  
C
SEATING PLANE  
0.08 C  
4X (0.725)  
4X 1.15 0.1  
0.65  
0.55  
0.775  
0.675  
4X  
8X  
0.8  
0.7  
(0.125) TYP  
4X  
0.1  
C A B  
C
13  
7
0.05  
4X 0.65  
26  
25  
27  
2X 1.65 0.1  
2X (0.975)  
2X (0.725)  
SYMM  
28  
2X 3  
2X 1.15 0.1  
0.3  
16X  
0.2  
12X 0.5  
0.1  
C A B  
C
19  
1
0.05  
0.6  
0.4  
24  
20X  
SYMM  
(R0.125) TYP  
(0.15) TYP  
8X 0.5  
4X 0.65  
2X 2  
4228418/B 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RDU0028A  
B0QFN - 1.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(R0.1) TYP  
ALL INSIDE CORNERS  
24  
(2.6)  
19  
(R0.05) TYP  
ALL OUTSIDE CORNERS  
1
2X (2.15)  
20X (0.7)  
2X (1.5)  
4X (0.325)  
4X (1.05)  
2X (1)  
28  
25  
26  
2X (0.725)  
2X (0.5)  
4X (0.4)  
2X (1.15)  
PKG  
0.000  
4X (0.475)  
2X (0.5)  
32X (0.25)  
2X (0.975)  
2X (1)  
27  
2X (1.65)  
2X (1.5)  
4X (1.475)  
2X (2.15)  
(2.6)  
4X (0.6)  
7
4X (0.925)  
13  
4X  
(0.6)  
4X  
(0.925)  
(
0.2) TYP  
VIA  
4X  
(1.15)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4228418/B 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RDU0028A  
B0QFN - 1.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(R0.1) TYP  
ALL INSIDE CORNERS  
24  
(2.6)  
19  
(R0.05) TYP  
ALL OUTSIDE CORNERS  
1
2X (2.15)  
4X (0.325)  
20X (0.7)  
2X (1.5)  
2X (1)  
25  
26  
28  
2X (0.725)  
2X (0.5)  
2X (1.08)  
SYMM  
0.000  
32X (0.25)  
2X (0.5)  
2X (0.975)  
2X (1)  
27  
2X (1.51)  
2X (1.5)  
2X (2.15)  
(2.6)  
4X (0.6)  
7
4X (0.925)  
13  
4X  
4X  
(1.08)  
(0.6)  
4X  
(0.925)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 15X  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 25 & 28: 89%  
PADS 26 & 27: 86%  
4228418/B 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPSM82913RDUR

17-V VIN, 3-A low-noise and low-ripple buck module with integrated ferrite bead filter compensation | RDU | 28 | -40 to 125
TI

TPSM83100

具有集成电感器的 1.5A 高效降压/升压模块
TI

TPSM831D31

具有 AVS 和监控功能的 8V-14V 输入、120A + 40A 双输出 PMBus 模块
TI

TPSM831D31MOA

具有 AVS 和监控功能的 8V-14V 输入、120A + 40A 双输出 PMBus 模块 | MOA | 28 | -40 to 105
TI

TPSM84203

1.5A、28V 输入、3.3V 输出 TO-220 电源模块
TI

TPSM84203EAB

1.5A、28V 输入、3.3V 输出 TO-220 电源模块 | EAB | 3 | -40 to 125
TI

TPSM84205

1.5A、28V 输入、5V 输出 TO-220 电源模块
TI

TPSM84205EAB

1.5A、28V 输入、5V 输出 TO-220 电源模块 | EAB | 3 | -40 to 125
TI

TPSM84209

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块
TI

TPSM84209RKHR

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块 | RKH | 9 | -40 to 85
TI

TPSM84209RKHT

4.5V 至 28V 输入、1.2V 至 6V 输出、2.5A 电源模块 | RKH | 9 | -40 to 85
TI

TPSM84212

1.5A、28V 输入、12V 输出 TO-220 电源模块
TI