TPSM84A21MOJR [TI]

具有集成输入和输出电容器的 8V 至 14V 输入、0.508V 至 1.35V 输出、10A 电源模块 | MOJ | 20 | -40 to 85;
TPSM84A21MOJR
型号: TPSM84A21MOJR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成输入和输出电容器的 8V 至 14V 输入、0.508V 至 1.35V 输出、10A 电源模块 | MOJ | 20 | -40 to 85

开关 输出元件 电容器 电源电路
文件: 总27页 (文件大小:1292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
TPSM84A21 8V 14V 输入、0.508V 1.35V 输出、10A SWIFT™电源  
模块  
1 降压稳压器  
3 说明  
1
全集成电源解决方案,包括输入和输出电容  
只需一个电阻即可设置电压  
9mm x 15mm 尺寸  
TPSM84A21 是一套易于使用的集成电源解决方案,它  
TPS54A20 10ADC/DC 同步降压转换器与功率  
MOSFET、隔离电感、输入和输出电容以及无源器件  
完美融合于薄型封装中。这套完备的电源解决方案只需  
一个电阻即可设置电压,设计过程中无需考虑回路补偿  
和磁件选型。  
最大高度 2.3mm  
TPSM84A22 引脚兼容  
超快速负载阶跃响应  
效率高达 88%  
对于标准 应用 而言,凭借这套全集成电源解决方案,  
无需使用额外的输入或输出电容即可正常运行,而且只  
需通过一个外部电阻即可设置输出电压。此  
1% 的输出电压精度  
4MHz 开关频率  
MSL 3/245°C 峰值回流焊温度  
与外部时钟同步  
外,TPSM84A21 还支持高频运行,同时兼具超快瞬态  
响应和精准的稳压能力,轻松满足严格的稳压规范。  
电源正常输出  
该器件采用 9mm × 15mm 的小巧尺寸,方便焊接在印  
刷电路板上,从而打造一种紧凑的薄型负载点设计。  
预偏置输出启动  
可编程欠压闭锁 (UVLO)  
工作 IC 结温范围:-40°C +125°C  
工作环境温度范围:-40°C +85°C  
符合 EN55022 B 类辐射标准  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
TPSM84A21  
QFM  
9.00mm × 15.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
2 应用  
器件比较  
电信和无线基础设施  
器件编号  
VOUT 调节范围  
0.55V - 1.35V  
1.2V - 2.05V  
测试和测量  
TPSM84A21  
TPSM84A22  
Compact PCI/PCI Express/PXI Express  
空白  
简化电路原理图  
瞬态响应  
VIN  
VIN  
VS+  
EN/UVLO  
VOUT  
VOUT  
TPSM84A21  
PGOOD  
VADJ  
VG  
SYNC  
ILIM  
AGND PGND  
w{9Ç  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDF7  
 
 
 
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 16  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
降压稳压............................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Package Specifications............................................. 7  
6.8 Typical Characteristics ............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Examples................................................... 19  
11 器件和文档支持 ..................................................... 21  
11.1 文档支持 ............................................................... 21  
11.2 接收文档更新通知 ................................................. 21  
11.3 社区资源................................................................ 21  
11.4 ....................................................................... 21  
11.5 静电放电警告......................................................... 21  
11.6 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
日期  
修订版本  
注释  
2016 12 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
5 Pin Configuration and Functions  
MOJ Package  
20-Pin QFM  
Top View  
16  
13  
15  
14  
12  
11  
17  
10  
VIN  
PGND  
18  
19  
PGND  
VIN  
20  
PGND  
9
VOUT  
PGND  
1
8
PGND  
2
3
5
6
7
4
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Zero voltage reference for analog control circuitry. Connect RSET between this pin and VADJ close  
to the device. Do not connect this pin to PGND; the connection is made internal to the device.  
AGND  
16  
Enable and UVLO adjust pin. When this pin voltage is low, the device is disabled. Use an open drain,  
open collector, or a suitable logic gate device to control the enable function. A resistor divider  
between this pin, PGND, and VIN adjusts the UVLO voltage.  
EN/UVLO  
2
I
Current limit setting pin. Leave this open for the full current limit threshold of 15 A. Connect a 47 kΩ  
resistor between this pin and PGND to reduce the current limit threshold to 11.25 A.  
ILIM  
3
I
1, 4, 5, 6, 7,  
8, 10, 18, 20  
Power ground of the device. Connect these pins to the power ground plane of the PCB. Thermal vias  
to internal ground planes should be added beneath pin 20.  
PGND  
Power good indicator. This pin is an open-drain output and will assert low if the output voltage is  
greater than ±5% from the programmed value or due to thermal shutdown, under-voltage, or EN  
shutdown. A pull-up resistor is required. VG can be used as a PGOOD pull-up source.  
PGOOD  
VS+  
12  
14  
O
I
Remote sense connection. This pin must be connected to VOUT at the load or at the device pins.  
Connect the pin to VOUT at the load for improved regulation.  
External clock synchronization pin. An external clock signal can be applied to this pin to synchronize  
the switching frequency within ±10% of the nominal switching frequency (4 MHz).  
SYNC  
VADJ  
11  
15  
I
I
Output voltage adjust pin. Connecting a resistor between this pin and AGND sets the output voltage.  
Gate driver supply pin. If this pin is left open, an internal LDO will generate the gate driver supply  
voltage from the VIN pin. To reduce power consumption and improve efficiency, power this pin with  
an external 5-V supply. This pin can be used as a PGOOD pull-up source.  
VG  
13  
I
Input Voltage. These pins supply all of the power to the converter. Connect VIN to a supply voltage  
between 8 V and 14 V.  
VIN  
17, 19  
9
I
VOUT  
O
Output voltage. Connect any external output capacitors between these pins and PGND.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
15  
7
UNIT  
V
VIN  
EN/UVLO  
V
Input voltage  
PGOOD, SYNC, VG  
6
V
ILIM, VADJ, VS+  
3
V
PGND  
0.3  
3
V
Output voltage  
Source current  
VOUT  
V
EN/UVLO  
100  
100  
4
µA  
mA  
mA  
G
VG  
Sink current  
PGOOD  
Mechanical shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
500  
20  
125  
85  
150  
Mechanical vibration  
Mil-STD-883D, Method 2007.2, 20-2000Hz  
G
(2)  
Operating IC junction temperature, TJ  
–40  
–40  
–55  
°C  
°C  
°C  
(2)  
Operating ambient temperature, TA  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area  
(SOA) curves, ensures that the maximum junction temperature of any component inside the module is never exceeded.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8
NOM  
MAX  
14  
UNIT  
V
VIN  
Input voltage  
VOUT  
VVG  
VEN  
Output voltage  
0.55  
5.0  
0
1.35  
5.5  
5.5  
5.5  
5.5  
10  
V
Gate drive voltage  
EN voltage  
V
V
VPGOOD  
VSYNC  
IOUT  
TJ  
PGOOD pull-up voltage  
SYNC voltage  
0
V
0
V
Output current  
0
A
(1)  
Operating IC junction temperature  
–40  
–40  
125  
85  
°C  
°C  
(1)  
TA  
Operating ambient temperature  
(1) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area  
(SOA) curves, ensures that the maximum junction temperature of any component inside the module is never exceeded.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
6.4 Thermal Information  
TPSM84A21  
THERMAL METRIC(1)  
MOJ (QFM)  
20 PINS  
14.9  
UNIT  
(2)  
RθJA  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
(3)  
Junction-to-top characterization parameter  
2.2  
(4)  
ψJB  
Junction-to-board characterization parameter  
5.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The junction-to-ambient thermal resistance, ΘJA, applies to devices soldered directly to a 50 mm x 100 mm double-sided PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces ΘJA  
.
(3) The junction-to-top board characterization parameter, ΘJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT * Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB * Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
6.5 Electrical Characteristics  
Over –40°C to +85°C free-air temperature range, VIN = 12 V, VOUT = 1.0 V, IOUT = IOUT max, FSW = 4 MHz,  
External CIN = 2 × 22 µF 25 V 1210 ceramic plus 1 × 100 µF electrolytic (unless otherwise noted)  
PARAMETER  
INPUT VOLTAGE (VIN)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIN  
VIN input voltage range  
Over VOUT range  
VIN increasing  
VIN decreasing  
8
14  
V
V
7.65  
7.4  
7.95  
VIN_UVLO  
VIN under voltage lock out  
V
VIN_HYS  
IVIN_EN  
VIN UVLO hysteresis  
VIN standby current  
250  
47  
mV  
µA  
EN = 0 V  
OUTPUT VOLTAGE (VOUT)  
VOUT(ADJ) Output voltage adjust range  
Over IOUT range  
0.55  
1.35  
V
Set-point voltage tolerance  
Temperature variation  
Line regulation  
VOUT = 1.0 V, TA = 25°C, IOUT = 0 A  
-1.0%  
+1.0%(1)  
VOUT = 1.0 V, –40°C TA 85°C, IOUT = 0 A  
VOUT = 1.0 V, over VIN range, IOUT = 0 A, TA = 25°C  
VOUT = 1.0 V, over IOUT range, TA = 25°C  
±0.2%(2)  
±0.03%  
±0.1%  
VOUT  
Load regulation  
VOUT  
Ripple  
Output Voltage Ripple  
20-MHz Bandwidth, peak-to-peak  
8
mV  
OUTPUT CURRENT  
Output current  
See SOA graph for derating over temperature.  
0
10  
A
A
A
IOUT  
ILIM = open  
15  
Overcurrent threshold  
ILIM = 47 kΩ  
11.25  
(1) The stated limit of the set-point tolerance includes the tolerance of both the internal voltage reference and the internal adjustment  
resistor. The overall output voltage tolerance will be affected by the tolerance of the external RSET resistor.  
(2) Specified by design. Not production tested.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over –40°C to +85°C free-air temperature range, VIN = 12 V, VOUT = 1.0 V, IOUT = IOUT max, FSW = 4 MHz,  
External CIN = 2 × 22 µF 25 V 1210 ceramic plus 1 × 100 µF electrolytic (unless otherwise noted)  
PARAMETER  
PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOUT = 0.8 V, VG = open  
79.8%  
82.5%  
82.6%  
84.9%  
84.5%  
86.5%  
10  
VOUT = 0.8 V, VG = 5 V  
VOUT = 1.0 V, VG = open  
VOUT = 1.0 V, VG = 5 V  
VOUT = 1.2 V, VG = open  
VOUT = 1.2 V, VG = 5 V  
VOUT over/undershoot  
ƞ
Efficiency(2)  
VIN = 12 V, IOUT = 5 A  
1 A/µs load step,  
25% to 75% IOUT(max),  
COUT= 0 µF  
mV  
µs  
Recovery Time  
10  
25  
10  
Transient Response(2)  
5 A/µs load step,  
25% to 75% IOUT(max),  
COUT= 0 µF  
VOUT over/undershoot  
Recovery Time  
mV  
µs  
SOFT START  
TSS  
Internal soft start time(2)  
4.1  
4.8  
ms  
INTERNAL REGULATOR (VG)  
VVG  
VG pin output voltage  
4.4  
5.0  
V
ENABLE AND UNDER-VOLTAGE LOCK-OUT (EN/UVLO)  
VEN  
IEN  
EN threshold range  
Input current  
1.17  
1.23  
–4  
1.27  
V
EN threshold + 50 mV  
EN threshold – 50 mV  
µA  
µA  
Hysteresis current  
–1  
POWER GOOD (PGOOD)  
VVOUT falling (Fault)  
VVOUT rising (Good)  
VVOUT rising (Fault)  
VVOUT falling (Good)  
89%  
95%  
(2)  
VPGOOD  
PGOOD Thresholds  
109%  
104%  
Minimum VIN for valid  
V
PGOOD 0.5 V at 100 µA  
1.2  
2.75  
0.3  
V
V
PGOOD(2)  
PGOOD Low Voltage  
IPGOOD = 1.7 mA  
0.25  
THERMAL SHUTDOWN  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
CAPACITANCE  
135  
20  
°C  
°C  
Ceramic type  
0(3)  
0(3)  
0(4)  
0(4)  
44  
µF  
µF  
CIN  
External Input Capacitance  
Non-ceramic type  
Ceramic type  
100  
1000(5) µF  
2200(5) µF  
35 mΩ  
COUT  
External Output Capacitance  
Non-ceramic type  
Equivalent series resistance (ESR)  
(3) Internal to the device, 66.1 µF (nominal) ceramic input capacitance is present. This device does not require additional input capacitance.  
If adding additional input capacitance, locate the capacitors close to the device.  
(4) Internal to the device, 185 µF (nominal) ceramic output capacitance is present. This device does not require additional output  
capacitance to operate. Adding additional output capacitance near the load improves the response of the device to load transients.  
(5) The maximum output capacitance listed in the table is the maximum amount that has been tested and validated for proper start-up,  
stability, and transient response. It may be possible to operate with additional output capacitance, however, additional validation is  
required.  
6
Copyright © 2016, Texas Instruments Incorporated  
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
(1)  
FREQUENCY AND SYNCHRONIZATION (SYNC)  
FSW  
Switching frequency  
SYNC = open  
3.7  
3.6  
2.0  
4
4.3  
4.4  
MHz  
MHz  
V
FSYNC  
VSYNC-H  
VSYNC-L  
DSYNC  
Synchronization frequency range  
SYNC high threshold  
SYNC low threshold  
SYNC Control  
0.8  
V
SYNC duty cycle  
20%  
80%  
(1) Specified by design. Not production tested.  
6.7 Package Specifications  
TPSM84A21  
VALUE  
UNIT  
Weight  
0.91  
grams  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
30.6  
MHrs  
版权 © 2016, Texas Instruments Incorporated  
7
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
6.8 Typical Characteristics  
The electrical characteristic data has been developed from actual products tested at 25°C. This data is  
considered typical for the converter. Applies to 1 through 4.  
The temperature derating curves represent the conditions at which internal components are at or below the  
manufacturer's maximum operating temperatures. Derating limits apply to devices soldered directly to a 50 mm ×  
100 mm double-sided PCB with 2 oz. copper. Applies to 5 and 6.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VOUT  
1.35 V  
1.2 V  
1.0 V  
0.8 V  
0.55 V  
VOUT  
1.35 V  
1.2 V  
1.0 V  
0.8 V  
0.55 V  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Output Current (A)  
Output Current (A)  
D001  
D004  
VIN = 12 V  
VG = open  
VIN = 12 V  
VG = 5 V  
1. Efficiency  
2. Efficiency  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
16  
14  
12  
10  
8
VOUT  
1.35 V  
1.2 V  
1.0 V  
0.8 V  
0.55  
VOUT  
1.35 V  
1.2 V  
1.0 V  
0.8 V  
0.55  
6
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Output Current (A)  
Output Current (A)  
D0021  
D003  
VIN = 12 V  
VG = open  
VIN = 12 V  
3. Power Dissipation  
4. Output Voltage Ripple  
8
版权 © 2016, Texas Instruments Incorporated  
 
 
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
Typical Characteristics (接下页)  
90  
90  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
Airflow  
100 LFM  
Nat conv  
Airflow  
Nat conv  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Output Current (A)  
Output Current (A)  
D005  
D005  
VIN = 12 V  
VOUT = 0.8 V  
VIN = 12 V  
VOUT = 1.2 V  
5. Safe Operating Area  
6. Safe Operating Area  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 1 A  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 1 A  
7. VIN Start-up Waveforms  
8. VIN Shut-down Waveforms  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 1 A  
VIN = 12 V  
VOUT = 1.0 V  
IOUT = 1 A  
9. EN Start-up Waveforms  
10. EN Shut-down Waveforms  
版权 © 2016, Texas Instruments Incorporated  
9
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPSM84A21 is a 14-V, 10-A, synchronous series capacitor step-down (buck) power module. The  
TPSM84A21 combines a 10-A DC/DC converter with power MOSFETs, shielded inductors, series capacitor,  
input and output capacitors, and passives into a low profile, overmolded package. The integrated input and  
output capacitors allows standard applications to operate with no additional input or output capacitors and only a  
single resistor to set the output voltage.  
The integrated components allow for high-efficiency, high-density, complete power supply designs with  
continuous output currents up to 10 A. The TPSM84A21 reduces the external component count by integrating  
both the input and output capacitors. The TPSM84A21 input voltage range is 8 V to 14 V with an output voltage  
range of 0.508 V to 1.35 V.  
The TPSM84A21 is a two-phase power supply with each phase switching at a fixed 2 MHz frequency, resulting  
in the internal oscillator frequency of 4 MHz. An external synchronization clock can also be provided via the  
SYNC pin.  
The TPSM84A21 starts up safely into loads with pre-biased outputs (non-zero volts at startup). The device  
implements an internal input voltage under voltage lockout (UVLO) feature which can be adjusted higher by  
adding an external resistor divider on the EN/UVLO pin. Electrical ON/OFF control is provided using the enable  
(EN) feature. The TPSM84A21 is disabled by pulling the EN pin low. When the device is disabled, the supply  
current is typically less than 50 μA.  
The TPSM84A21 has a power good comparator (PGOOD) which monitors the output voltage through the VS+  
pin. The PGOOD pin is an open-drain MOSFET which is held low until the output voltage is within ±5% of the set  
voltage. The PGOOD pin is held low during startup or when a fault occurs.  
7.2 Functional Block Diagram  
ILIM  
VG  
TPSM84A21  
VIN  
REG  
UVLO  
Protection  
EN/UVLO  
PGOOD  
VIN  
and  
Supervisory  
Circuits  
Oscillator  
4 MHz  
SYNC  
Power  
Stage  
and  
Control  
Logic  
ëhÜÇ  
10 O  
VOUT  
VS+  
1 kO  
VADJ  
Error  
Amp  
Soft  
Start  
VREF  
AGND  
PGND  
Copyright © 2016, Texas Instruments Incorporated  
10  
版权 © 2016, Texas Instruments Incorporated  
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage (VADJ)  
The VADJ pin programs the output voltage of the TPSM84A21. The output voltage adjustment range is from  
0.508 V to 1.35 V. The adjustment method requires the addition of RSET connected between VADJ and AGND. If  
an RSET resistor is not populated, the module will default to 0.508 V. The VS+ pin (pin 14) must be connected to  
VOUT. TI recommends to make the VS+ connection at the load for the best load regulation performance. The  
RSET resistor must be connected directly between the VADJ pin (pin 15) and AGND (pin 16).  
公式 1 can be used to calculate the ideal RSET resistor value for a given output voltage, VOUT. Use 公式 2 to  
calculate the actual VOUT for a given RSET resistor. 1 lists the ideal RSET resistor values for a number of  
common voltages. 1 also lists the closest E96 standard resistor values to the ideal RSET values along with the  
actual output voltage and the set-point error when using the E96 resistor value. For the most accurate output  
voltage set-point it is best to use the ideal resistor value. The ideal resistor value may not be a standard value  
and may require two standard value resistors in series or parallel to obtain the desired output voltage.  
1
RSET  
=
(k)  
VOUT  
œ1  
0.508  
(1)  
(2)  
1
VOUT  
=
0.508 *  
+1 (V)  
(
)
RSET (k)  
1. RSET Resistor Values  
Closest E96 Resistor Value  
VOUT (V)  
0.508  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.9  
Ideal RSET (kΩ)  
Open  
RSET (kΩ)  
Open  
12.1  
Actual VOUT (V)  
0.508  
0.549  
0.601  
0.65  
%
12.095  
5.522  
–0.003  
0.088  
0.046  
–0.248  
–0.013  
–0.006  
–0.392  
–0.137  
–0.027  
0.603  
0.348  
–0.490  
0.303  
0.166  
0.317  
–0.712  
–0.070  
5.49  
3.578  
3.57  
2.646  
2.67  
0.698  
0.749  
0.799  
0.847  
0.899  
0.949  
1.006  
1.053  
1.095  
1.153  
1.202  
1.254  
1.291  
1.349  
2.099  
2.10  
1.739  
1.74  
1.485  
1.50  
1.296  
1.30  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.149  
1.15  
1.033  
1.02  
0.937  
0.931  
0.866  
0.787  
0.732  
0.681  
0.649  
0.604  
0.858  
0.791  
0.734  
0.685  
0.641  
0.603  
版权 © 2016, Texas Instruments Incorporated  
11  
 
 
 
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
7.3.2 Input and Output Capacitance  
The TPSM84A21 requires no external input or output capacitance to operate. Internal to the TPSM84A21 there is  
66.1 µF (nominal) of ceramic input capacitance. Additionally, internal to the TPSM84A21 there is 185 µF  
(nominal) of ceramic output capacitance.  
Applications requiring additional ripple voltage reduction should add ceramic input and output capacitors directly  
at the VIN and VOUT pins of the device. Applications requiring improved transient response can also benefit by  
adding additonal ceramic or low-ESR bulk output capacitance. See the Capacitance section of the Electrical  
Characteristics table for more information when adding external input and output capacitors.  
7.3.3 Transient Response  
The exceptional transient response of the TPSM84A21 allows many applications to operate with little or no  
additional output capacitance. 11 through 14 show typical transient waveforms for the TPSM84A21.  
7.3.3.1 Transient Response Waveforms  
VIN = 12 V  
VOUT = 0.8 V  
Load Step = 5 A  
VIN = 12 V  
VOUT = 0.8 V  
Load Step = 5 A  
COUT = 0 µF Slew Rate = 1 A/µs  
COUT = 300 µF Slew Rate = 5 A/µs  
11. Transient Response  
12. Transient Response  
VIN = 12 V  
VOUT = 1.0 V  
Load Step = 5 A  
VIN = 12 V  
VOUT = 1.0 V  
Load Step = 5 A  
COUT = 0 µF Slew Rate = 1 A/µs  
COUT = 100 µF Slew Rate = 5 A/µs  
13. Transient Response  
14. Transient Response  
12  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
7.3.4 Oscillator Frequency  
The oscillator frequency of this converter is set at 4 MHz. The per phase switching frequency of the converter is  
half the oscillator frequency, or 2 MHz per phase. The oscillator frequency is fixed internally.  
During load transients, the internal control loop will momentarily change the switching frequency in order to meet  
the output voltage recovery.  
7.3.5 External Clock Syncronization  
An external clock can be connected to the SYNC pin. The external clock signal overrides the internal oscillator  
and is used as the system clock. This feature enables the user to synchronize the switching events to a master  
clock on their board. The internal phase locked loop (PLL) has been implemented to allow synchronization at  
frequencies between ±10% of the nominal oscillator frequency. This allows the user to easily switch between the  
internal oscillator mode and the external clock mode while converting power. Before the external clock is present  
or after it is removed, the device with default to the internal oscillator setting.  
To implement the synchronization feature, connect a square wave clock signal to the SYNC pin with a duty cycle  
between 20% and 80%. The clock signal amplitude must transition lower than 0.8 V and higher than 2 V. The  
start of the switching cycle is synchronized to the rising edge of the SYNC pin. The device can be configured for  
operation in applications where both an internal oscillator mode and an external synchronization clock mode are  
needed. Before the external clock is present, the switching frequency of the device is set by the internal  
oscillator. When the external clock is present, the SYNC mode overrides the internal oscillator. The first time the  
SYNC pin is pulled above the SYNC high threshold (2 V), the device switches from the internal oscillator mode to  
the SYNC mode and the PLL starts to lock onto the frequency of the external clock. When the external SYNC  
clock is removed, the converter will transition back to the internal oscillator after 4 internal clock cycles.  
7.3.6 Soft Start  
The TPSM84A21 has a pre-programmed soft start time of 4.1 ms (typ). The soft start time is the time it takes for  
the output voltage to rise from zero volts to the voltage set by the RSET resistor. Soft start is an important feature  
that limits inrush current and reduces the load on the input supply to this device. During soft start, the internal  
reference voltage is slowly ramped up to the internal reference voltage. This slowly increases the commanded  
output voltage of the converter and reduces the initial surge in current. During soft start PGOOD remains low, the  
PLL is not active, and output UVP/OVP faults are disabled.  
7.3.7 Power Good (PGOOD)  
The Power Good (PGOOD) pin is an open drain output. After startup, when the VADJ pin is typically between  
95% and 105% of the internal voltage reference, the PGOOD pin pull-down is released and the pin floats. The  
recommended pull-up resistor value is between 10 kΩ and 100 kΩ to a voltage source of 5.5 V or less. For  
convenience, VG can be used as the pull-up voltage. The PGOOD is in a defined state once the VIN input  
voltage is greater than approximately 1.2 V, but with reduced current sinking capability. The PGOOD achieves  
full current sinking capability once the VIN input voltage is above the input UVLO. The PGOOD pin is pulled low  
when the VADJ pin voltage is typically lower than 95% or greater than 105% of the nominal internal reference  
voltage. The PGOOD pin is also pulled low if a fault is detected, the EN pin is pulled low, or the converter is  
performing its soft-start power up sequence.  
7.3.8 Gate Driver (VG)  
A linear regulator internal to the TPSM84A21 generates a 4.8 V internal supply rail on the VG pin. The input of  
the linear regulator comes from the VIN pin. The VG supply rail is used to power the internal gate drivers and is  
the input to another regulator that generates the internal supply rails used by the controller. To improve converter  
efficiency, an external 5 V supply is recommended to be connected to the VG pin, thereby overriding the internal  
4.8 V regulator. This external supply must be between 5.0 V and 5.5 V and must be present before applying  
input voltage to the VIN pin. If not supplying an external voltage to this pin, leave this pin open.  
7.3.9 Startup into Pre-biased Outputs  
The TPSM84A21 prevents the low-side MOSFETs from discharging a pre-biased output. During pre-biased  
startup, the low-side MOSFETs do not turn on until after the high-side MOSFETs have started switching. The  
high-side MOSFETs do not start switching until the internal soft-start reference voltage exceeds the voltage at  
the VADJ pin.  
版权 © 2016, Texas Instruments Incorporated  
13  
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
7.3.10 Thermal Shutdown  
The internal thermal shutdown fault is triggered if the junction temperature exceeds 135°C (typ). This interrupts  
regulation by making the output high impedance. The device reinitiates the power up sequence when the junction  
temperature drops below 115°C (typ).  
7.3.11 Overcurrent Protection  
For protection against load faults, the TPSM84A21 incorporates output overcurrent protection. Applying a load  
that exceeds the module's overcurrent threshold causes the output to shut down and PGOOD is pulled low.  
Following shut down, the module attempts to restart after a 32.8-ms hiccup interval counter has expired. This  
provides a hiccup response to an overcurrent condition. During this period, the average current flowing into the  
fault is significantly reduced which reduces power dissipation. Once the fault is removed, the module  
automatically recovers and returns to normal operation.  
The TPSM84A21 overcurrent trip point is 15 A (typ) when the ILIM pin is left open. This provides enough margin  
for brief overshoots in inductor currents during a load transient while at the same time protecting against short  
circuits or other potentially catastrophic faults on the output. The overcurrent trip point can be reduced to  
11.25 A (typ) by placing a 47 kΩ between the ILIM pin and PGND. Programming resistors with up to ±5%  
variation can be used. The current limit selection is latched in at power up and cannot be changed without  
cycling input power or the EN pin voltage.  
7.3.12 Output Undervoltage/Overvoltage Protection  
The device incorporates an output undervoltage/overvoltage protection (UVP/OVP) circuit to prevent damage to  
the load. This fault can be triggered during large, fast load transients if insufficient output capacitance is used.  
The UVP/OVP feature compares the VADJ pin voltage to internal thresholds. If the VADJ pin voltage is lower  
than 90% or greater than 110% of the nominal internal reference voltage, the module is turned off, a fault is  
triggered, and the PGOOD pin is pulled low. When the fault hiccup interval is complete, the module will attempt  
to restart.  
7.3.13 Enable (EN)  
The EN pin provides electrical on and off control of the TPSM84A21. Once the EN pin voltage exceeds the  
threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the  
module stops switching and enters a low power state. There is no voltage hysteresis in the EN threshold. The  
rising and falling voltage thresholds occur at the same level. The EN pin has an internal pull-up current source,  
allowing the user to float the EN pin for enabling the device.  
If an application requires controlling the EN pin, use an open drain/collector device or a suitable logic gate to  
interface with the pin. 15 shows controlling the EN/UVLO pin using a MOSFET, Q1. Turning Q1 on, disables  
the device. Using a voltage superviser to control the EN pin allows control of the turn-on and turn-off of the  
device as opposed to relying on the ramp up or down of the input voltage source.  
VIN  
EN/  
UVLO  
Q1  
EN  
Control  
PGND  
15. Enable Control  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
7.3.14 Undervoltage Lockout (UVLO)  
The TPSM84A21 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin  
voltage is below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 7.65 V(max) with a  
typical hysteresis of 250 mV.  
If an application requires a higher UVLO threshold, the UVLO pin can be configured as shown in 16. The  
value of RUVLO1 and RUVLO2 can be calculated using 公式 3 and 公式 4 or selected from 2. It is recommended  
to set the UVLO hysteresis of approximately 500mV in order to avoid repeated chatter during start up or shut  
down. 2 shows recommended RUVLO1 and RUVLO2 values for various VIN UVLO rising thresholds, with 500 mV  
of hysteresis.  
VIN(RISE) œ VIN(FALL)  
RUVLO1  
=
3 µA  
RUVLO1 x 1.23  
VIN(FALL) œ 1.23 + (RUVLO1 x 4 µA)  
(3)  
(4)  
RUVLO2  
=
VIN  
wÜë[h1  
EN/  
UVLO  
wÜë[h2  
PGND  
16. Adjustable UVLO  
2. Standard Resistor Values For Adjusting VIN UVLO  
VIN UVLO RISING THRESHOLD (V)  
VIN UVLO FALLING THRESHOLD (V)  
RUVLO1 (kΩ)  
8.0  
7.5  
8.5  
8.0  
9.0  
8.5  
9.5  
9.0  
10.0  
9.5  
169  
29.4  
169  
27.4  
169  
25.5  
169  
24.3  
169  
22.6  
RUVLO2 (kΩ)  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The TPSM84A21 is in Active Mode when VIN is above the UVLO threshold and the EN/UVLO pin voltage is  
above the EN high threshold. The simplest way to enable the TPSM84A21 is to leave the EN/UVLO pin floating.  
This allows self start-up of the TPSM84A21 when the input voltage is above the UVLO threshold.  
7.4.2 Light Load Operation  
The TPSM84A21 operates in forced continuous conduction mode (FCCM) under light load conditions. When  
operating in FCCM, the switching frequency remains constant and the high side and low side MOSFETs are  
turned on and off in a complementary fashion allowing negative inductor current for part of the switching cycle.  
7.4.3 Shutdown Mode  
The EN/UVLO pin provides electrical ON and OFF control for the TPSM84A21. When the EN/UVLO pin voltage  
is below the EN threshold, the device is in shutdown mode. In shutdown mode the stand-by current is typically  
less than 50 μA. The TPSM84A21 also employs under voltage lock out protection. If VIN is below the UVLO  
level, the output of the regulator turns off.  
版权 © 2016, Texas Instruments Incorporated  
15  
 
 
 
 
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPSM84A21 is a synchronous series capacitor step down DC-DC power module. It is used to convert a  
higher DC voltage to a lower DC voltage with a maximum output current of 10 A. The following design  
procedure can be used to select components for the TPSM84A21. Alternately, the WEBENCH® software  
may be used to generate complete designs. When generating a design, the WEBENCH software utilizes an  
iterative design procedure and accesses comprehensive databases of components. Please visit  
www.ti.com/webench for more details.  
8.2 Typical Application  
The TPSM84A21 includes both input and output capacitors internal to the device, therefore it only requires a  
voltage setting resistor and possibly a pull-up resistor on the PGOOD pin in most applications. 17 shows a  
typical TPSM84A21 schematic with only the minimum required components.  
TPSM84A21  
12 V  
5V  
VIN  
VG  
VS+  
VOUT  
1.0 V  
10 kO  
VADJ  
PGOOD  
AGND  
PGND  
1.02 kO  
Copyright © 2016, Texas Instruments Incorporated  
17. Typical Application Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 3 and follow the design procedures below.  
3. Design Parameters  
DESIGN PARAMETER  
Input Voltage VIN  
VALUE  
12 V typical  
Output Voltage VOUT  
Output Current Rating  
Key care-abouts  
1.0 V  
10 A  
Tight transient response, small footprint, high efficiency, PGOOD signal  
±2% voltage deviation, 5 A load step, 5 A/µs slew rate  
Transient Response Requirements  
16  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Output Voltage  
The output voltage of the TPSM84A21 is externally adjustable using a single resistor (RSET). Select the value of  
RSET from or calculate using 公式 5:  
1
Rset  
=
kW  
( )  
Vout  
- 1  
0.508  
(5)  
To set the output voltage to 1.0 V, the calculated value for RSET is 1.03 kΩ. The closest E96 value is 1.02 kΩ.  
8.2.2.2 Input and Output Capacitance  
The TPS84A21 requires no external input or output capacitance to operate. Input and output capacitors can be  
added to improve ripple or transient response. In this design example, in order to meet the ±2% voltage deviation  
for a 5-A, 5-A/µs load step, 100 µF of output capacitance is required.  
8.2.2.3 Power Good (PGOOD)  
Applications requiring voltage rail sequencing can benefit from the PGOOD signal present with the TPSM84A21.  
The PGOOD pin is an open drain output. When the output voltage is typically between 95% and 105% of the set  
point, the PGOOD pin pull-down is released and the pin floats, requiring an external pull-up resistor for a high  
signal. A 10-kΩ pull-up resistor is placed between the PGOOD pin and an external 5V rail.  
8.2.2.4 External VG Voltage  
The VG supply rail is used to power the internal gate drivers and other internal supply rails used by the  
controller. For best efficiency, supply an external 5 V to the VG pin, thereby overriding the internal 4.8 V  
regulator. Expect a 2-3% efficiency improvement by driving the VG pin with an external 5V.  
8.2.3 Application Curves  
VIN = 12 V  
VOUT = 1.0 V  
VIN = 12 V  
VOUT = 1.0 V  
Load Step = 5 A  
COUT = 100 µF Slew Rate = 1 A/µs  
18. Start-up Waveforms  
19. Application Transient Response  
版权 © 2016, Texas Instruments Incorporated  
17  
 
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The TPSM84A21 is designed to operate from an input voltage supply range between 8 V and 14 V. This input  
supply should be well regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail should be low enough that an input current transient does not cause a high  
enough drop at the supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the TPSM84A21, additional bulk capacitance may be  
required at the input pins. A typical recommended amount of bulk input capacitance is 47 μF - 100 μF.  
18  
版权 © 2016, Texas Instruments Incorporated  
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
10 Layout  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 20 and 22  
show typical, top-side PCB layouts. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
When adding input and output ceramic capacitors, place them close to the device pins to minimize high  
frequency noise.  
Locate any additional output capacitors between the ceramic capacitors and the load.  
Keep AGND and PGND separate from one another. The connection is made internal to the device.  
Place RSET as close as possible to the VADJ pin.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Examples  
The layout shown in 20 shows the minimum solution size with only a single voltage setting resistor (R1) as the  
only additional required component. 21 shows a typical internal PCB layer with a trace connecting the VS+ pin  
to VOUT near the load.  
20. Minimum Component Layout  
21. VS+ Trace on Internal Layer  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
TPSM84A21  
ZHCSFS5 DECEMBER 2016  
www.ti.com.cn  
Layout Examples (接下页)  
22 shows a layout with the placement of additional ceramic input capacitors (C1, C3) and ceramic output  
capacitors (C2, C4) for designs that require additional ripple reduction or improved transient response. 23  
shows a typical internal PCB layer with a trace connecting the VS+ pin to VOUT near the load  
22. Layout with Optional CIN and COUT  
23. VS+ Trace on Internal Layer  
20  
版权 © 2016, Texas Instruments Incorporated  
 
 
TPSM84A21  
www.ti.com.cn  
ZHCSFS5 DECEMBER 2016  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
TPSM84A22 8V 14V 输入、1.2V 2.05V 输出、10A SWIFT™ 电源模块》(文献编号:SLVSDF8)  
TPS54A20 8V 14V 输入、10A、频率高达 10MHz SWIFT™ 降压转换器》(文献编号:SLVSCQ8)  
11.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
SWIFT, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2019  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
TPSM84A21MOJR  
ACTIVE  
QFM  
QFM  
MOJ  
20  
20  
500  
RoHS (In  
Work) & Green  
(In Work)  
NIAU  
Level-3-260C-168 HR  
-40 to 85  
TPSM84A21  
TPSM84A21MOJT  
ACTIVE  
MOJ  
250  
RoHS (In  
Work) & Green  
(In Work)  
NIAU  
Level-3-260C-168 HR  
-40 to 85  
TPSM84A21  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Dec-2019  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
MOJ0020A  
QFM - 2.3 mm max height  
S
C
A
L
E
0
.
9
5
0
QUAD FLAT MODULE  
9.1  
8.9  
B
A
PIN 1 ID  
AREA  
15.1  
14.9  
C
2.3 MAX  
SEATING PLANE  
0.08 C  
0.4 MAX  
4.8±0.1  
SYMM  
1.6  
1.4  
7X  
8
7
3X 6.65  
10  
(0.1) TYP  
11  
14  
2X 1  
2X 1  
2X 3  
2X 5  
PKG  
20  
0.00  
6.4±0.1  
2X 4  
2
1
0.7  
12X  
4X 6.65  
17  
0.5  
0.1  
0.05  
C A B  
19  
PIN 1 ID  
(OPTIONAL)  
1.05  
0.85  
12X  
4222962/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
MOJ0020A  
QFM - 2.3 mm max height  
QUAD FLAT MODULE  
SYMM  
PKG  
12X (3.925)  
2X (1.3)  
19  
2X (3.65)  
17  
1
KEEP-OUT AREA  
(2.8 X 4)  
2
5
16  
8X (1)  
8X (2.15)  
(6.65)  
20  
(1.21)  
TYP  
2X (5)  
(6.4)  
PKG  
(0.605)  
TYP  
4X (2.95)  
11  
12X (0.6)  
12X (0.95)  
(6.65)  
(0.765) TYP  
(1.53) TYP  
(
0.2) VIA  
TYP  
7X ( 1.5)  
8
10  
(R0.05) TYP  
2X (3.65)  
KEEP-OUT AREA  
(2.9 X 3.25)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:6X  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
4222962/A 05/2016  
NOTES: (continued)  
3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
MOJ0020A  
QFM - 2.3 mm max height  
QUAD FLAT MODULE  
12X (3.925)  
2X (1.3)  
2X (3.65)  
19  
17  
1
2
16  
8X (1)  
(1.53) TYP  
(6.65)  
20  
(1.21) TYP  
2X (5)  
(2.42)  
TYP  
5
PKG  
11  
12X (0.6)  
12X (0.95)  
(6.65)  
15X (1.01)  
METAL  
TYP  
15X (1.33)  
7X ( 1.42)  
8
10  
(R0.05) TYP  
SYMM  
2X (3.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1, 8-10 & 17-19: 90%  
PAD 20: 65.6 %  
SCALE:8X  
4222962/A 05/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  

相关型号:

TPSM84A21MOJT

具有集成输入和输出电容器的 8V 至 14V 输入、0.508V 至 1.35V 输出、10A 电源模块 | MOJ | 20 | -40 to 85
TI

TPSM84A22

具有集成输入和输出电容器的 8V 至 14V 输入、1.2V 至 2.05V 输出、10A 电源模块
TI

TPSM84A22MOJR

具有集成输入和输出电容器的 8V 至 14V 输入、1.2V 至 2.05V 输出、10A 电源模块 | MOJ | 20 | -40 to 85
TI

TPSM84A22MOJT

具有集成输入和输出电容器的 8V 至 14V 输入、1.2V 至 2.05V 输出、10A 电源模块 | MOJ | 20 | -40 to 85
TI

TPSM863252

3-V to 17-V input voltage, 3-A Eco-mode synchronous buck module
TI

TPSM863257

3-V to 17-V input voltage, 3-A forced-CCM synchronous buck module
TI

TPSM8A28

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense
TI

TPSM8A28RDGR

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense
TI

TPSM8A29

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense
TI

TPSM8A29RDGR

TPSM8A28, TPSM8A29 2.7-V to 16-V Input, 12-A, 15-A Buck Power Modules with Differential Remote Sense
TI

TPSM8D6B24

4V 至 16V 输入、双路 25A/单路 50A PMBus® 电源模块
TI

TPSM8D6B24MOWR

4V 至 16V 输入、双路 25A/单路 50A PMBus® 电源模块

| MOW | 59 | -40 to 125
TI