TRF3722 [TI]

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器;
TRF3722
型号: TRF3722
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器

文件: 总69页 (文件大小:3081K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
TRF3722 具有集成 PLL VCO 的正交调制器  
1 特性  
3 说明  
1
具有集成 PLL VCO IQ 调制器  
TRF3722 是一款高性能直接转换正交调制器,具有优  
异的线性和低噪声性能。基带共模电压典型值为  
0.25V,支持与电流源 DAC 的无缝连接。  
整数 N/分数 N PLL  
调制器支持 400MHz 4200MHz 频率范围  
此器件集成了 PLL VCO,能够为调制器提供本地振  
荡器 (LO)PLL VCO 可实现卓越的相位噪声性  
能,能够满足最为严格的传输通信要求。此器件还提供  
了额外的 LO 输出,用于驱动其它调制器或降频混频  
器。该调制器 具有 一个可实现典型 3dB 增益提升的高  
增益模式和一个适用于需要对功耗进行优化的应用的低  
功耗模式。  
PLL VCO 支持 280MHz 4100MHz 的频率范  
900MHz 时的 OIP3 31 dBm  
1800MHz 时的 OIP3 30 dBm  
VCO 1800MHz 开环相位噪声:1MHz 偏移时为  
-141 dBc/Hz  
独立式 LO 输出支持 1/2/4/8 分频  
调制器低功耗和高增益模式  
多种断电模式  
器件信息(1)  
器件型号  
TRF3722  
封装  
VQFN (48)  
封装尺寸(标称值)  
7.00mm x 7.00mm  
2 应用  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
无线基础设施  
CDMAIS95UMTSCDMA2000TD-  
SCDMA  
LTETD-LTELTE Advanced  
TDMAGSMEDGEMC-GSM  
点对点微波,点对多点微波  
软件定义的无线电  
射频中继器,分布式天线系统  
方框图  
NC  
VTUNE EXT_VCO BBI_N BBI_P  
VCC_TK  
VCC  
32  
35  
33  
42  
23  
21  
16  
14  
38  
39  
LO_OUTN  
LO_OUTP  
LO Div  
9
PLL Div  
Charge  
Pump  
41  
44  
CP_OUT  
REFIN  
4
0h  
PFD  
Pre  
Scaler  
18  
RFOUT  
GND  
TX Div  
S
90h  
R Div  
N Div  
45  
43  
SDM  
40  
37  
30  
26  
LE  
DATA  
CLK  
46  
47  
48  
Serial Interface  
PD RDBK LD  
BBQ_N BBQ_P  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLWS245  
 
 
 
 
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
目录  
6.19 Typical Characteristics - Current Consumption .... 29  
6.20 Typical Characteristics - Power Dissipation.......... 31  
Parameter Measurement Information ................ 33  
7.1 Serial Interface Timing Diagram ............................. 33  
Detailed Description ............................................ 35  
8.1 Overview ................................................................. 35  
8.2 Functional Block Diagram ....................................... 35  
8.3 Feature Description................................................. 36  
8.4 Device Functional Modes........................................ 39  
8.5 Register Maps ........................................................ 42  
Application and Implementation ........................ 55  
9.1 Application Information............................................ 55  
9.2 Typical Application .................................................. 55  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 9  
6.7 Typical Characteristics - Output Power................... 10  
6.8 Typical Characteristics - Gain................................. 11  
6.9 Typical Characteristics - OIP3 ................................ 12  
6.10 Typical Characteristics - OIP2 .............................. 13  
6.11 Typical Characteristics - OP1dB........................... 14  
6.12 Typical Characteristics - Noise ............................. 15  
6.13 Typical Characteristics - Unadjusted CF............... 16  
6.14 Typical Characteristics - Unadjusted SBS ............ 17  
6.15 Typical Characteristics - LO Harmonic ................. 18  
6.16 Typical Characteristics - BB Harmonic ................. 20  
6.17 Typical Characteristics - RF Output Return Loss . 22  
6.18 Typical Characteristics - PLL/VCO ....................... 23  
7
8
9
10 Power Supply Recommendations ..................... 58  
11 Layout................................................................... 59  
11.1 Layout Guidelines ................................................. 59  
11.2 Layout Example .................................................... 59  
12 器件和文档支持 ..................................................... 60  
12.1 接收文档更新通知 ................................................. 60  
12.2 社区资源................................................................ 60  
12.3 ....................................................................... 60  
12.4 静电放电警告......................................................... 60  
12.5 Glossary................................................................ 60  
13 机械、封装和可订购信息....................................... 60  
4 修订历史记录  
Changes from Revision A (June 2014) to Revision B  
Page  
已更改 256MHz 更改为 280MHzPLL VCO 特性 要点部分) ......................................................................................... 1  
Changed ESD Ratings table title, updated to current standards ........................................................................................... 4  
Added Typical and footnote 2 to Typical VCO frequency range and Typical output frequency range parameters ............... 8  
Changed Figure 1 .................................................................................................................................................................. 9  
Changed location of TRF3722 Application Schematic figure and all associated text to be under Typical Application  
section .................................................................................................................................................................................. 55  
Changes from Original (May 2014) to Revision A  
Page  
从单页产品预览更改为生产..................................................................................................................................................... 1  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
5 Pin Configuration and Functions  
RGZ Package  
48-Pin VQFN  
Top View  
1
36  
35  
34  
PD  
NC  
2
RDBK  
VCC_LO2  
VTUNE  
3
LD  
4
5
VCC_DIG  
GND  
33 VCC_VCO  
32 VCC_TK  
31  
30  
VCC_LO1  
GND  
6
EXT_VCO  
GND  
TRF3722  
7
BBQ_N  
NC  
8
29 BBI_N  
28 NC  
9
BBQ_P  
GND  
27 BBI_P  
10  
11  
12  
26  
25  
GND  
NC  
NC  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
BBI_N  
BBI_P  
BBQ_N  
BBQ_P  
CLK  
29  
27  
8
I
I
BB in-phase input: negative  
BB in-phase input: positive  
BB quadrature input: negative  
BB quadrature input: positive  
I
10  
48  
41  
47  
31  
I
I
Serial interface clock input; digital input  
Charge pump output  
CP_OUT  
DATA  
O
I
Serial interface data input; digital input  
External local oscillator input  
EXT_VCO  
I
5, 7, 11, 15, 17, 19, 20,  
22, 26, 30, 37, 40, 43,  
45  
GND  
Ground  
LD  
3
O
I
PLL lock detect output  
LE  
46  
Serial interface latch enable; digital input  
Local oscillator output: negative  
Local oscillator output: positive  
No connect  
LO_OUTN  
LO_OUTP  
NC  
38  
O
O
39  
9, 12, 13, 24, 25, 36  
28  
NC  
No connect; N/C or ground to paddle  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
PD  
I
LO Div, TX Div, modulator power down (High = PD)  
Serial interface internal registers readback output  
Reference clock input  
RDBK  
REFIN  
RFOUT  
2
O
I
44  
18  
4
O
RF output  
VCC_DIG  
VCC_LO1  
VCC_LO2  
VCC_MOD1  
VCC_MOD2  
VCC_MOD3  
VCC_MOD4  
VCC_PLL  
VCC_TK  
3.3 V digital power supply  
6
3.3 V TX Div power supply  
35  
14  
16  
21  
23  
42  
32  
33  
34  
3.3 V LO Div power supply  
3.3 V modulator power supply  
3.3 V modulator power supply  
3.3 V modulator power supply  
3.3 V modulator power supply  
3.3 V PLL power supply  
3.3 V or 5 V VCO tank power supply  
3.3 V VCO power supply  
VCC_VCO  
VTUNE  
I
VCO control voltage input  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
All VCC except VCC_TK  
+3.6  
+5.5  
3.6  
Supply voltage  
VCC_TK  
V
Digital I/O voltage  
V
Operating junction temperature  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
3.3  
MAX  
3.6  
UNIT  
V
3.3 V power-supply voltage  
VCC  
5 V or 3.3 V power-supply voltage, VCC _TK  
Operating junction temperature range  
Ambient temperature range  
3
3.3/5  
5.5  
V
TJ  
–40  
–40  
125  
85  
°C  
°C  
TA  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.4 Thermal Information  
TRF3722  
THERMAL METRIC(1)  
RGZ (VQFN)  
48 PINS  
27.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
12.8  
4.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
4.3  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over recommended operating conditions: VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C. Optimized bias settings as per Table 16.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC PARAMETERS  
Typical Operating Mode; LO out = Off  
Typical Operating Mode; LO out = On  
328(1)  
374  
21  
mA  
mA  
mA  
W
ICC  
3.3 V Supply Current  
5 V Supply Current  
ICC_TK  
Typical Operating Mode; LO out = Off  
Typical Operating Mode; LO out = On  
Low Power Mode (Mod); LO out = Off  
Hardware Power Down  
1.18  
1.34  
0.91  
76  
PDISS  
Total Power Dissipation  
W
W
mA  
mA  
IPD  
Power Down Current  
Serial interface Power Down  
2
RFOUT FREQUENCY  
Frequency  
400  
4200  
0.5  
MHz  
IQ MODULATOR ƒLO = 750 MHz  
Typical Operating Mode  
High Gain Mode  
0.8  
3.6  
dB  
dB  
Gain  
G
Gain Flatness  
In 300MHz bandwidth  
–0.5  
dB  
OP1dB  
OIP3  
Output Compression Point  
10.2  
31  
dBm  
dBm  
dBm  
dBc  
Output 3rd Order Intercept Point  
Output 2nd Order Intercept Point  
Unadj. SideBand Suppression  
Unadj. Carrier Feedthrough  
Output Noise Spectral Density  
LO Second Harmonic  
FBB = 4.5, 5.5 MHz  
FBB = 4.5, 5.5 MHz  
OIP2  
62  
SBS  
–42  
–50  
–159  
–49  
–47  
–72  
–70  
CF  
dBm  
dBm/Hz  
dBc  
NSDO  
HD2LO  
HD3LO  
HD2BB  
HD3BB  
BB inputs terminated on 50 Ω  
Measured at 2 x fLO  
LO Third Harmonic  
Measured at 3 x fLO  
dBc  
Baseband Second Harmonic  
Baseband Third Harmonic  
Measured at fLO ± 2 x fBB  
Measured at fLO ± 3 x fBB  
dBc  
dBc  
(1) Powered down output buffer and LO divider.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions: VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C. Optimized bias settings as per Table 16.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IQ MODULATOR ƒLO = 900 MHz  
Typical Operating Mode  
0.8  
3.6  
dB  
dB  
Gain  
G
High Gain Mode  
Gain Flatness  
In 300MHz bandwidth  
–0.5  
0.5  
dB  
OP1dB  
OIP3  
Output Compression Point  
Output 3rd Order Intercept Point  
Output 2nd Order Intercept Point  
Unadj. Side Band Suppression  
Unadj. Carrier Feed through  
Output Noise Spectral Density  
LO Second Harmonic  
10  
31  
dBm  
dBm  
dBm  
dBc  
FBB = 4.5, 5.5 MHz  
FBB = 4.5, 5.5 MHz  
OIP2  
62.5  
–42.5  
–50  
SBS  
CF  
dBm  
dBm/Hz  
dBc  
NSDO  
HD2LO  
HD3LO  
HD2BB  
HD3BB  
BB inputs terminated on 50 Ω  
Measured at 2 x fLO  
–159  
–47  
LO Third Harmonic  
Measured at 3 x fLO  
–54.5  
–65.5  
–71.5  
dBc  
Baseband Second Harmonic  
Baseband Third Harmonic  
Measured at fLO ± 2 x fBB  
Measured at fLO ± 3 x fBB  
dBc  
dBc  
IQ MODULATOR ƒLO = 1800 MHz  
Typical Operating Mode  
High Gain Mode  
0.3  
3
dB  
dB  
Gain  
G
Gain Flatness  
In 300 MHz bandwidth  
–0.5  
0.5  
dB  
OP1dB  
OIP3  
OIP2  
SBS  
Output Compression Point  
Output 3rd Order Intercept Point  
Output 2nd Order Intercept Point  
Unadj. Side Band Suppression  
Unadj. Carrier Feed through  
Output Noise Spectral Density  
LO Second Harmonic  
13  
29.5  
57  
dBm  
dBm  
dBm  
dBc  
dBm  
dBm/Hz  
dBc  
dBc  
dBc  
dBc  
dB  
fBB = 4.5, 5.5 MHz  
fBB = 4.5, 5.5 MHz  
–54.5  
–57  
CF  
NSDO  
HD2LO  
HD3LO  
HD2BB  
HD3BB  
RLO  
BB inputs terminated on 50 Ω  
Measured at 2 x fLO  
–158  
–36.5  
–33.5  
–65.5  
–73  
LO Third Harmonic  
Measured at 3 x fLO  
Baseband Second Harmonic  
Baseband Third Harmonic  
RF Output Return Loss  
Measured at fLO ± 2 x fBB  
Measured at fLO ± 3 x fBB  
6
IQ MODULATOR ƒLO = 2150 MHz  
Typical Operating Mode  
High Gain Mode  
0.2  
3
dB  
dB  
Gain  
G
Gain Flatness  
In 300 MHz bandwidth  
–0.5  
0.5  
dB  
OP1dB  
OIP3  
Output Compression Point  
Output 3rd Order Intercept Point  
Output 2nd Order Intercept Point  
Unadj. Side Band Suppression  
Unadj. Carrier Feedt hrough  
Output Noise Spectral Density  
LO Second Harmonic  
11.6  
30  
dBm  
dBm  
dBm  
dBc  
FBB = 4.5, 5.5 MHz  
FBB = 4.5, 5.5 MHz  
OIP2  
43  
SBS  
–43  
–42  
–157  
–40  
–31  
–51  
–69  
CF  
dBm  
dBm/Hz  
dBc  
NSDO  
HD2LO  
HD3LO  
HD2BB  
HD3BB  
BB inputs terminated on 50 Ω  
Measured at 2 x fLO  
LO Third Harmonic  
Measured at 3 x fLO  
dBc  
Baseband Second Harmonic  
Baseband Third Harmonic  
Measured at fLO ± 2 x fBB  
Measured at fLO ± 3 x fBB  
dBc  
dBc  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Electrical Characteristics (continued)  
Over recommended operating conditions: VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C. Optimized bias settings as per Table 16.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IQ MODULATOR ƒLO = 2700 MHz  
Typical Operating Mode  
0
dB  
dB  
Gain  
G
High Gain Mode  
2.4  
Gain Flatness  
In 300MHz bandwidth  
–0.5  
0.5  
dB  
OP1dB  
OIP3  
Output Compression Point  
Output 3rd Order Intercept Point  
Output 2nd Order Intercept Point  
Unadj. Side Band Suppression  
Unadj. Carrier Feed through  
Output Noise Spectral Density  
LO Second Harmonic  
10.4  
29.5  
45.5  
–33  
dBm  
dBm  
dBm  
dBc  
FBB = 4.5, 5.5 MHz  
FBB = 4.5, 5.5 MHz  
OIP2  
SBS  
CF  
–39.6  
–156  
–29  
dBm  
dBm/Hz  
dBc  
NSDO  
HD2LO  
HD3LO  
HD2BB  
HD3BB  
BB inputs terminated on 50 Ω  
Measured at 2 x fLO  
LO Third Harmonic  
Measured at 3 x fLO  
–37  
dBc  
Baseband Second Harmonic  
Baseband Third Harmonic  
Measured at fLO ± 2 x fBB  
Measured at fLO ± 3 x fBB  
–53  
dBc  
–68  
dBc  
IQ MODULATOR ƒLO = 3600 MHz  
Typical Operating Mode  
High Gain Mode  
–2  
0.4  
dB  
dB  
G
Gain  
OP1dB  
OIP3  
Output Compression Point  
Output 3rd Order Intercept Point  
Output 2nd Order Intercept Point  
Unadj. Side Band Suppression  
Unadj. Carrier Feed through  
LO Second Harmonic  
8.7  
dBm  
dBm  
dBm  
dBc  
dBm  
dBc  
dBc  
dBc  
dBc  
FBB = 4.5, 5.5 MHz  
FBB = 4.5, 5.5 MHz  
24.5  
45.5  
–31.5  
–39.5  
–28.4  
–31.5  
–55  
OIP2  
SBS  
CF  
HD2LO  
HD3LO  
HD2BB  
HD3BB  
Measured at 2 x fLO  
LO Third Harmonic  
Measured at 3 x fLO  
Baseband Second Harmonic  
Baseband Third Harmonic  
Measured at fLO ± 2 x fBB  
Measured at fLO ± 3 x fBB  
–65  
BASEBAND INPUTS  
VCM  
Common Mode Voltage  
Baseband I/Q input  
1 dB Bandwidth  
Resistance  
0
0.25  
900  
5
0.5  
V
MHz  
kΩ  
BWBB  
Baseband Bandwidth  
ZinBB  
Baseband Input Impedance  
Capacitance  
4
pF  
REFERENCE OSCILLATOR PARAMETERS  
Reference Frequency  
Fref  
Max  
350  
MHz  
VPP  
pF  
Reference Input Sensitivity  
0.2  
3.3  
65  
Parallel capacitance  
Parallel resistance  
2
Zinref  
Reference Input Impedance  
2.2  
kΩ  
PFD, CP  
FPFD  
PFD Frequency  
Max, refer to the Typical Application  
MHz  
mA  
ICP_OUT  
Charge Pump Current  
In-band Normalized PN Floor  
Max  
1.94  
Integer Mode  
–221  
dBc/Hz  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions: VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C. Optimized bias settings as per Table 16.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCO  
fVCO  
KV  
Typical VCO frequency range(2)  
VCO gain  
2050  
4100  
MHz  
VTUNE = 1.1 V  
30  
–74  
MHz/V  
VCO Open Loop Phase Noise;  
fVCO = 3600 MHz;  
TX Div = Div-by-1;  
fOUT = 3600 MHz  
10 kHz  
100 kHz  
1 MHz  
–109  
–135  
–152  
–156  
–80  
dBc/Hz  
dBc/Hz  
VTUNE = 1.1 V  
10 MHz  
40 MHz  
10 kHz  
100 kHz  
1 MHz  
PN  
VCO Open Loop Phase Noise;  
fVCO = 3600 MHz;  
TX Div = Div-by-2;  
fOUT = 1800 MHz;  
–115  
–141  
–156  
–158  
VTUNE = 1.1 V  
10 MHz  
40 MHz  
LO OUTPUT  
fOUT  
Divide by 1  
2050  
1025  
4100  
2050  
1025  
512.5  
Divide by 2  
Typical output frequency range(2)  
MHz  
Divide by 4  
512.5  
256.25  
Divide by 8  
PLO  
Output power  
SE at 1800 MHz, OUTBUF_BIAS = 2  
1
0
dBm  
MHz  
dBm  
External VCO input Frequency Range  
External VCO Input Level  
250  
–10  
4200  
10  
CLOSE LOOP PLL OR VCO  
Frac-N; PFD = 15.36 MHz; fOUT  
3532.89 MHz;  
Integration BW =1 kHz to 10 MHz; SSB  
=
-45.2  
-49.8  
dB  
dB  
Integrated Phase Noise  
Int-N; PFD = 2.56 MHz; fOUT = 1799.68  
MHz;  
Integration BW = 500 Hz to 20 MHz; SSB  
10 kHz  
100 kHz  
1 MHz  
–96  
–114  
–140  
–156  
–158  
VCO Close Loop Phase Noise;  
fVCO = 3600 MHz;  
TX DIV = Div-by-2;  
fOUT = 1800 MHz;  
Integer Mode, PFD = 2.56MHz  
dBc/Hz  
10 MHz  
40 MHz  
DIGITAL INTERFACE  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
2
0
3.3  
V
V
V
V
0.8  
VOH  
VOL  
Referenced to VCC_DIG  
Referenced to VCC_DIG  
0.8 x VCC  
0.2 x VCC  
(2) Divided-down ranges minimum and maximum values are typical but are not specified.  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.6 Typical Characteristics  
6.6.1 Modulator Output Spectrum  
Graphical illustration of the modulator output spectrum with two tones is shown in Figure 1.  
Freq.  
FBBn = Baseband Frequency  
Fn = RF Frequency  
F3rdH/L  
F2ndH/L  
=
=
3rd Order Intermodulation Product Frequency (High Side / Low Side)  
2nd Order Intermodulation Product Frequency (High Side / Low Side)  
LO = Local Oscillator Frequency  
LSBn  
HD2BB  
HD3BB  
=
=
=
Lower Sideband Frequency  
Baseband second harmonic (High Side / Low Side)  
Baseband thrid harmonic (High Side / Low Side)  
Figure 1. Graphical Illustration of Modulator Output Spectrum  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.7 Typical Characteristics - Output Power  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C, I/Q frequency (fBB  
4.5 MHz and 5.5 MHz, 500 mVPP, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per  
Table 16. Total Pout is two tones combined power.  
)
6
4
6
4
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D015  
D218  
Figure 2. Total POUT vs Temperature, Typical Operating  
Mode  
Figure 3. Total POUT vs Supply, Typical Operating Mode  
6
6
4
4
2
2
0
0
-2  
-4  
-2  
-4  
-6  
-6  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-8  
-8  
-10  
-10  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D017  
D219  
Figure 4. Total POUT vs Temperature, High Gain Mode  
Figure 5. Total POUT vs Supply, High Gain Mode  
6
6
4
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
4
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D019  
D220  
Figure 6. Total POUT vs Temperature, Low Power Mode  
Figure 7. Total POUT vs Supply, Low Power Mode  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.8 Typical Characteristics - Gain  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
6
4
6
4
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D003  
D004  
Figure 8. Voltage Gain vs Temperature, Typical Operating  
Mode  
Figure 9. Voltage Gain vs Supply, Typical Operating Mode  
6
6
4
4
2
2
0
0
-2  
-4  
-2  
-4  
-6  
-6  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-8  
-8  
-10  
-10  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D005  
D006  
Figure 10. Voltage Gain vs Temperature, High Gain Mode  
Figure 11. Voltage Gain vs Supply, High Gain Mode  
6
6
4
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
4
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D007  
D008  
Figure 12. Voltage Gain vs Temperature, Low Power Mode  
Figure 13. Voltage Gain vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.9 Typical Characteristics - OIP3  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C, I/Q frequency (fBB  
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
Reported OIP3 is minimum of low side and high side.  
)
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D009  
D010  
Figure 14. OIP3 vs Temperature, Typical Operating Mode  
Figure 15. OIP3 vs Supply, Typical Operating Mode  
34  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
32  
30  
28  
26  
24  
22  
20  
18  
16  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D011  
D012  
Figure 16. OIP3 vs Temperature, High Gain Mode  
Figure 17. OIP3 vs Supply, High Gain Mode  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D013  
D014  
Figure 18. OIP3 vs Temperature, Low Power Mode  
Figure 19. OIP3 vs Supply, Low Power Mode  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.10 Typical Characteristics - OIP2  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
Reported OIP2 is minimum of low side and high side.  
70  
65  
60  
55  
50  
45  
40  
35  
30  
70  
65  
60  
55  
50  
45  
40  
35  
30  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D021  
D022  
Figure 20. OIP2 vs Temperature, Typical Operating Mode  
Figure 21. OIP2 vs Supply, Typical Operating Mode  
70  
70  
65  
60  
55  
50  
45  
40  
35  
30  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
65  
60  
55  
50  
45  
40  
35  
30  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D023  
D024  
Figure 22. OIP2 vs Temperature, High Gain Mode  
Figure 23. OIP2 vs Supply, High Gain Mode  
70  
65  
60  
55  
50  
45  
40  
35  
30  
70  
65  
60  
55  
50  
45  
40  
35  
30  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D025  
D026  
Figure 24. OIP2 vs Temperature, Low Power Mode  
Figure 25. OIP2 vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.11 Typical Characteristics - OP1dB  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C, I/Q frequency (fBB  
)
5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
TA = -40èC  
TA = 25èC  
TA = 85èC  
6
6
4
4
2
2
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
0
-2  
-2  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D027  
D028  
Figure 26. OP1dB vs Temperature, Typical Operating Mode  
Figure 27. OP1dB vs Supply, Typical Operating Mode  
16  
16  
TA = -40èC  
TA = 25èC  
TA = 85èC  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
0
-2  
-2  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D029  
D030  
Figure 28. OP1dB vs Temperature, High Gain Mode  
Figure 29. OP1dB vs Supply, High Gain Mod  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
6
6
4
4
2
2
0
0
-2  
-2  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D031  
D032  
Figure 30. OP1dB vs Temperature, Low Power Mode  
Figure 31. OP1dB vs Supply, Low Power Mode  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.12 Typical Characteristics - Noise  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, TA = 25°C, BB inputs terminated to  
50 Ω and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
200  
600  
1000  
1400  
1800  
2200  
2600  
200  
600  
1000  
1400  
1800  
2200  
2600  
Frequency (MHz)  
Frequency (MHz)  
D045  
D046  
Figure 32. Noise vs Temperature, Typical Operating Mode  
Figure 33. Noise vs Supply, Typical Operating Mode  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
-166  
TA = -40èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
TA = 25èC  
-168  
TA = 85èC  
-170  
200  
600  
1000  
1400  
1800  
2200  
2600  
200  
600  
1000  
1400  
1800  
2200  
2600  
Frequency (MHz)  
Frequency (MHz)  
D047  
D048  
Figure 34. Noise vs Temperature, High Gain Mode  
Figure 35. Noise vs Supply, High Gain Mode  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
200  
600  
1000  
1400  
1800  
2200  
2600  
200  
600  
1000  
1400  
1800  
2200  
2600  
Frequency (MHz)  
Frequency (MHz)  
D049  
D050  
Figure 36. Noise vs Temperature, Low Power Mode  
Figure 37. Noise vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.13 Typical Characteristics - Unadjusted CF  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK= 5 V, TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D033  
D034  
Figure 38. Unadjustable CF vs Temperature,  
Typical Operating Mode  
Figure 39. Unadjustable CF vs Supply,  
Typical Operating Mode  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D035  
D036  
Figure 40. Unadjustable CF vs Temperature,  
High Gain Mode  
Figure 41. Unadjustable CF vs Supply, High Gain Mode  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D037  
D038  
Figure 42. Unadjustable CF vs Temperature,  
Low Power Mode  
Figure 43. Unadjustable CF vs Supply, Low Power Mode  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.14 Typical Characteristics - Unadjusted SBS  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK= 5 V, and TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D221  
D222  
Figure 44. Unadjustable SBS vs Temperature,  
Typical Operating Mode  
Figure 45. Unadjustable SBS vs Supply,  
Typical Operating Mode  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D223  
D224  
Figure 46. Unadjustable SBS vs  
Temperature, High Gain Mode  
Figure 47. Unadjustable SBS vs Supply,  
High Gain Mode  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D225  
D226  
Figure 48. Unadjustable SBS vs Temperature,  
Low Power Mode  
Figure 49. Unadjustable SBS vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.15 Typical Characteristics - LO Harmonic  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D051  
D201  
Figure 50. LO Second Harmonic vs Temperature,  
Typical Operating Mode  
Figure 51. LO Second Harmonic vs Supply,  
Typical Operating Mode  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
500 1000 1500 2000 2500 3000 3500 4000 4500  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D053  
D202  
Figure 52. LO Second Harmonic vs Temperature,  
High Gain Mode  
Figure 53. LO Second Harmonic vs Supply,  
High Gain Mode  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
500 1000 1500 2000 2500 3000 3500 4000 4500  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D055  
D203  
Figure 54. LO Second Harmonic vs Temperature,  
Low Power Mode  
Figure 55. LO Second Harmonic vs Supply,  
Low Power Mode  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Typical Characteristics - LO Harmonic (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D057  
D204  
Figure 56. LO Third Harmonic vs Temperature,  
Typical Operating Mode  
Figure 57. LO Third Harmonic vs Supply,  
Typical Operating Mode  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
500 1000 1500 2000 2500 3000 3500 4000 4500  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D059  
D205  
Figure 58. LO Third Harmonic vs Temperature,  
High Gain Mode  
Figure 59. LO Third Harmonic vs Supply,  
High Gain Mode  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
500 1000 1500 2000 2500 3000 3500 4000 4500  
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D061  
D206  
Figure 60. LO Third Harmonic vs Temperature,  
Low Power Mode  
Figure 61. LO Third Harmonic vs Supply,  
Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.16 Typical Characteristics - BB Harmonic  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK= 5 V, and TA = 25°C, I/Q frequency (fBB  
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
Reported BB harmonic is from (fBB) 4.5MHz.  
)
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D063  
D207  
Figure 62. BB-HD2 vs Temperature, Typical Operating Mode  
Figure 63. BB-HD2 vs Supply, Typical Operating Mode  
-40  
-40  
-45  
-50  
-55  
-60  
-65  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-70  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-75  
-80  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D065  
D208  
Figure 64. BB-HD2 vs Temperature, High Gain Mode  
Figure 65. BB-HD2 vs Supply, High Gain Mode  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D067  
D209  
Figure 66. BB-HD2 vs Temperature, Low Power Mode  
Figure 67. BB-HD2 vs Supply, Low Power Mode  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Typical Characteristics - BB Harmonic (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK= 5 V, and TA = 25°C, I/Q frequency (fBB  
)
4.5 MHz and 5.5 MHz, VCM = 0.25 V, and 4.7 pF series capacitor at RFOUT. Optimized bias settings as per Table 16.  
Reported BB harmonic is from (fBB) 4.5MHz.  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D069  
D210  
Figure 68. BB-HD3 vs Temperature, Typical Operating Mode  
Figure 69. BB-HD3 vs Supply, Typical Operating Mode  
-50  
-50  
-55  
-60  
-65  
-70  
-75  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-85  
-90  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D071  
D211  
Figure 70. BB-HD3 vs Temperature, High Gain Mode  
Figure 71. BB-HD3 vs Supply, High Gain Mode  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D073  
D212  
Figure 72. BB-HD3 vs Temperature, Low Power Mode  
Figure 73. BB-HD3 vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
6.17 Typical Characteristics - RF Output Return Loss  
Unless specified all plots were created at RFOUT pin using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C  
5
2.5  
0
-2.5  
-5  
-7.5  
-10  
-12.5  
-15  
-17.5  
-20  
400 800 1200 1600 2000 2400 2800 3200 3600 4000  
Frequency (MHz)  
D120  
Frequency (400 MHz to 4200 MHz)  
Figure 75. RFOUT S22 vs Frequency  
Figure 74. Smith Chart  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.18 Typical Characteristics - PLL/VCO  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Measured at  
LO_OUTP with 50 Ω bias resistor and 47 pF series capacitor. Modulator section powered down. Reference frequency is set  
to 61.44 MHz. Optimized bias settings as per Table 16.  
-25  
-50  
-25  
-50  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-75  
-75  
-100  
-125  
-150  
-175  
-100  
-125  
-150  
-175  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D087  
D088  
Figure 76. Open Loop Phase Noise at 450 MHz vs  
Temperature  
Figure 77. Open Loop Phase Noise at 450 MHz vs Supply  
-25  
-50  
-25  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-50  
-75  
-75  
-100  
-125  
-150  
-175  
-100  
-125  
-150  
-175  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D089  
D090  
Figure 78. Open Loop Phase Noise at 900 MHz vs  
Temperature  
Figure 79. Open Loop Phase Noise at 900 MHz vs Supply  
-25  
-50  
-25  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-50  
-75  
-75  
-100  
-125  
-150  
-175  
-100  
-125  
-150  
-175  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D091  
D092  
Figure 80. Open Loop Phase Noise at 1800 MHz vs  
Temperature  
Figure 81. Open Loop Phase Noise at 1800 MHz vs Supply  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics - PLL/VCO (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Measured at  
LO_OUTP with 50 Ω bias resistor and 47 pF series capacitor. Modulator section powered down. Reference frequency is set  
to 61.44 MHz. Optimized bias settings as per Table 16.  
-25  
-40  
-50  
450 MHz  
900 MHz  
1800 MHz  
2150 MHz  
2700 MHz  
3600 MHz  
4000 MHz  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-60  
-50  
-70  
-80  
-75  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-125  
-150  
-175  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D215  
D095  
Figure 82. Open Loop Phase Noise vs Frequency  
Figure 83. 450 MHz Frac-N (Closed Loop Phase Noise) vs  
Temperature  
-40  
-50  
-40  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D096  
D097  
Figure 84. 450 MHz Frac-N (Closed Loop Phase Noise) vs  
Supply  
Figure 85. 1800 MHz Frac-N (Closed Loop Phase Noise) vs  
Temperature  
-40  
-40  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-50  
-60  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D098  
D099  
Figure 86. 1800 MHz Frac-N (Closed Loop Phase Noise) vs  
Supply  
Figure 87. 2150 MHz Frac-N (Closed Loop Phase Noise) vs  
Temperature  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Typical Characteristics - PLL/VCO (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Measured at  
LO_OUTP with 50 Ω bias resistor and 47 pF series capacitor. Modulator section powered down. Reference frequency is set  
to 61.44 MHz. Optimized bias settings as per Table 16.  
-40  
-50  
-40  
-50  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D100  
D101  
Figure 88. 2150 MHz Frac-N (Closed Loop Phase Noise) vs  
Supply  
Figure 89. 2700 MHz Frac-N (Closed Loop Phase Noise) vs  
Temperature  
-40  
-40  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-50  
-60  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D102  
D103  
Figure 90. 2700 MHz Frac-N (Closed Loop Phase Noise) vs  
Supply  
Figure 91. 3600 MHz Frac-N (Closed Loop Phase Noise) vs  
Temperature  
-40  
-40  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
450MHz, Div8  
900MHz, Div4  
1800MHz, Div2  
3600MHz, Div1  
-50  
-60  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
500 1k  
10k  
100k  
1M  
10M 40M  
500 1k  
10k  
100k  
1M  
10M 40M  
Offset Frequency (Hz)  
Offset Frequency (Hz)  
D104  
D105  
Figure 92. 3600 MHz Frac-N (Closed Loop Phase Noise) vs  
Supply  
Figure 93. 450, 900, 1800, 3600 MHz Closed Loop Phase  
Noise vs Offset Frequency  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics - PLL/VCO (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Measured at  
LO_OUTP with 50 Ω bias resistor and 47 pF series capacitor. Modulator section powered down. Reference frequency is set  
to 61.44 MHz. Optimized bias settings as per Table 16.  
-70  
-75  
-80  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15,4.75  
VCC = 3.30,5.00  
VCC = 3.45,5.25  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D106  
D107  
Figure 94. PFD Spur vs Temperature  
Figure 95. PFD Spur vs Supply  
-70  
-75  
-80  
-70  
-75  
-80  
1 x PFD  
2 x PFD  
3 x PFD  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
PFD = 0.68MHz  
PFD = 1.28MHz  
PFD = 2.56MHz  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D108  
D227  
Figure 96. PFD Spur vs PFD Multiples  
Figure 97. PFD Spur vs Frequency  
-70  
-75  
-80  
-70  
-75  
-80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15,4.75  
VCC = 3.30,5.00  
VCC = 3.45,5.25  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D213  
D214  
Figure 98. 1 x Reference Spur vs Temperature  
Figure 99. Reference Spur vs Supply  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Typical Characteristics - PLL/VCO (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Measured at  
LO_OUTP with 50 Ω bias resistor and 47 pF series capacitor. Modulator section powered down. Reference frequency is set  
to 61.44 MHz. Optimized bias settings as per Table 16.  
-70  
-75  
-80  
-10  
-20  
-30  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-85  
-40  
-90  
-50  
-95  
-60  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
1 x REF  
2 x REF  
3 x REF  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0.0001  
0.001  
0.01  
0.10.2 0.5 1 2 3 5 10 20  
Frequency (MHz) - 61.44MHz  
Frequency (MHz) - 3609.6MHz  
D111  
D112  
Figure 100. Reference Spur vs Reference Multiples  
Figure 101. 3609.6 MHz Integer Boundary Spur vs  
Temperature  
-10  
-20  
-30  
-10  
-20  
-30  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
0.0001  
0.001  
0.01  
0.10.2 0.5 1 2 3 5 10 20  
0.0001  
0.001  
0.01  
0.10.2 0.5 1 2 3 5 10 20  
Frequency (MHz) - 3609.6MHz  
Frequency (MHz) - 1843.2MHz  
D113  
D114  
Figure 102. 3609.6 MHz Integer Boundary Spur vs Supply  
Figure 103. 1843.2 MHz Integer Boundary Spur vs  
Temperature  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-36  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
VCO_SEL 0  
VCO_SEL 1  
VCO_SEL 2  
VCO_SEL 3  
0.0001  
0.001  
0.01  
0.10.2 0.5 1 2 3 5 10 20  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VCO_TRIM  
Frequency (MHz) - 1843.2MHz  
D115  
D217  
V(tune) = 1.1 V  
Figure 105. KVCO vs VCO Trim  
Figure 104. 1842.2 MHz Integer Boundary Spur vs Supply  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics - PLL/VCO (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Measured at  
LO_OUTP with 50 Ω bias resistor and 47 pF series capacitor. Modulator section powered down. Reference frequency is set  
to 61.44 MHz. Optimized bias settings as per Table 16.  
8
4600  
4400  
4200  
4000  
3800  
3600  
3400  
3200  
3000  
2800  
2600  
2400  
2200  
2000  
1800  
VCO_SEL 0  
VCO_SEL 1  
VCO_SEL 2  
VCO_SEL 3  
7
6
5
4
3
2
1
0
TA = -40èC  
TA = 25èC  
TA = 85èC  
-1  
-2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VCO_TRIM  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
D216  
D116  
V(tune) = 1.1 V  
Figure 106. Frequency vs VCO_TRIM  
Figure 107. LO Output Power at LO_OUTP vs Temperature  
8
7
10  
5
0
2nd Harmonic  
3rd Harmonic  
5th Harmonic  
-5  
6
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
5
4
3
2
1
0
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
-1  
-2  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D117  
D118  
Figure 108. LO Output Power at LO_OUTP vs Supply  
Figure 109. LO Harmonics at LO_OUTP vs Frequency  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.19 Typical Characteristics - Current Consumption  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Optimized bias  
settings as per Table 16  
420  
412  
404  
396  
388  
380  
372  
364  
356  
348  
340  
420  
412  
404  
396  
388  
380  
372  
364  
356  
348  
340  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D228  
D229  
Figure 110. 3.3V Supply Current vs Temperature, Typical  
Operating Mode  
Figure 111. 3.3V Supply Current vs Supply, Typical  
Operating Mode  
420  
420  
TA = -40èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
412  
412  
404  
396  
388  
380  
372  
364  
356  
348  
340  
TA = 25èC  
TA = 85èC  
404  
396  
388  
380  
372  
364  
356  
348  
340  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D230  
D231  
Figure 112. 3.3V Supply Current vs Temperature, High Gain  
Mode  
Figure 113. 3.3V Supply Current vs Supply, High Gain Mode  
256  
256  
254  
252  
250  
248  
246  
244  
242  
240  
238  
236  
TA = -40èC  
254  
TA = 25èC  
252  
TA = 85èC  
250  
248  
246  
244  
242  
240  
238  
236  
234  
232  
230  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
234  
232  
230  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D232  
D233  
Figure 114. 3.3V Supply Current vs Temperature, Low Power  
Mode  
Figure 115. 5V Supply Current vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics - Current Consumption (continued)  
28  
27.8  
27.6  
27.4  
27.2  
27  
28  
27.8  
27.6  
27.4  
27.2  
27  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
26.8  
26.6  
26.4  
26.2  
26  
26.8  
26.6  
26.4  
26.2  
26  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D234  
D235  
Figure 116. 5V Supply Current vs Temperature, Typical  
Operating Mode  
Figure 117. 5V Supply Current vs Temperature, Typical  
Operating Mode  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
6.20 Typical Characteristics - Power Dissipation  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Optimized bias  
settings as per Table 16.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0.9  
0.8  
0.9  
0.8  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D075  
D076  
Figure 118. 3.3 V PDISS vs Temperature,  
Typical Operating Mode  
Figure 119. 3.3 V PDISS vs Supply,  
Typical Operating Mode  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0.9  
0.8  
0.9  
0.8  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D077  
D078  
Figure 120. 3.3 V PDISS vs Temperature,  
High Gain Mode  
Figure 121. 3.3 V PDISS vs Supply,  
High Gain Mode  
1.4  
1.3  
1.2  
1.1  
1
1.4  
1.3  
1.2  
1.1  
1
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D079  
D080  
Figure 122. 3.3 V PDISS vs Temperature, Low Power Mode  
Figure 123. 3.3 V PDISS vs Supply, Low Power Mode  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics - Power Dissipation (continued)  
Unless specified all plots were created using TRF3722EVM, VCC = 3.3 V, VCC_TK = 5 V, and TA = 25°C. Optimized bias  
settings as per Table 16.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
0.9  
0.8  
0.9  
0.8  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D081  
D082  
Figure 124. Total PDISS vs Temperature,  
Typical Operating Mode  
Figure 125. Total PDISS vs Supply, Typical Operating Mode  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.8  
TA = -40èC  
TA = 25èC  
TA = 85èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.9  
0.8  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D083  
D084  
Figure 126. Total PDISS vs Temperature, High Gain Mode  
Figure 127. Total PDISS vs Supply, High Gain Mode  
1.4  
1.4  
1.3  
1.2  
1.1  
1
TA = -40èC  
VCC = 3.15V, 4.75V  
VCC = 3.30V, 5.00V  
VCC = 3.45V, 5.25V  
1.3  
TA = 25èC  
TA = 85èC  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
Frequency (MHz)  
Frequency (MHz)  
D085  
D086  
Figure 128. Total PDISS vs Temperature, Low Power Mode  
Figure 129. Total PDISS vs Supply, Low Power Mode  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
7 Parameter Measurement Information  
7.1 Serial Interface Timing Diagram  
The TRF3722 features a four-wire serial programming interface (4WI) that controls an internal 32-bit shift register  
with seven parallel registers. There are total of three signals that must be applied: the clock (CLK), the serial data  
(DATA), and the latch enable (LE). The fouth signal is the read back (RDBK) signal. The serial data (DB0-DB31)  
are loaded least significant bit (LSB) first, and read on the rising edge of the CLK. LE is asynchronous to the CLK  
signal; at its rising edge, the data in the shift register are loaded into the selected internal register. Figure 130  
shows the timing diagram the 4WI. Table 1 lists the 4WI timing for the write operation.  
t(CL)  
tsu1  
th  
t(CLK)  
t(CH)  
32nd  
Write  
clock  
pulse  
1st Write  
CLOCK  
DATA  
clock  
pulse  
DB0 (LSB)  
Address Bit0  
DB1  
Address Bit1  
DB2  
Address Bit2  
DB3  
Address Bit3  
DB29  
DB30  
DB31 (MSB)  
tsu3  
tsu2  
tw  
End of  
Write  
Cycle pulse  
LATCH  
ENABLE  
Figure 130. 4WI Writing Timing Diagram  
Table 1. 4WI Timing for Write Operation  
MIN  
20  
TYP  
MAX  
UNIT  
ns  
th  
Hold time, data to clock  
Setup time, data to clock  
Clock low duration  
tSU1  
tCH  
tCL  
20  
ns  
20  
ns  
Clock High duration  
20  
ns  
tSU2  
tCLK  
tW  
Setup time, clock to enable  
Clock period  
20  
50  
50  
70  
ns  
ns  
Enable Time  
ns  
tSU3  
Setup time, Latch to Data  
ns  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
 
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
TRF3722 integrates 7 registers: Register 0 (000) to Register 6 (110). Registers 1 through 6 are used to set-up  
and control the TRF3722 functionalities, while register 0 is used for the read-back function. Each read-back is  
composed by two phases: writing followed by the actual reading of the internal data. This is shown in the timing  
diagram in Figure 131.  
tsu1  
th  
T(CL)  
t( CLK)  
nd  
1st Write  
clock  
32  
T(CH)  
Write  
clock  
pulse  
pulse  
CLOCK  
DATA  
DB0(LSB)  
Address Bi0t  
DB3  
Address Bi3t  
DB1  
Address Bi1t  
DB2  
Address Bi2t  
DB29  
DB30  
DB31(MSB)  
tsu2  
tw  
—End of Write Cycle“  
pulse  
LATCH ENABLE  
nd  
32  
Write  
clock  
pulse  
1st Read  
clock pulse  
nd  
rd  
2nd Read  
clock pulse  
32 Read  
clock pulse  
33 Read  
clock pulse  
CLOCK  
tw  
—End of Write Cycle“  
pulse  
td  
LATCH  
ENABLE  
Read  
Back  
Data  
Bit29  
Read  
Back  
Data  
Bit1  
ReadBack  
Data Bit31  
ReadBack  
Data Bi3t 0  
ReadBack  
Data Bi0t  
READBACK DATA  
Figure 131. 4WI Read-Back Timing Diagram  
During the writing phase a command is sent to TRF3722 register 0 to set it in read-back mode and to specify  
which register is to be read. In the proper reading phase, at each rising clock edge, the internal data is  
transferred into the RDBK pin and can be read at the following falling edge (LSB first). The first clock after the LE  
goes high (end of writing cycle) is idle and the following 32 clocks pulses will transfer the internal register content  
to the RDBK pin. Table 2 shows the Readback timing.  
Table 2. 4WI Timing for Readback Timing  
MIN  
20  
20  
20  
20  
20  
20  
TYP  
MAX  
UNIT  
ns  
COMMENT  
th  
Hold time, data to clock  
Setup time, data to clock  
Clock low duration  
tSU1  
tCH  
tCL  
ns  
ns  
Clock High duration  
ns  
tSU2  
tSU3  
Setup time, clock to enable  
Setup time, enable to Readback clock  
ns  
ns  
Delay time, clock to Readback data  
output  
td  
10  
tW  
Enable Time  
Clock period  
50  
50  
ns  
ns  
Equals Clock period  
t(CLK)  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
8 Detailed Description  
8.1 Overview  
TRF3722 integrates a high performance direct conversion quadrature modulator with exceptional linearity and  
low noise performance. The modulator which upconverts low frequency baseband signal to high frequency RF  
typically operates at 0.25 V common mode. It supports seamless interface with current source DACs. It also  
features high gain and low power operating modes. Additionally, TRF3722 integrates PLL and VCO to provide  
the local oscillator (LO) to the integrated modulator. The PLL and VCO provides excellent phase noise and  
extremely low spurious performance. The device also provides an LO output for driving another modulator or  
mixer. TRF3722 supports the use of an external VCO or LO signal.  
8.2 Functional Block Diagram  
NC  
VTUNE EXT_VCO BBI_N BBI_P  
VCC_TK  
VCC  
32  
35  
33  
42  
23  
21  
16  
14  
38  
39  
LO_OUTN  
LO_OUTP  
LO Div  
9
PLL Div  
Charge  
Pump  
41  
44  
CP_OUT  
REFIN  
4
0h  
PFD  
Pre  
Scaler  
18  
RFOUT  
GND  
TX Div  
S
90h  
R Div  
N Div  
45  
43  
SDM  
40  
37  
30  
26  
LE  
DATA  
CLK  
46  
47  
48  
Serial Interface  
PD RDBK LD  
BBQ_N BBQ_P  
GND  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 RF Output  
The RF output is single ended and can drive a 50-Ω load. It can be tuned with the use of an output matching  
network to optimize the linearity and return loss performance within a selected band.  
8.3.2 Baseband Inputs  
The baseband inputs consist of the in-phase signal (I) and the quadrature-phase signals (Q). These I and Q  
signals are differential. The baseband lines are nominally biased at 0.25-V common-mode voltage (VCM);  
however, the device can operate with a VCM in the range of 0 V to 0.5 V. The baseband input lines are normally  
terminated externally 50 Ω on TRF3722 evaluation board, though it is possible to modify this value if necessary  
to match to an external filter load impedance requirement.  
8.3.3 LO Output  
The LO outputs are open collector differential outputs and are biased externally. These differential outputs can  
be tuned to optimized output power along with OUTBUF_BIAS register settings. It also is possible to use LO  
outputs in single ended mode.  
8.3.4 PLL Architecture  
Figure 132 illustrates a block diagram of the PLL architecture.  
The VCO output frequency (fVCO) is given by Equation 1:  
æ
ö
÷
÷
÷
÷
ø
f
NFRAC  
REF  
ç
f
=
x PLL DIV x çNINT +  
VCO  
ç
ç
è
25  
2
RDIV  
(1)  
f
REF  
f
=
PFD  
RDIV  
(2)  
(3)  
PLL_DIV_SEL  
PLL DIV = 2  
æ
ö
÷
÷
÷
÷
ø
NFRAC  
ç
f
= f x PLL DIV x çNINT +  
VCO  
PFD  
ç
25  
2
ç
è
(4)  
Where fREF is the reference input frequency, RDIV is the reference divider division ratio and the phase -  
frequency detector frequency is fPFD. PLL_DIV_SEL controls the division ratio of the programmable divider (PLL  
DIV) before the dual-modulus prescaler (DMP). NINT and NFRAC/225 is the integer and fractional part of the  
fractional divider (N.f), respectively. In Integer mode, the fractional setting is ignored and Equation 5 is applied.  
f
= f x PLL DIV x NINT  
PFD  
VCO  
(5)  
The complete feedback divider block consists of a PLL DIV, DMP, and N.f. The prescaler can be programmed as  
either a 4/5 or an 8/9. N.f includes an A and M digital counters.  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Feature Description (continued)  
9xt ë/hꢀ  
9xt [h  
Ext  
Loop  
Filter  
LO_DIV_SEL  
fLO  
LO Div  
O°  
TX  
Charge  
Pump  
VTUNE  
fVCO  
fREF  
fPFD  
Quad  
Div  
fTX  
9O°  
RDIV  
PFD  
TX_DIV_SEL  
NINT  
DMP  
4/5 8/9  
N Div  
PLL DIV  
PRSC_SEL PLL_DIV_SEL  
SDM  
NFRAC_DIV  
Figure 132. PLL Architecture  
8.3.5 External VCO  
An external LO or VCO signal may be applied. If an external LO is used the internal PLL can be powered down.  
Alternatively, dividers, phase-frequency detector, and charge pump can remain enabled and may be used to  
control the VTUNE of an external VCO. EN_EXTVCO is used to select the internal or external VCO.  
8.3.6 Loop Filter  
Loop filter design is critical for achieving low closed loop phase noise. Complete modulator performance data has  
been measured using integer mode loop filter. The integer mode loop filter was designed considering loop  
bandwidth 40 kHz and fPFD 2.56 MHz. Phase margin of 60 degrees was considered. Refer to TRF3722EVM  
User’s Guide to obtain the details on TRF3722 loop component calculations. Figure 133 shows integer loop filter.  
ëÇÜb9  
/t_hÜÇ  
R3  
1.5K  
R4  
0R  
C2  
2.2nF  
C1  
150pF  
C4  
NS  
C3  
150pF  
R2  
6.49K  
Figure 133. Integer Loop Filter  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
 
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
Frac-N performance data is obtained using the fractional loop filter shown in Figure 134. 40 kHz loop bandwidth  
and 15.36 MHz PFD was considered.  
ëÇÜb9  
/t_hÜÇ  
R3  
R4  
1.1K  
1.1K  
C2  
10nF  
C1  
1nF  
C4  
330pF  
C3  
330pF  
R2  
1.1K  
Figure 134. Fractional Loop Filter  
8.3.7 Lock Detect  
The lock detect signal is generated in the phase frequency detector by comparing the two input signals. When  
the two compared phase signals remain aligned for several clock cycles, an internal signal goes high. The  
precision of this comparison is controlled through the LD_ANA_PREC bits. This internal signal is then averaged  
and compared against a reference voltage to generate the lock detect (LD) signal. The number of averages used  
is controlled through LD_DIG_PREC. Therefore, when the VCO is frequency locked, LD is high. When the VCO  
frequency is not locked, LD may pulse high or exhibit periodic behavior.  
By default, the internal lock detect signal is made available on the LD terminal. Register bits MUX_CTRL can be  
used to control a multiplexer to output other diagnostic signals on the LD output.  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
8.4 Device Functional Modes  
8.4.1 Selecting PLL Divider Values  
With reference to the PLL architecture illustrated in Figure 132, operation of the PLL requires TX_DIV_SEL /  
LO_DIV_SEL, PLL_DIV_SEL, RDIV, NINT, NFRAC and PRSC_SEL bits to be calculated.  
a. TX_DIV_SEL / LO_DIV_SEL  
The LO to the integrated modulator (ƒTX) and additional LO output (ƒLO) frequency is related to fVCO  
according to the following:  
ƒTX = fVCO / TX DIV  
ƒLO = fVCO / LO DIV  
Where TX DIV and LO DIV are related to TX_DIV_SEL and LO_DIV_SEL as:  
TX_DIV_SEL / LO_DIV_SEL  
TX_DIV_SEL = 0  
TX_DIV_SEL = 1  
TX_DIV_SEL = 2  
TX_DIV_SEL = 3  
LO_DIV_SEL = 0  
LO_DIV_SEL = 1  
LO_DIV_SEL = 2  
LO_DIV_SEL = 3  
TX_DIV / LO_DIV  
TX DIV = 1  
TX DIV = 2  
TX DIV = 4  
TX DIV = 8  
LO DIV = 1  
LO DIV = 2  
LO DIV = 4  
LO DIV = 8  
FREQUENCY RANGE  
2050 MHz ƒTX 4100 MHz  
1025 MHz ƒTX 2050 MHz  
512.5 MHz ƒTX 1025 MHz  
256.25 MHz ƒTX 512.5 MHz  
2050 MHz ƒLO 4100 MHz  
1025 MHz ƒLO 2050 MHz  
512.5 MHz ƒLO 1025 MHz  
256.25 MHz ƒLO 512.5 MHz  
b. PLL_DIV_SEL  
Given fVCO, select PLL_DIV_SEL so that the division ratio PLL DIV limits the input frequency to the  
prescaler , fDMP, is limited to a maximum of 3000 MHz.  
PLL DIV = min(1, 2, 4) such that fDMP 3000 MHz  
PLL DIV is related to PLL_DIV_SEL according to the following equation:  
PLL_DIV = 2PLL_DIV_SEL  
This calculation can be restated as Equation 6.  
æ
ö
æ
ö
LO DIV x f  
LO  
3000 MHz  
TX DIV x f  
TX  
÷
÷
÷
÷
ç
ç
PLL DIV = Ceiling  
÷ = Ceiling  
ç
ç
÷
ç
÷
ç
è
÷
ø
3000 MHz  
è
ø
(6)  
For both integer and fractional mode it is preferable to operate the fPFD at the highest possible frequency  
determined by the required frequency step of the RFOUT or LO_OUT. In Integer mode, select the maximum  
fPFD according to Equation 7.  
f
f
x TX DIV  
VCO, Stepsize  
PLL DIV  
TX, Stepsize  
PLL DIV  
f
=
=
PFD  
(7)  
In Fractional mode, small RF stepsize can be obtained through the fractional divider. In this case, the highest  
fPFD frequency should be selected according to the reference clock and system requirements.  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
 
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
c. RDIV, NINT, NFRAC, PRSC_SEL  
The remaing PLL parameters are calculated according to the following equations:  
f
REF  
RDIV =  
f
PFD  
æ
ç
ö
÷
÷
÷
f
VCO x RDIV  
NINT = floor ç  
ç
ç
è
÷
ø
f
x PLL DIV  
REF  
é
ù
ú
ú
æ
ö
æ
ö
÷
÷
÷
f
÷
ç
25  
ç
VCO x RDIV  
x PLL DIV  
ê
÷
ç
NFRAC = floor  
ç
-NINT x 2  
÷
êç  
ç
÷
÷
ø
ç
ç
÷
f
è
è
ø
ê
ú
û
REF  
ë
The DMP division ratio (P/P+1) can be set to 4/5 or 8/9 through the PRSC_SEL bit. To allow proper  
fractional operation, set PRSC_SEL according to:  
PRSC_SEL = 0, (P/P+1) = 4/5 for 20 NINT < 72 in integer mode or 23 NINT < 75 in fractional mode.  
PRSC_SEL = 1, (P/P+1) = 8/9 for NINT 72 in integer mode or NINT 75 in fractional mode.  
The PRSC_SEL limit at NINT < 75 applies to Fractional mode with third-order modulation. In Integer mode,  
the PRSC_SEL = 8/9 should be used with NINT as low as 72. The divider block accounts for either value of  
PRSC_SEL without requiring NINT or NFRAC to be adjusted. Then, calculate the maximum input frequency  
(fN) to the digital divider. Use the lower of the possible prescaler divide settings, P = (4,8), as shown by  
Equation 8.  
f
VCO  
f
=
N
PLL DIV x P  
(8)  
Verify that the frequency into the digital divider, fN, is less than or equal to 375 MHz. If fN exceeds 375 MHz,  
choose a larger value for PLL_DIV_SEL and recalculate fPFD, RDIV, NINT, NFRAC, and PRSC_SEL.  
8.4.2 Setup Example for Integer Mode  
Suppose the following operating characteristics fractional example are desired for Integer mode operation:  
fREF = 61.44 MHz (reference input frequency)  
Step at RF = 2.56 MHz (RF channel spacing)  
fRF = 1799.68 MHz (RF frequency)  
The VCO range is 2050 MHz to 4100 MHz. Therefore:  
LO DIV = 2 (LO_DIV_SEL = 1)  
fVCO = LO DIV × 1799.68 MHz = 3599.36 MHz  
In order to keep the frequency of the prescaler below 3000 MHz:  
PLL_DIV = 2 (PLL_DIV_SEL = 1)  
The desired stepsize at RF is 2.56 MHz, so:  
fPFD = 2.56 MHz  
fVCO, stepsize = PLL_DIV × fPFD = 5.12 MHz  
Using the reference frequency along with the required fPFD gives:  
RDIV = 24  
NINT = 703  
NINT 75; therefore, select the 8/9 prescaler.  
fN = 3599.36 MHz/(2 × 8) = 224.96 MHz < 375 MHz  
This example shows that Integer mode operation gives sufficient resolution for the required stepsize.  
8.4.3 Integer and Fractional Mode Selection  
The PLL is designed to operate in either Integer mode or Fractional mode. If the desired local oscillator (LO)  
frequency is an integer multiple of fPFD, then select integer mode otherwise select fractional mode. In Integer  
mode, the feedback divider ratio is an integer, and the fraction is zero. Thus, bits corresponding to the fractional  
control in integer mode are don’t care and fractional divider functionality is disabled.  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
In Fractional mode, the accuracy of the final frequency is set by 25-bit resolution. The RF stepsize is fPFD/225  
which is less than 1 Hz for fPFD up to 33 MHz. The appropriate fractional control bits in the serial register must be  
programmed. Optimal performance may require tuning the MOD_ORD, ISOURCE_SINK, and ISOURCE_TRIM  
values according to the chosen frequency band.  
8.4.4 Selecting the VCO and VCO Frequency Control  
To achieve a broad frequency tuning range, the TRF3722 integrates multiple VCOs. Each VCO tank uses a bank  
of coarse tuning capacitor to bring VCO frequency within a few MHz of the desired value. For a given LO  
frequency an appropriate VCO and capacitor array must be selected. The device integrates logic that  
automatically selects an appropriate VCO and capacitor array, such that in closed loop V(TUNE) is approximately  
equal to the open loop calibration reference voltage set by VCO_CAL_REF. An on-chip temperature sensor  
automatically adjusts this reference voltage so that proper lock can be maintained over the temperature range.  
The calibration logic is driven by a CAL_CLK signal which is scaled version of the reference frequency according  
to CAL_CLK_SEL. For optimum accuracy It is recommended to limit the CAL_CLK frequency to 600 kHz.  
When VCO_SEL_MODE is '0', the device automatically selects the VCO and the capacitor array. When  
VCO_SEL_MODE is '1', the VCO selected by VCO_SEL is used and the logic automatically selects the capacitor  
array. The VCO and capacitor array settings resulting from the calibration can be read from Register 0 - read  
back register.  
Automatic calibration can be disabled by setting CAL_BYPASS to '1'. In this manual calibration mode, the VCO is  
selected through register bits VCO_SEL, while the capacitor array is selected through register bits VCO_TRIM.  
Calibration modes are summarized in Table 3.  
Table 3. VCO Calibration Modes  
MAX CYCLES  
CAL_CLK  
CAPACITOR  
ARRAY  
CAL_BYPASS  
VCO_SEL_MODE  
VCO  
0
0
1
0
1
46  
34  
Automatic  
VCO_SEL  
VCO_SEL  
Automatic  
don't care  
N/A  
VCO_TRIM  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
8.5 Register Maps  
Table 4. Serial interface Register Summary  
Bit  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Bit0  
Bit1  
Bit2  
Register Address  
Register Address  
Register Address  
Register Address  
Register Address  
Register Address  
Bit3  
Bit4  
Bit5  
PWD_PLL  
PWD_CP  
RSV  
RSV  
Bit6  
IB_MOD_GM  
Bit7  
PWD_VCO  
Bit8  
PWD_VCO_MUX  
PWD _DIV124  
PWD_PRESC  
RSV  
IB_MOD_LO  
VCO_BIAS  
Bit9  
VCO_TRIM  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
RDIV  
PWD_OUTBUF  
PWD_LO_DIV  
PWD_TX_DIV  
PWD_MOD  
EN_EXTVCO  
RSV  
NINT  
EN_LOCKDET  
VCO_TEST_MODE  
CAL_BYPASS  
VCOBUF_BIAS  
VCOMUX_BIAS  
OUTBUF_BIAS  
NFRAC  
MUX_CTRL  
RSV  
EN_ISOURCE  
REF_INV  
NEG_VCO  
ISOURCE_SINKB  
ISOURCE_TRIM  
LD_ANA_PREC  
CP_TRISTATE  
RSV  
PLL_DIV_SEL  
PRSC_SEL  
RSV  
VCO_CAL_IB  
ICP  
SPEEDUP  
LO_DIV_SEL  
LO_DIV_BIAS  
TX_DIV_SEL  
LD_DIG_PREC  
VCO_CAL_REF  
ICPDOUBLE  
CAL_CLK_SEL  
RSV  
MOD_ORD  
VCO_SEL  
VCO_SEL_MODE  
CAL_ACC  
VCO_AMPL_CTRL  
VCO_VB_CTRL  
DITH_SEL  
DEL_SD_CLK  
TX_DIV_BIAS  
GAIN_CTRL  
RSV  
RSV  
EN_CAL  
EN_FRAC_MODE  
EN_LD_ISOURCE  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
8.5.1 Serial interface Register Definition  
Table 5. Register 1  
Register 1  
Bit0  
Bit Name  
ADDR<0>  
ADDR<1>  
ADDR<2>  
ADDR<3>  
ADDR<4>  
RDIV<0>  
Reset Value  
Description  
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
0
1
0
Bit1  
Bit2  
Register Address Bits  
Bit3  
Bit4  
Bit5  
Bit6  
RDIV<1>  
Bit7  
RDIV<2>  
Bit8  
RDIV<3>  
Bit9  
RDIV<4>  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
RDIV<5>  
13-bit Reference Divider Value  
(Rmin = 1, Rmax = 8191)  
RDIV<6>  
RDIV<7>  
RDIV<8>  
RDIV<9>  
RDIV<10>  
RDIV<11>  
RDIV<12>  
RSV  
Reserved  
REF_INV  
Invert Reference Clock Polarity; 1 = use falling edge  
VCO polarity control; 1 = negative slope (negative Kv)  
NEG_VCO  
ICP<0>  
Program charge pump DC current:  
[00000] = 1.94 mA  
ICP<1>  
ICP<2>  
[11111] = 0.47 mA  
[01010] = 0.97 mA  
ICP<3>  
ICP<4>  
ICPDOUBLE  
CAL_CLK_SEL<0>  
CAL_CLK_SEL<1>  
CAL_CLK_SEL<2>  
CAL_CLK_SEL<3>  
RSV  
1 = Set ICP to double the current  
Multiplication or division factor to create VCO calibration clock from  
the PFD frequency:  
[0000] = Fastest ( Rdiv / 128)  
[1111] = Slowest (Rdiv x 128), [1000] = Default (1x Rdiv)  
Reserved  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
CAL_CLK_SEL[3..0]: Set the frequency divider value used to derive the VCO calibration clock from the reference  
frequency.  
Table 6. CAL_CLK_SEL Scaling Factor Setting  
CAL_CLK_SEL  
1111  
Scaling Factor  
CAL_CLK_SEL  
0111  
Scaling Factor  
1/128  
1/64  
1/32  
1/16  
1/8  
NA  
2
1110  
0110  
1101  
0101  
4
1100  
0100  
8
1011  
0011  
16  
32  
64  
128  
1010  
1/4  
0010  
1001  
1/2  
0001  
1000  
1
0000  
ICP[4..0]: Set the charge pump current.  
Table 7. Charge Pump Current Set-Point  
ICP[4..0]  
00 000  
00 001  
00 010  
00 011  
00 100  
00 101  
00 110  
00 111  
01 000  
01 001  
01 010  
01 011  
01 100  
01 101  
01 110  
01 111  
Current (mA)  
1.94  
ICP[4..0]  
10 000  
10 001  
10 010  
10 011  
10 100  
10 101  
10 110  
10 111  
11 000  
11 001  
11 010  
11 011  
11 100  
11 101  
11 110  
11 111  
Current (mA)  
0.75  
1.76  
0.72  
1.62  
0.69  
1.49  
0.67  
1.38  
0.65  
1.29  
0.63  
1.21  
0.61  
1.14  
0.59  
1.08  
0.57  
1.02  
0.55  
0.97  
0.54  
0.92  
0.52  
0.88  
0.51  
0.84  
0.50  
0.81  
0.48  
0.78  
0.47  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Table 8. Register 2  
Register 2  
Bit0  
Bit Name  
ADDR<0>  
ADDR<1>  
ADDR<2>  
ADDR<3>  
ADDR<4>  
NINT<0>  
Reset Value  
Description  
0
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
0
0
0
Bit1  
Bit2  
Register Address Bits  
Bit3  
Bit4  
Bit5  
Bit6  
NINT<1>  
Bit7  
NINT<2>  
Bit8  
NINT<3>  
Bit9  
NINT<4>  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
NINT<5>  
NINT<6>  
NINT<7>  
PLL N-Divider Value  
NINT<8>  
NINT<9>  
NINT<10>  
NINT<11>  
NINT<12>  
NINT<13>  
NINT<14>  
NINT<15>  
PLL_DIV_SEL<0>  
PLL_DIV_SEL<1>  
PRSC_SEL  
RSV  
Select division ratio of divider in front of prescaler  
[00] = 1X, [01] = div2, [10] = div4  
Select precaler modulus: [0] = 4/5, [1] =8/9  
Reserved  
RSV  
VCO_SEL<0>  
VCO_SEL<1>  
VCO_SEL_MODE  
CAL_ACC<0>  
CAL_ACC<1>  
EN_CAL  
Selects between the four integrated VCOs  
[00] = lowest frequency, [11] = highest frequency  
Single VCO auto-calibration mode: [1] = active  
Error count during the cap array calibration  
[00] = 0, [01] = 1/32, [10] = 1/64, [11] =1/128)  
Initiate VCO auto-calibration, resets automatically  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 9. Register 3  
Register 3  
Bit0  
Bit Name  
ADDR<0>  
Reset Value  
Description  
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit1  
ADDR<1>  
Bit2  
ADDR<2>  
Register Address Bits  
Bit3  
ADDR<3>  
Bit4  
ADDR<4>  
Bit5  
NFRAC<0>  
NFRAC<1>  
NFRAC<2>  
NFRAC<3>  
NFRAC<4>  
NFRAC<5>  
NFRAC<6>  
NFRAC<7>  
NFRAC<8>  
NFRAC<9>  
NFRAC<10>  
NFRAC<11>  
NFRAC<12>  
NFRAC<13>  
NFRAC<14>  
NFRAC<15>  
NFRAC<16>  
NFRAC<17>  
NFRAC<18>  
NFRAC<19>  
NFRAC<20>  
NFRAC<21>  
NFRAC<22>  
NFRAC<23>  
NFRAC<24>  
RSV  
Bit6  
Bit7  
Bit8  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Fractional PLL N-Divider  
0 to 0.99999 in fractional mode  
Reserved  
RSV  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Table 10. Register 4  
Register 4  
Bit0  
Bit Name  
ADDR<0>  
Reset Value  
Description  
0
0
Bit1  
ADDR<1>  
Bit2  
ADDR<2>  
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
Register Address Bits  
Bit3  
ADDR<3>  
Bit4  
ADDR<4>  
Bit5  
PWD_PLL  
Power -down all PLL blocks: (1 = off)  
Bit6  
PWD_CP  
Power-down Charge Pump: (1=off)  
Power-down VCO: (1=off)  
Bit7  
PWD_VCO  
Bit8  
PWD_VCO_MUX  
PWD _DIV124  
PWD_PRESC  
RSV  
Power-down VCO Mux blocks: (1=off)  
Power-down the div 1,2,4 in the PLL f/b path: (1=off)  
Power-down Prescaler: (1=off)  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
Reserved  
PWD_OUTBUF  
PWD_LO_DIV  
PWD_TX_DIV  
PWD_MOD  
Power-down Ouptut Buffer: (1=off)  
Power-down LO divider block: (1=off)  
Power-down TX divider block: (1=off)  
Power-down modulator block: (1=off)  
Enable external VCO input buffer: (1 = enabled)  
Reserved  
EN_EXTVCO  
RSV  
EN_ISOURCE  
LD_ANA_PREC<0>  
LD_ANA_PREC<1>  
CP_TRISTATE<0>  
CP_TRISTATE<1>  
SPEEDUP  
Enable offset current at CP output (frac-n mode only).  
Control precision of Analog Lock Detector:  
[00] = H/H (High), [01] = L/L (Low), [10] = H/L , [11] = L/L  
Set the charge pump output in Tristate mode:  
[00] = Off, [01] = Down, [10] = Up, [11] = Tristate  
Enable fast turn on/off time of bias blocks.  
LD_DIG_PREC  
MOD_ORD<0>  
MOD_ORD<1>  
MOD_ORD<2>  
DITH_SEL  
Lock detector precision (increases sampling time if set to 1)  
Modulator order (1-4). Not used in integer mode  
(defaul 3rd order + dither)  
Dither Mode: [0] = pseudo-random, [1] = constant  
DEL_SD_CLK<0>  
DEL_SD_CLK<1>  
EN_FRAC_MODE  
DS modulator clock delay. Frac-n mode only.  
[00] = Min delay, [11] = max delay  
Enable Frac-n mode when set to 1  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 11. Register 5  
Register 5  
Bit0  
Bit Name  
ADDR<0>  
Reset Value  
Description  
1
0
Bit1  
ADDR<1>  
Bit2  
ADDR<2>  
1
1
0
0
0
1
0
1
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
1
0
1
0
Register Address Bits  
Bit3  
ADDR<3>  
Bit4  
ADDR<4>  
Bit5  
RSV  
Reserved  
Bit6  
IB_MOD_GM<0>  
IB_MOD_GM<1>  
IB_MOD_LO<0>  
IB_MOD_LO<1>  
VCO_BIAS<0>  
VCO_BIAS<1>  
VCO_BIAS<2>  
VCO_BIAS<3>  
VCOBUF_BIAS<0>  
VCOBUF_BIAS<1>  
VCOMUX_BIAS<0>  
VCOMUX_BIAS<1>  
OUTBUF_BIAS<0>  
OUTBUF_BIAS<1>  
RSV  
Adjust modulator bias current gm  
Bit7  
Bit8  
Adjust modulator BB and LO bias current  
Bit9  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Adjust VCO bias reference current  
Adjust VCO buffer reference current  
Adjust VCO Mux reference current  
Adjust output buffer current  
Reserved  
RSV  
VCO_CAL_IB  
Bias current for CAL reference voltage: [0] = PTAT, [1] = Constant  
VCO_CAL_REF<0>  
VCO_CAL_REF<1>  
VCO_CAL_REF<2>  
VCO_AMPL_CTRL<0>  
VCO_AMPL_CTRL<1>  
VCO_VB_CTRL<0>  
VCO_VB_CTRL<1>  
RSV  
VCO calibration reference voltage adjustment  
[000] = 0.9 V, [111] = 1.4 V  
[011] = recommended = 1.11 V  
Adjusts the signal level at the VCO_MUX input:  
[00] =max, [11] = min  
Adjusts the VCO core bias voltage:  
[00] = 1.2 V, [01] = 1.35 V, [10] = 1.5 V, [11] = 1.65 V  
Reserved  
Enable monitoring of LD to turn on Isource; recommend [0] =  
Isource ctrl  
Bit31  
EN_LD_MON_ISOURCE  
1
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Table 12. Register 6  
Register 6  
Bit0  
Bit Name  
ADDR<0>  
Reset Value  
Description  
0
1
Bit1  
ADDR<1>  
Bit2  
ADDR<2>  
1
1
0
0
0
0
0
0
0
0
1
0
0
Register Address Bits  
Bit3  
ADDR<3>  
Bit4  
ADDR<4>  
Bit5  
RSV  
Reserved  
Bit6  
RSV  
Bit7  
VCO_TRIM<0>  
VCO_TRIM<1>  
VCO_TRIM<2>  
VCO_TRIM<3>  
VCO_TRIM<4>  
VCO_TRIM<5>  
EN_LOCKDET  
VCO_TEST_MODE  
Bit8  
Bit9  
VCO capacitor array control bits;  
used in manual cal mode  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Enable monitor of lock detector output for autocal mode  
Counter mode, measure max and min freq for each VCO  
Bypass auto-cal; sets VCO_SEL and VCO_TRIM from Serial  
interface  
Bit15  
CAL_BYPASS  
0
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
MUX_CTRL<0>  
MUX_CTRL<1>  
1
0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
Select signal for test output:  
[001] = LD, [010] = NDIV, [100] = RDIV, [110] = A_counter  
MUX_CTRL<2>  
ISOURCE_SINKB  
ISOURCE_TRIM<0>  
ISOURCE_TRIM<1>  
ISOURCE_TRIM<2>  
LO_DIV_SEL<0>  
LO_DIV_SEL<1>  
LO_DIV_BIAS<0>  
LO_DIV_BIAS<1>  
TX_DIV_SEL<0>  
TX_DIV_SEL<1>  
TX_DIV_BIAS<0>  
TX_DIV_BIAS<1>  
GAIN_CTRL  
Offset current polarity  
Adjust Isource bias current in frac-n mode.  
Adjust LO path divider:  
[00] = Div/1, [01] = Div/2, [10] = Div/4. [11] = Div/8  
Adjust LO divider bias current:  
[00] = 25 uA, [01] = 37.5 uA, [10] = 50 uA, [11] = 62.5 uA  
Adjust TX path divider.  
[00] = Div/1, [01] = Div/2, [10] = Div/4. [11] = Div/8  
Adjust TX divider bias current:  
[00] = 25 uA, [01] = 37.5 uA, [10] = 50 uA, [11] = 62.5 uA  
Modulator gain control: [0] = Default, [1] = High Gain  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 13. READBACK Mode Summary Serial interface Map  
Bit  
Register 0  
RDBK  
Bit0  
Bit1  
Bit2  
Register Address  
Register Address  
Bit3  
Bit4  
Bit5  
CHIP_ID  
Bit6  
Bit7  
Bit8  
Bit9  
NU  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
R_SAT_ERR  
N/C  
VCO_TRIM  
VCO_SEL  
COUNT  
MUX_COUNT  
RB_REG  
MUX_COUNT  
RB_ENABLE  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
Table 14. Register 0 (Readback Only)  
Register 0  
Bit0  
Bit Name  
ADDR<0>  
Reset Value  
Description  
0
0
0
1
0
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Bit1  
ADDR<1>  
Bit2  
ADDR<2>  
Register Address Bits  
Chip ID  
Bit3  
ADDR<3>  
Bit4  
ADDR<4>  
Bit5  
CHIP_ID<0>  
Bit6  
CHIP_ID<1>  
Bit7  
NU  
Bit8  
NU  
Bit9  
NU  
Not Used  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
NU  
NU  
R_SAT_ERR  
R-div saturation error for cal  
COUNT<0>/NU  
COUNT<1>/NU  
COUNT<2>/VCO_TRIM<0>  
COUNT<3>/VCO_TRIM<1>  
COUNT<4>/VCO_TRIM<2>  
COUNT<5>/VCO_TRIM<3>  
COUNT<6>/VCO_TRIM<4>  
COUNT<7>/VCO_TRIM<5>  
COUNT<8>/VCO_SEL<0>  
COUNT<9>/VCO_SEL<1>  
COUNT<10>/VCO_SEL<2>  
COUNT<11>  
VCO frequency counter high when  
MUX_COUNT = 0 and VCO_TEST_MODE = 1  
VCO frequency counter low when  
MUX_COUNT = 1 and VCO_TEST_MODE = 1  
Autocal results for VCO_TRIM and VCO_SEL when  
VCO_TEST_MODE = 0  
COUNT<12>  
COUNT<13>  
COUNT<14>  
COUNT<15>  
COUNT<16>  
COUNT<17>  
MUX_COUNT  
[0] = max freq count, [1] = min freq count  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 15. Register RDBK (Write Register for Readback)  
RDBK  
Bit0  
Bit Name  
ADDR<0>  
ADDR<1>  
ADDR<2>  
ADDR<3>  
ADDR<4>  
N/C  
Reset Value  
Description  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x
Bit1  
Bit2  
Register Address Bits  
Bit3  
Bit4  
Bit5  
Bit6  
N/C  
Bit7  
N/C  
Bit8  
N/C  
Bit9  
N/C  
Bit10  
Bit11  
Bit12  
Bit13  
Bit14  
Bit15  
Bit16  
Bit17  
Bit18  
Bit19  
Bit20  
Bit21  
Bit22  
Bit23  
Bit24  
Bit25  
Bit26  
Bit27  
Bit28  
Bit29  
Bit30  
Bit31  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
MUX_COUNT  
RB_REG<0>  
RB_REG<1>  
RB_REG<2>  
RB_ENABLE  
[0] = max freq count, [1] = min freq count  
Three LSBs of the address for the register that is being read:  
[001] = Register 1  
[110] = Register 6  
x
x
1
Puts device in Readback mode  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
8.5.1.1 BIAS SETTINGS  
Optimum TRF7322 bias settings used in the performance measurements are shown in Table 16.  
Table 16. Register Settings With Optimized Bias Set Used in the Performance Measurement.  
TYPICAL OPERATING TYPICAL OPERATING TYPICAL OPERATING  
LOW POWER MODE,  
REGISTER  
BITS  
MODE [256MHz-2GHz], MODE [2GHz - 3GHz],  
MODE [3GHz -  
FRACTIONAL MODE  
INT MODE  
INT MODE  
INT MODE  
4.1GHz], INT MODE  
REGISTER 1  
REGISTER 1  
REGISTER 1  
REGISTER 1  
REGISTER 1  
REGISTER 1  
RDIV  
REF_INV  
x
0
x
0
x
0
x
0
x
0
NEG_VCO  
ICP  
1
1
1
1
1
0
0
0
0
0
ICPDOUBLE  
CAL_CLK_SEL  
0
0
0
0
0
13  
13  
13  
13  
15  
REGISTER 2  
REGISTER 2  
REGISTER 2  
REGISTER 2  
REGISTER 2  
REGISTER 2  
REGISTER 2  
NINT  
PLL_DIV_SEL  
PRSC_SEL  
VCO_SEL  
x
x
x
x
x
0
1
x
x
x
x
x
0
1
x
x
x
x
x
0
1
x
x
x
x
x
0
1
x
x
x
x
x
0
1
VCO_SEL_MODE  
CAL_ACC  
EN_CAL  
REGISTER 3  
NFRAC  
0
0
0
0
x
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
REGISTER 4  
PWD_PLL  
PWD_CP  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
2
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
5
0
2
0
0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
0
4
0
0
1
PWD_VCO  
PWD_VCO_MUX  
PWD _DIV124  
PWD_PRESC  
PWD_OUTBUF  
PWD_LO_DIV  
PWD_TX_DIV  
PWD_MOD  
EN_EXTVCO  
EN_ISOURCE  
LD_ANA_PREC  
CP_TRISTATE  
SPEEDUP  
LD_DIG_PREC  
MOD_ORD  
DITH_SEL  
DEL_SD_CLK  
EN_FRAC_MODE  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
REGISTER 5  
IB_MOD_GM  
IB_MOD_LO  
3
0
3
1
2
0
0
0
3
0
VCO_BIAS  
15  
2
15  
2
15  
2
15  
2
15  
2
VCOBUF_BIAS  
OUTBUF_BIAS  
VCOMUX_BIAS  
VCO_CAL_IB  
2
2
2
0
2
2
2
2
2
2
0
0
0
0
0
VCO_CAL_REF  
VCO_AMPL_CTRL  
VCO_VB_CTRL  
EN_LD_ISOURCE  
3
3
3
3
3
0
0
0
0
0
3
3
3
3
3
0
0
0
0
0
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Table 16. Register Settings With Optimized Bias Set Used in the Performance Measurement. (continued)  
TYPICAL OPERATING TYPICAL OPERATING TYPICAL OPERATING  
LOW POWER MODE,  
REGISTER  
BITS  
MODE [256MHz-2GHz], MODE [2GHz - 3GHz],  
MODE [3GHz -  
FRACTIONAL MODE  
INT MODE  
INT MODE  
INT MODE  
4.1GHz], INT MODE  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
REGISTER 6  
VCO_TRIM  
EN_LOCKDET  
VCO_TEST_MODE  
CAL_BYPASS  
MUX_CTRL  
x
0
0
0
1
0
4
x
2
x
1
0
x
0
0
0
1
0
4
x
2
x
1
0
x
0
0
0
1
0
4
x
2
x
1
0
x
0
0
0
1
0
4
x
0
x
0
0
x
0
0
0
5
0
7
x
2
x
1
0
ISOURCE_SINKB  
ISOURCE_TRIM  
LO_DIV_SEL  
LO_DIV_BIAS  
TX_DIV_SEL  
TX_DIV_BIAS  
GAIN_CTRL  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.2 Typical Application  
Figure 135 shows a typical application schematic for the TRF3722.  
BBI N IN  
BBI P IN  
C11  
EXT VCO  
R15  
49.9  
R16  
49.9  
4.7pF  
5V or 3.3V  
Supply  
VCC_TNK  
VCC_PLL  
FB19  
VCC_VCO  
FB11  
1K  
1K  
VCC_DIG  
FB20  
C40  
1.0uF  
C31  
4.7pF  
C47  
0.1nF  
C41  
1.0uF  
C32  
4.7pF  
C48  
0.1nF  
1K  
VCC_MOD4  
VCC_LO1  
FB18  
R41  
VCC_LO2  
1
2
VTUNE  
200  
C62  
1.0uF  
1K  
VCC_LO2  
FB21  
LO OUTN  
C39  
1.0uF  
C29  
4.7pF  
C46  
0.1nF  
VCC_MOD3  
C12 47pF  
1K  
VCC_MOD2  
VCC_MOD3  
VCC_MOD1  
VCC_MOD4  
FB22  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
GND  
24  
NC4  
23  
LO_OUTN  
LO_OUTP  
GND  
CP_OUT  
VCC_PLL  
GND  
REFIN  
GND  
LE  
DATA  
CLK  
PWRPAD  
C64  
0.1nF  
C63  
4.7pF  
C52  
1.0uF  
R22  
49.9  
VCC_MOD4  
1K  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
VCC_MOD3  
GND  
GND  
RFOUT  
GND  
VCC_MOD2  
GND  
VCC_MOD1  
NC3  
VCC_PLL  
CP OUT  
FB23  
U1  
C18  
3.3V  
Supply  
RF OUT  
VCC_LO_OUT  
C27  
10uF  
C44  
1.0uF  
TRF3722  
1K  
4.7pF  
C42  
1.0uF  
C55  
4.7pF  
C56  
0.1nF  
VCC_MOD2  
FB17  
LE  
DATA  
CLOCK  
R26  
49.9  
1K  
C54  
0.1nF  
C53  
4.7pF  
C38  
1.0uF  
FB24  
C7  
47pF  
READ BACK  
1K  
VCC_VCO  
FB10  
LO OUTP  
REFERENCE  
PD  
LD  
VCC_MOD1  
1K  
VCC_LO_OUT  
FB16  
C60  
1.0uF  
VCC_DIG  
1K  
VCC_LO1  
C25  
10uF  
C43  
1.0uF  
C37  
1.0uF  
C28  
4.7pF  
C45  
0.1nF  
R13  
R12  
49.9  
49.9  
BBQ N IN  
BBQ P IN  
Figure 135. TRF3722 Application Schematic  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
Table 17 lists the pin termination requirements and interfacing for the circuit.  
Table 17. Termination Requirements and Interfacing  
PIN  
NAME  
DATA  
RDBK  
LD  
DESCRIPTION  
47  
4WI data input: digital input, high impedance  
2
3
Readback output; digital output pins can source or sink up to 8 mA of current  
Lock detector digital output, as configured by MUX_CTRL  
8,10,27,29  
BBI_P, BBI_N, BBQ_P, In-phase and quadrature baseband differential baseband signals. Typical 0.25V common mode is  
BBQ_N  
needed  
18  
31  
RFOUT  
Modulator RF output: must be ac-coupled and can drive 50 Ω load  
External local oscillator input: high impedance, normally ac-coupled. If unused terminate to 50 ohms load  
Local oscillator output: open-collector output. A pull-up resistor is LO_OUT required, normally ac-coupled.  
Reference clock input: high impedance, normally ac-coupled  
Serial interface latch enable: digital input, high impedance  
EXT_VCO  
LO_OUTP, LO_OUTN  
REFIN  
38,39  
44  
46  
LE  
48  
CLK  
Serial interface clock input: digital input, high impedance  
47  
DATA  
Serial interface data input: digital input, high impedance  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
9.2.2 Detailed Design Procedures: DAC to Modulator Interface Network  
Digital-to-analog converter (DAC) can interface directly with the TRF3722 modulator. The common-mode voltage  
of the DAC and the modulator baseband inputs should be properly maintained. With the proper interface  
network, the common-mode voltage of the DAC can be translated to the proper common-mode voltage of the  
modulator. The TRF3722 common-mode voltage is typically 0.25 V, and is ideally suited to interface with the  
DAC3482/3484 (DAC348x) and DAC38J8x family. The interface network is shown in Figure 136.  
50 W  
50 W  
50 W  
50 W  
DAC348x / DAC38J8X  
0/90  
S
~
50 W  
50 W  
50 W  
50 W  
TRF3722  
Figure 136. DAC348x Interface with the TRF3722 Modulator  
The DAC348x requires a load resistance of 25 Ω per branch to maintain its optimum voltage swing of 1-VPP  
differential with a 20-mA max current setting. The load of the DAC is separated into two parallel 50-Ω resistors  
placed on the input and output side of the low-pass filter. This configuration provides the proper resistive load to  
the DAC while also providing a convenient 50-Ω source and load termination for the filter.  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
 
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
9.2.3 Application Curves: DAC34H84 with TRF3722 Modulator Performance  
The cascaded combination of the DAC34H84 and TRF3722 modulator yields excellent system parameters  
suitable for high-performance applications. Figure 137 and Figure 138 show 152.9 MHz IF adjacent channel  
power ratio (ACPR) performance.  
Mode integer  
PFD: 3.2 MHz  
Reference: 153.6 MHz  
LO = 1689.6 MHz  
IF = 152.9 MHz  
RF= 1842.5 MHz  
Figure 138. 152.9 MHz IF, 6 Carrier MC-GSM DAC34H84 +  
TRF3722 ACPR Performance  
Figure 137. 152.9 MHz IF, DAC34H84 + TRF3722 20 MHz  
LTE ACPR  
10 Power Supply Recommendations  
The TRF3722 is powered by supplying a nominal 3.3 V and 5 V. It can also be powered using only 3.3V supply.  
Proper RF bypassing should be placed close to each power supply pin. Ground pin connections should have at  
least one ground via close to each ground pin to minimize ground inductance. The PowerPAD™ must be tied to  
ground, preferably with the recommended ground via pattern to provide a good thermal conduction path to the  
alternate side of the board and to provide a good RF ground for the device. (Refer to Layout Guidelines section  
for additional information.)  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
TRF3722  
www.ti.com.cn  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
11 Layout  
11.1 Layout Guidelines  
Layout of the application board significantly impacts the analog performance of the TRF3722 device. Noise and  
high-speed signals should be prevented from leaking onto power-supply terminals or analog signals. The  
TRF3722 device is fitted with a ground slug on the back of the package that must be soldered to the printed  
circuit board (PCB) ground with adequate ground vias to ensure a good thermal and electrical connection. The  
ground pins of the device can be directly tied to the ground slug pad for a low-inductance path to ground.  
Additional ground vias may be added if space allows. Follow these recommendations:  
Place supply decoupling capacitors physically close to the device, on the same side of the board. Isolate  
supply terminals with a ferrite bead.  
Maintain a continuous ground plane in the vicinity of the device and as return paths for all high-speed signal  
lines. Place reference plane vias or decoupling capacitors near any signal line reference transition.  
Power planes should not overlap each other or high-speed signal lines.  
Isolate REFIN routing from loop filter lines, control lines, and other high-speed lines.  
11.2 Layout Example  
wC &5/  
.ypass  
ë//  
/apacitors  
Baseband  
Terminations  
ë//  
PLL Loop  
Filter  
NC  
GND  
37  
38  
39  
40  
41  
42  
43  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13
LO_OUTN  
LO_OUTP  
GND  
VCC_MOD4  
GND  
[h hut  
ë//  
VCC_MOD3  
GND  
wC &5/  
.ypass  
/apacitors  
bote: 9nsure good wC microstrip or stripline  
traces are used to connect tꢀe external  
components to tꢀe w9CLb, wC and [h output pins  
CP_OUT  
VCC_PLL  
GND  
ë//  
GND  
RFOUT  
GND  
wC hut  
wC hut  
/apacitor  
w9CLb  
REFIN 44  
GND  
ë//  
VCC_MOD2  
GND  
5/ .locking  
/apacitor  
45  
LE 46  
DATA 47  
CLK 48  
wC &5/  
.ypass  
/apacitors  
VCC_MOD1  
NC  
botes:  
1ꢁ9nsure all components are connected to a  
common wCꢂ5/ ground plane ꢃitꢀ plenty of vias  
2ꢁ 9nsure a loꢃ impedance ë// plane is  
connected to all ë// terminals  
ë//  
Baseband  
Terminations  
wC &5/  
.ypass  
/apacitors  
Figure 139. Layout  
版权 © 2014–2017, Texas Instruments Incorporated  
59  
TRF3722  
ZHCSCN0B MAY 2014REVISED FEBRUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我进行注册,即可收到任意产品  
信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
60  
版权 © 2014–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TRF3722IRGZR  
TRF3722IRGZT  
ACTIVE  
VQFN  
VQFN  
RGZ  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TRF3722  
IRGZ  
ACTIVE  
RGZ  
NIPDAU  
TRF3722  
IRGZ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TRF3722IRGZR  
VQFN  
RGZ  
48  
2500  
330.0  
16.4  
7.3  
7.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGZ 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TRF3722IRGZR  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TRF3722IRGZR

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器 | RGZ | 48 | -40 to 85
TI

TRF3722IRGZT

具有集成宽带 PLL/VCO 的 400MHz 至 4.2GHz 正交调制器 | RGZ | 48 | -40 to 85
TI

TRF3750

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IPW

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IPWR

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IRGP

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IRGPG4

PLL FREQUENCY SYNTHESIZER, 2400MHz, PQCC20, 4 X 4 MM, GREEN, PLASTIC, QFN-20
TI

TRF3750IRGPR

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3750IRGPRG4

TRF3750: High Performance Integer-N PLL Frequency Synthesizer 20-QFN -40 to 85
TI

TRF3750_14

HIGH-PERFORMANCE INTEGER-N PLL FREQUENCY SYNTHESIZER
TI

TRF3761

INTEGER-N PLL WITH INTEGRATED VCO
TI

TRF3761-A

INTEGER-N PLL WITH INTEGRATED VCO
TI