TS3USBCA420IRSVR [TI]

USB Type-C SBU 多路复用器 | RSV | 16 | -40 to 85;
TS3USBCA420IRSVR
型号: TS3USBCA420IRSVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB Type-C SBU 多路复用器 | RSV | 16 | -40 to 85

复用器
文件: 总44页 (文件大小:1348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
TS3USBCA4 USB Type-C SBU 多路复用器  
1 特性  
3 说明  
1
USB Type-C™用于模拟音频 MIC/AGND、  
TS3USBCA4 是无源 4:1 (TS3USBCA420) 3:1  
DisplayPort AUX 和其他信号的 4:1  
(TS3USBCA420) 3:1 (TS3USBCA410) 多路复  
用器 (MUX)  
(TS3USBCA410) 多路复用器,支持将 USB Type-C  
连接器端接到不同接口的 SBU1/SBU2 端子上的各种  
类型的差分或单端信号。这些信号可以是差分  
DisplayPort 辅助 (AUX)、模拟音频 MIC AGND、  
PCIe 差分时钟或任何其他受支持的通用差分或单端信  
号。  
适用于 0 3.6V 差分或单端信号的通用多路复用  
用于 AGND 连接的 60mΩ 超低电阻 RON,可实现  
低串扰性能  
低总谐波失真 (THD)  
音频路径 具有 超低导通状态电阻 (RON)、低串扰和出  
色的总谐波失真 (THD) 性能。先断后通功能防止在信  
号从一个通道传输到另一个通道时产生信号失真。高速  
路径支持的带宽高达 500MHz,为 DisplayPort AUX、  
PCIe 时钟和其他类似信号提供充分支持。这些 特性  
再加上低功耗性能,使得这款器件适合于便携式音频  
应用。  
高达 500MHz 的高带宽通道  
支持引脚和 I2C 配置  
支持在 3.3V ±10% 稳压电源或 2.4V 5.5V 电池  
电压下工作  
工业温度范围:-40°C 85ºC TS3USBCA420I 和  
TS3USBCA410I  
商业温度范围:0ºC 70ºC TS3USBCA420 和  
TS3USBCA410  
TS3USBCA4 具有 2.4V 5.5V 宽电源电压范围,用  
户可以灵活地选择使用单节电池、3.3V 稳压器或  
VBUS 供电。它还提供面向商业和工业温度范围的选  
项。  
1.8mm x 2.6mm16 引脚、0.4mm 间距 QFN 封  
2 应用  
器件信息(1)  
平板电脑  
器件型号  
封装  
封装尺寸(标称值)  
笔记本电脑  
台式机  
TS3USBCA4  
UQFN (16)  
1.80mm × 2.60mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
游戏控制台  
VR 模块  
智能手机  
显示器  
简化原理图  
USB Host  
USB 2.0  
L/R  
TS5USBA224  
DP/DM  
MIC/GND  
Audio Codec  
DP  
SBU  
TS3USBCA420  
AUX  
CK  
PCIe  
CC  
Debug  
SEL0,1, OEn  
uP  
Type-C/PD  
Controller  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF73  
 
 
 
 
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 24  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 26  
8.5 Programming........................................................... 28  
8.6 Register Maps ........................................................ 29  
Application and Implementation ........................ 31  
9.1 Application Information............................................ 31  
9.2 Typical Application ................................................. 31  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics (3 V VCC 3.6 V)........... 5  
6.6 Electrical Characteristics (2.4 V VCC 5.5 V)........ 7  
6.7 Switching Characteristics (2.4 V VCC 5.5 V) ....... 9  
6.8 Timing Requirements (3 V VCC 3.6 V) .............. 10  
6.9 Timing Requirements (2.4 V VCC 5.5 V) ........... 10  
6.10 Timing Diagrams................................................... 12  
6.11 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 24  
8.1 Overview ................................................................. 24  
9
10 Power Supply Recommendations ..................... 34  
11 Layout................................................................... 35  
11.1 Layout Guidelines ................................................. 35  
11.2 Layout Example .................................................... 35  
12 器件和文档支持 ..................................................... 36  
12.1 接收文档更新通知 ................................................. 36  
12.2 支持资源................................................................ 36  
12.3 ....................................................................... 36  
12.4 静电放电警告......................................................... 36  
12.5 Glossary................................................................ 36  
13 机械、封装和可订购信息....................................... 36  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (January 2019) to Revision C  
Page  
Changed description for LaAp pin From: "as a negative polarity" To "as a positive polarity". .............................................. 4  
Changes from Revision A (August 2018) to Revision B  
Page  
Changed the I2C_EN pin Description From: This pin has an internal weak pull-up. To: This pin has an internal weak  
pull-down. .............................................................................................................................................................................. 3  
Changes from Original (February 2018) to Revision A  
Page  
将器件从预告信息 更改成了生产数据 ..................................................................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
UQFN Package for TS3USBCA420  
16-Pin (RSV)  
UQFN Package for TS3USBCA410  
16-Pin (RSV)  
Top View  
Top View  
VCC  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
OEn  
1
12  
11  
10  
9
I2C_EN  
SBU1  
SBU2  
GND  
VCC  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
OEn  
1
12  
11  
10  
9
I2C_EN  
SBU1  
SBU2  
GND  
2
3
4
2
3
4
Not to scale  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
TS3USBCA420  
TS3USBCA410  
VCC  
1
1
P
Power supply. External decoupling capacitors are required close to this pin.  
Analog audio MIC/AGND signal connection to audio codec. This pin can also function as a general  
purpose I/O.  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
2
3
2
3
I/O, CMOS  
Analog audio MIC/AGND signal connection to audio codec. This pin can also function as a general  
purpose I/O.  
I/O, CMOS  
2 Level I  
Output Enable:  
L: Normal Operation  
H: Standby Mode, I2C registers reset (Default)  
This pin has an internal weak pull-up.  
OEn  
4
5
6
4
5
6
In Pin Configuration Mode (I2C_EN = L), this pin functions as SEL1 which is used along with SEL0  
pin to select switch configurations (Refer to 2). This pin has an internal weak pull-down.  
In I2C Mode (I2C_EN = M or H), this pin functions as SCL pin for I2C clock. When used for I2C  
clock, pull it up to VI2C with a resistor between 0.62 kΩ and 2.2 kΩ.  
2 Level I  
(Failsafe)  
SEL1/SCL  
SEL0/SDA  
In Pin Configuration Mode (I2C_EN = L), this pin functions as SEL0 which is used along with SEL1  
pin to select switch configurations (Refer to 2). This pin has an internal weak pull-down.  
In I2C Mode (I2C_EN = M or H), this pin functions as SDA pin for I2C data. When used for I2C  
2 Level I/O  
(Failsafe)  
data, pull it up to VI2C with a resistor between 0.62 kΩ and 2.2 kΩ.  
This pin can be used in single-ended format or as a positive polarity differential pair partner to pin  
LnBn. It can be used for connection to any generic I/O signals such as for DisplayPort AUX, PCI  
Express clock, I2C, UART, and debug interfaces.  
LnBp  
LnBn  
7
8
7
8
I/O, CMOS  
This pin can be used in single-ended format or as a negative polarity differential pair partner to pin  
LnBp. It can be used for connection to any generic I/O signals such as for DisplayPort AUX, PCI  
Express clock, I2C, UART, and debug interfaces.  
I/O, CMOS  
G
GND  
9
9
Primary ground connection for the TS3USBCA4. Must be connected to system ground.  
I/O, CMOS  
(Failsafe)  
This pin should be DC coupled to the SBU2 pin of the Type-C receptacle. This pin has an internal  
nominally 1.6-MΩ pull-down resistor.  
SBU2  
10  
10  
I/O, CMOS  
(Failsafe)  
This pin should be DC coupled to the SBU1 pin of the Type-C receptacle. This pin has an internal  
nominally 1.6-MΩ pull-down resistor.  
SBU1  
11  
12  
11  
12  
This pin enables I2C Mode and sets I2C mode addresses (Refer to 5) depending on the pin  
level defined in 1.  
L: Pin Configuration Mode  
M: I2C Mode enabled with I2C address ADDR0  
I2C_EN  
3 Level I  
H: I2C Mode enabled with I2C address ADDR1  
This pin has an internal weak pull-down.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
TS3USBCA420  
TS3USBCA410  
This pin can be used in single-ended format or as a negative polarity differential pair partner to pin  
LnCp. It can be used for connection to any generic I/O signals such as for DisplayPort AUX, PCI  
Express clock, I2C, UART, and debug interfaces.  
LnCn  
13  
14  
I/O, CMOS  
This pin can be used in single-ended format or as a positive polarity differential pair partner to pin  
LnCn. It can be used for connection to any generic I/O signals such as for DisplayPort AUX, PCI  
Express clock, I2C, UART, and debug interfaces.  
LnCp  
NC  
I/O, CMOS  
I/O, CMOS  
13  
14  
Not connected.  
This pin flips the switches based on type-C plug orientation in pin configuration mode (I2C_EN=L).  
L: Normal orientation.  
H: Flipped orientation.  
FLIP  
This pin has an internal weak pull-down.  
This pin can be used in single-ended format or as a negative polarity differential pair partner to pin  
LnAp. This pin is preferred for connection to DisplayPort AUX. It can also be used for connection  
to any generic I/O signals such as for PCI Express clock, I2C, UART, and debug interfaces.  
LnAn  
LnAp  
15  
16  
15  
16  
I/O, CMOS  
I/O, CMOS  
This pin can be used in single-ended format or as a positive polarity differential pair partner to pin  
LnAn. This pin is preferred for connection to DisplayPort AUX. It can also be used for connection  
to any generic I/O signals such as for PCI Express clock, I2C, UART, and debug interfaces.  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range unless otherwise noted.(1)  
MIN  
-0.5  
-4  
MAX  
6
UNIT  
V
(2)  
VCC  
Supply Voltage Range  
VIN_DIFF  
VIN_SE  
VIN_CMOS  
VIN_SBU  
TJ  
Differential Voltage at Differential Inputs  
4
V
(2)  
Input Voltage at Differential Inputs  
-0.5  
-0.5  
-0.5  
6
V
(2)  
Input Voltage at CMOS Inputs other than SBU1/SBU2 Pins  
6
V
(2)  
Input Voltage at SBU1/SBU2 Input-output Pins  
6
V
Junction Temperature  
Storage temperature  
105  
150  
°C  
°C  
TSTG  
-65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminal.  
6.2 ESD Ratings  
PARAMETER  
VALUE  
UNIT  
Human body model (HBM), per  
VHBM  
VCDM  
Electrostatic discharge  
Electrostatic discharge  
±2000  
V
ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range unless otherwise noted.  
MIN  
0
NOM  
MAX  
70  
UNIT  
°C  
°C  
V
TA  
Ambient temperature for TS3USBCA410 and TS3USBCA420  
Ambient temperature for TS3USBCA410I and TS3USBCA420I  
Supply voltage  
TA  
-40  
2.4  
1.7  
0
85  
VCC  
5.0  
5.5  
3.6  
1.8  
100  
VI2C  
VI/O_DIFF  
VPSN  
Supply that external resistors on SDA and SCL are pulled up too  
Differential Input-output Voltage  
V
V
Power supply noise  
mV  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
6.4 Thermal Information  
TS3USBCA4  
THERMAL METRIC  
RSV (R-PUQFN-N16)  
UNIT  
16 PINS  
107.1  
41.2  
(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(2)  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
(3)  
Junction-to-board thermal resistance  
43.6  
(4)  
ΨJT  
Junction-to-top characterization parameter  
1.1  
(5)  
(6)  
ΨJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
43.6  
RθJC(bot)  
N/A  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(5) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
6.5 Electrical Characteristics (3 V VCC 3.6 V)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 3.0 V/3.6 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
ICC  
Supply Current  
OEn = L, DEVICE_ENABLE = 1  
OEn = L, DEVICE_ENABLE = 0  
OEn = 3.6 V  
45  
17  
70  
30  
μA  
μA  
μA  
μA  
IOFF_I2C  
Device Shutdown Current  
Device Shutdown Current  
Device Shutdown Current  
0.05  
4
3.5  
12  
IOFF_OEN  
OEn = 1.4 V  
SEL0, SEL1  
VIH  
VIL  
Input-high voltage  
1.4  
V
V
Input-low voltage  
Input-high current  
Input-low current  
Pull-down resistor  
0.4  
2.5  
1
IIH  
VIN = VCC  
VIN = 0 V  
µA  
µA  
MΩ  
IIL  
RPD  
FLIP  
VIH  
VIL  
1.6  
1.4  
3.0  
5.8  
Input-high voltage  
Input-low voltage  
Input-high current  
Input-low current  
Pull-down resistor  
V
V
0.4  
2.5  
1
IIH  
VIN = VCC  
VIN = 0 V  
µA  
µA  
MΩ  
IIL  
RPD  
OEn  
VIH  
VIL  
1.6  
1.4  
3
5.8  
Input-high voltage  
Input-low voltage  
Input-high current  
Input-low current  
Pull-up resistor  
V
V
0.4  
0.6  
6
IIH  
VIN=VCC  
VIN=0 V  
µA  
µA  
MΩ  
IIL  
RPU  
I2C_EN  
VIH  
0.6  
1.1  
2.5  
Input-high voltage  
0.85  
VCC  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (3 V VCC 3.6 V) (continued)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 3.0 V/3.6 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Upper bound of mid-level input voltage.  
Higher input may be intepreted as logic  
HIGH.  
VIMH  
0.6  
VCC  
Lower bound of mid-level input  
voltage. Lower input may be intepreted  
as logic LOW.  
VIML  
0.4  
VCC  
VIL  
IIH  
Input-low voltage  
Input-high current  
Mid-level input current  
Input-low current  
Pull-down resistor  
0.15  
2.5  
1.2  
1
VCC  
µA  
IIM  
IIL  
µA  
µA  
RPD  
1.6  
3.0  
5.8  
MΩ  
I2C Control Pins SCL, SDA  
VIH_I2C  
VIL_I2C  
VOL_I2C  
IOL_I2C  
II_I2C  
High-level input voltage  
I2C mode  
I2C mode  
I2C mode; IOL_I2C = 3 mA  
I2C mode; VOL_I2C = 0.4 V  
0.1*VI2C < Input voltage < 3.6 V  
1.3  
0
VI2C  
0.5  
V
V
Low-level input voltage  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
0
0.4  
V
6
mA  
µA  
pF  
-5  
0.5  
5
CI_I2C  
10  
C(I2C_FM_  
BUS)  
I2C bus capacitance for FM (400 kHz)  
150  
pF  
R(EXT_I2C External pull up resistors on both SDA  
C(I2C_FM_BUS) = 150 pF  
620  
1500  
2200  
Ω
and SCL for FM (400 kHz)  
_FM)  
SBU1, SBU2  
Single-ended capacitance at  
CSBU_HS  
VIN = 0 V, outputs open, high-speed path  
enabled  
4
8
11  
10  
13  
14  
pF  
pF  
500MHz looking into SBU pin  
CSBU_AU Single-ended capacitance at  
VIN = 0 V, outputs open, audio path  
enabled; TA = 25°C; VCC = 3.3 V  
500MHz looking into SBU pin  
DIO  
Single-ended capacitance at  
CSBU_OFF  
VIN = 0 V, outputs open, OEn=H; TA  
25°C; VCC = 3.3 V  
=
11  
14  
17  
pF  
500MHz looking into SBU pin  
RPD  
Pull-down resistor  
0.8  
1.6  
3.3  
MΩ  
LnA, LnB, LnC: HIGH-SPEED PATH  
VI_HS  
Single-ended HS input voltage  
-0.3  
3.6  
V
Single-ended capacitance at 500 MHz  
looking into HS pins  
VIN = 0 V, outputs open, high-speed path  
enabled  
CHS_ON  
8.5  
1.7  
10.5  
pF  
CHS_AUDI Single-ended capacitance at 500 MHz  
VIN = 0 V, outputs open, audio path  
enabled; TA = 25°C; VCC = 3.3 V  
2
pF  
looking into HS pins  
O
Single-ended capacitance at 500 MHz  
looking into HS pins  
VIN = 0 V, outputs open, OEn=H; TA  
25°C; VCC = 3.3 V  
=
CHS_OFF  
1.7  
4.9  
2
7.1  
0.5  
pF  
Ω
RON_HS  
ON resistance  
VIN = 0 V, IO = -40 mA  
ON resistance match between pairs of  
the same channel  
ΔRON_HS  
VIN 0 V, IO = -40 mA  
Ω
RON_FLAT ON resistance flatness (RON_HS(MAX)  
-
0 V VIN 3.6 V, IO = -40 mA  
1.35  
510  
Ω
RON_HS(MIN)  
)
_HS  
RL = 50 Ω, VIN = 0 V, MIC_GND1 pin  
open, MIC_GND1 pin open; TA = 25°C;  
VCC = 3.3 V  
BWHS  
-3-dB bandwidth  
460  
-0.3  
550  
3.6  
MHz  
RL = 50 Ω, 10 kHz to 20 MHz offset, f =  
100 MHz; TA = 25°C; VCC = 3.3 V  
RJHS  
Additive random jitter  
0.012  
ps-RMS  
MIC_GND1, MIC_GND2: AUDIO PATH  
VI_MIC MIC input voltage  
V
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Electrical Characteristics (3 V VCC 3.6 V) (continued)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 3.0 V/3.6 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CAUDIO_O Single-ended capacitance at 500MHz  
VIN = 0 V, outputs open, audio path  
enabled; TA = 25°C; VCC = 3.3 V  
9.5  
12  
pF  
looking into the MIC_GND pins  
N
CAUDIO_H Single-ended capacitance at 500MHz  
VIN = 0 V, outputs open, high-speed path  
enabled; TA = 25°C; VCC = 3.3 V  
11.5  
12.5  
50  
16  
14.5  
80  
pF  
pF  
looking into the MIC_GND pins  
S
CAUDIO_O Single-ended capacitance at 500MHz  
VIN = 0 V, outputs open, OEn=H; TA  
25°C; VCC = 3.3 V  
=
looking into the MIC_GND pins  
FF  
RON_AUDI  
O
ON resistance for AUDIO path  
VIN = 0 V, IO = -75 mA  
mΩ  
MHz  
dB  
RL = 50 Ω, VIN = 0 V; TA = 25°C; VCC  
=
BWAUDIO -3-dB bandwidth  
580  
630  
-105  
-96  
700  
-100  
-92  
3.3 V  
RL = 50 Ω, VIN = 3.3 V ± 200 mVPP, f =  
217 Hz  
PSR217  
RL = 50 Ω, VIN = 3.3 V ± 200 mVPP, f = 1  
kHz  
PSR1K  
Power supply rejection  
dB  
RL = 50 Ω, VIN = 3.3 V ± 200 mVPP, f =  
20 kHz  
PSR20K  
-85  
-81  
dB  
RS=600, RL=600,  
VIN=1.8V±200mVPP, f=20Hz~20kHz; TA  
= 25°C; VCC = 3.3 V  
THD200_  
MIC  
Total harmonic distortion  
Total harmonic distortion  
0.006  
0.003  
%
%
RS=600, RL=600,  
VIN=1.8V±500mVPP, f=20Hz~20kHz; TA  
= 25°C; VCC = 3.3 V  
THD500_  
MIC  
XTALK_MI  
CGND  
VIN = 200 mVPP, f = 20 Hz – 20 kHz, RL  
= 50 Ω; TA = 25°C;  
Crosstalk between MIC and AGND  
OFF isolation  
-110  
-73  
-90  
-67  
dB  
dB  
ISOOFF_  
MICGND  
VIN = 200 mVPP, f = 20 Hz – 20 kHz, RL  
= 50 Ω; TA = 25°C;  
6.6 Electrical Characteristics (2.4 V VCC 5.5 V)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
ICC  
Supply Current  
OEn = L, DEVICE_ENABLE = 1  
OEn = L, DEVICE_ENABLE = 0  
OEn = 3.6 V  
45  
17  
75  
40  
μA  
μA  
μA  
μA  
IOFF_I2C  
Device Shutdown Current  
Device Shutdown Current  
Device Shutdown Current  
0.05  
4
5.5  
80  
IOFF_OEN  
OEn = 1.4 V  
SEL0, SEL1  
VIH  
VIL  
IIH  
Input-high voltage  
1.4  
V
V
Input-low voltage  
Input-high current  
Input-low current  
Pull-down resistor  
0.4  
3.5  
1
VIN = VCC  
VIN = 0 V  
µA  
µA  
MΩ  
IIL  
RPD  
FLIP  
VIH  
VIL  
IIH  
1.6  
1.4  
3.0  
3.0  
5.8  
Input-high voltage  
Input-low voltage  
Input-high current  
Input-low current  
Pull-down resistor  
V
V
0.4  
3.5  
1
VIN = VCC  
VIN = 0 V  
µA  
µA  
MΩ  
IIL  
RPD  
OEn  
VIH  
1.6  
1.5  
5.8  
Input-high voltage  
V
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (2.4 V VCC 5.5 V) (continued)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
Input-low voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1
UNIT  
V
VIL  
IIH  
Input-high current  
Input-low current  
Pull-up resistor  
VIN=VCC  
VIN=0 V  
µA  
IIL  
8
µA  
RPU  
I2C_EN  
VIH  
0.6  
1.1  
2.5  
MΩ  
Input-high voltage  
0.9  
VCC  
VCC  
Upper bound of mid-level input  
voltage. Higher input may be intepreted  
as logic HIGH.  
VIMH  
0.58  
Lower bound of mid-level input  
voltage. Lower input may be intepreted  
as logic LOW.  
VIML  
0.42  
VCC  
VIL  
IIH  
Input-low voltage  
Input-high current  
Mid-level input current  
Input-low current  
Pull-down resistor  
0.14  
3.5  
1.6  
1
VCC  
µA  
IIM  
IIL  
µA  
µA  
RPD  
1.6  
3.0  
5.8  
MΩ  
I2C Control Pins SCL, SDA  
VIH_I2C  
VIL_I2C  
VOL_I2C  
IOL_I2C  
II_I2C  
High-level input voltage  
I2C mode  
I2C mode  
I2C mode; IOL_I2C = 3 mA  
I2C mode; VOL_I2C = 0.4 V  
0.1*VI2C < Input voltage < 3.6 V  
1.3  
0
VI2C  
0.5  
V
V
Low-level input voltage  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
0
0.4  
V
4
mA  
µA  
pF  
-5  
0.5  
5
CI_I2C  
10  
C(I2C_FM_  
BUS)  
I2C bus capacitance for FM (400 kHz)  
150  
pF  
R(EXT_I2C External pull up resistors on both SDA  
C(I2C_FM_BUS) = 150 pF  
620  
1500  
2200  
Ω
and SCL for FM (400 kHz)  
_FM)  
SBU1, SBU2  
Single-ended capacitance at  
CSBU_HS  
VIN = 0 V, outputs open, high-speed path  
enabled  
4
8
11  
10  
13  
14  
pF  
pF  
500MHz looking into SBU pin  
CSBU_AU Single-ended capacitance at  
VIN = 0 V, outputs open, audio path  
enabled; TA = 25°C; VCC = 3.3 V  
500MHz looking into SBU pin  
DIO  
Single-ended capacitance at  
CSBU_OFF  
VIN = 0 V, outputs open, OEn=H; TA  
25°C; VCC = 3.3 V  
=
11  
14  
17  
pF  
500MHz looking into SBU pin  
RPD  
Pull-down resistor  
0.8  
1.6  
3.3  
MΩ  
LnA, LnB, LnC: HIGH-SPEED PATH  
VI_HS  
Single-ended HS input voltage  
-0.3  
3.6  
V
Single-ended capacitance at 500 MHz  
looking into HS pins  
VIN = 0 V, outputs open, high-speed path  
enabled  
CHS_ON  
8.5  
1.7  
10.5  
pF  
CHS_AUDI Single-ended capacitance at 500 MHz  
VIN = 0 V, outputs open, audio path  
enabled; TA = 25°C; VCC = 3.3 V  
2
pF  
looking into HS pins  
O
Single-ended capacitance at 500 MHz  
looking into HS pins  
VIN = 0 V, outputs open, OEn=H; TA  
25°C; VCC = 3.3 V  
=
CHS_OFF  
1.7  
4.9  
2
7.5  
pF  
Ω
RON_HS  
ON resistance  
VIN = 0 V, IO = -40 mA  
ON resistance match between pairs of  
the same channel  
ΔRON_HS  
VIN 0 V, IO = -40 mA  
0.65  
Ω
RON_FLAT ON resistance flatness (RON_HS(MAX)  
RON_HS(MIN)  
-
0 V VIN 3.6 V, IO = -40 mA  
1.35  
Ω
)
_HS  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Electrical Characteristics (2.4 V VCC 5.5 V) (continued)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
-3-dB bandwidth  
Additive random jitter  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RL = 50 Ω, VIN = 0 V; TA = 25°C; VCC  
=
BWHS  
RJHS  
450  
510  
670  
MHz  
3.3 V  
RL = 50 Ω, 10 kHz to 20 MHz offset, f =  
100 MHz; TA = 25°C; VCC = 3.3 V  
0.012  
ps-RMS  
MIC_GND1, MIC_GND2: AUDIO PATH  
VI_MIC MIC input voltage  
-0.3  
3.6  
12  
V
CAUDIO_O Single-ended capacitance at 500MHz  
VIN = 0 V, outputs open, audio path  
enabled; TA = 25°C; VCC = 3.3 V  
9.5  
11.5  
12.5  
50  
pF  
looking into the MIC_GND pins  
N
CAUDIO_H Single-ended capacitance at 500MHz  
VIN = 0 V, outputs open, high-speed path  
enabled; TA = 25°C; VCC = 3.3 V  
16  
14.5  
80  
pF  
pF  
looking into the MIC_GND pins  
S
CAUDIO_O Single-ended capacitance at 500MHz  
VIN = 0 V, outputs open, OEn=H; TA  
25°C; VCC = 3.3 V  
=
looking into the MIC_GND pins  
FF  
RON_AUDI  
O
ON resistance for AUDIO path  
VIN = 0 V, IO = -75 mA  
mΩ  
MHz  
dB  
RL = 50 Ω, VIN = 0 V; TA = 25°C; VCC  
3.3 V  
=
BWAUDIO -3-dB bandwidth  
580  
630  
-105  
-96  
720  
-96  
-90  
-81  
RL = 50 Ω, VIN = 3.3 V ± 200 mVPP, f =  
217 Hz  
PSR217  
RL = 50 Ω, VIN = 3.3 V ± 200 mVPP, f = 1  
kHz  
PSR1K  
Power supply rejection  
dB  
RL = 50 Ω, VIN = 3.3 V ± 200 mVPP, f =  
20 kHz  
PSR20K  
-85  
dB  
RS=600, RL=600,  
VIN=1.8V±200mVPP, f=20HZ~20kHz; TA  
= 25°C; VCC = 3.3 V  
THD200_  
MIC  
Total harmonic distortion  
Total harmonic distortion  
0.006  
0.003  
%
%
RS=600, RL=600,  
VIN=1.8V±500mVPP, f=20Hz~20kHz; TA  
= 25°C; VCC = 3.3 V  
THD500_  
MIC  
XTALK_MI  
CGND  
VIN = 200 mVPP, f = 20 Hz – 20 kHz, RL  
= 50 Ω; TA = 25°C;  
Crosstalk between MIC and AGND  
OFF isolation  
-110  
-73  
-90  
-67  
dB  
dB  
ISOOFF_  
MICGND  
VIN = 200 mVPP, f = 20 Hz – 20 kHz, RL  
= 50 Ω; TA = 25°C;  
6.7 Switching Characteristics (2.4 V VCC 5.5 V)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C  
fSCL  
I2C clock frequency  
400  
kHz  
µs  
Bus free time between START and  
STOP conditions  
tBUF  
1.3  
0.6  
Hold time after repeated START  
condition. After this period, the first clock  
pulse is generated  
tHDSTA  
µs  
tLOW  
tHIGH  
Low period of the I2C clock  
High period of the I2C clock  
1.3  
0.6  
µs  
µs  
Setup time for a repeated START  
condition  
tSUSTA  
0.6  
µs  
tHDDAT  
tSUDAT  
tR  
Data hold time  
0
µs  
ns  
ns  
Data setup time  
150  
Rise time of both SDA and SCL signals  
300  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Switching Characteristics (2.4 V VCC 5.5 V) (continued)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
20 ×  
(VI2C/5.5  
V)  
tF  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
300  
ns  
tSUSTO  
0.6  
µs  
6.8 Timing Requirements (3 V VCC 3.6 V)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 3.0 V/3.6 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
TEST  
CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VPU=1.8V,  
RPU=2100Ω,  
CL=50pF  
tON_MICG  
ND  
Switch ON time for MIC/AGND path  
Switch OFF time for MIC/AGND path  
10  
µs  
VPU=1.8V,  
RPU=2100Ω,  
CL=50pF  
tOFF_MICG  
ND  
5
µs  
tON_HS  
Switch ON time for high-speed path  
Switch OFF time for high-speed path  
RS=50Ω, RL =50Ω  
RS=50Ω, RL =50Ω  
1.1  
µs  
ns  
tOFF_HS  
725  
VPU=1.8V,  
tBBM  
Break before make off time for MIC/AGND path  
RPU=2100Ω,  
RL=50, CL=50pF  
1300  
ns  
tFLIP  
tDEV_ENA  
Response time for the FLIP pin  
RS=50Ω, RL=50Ω  
1
µs  
µs  
Device enable time from OEn = L to device ready  
OEn=L  
350  
BLE  
tDEV_DISA  
BLE  
Device disable time from OEn = H to device shutdown  
OEn=H  
175  
250  
ns  
µs  
ns  
tD_PG  
VCC (MIN) to Internal Power Good asserted high (Refer to 1) OEn=L  
Debounce time for SEL[1:0] and I2C_EN configuration pins  
(Refer to 1)  
tCFG_DB  
OEn=L  
150  
0.1  
tVCC_RAM VCC power supply (0 – 100%) ramp time requirement (Refer to  
P
100  
ms  
1)  
6.9 Timing Requirements (2.4 V VCC 5.5 V)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
TEST  
CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VPU=1.8V,  
RPU=2100Ω,  
CL=50pF  
tON_MICG  
ND  
Switch ON time for MIC/AGND path  
Switch OFF time for MIC/AGND path  
12  
µs  
VPU=1.8V,  
RPU=2100Ω,  
CL=50pF  
tOFF_MICG  
ND  
6
µs  
tON_HS  
Switch ON time for high-speed path  
Switch OFF time for high-speed path  
RS=50Ω, RL =50Ω  
RS=50Ω, RL =50Ω  
1.2  
µs  
ns  
tOFF_HS  
780  
VPU=1.8V,  
tBBM  
tFLIP  
Break before make off time for MIC/AGND path  
RPU=2100Ω,  
RL=50, CL=50pF  
1300  
ns  
Response time for the FLIP pin  
RS=50Ω, RL=50Ω  
1.1  
µs  
µs  
tDEV_ENA  
BLE  
Device enable time from OEn = L to device ready  
OEn=L  
450  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Timing Requirements (2.4 V VCC 5.5 V) (continued)  
All minimum/maximum specifications are at TA = -40/85°C, VCC = 2.4 V/5.5 V, unless otherwise noted. Typical specifications  
are at TA = 25°C, VCC = 3.3 V, unless otherwise noted.  
TEST  
CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
tDEV_DISA  
BLE  
Device disable time from OEn = H to device shutdown  
OEn=H  
200  
250  
ns  
µs  
ns  
tD_PG  
VCC (MIN) to Internal Power Good asserted high (Refer to 1) OEn=L  
Debounce time for SEL[1:0] and I2C_EN configuration pins  
(Refer to 1)  
tCFG_DB  
OEn=L  
140  
0.1  
tVCC_RAM VCC power supply (0 – 100%) ramp time requirement (Refer to  
P
100  
ms  
1)  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.10 Timing Diagrams  
TVCC_RAMP  
TCFG_DB  
VCC (MIN)  
VCC  
TD_PG  
OEn pin  
50%  
Internal  
Power  
Good  
50%  
SEL0, SEL1,  
I2C_EN Pins  
50%  
1. Power-Up Timing  
70%  
30%  
tBUF  
SDA  
tR  
tF  
tHDSTA  
tLOW  
tHIGH  
70%  
30%  
SCL  
P
S
S
P
tHDSTA  
tHDDAT  
tSUDAT  
tSUSTA  
tSUSTO  
2. I2C Timing Diagram Definitions  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
6.11 Typical Characteristics  
space  
-71.5  
-72  
0.0040  
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
Off Isolation at VCC = 2.4V  
Off Isolation at VCC = 3.0V  
Off Isolation at VCC = 3.3V  
Off Isolation at VCC = 3.6V  
Off Isolation at VCC = 5.5V  
-72.5  
-73  
200 mVpp  
500 mVpp  
-73.5  
-74  
-74.5  
-75  
217  
4217  
8217 12217  
Frequency (Hz)  
16217  
20000  
0
4000  
8000 12000  
Frequency (Hz)  
16000  
20000  
D001  
TS3U  
3. S3PX Total Harmonic Distortion  
4. Off Isolation  
-84  
-86  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
-114  
-116  
-118  
-120  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
-102  
-104  
-106  
-108  
PSR at VCC = 2.4V  
Xtalk at VCC = 2.4V  
Xtalk at VCC = 3.0V  
Xtalk at VCC = 3.3V  
Xtalk at VCC = 3.6V  
Xtalk at VCC = 5.5V  
PSR at VCC = 3.0V  
PSR at VCC = 3.3V  
PSR at VCC = 3.6V  
PSR at VCC = 5.5V  
0
4000  
8000 12000  
Frequency (Hz)  
16000  
20000  
0
4000  
8000 12000  
Frequency (Hz)  
16000  
20000  
TS3U  
TS3U  
5. Power Supply Rejection  
6. Crosstalk  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
+
VIN1  
IO1  
-
MIC_GND2/Ln2  
LnAp  
SBU2  
IO2  
+
VIN2  
-
RL = 50  
3.3 V  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
SEL1/SCL  
RL = 50 ꢀ  
RL = 50 ꢀ  
OEn  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
RL = 50 ꢀ  
VCC  
GND  
RL = 50 ꢀ  
VIN1 = VIN2 = 0 V  
IO1 = IO2 = 75 mA  
RON_AGND1 = VIN1/IO1  
RON_AGND2 = VIN2/IO2  
Copyright © 2018, Texas Instruments Incorporated  
7. ON-State Resistance for the Analog Audio GND (RON_AGND  
)
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
VPU  
RPU  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
+
-
CL  
VIN1  
MIC_GND2/Ln2  
LnAp  
SBU2  
+
-
VIN2  
IO1  
3.3 V  
LnAn  
LnBp  
LnBn  
I2C_EN  
IO2  
SEL0/SDA  
3.3 V  
SEL1/SCL  
OEn  
RL = 50  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
VCC  
GND  
RL = 50 ꢀ  
RL = 50 ꢀ  
VIN1 = VIN2 = 3.3 V  
IO1 = 40 mA  
IO2 = -40 mA  
VPU = 3.3 V, RPU = 1.5K, CL = 50 pF  
RON_HS1 = VIN1/IO1  
RON_HS2 = VIN2/IO2  
Copyright © 2018, Texas Instruments Incorporated  
8. ON-State Resistance for High-Speed Data Paths (RON_HS  
)
版权 © 2018–2019, Texas Instruments Incorporated  
15  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
Network Analyzer  
Port 2  
Port 1  
50 Terminations  
TS3USBCA420  
MIC_GND1  
SBU1  
MIC_GND2  
LnAp  
SBU2  
3.3 V  
3.3 V  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
RL = 50 ꢀ  
VCC  
GND  
RL = 50 ꢀ  
C = -1/[Œf.Im(Zdiff)]  
Zdiff = 100(1+SDD11)/(1-SDD11)  
f = 500 MHz  
9. ON-State and OFF-State Output Capacitance for High-Speed Data Paths (CON_HS, COFF_HS  
)
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
TS3USBCA420  
Spectrum Analyzer  
MIC_GND1Ln1  
SBU1  
VO  
RL = 50  
MIC_GND2/Ln2  
LnAp  
SBU2  
3.3 V  
I2C_EN  
RL = 50 ꢀ  
SEL0/SDA  
LnAn  
LnBp  
LnBn  
DC Power  
Supply Source  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
R
RL = 50 ꢀ  
3.3 V 200 mVpp  
VCC  
RL = 50 ꢀ  
LnCp  
LnCn  
AWG  
VN = 400 mVpp  
RL = 50 ꢀ  
f = 217, 1 K, 20 K  
GND  
RL = 50 ꢀ  
PSR (dB) = 20*log(VO/VN)  
Copyright © 2018, Texas Instruments Incorporated  
10. Power Supply Rejection (PSR)  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
Audio Analyzer  
RS = 600  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
MIC_GND2/Ln2  
LnAp  
SBU2  
3.3 V  
I2C_EN  
RL = 50 ꢀ  
SEL0/SDA  
LnAn  
LnBp  
LnBn  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
3.3 V  
RL = 50 ꢀ  
VCC  
RL = 50 ꢀ  
LnCp  
LnCn  
RL = 50 ꢀ  
GND  
RL = 50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
11. Total Harmonic Distortion (THD)  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
XTALK_MICGND = S43  
Network Analyzer  
Port 2  
Port 4  
Port 1  
50Terminations  
Port 3  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
MIC_GND2/Ln2  
LnAp  
SBU2  
RL = 50 ꢀ  
3.3 V  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
RL = 50 ꢀ  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
RL = 50 ꢀ  
VCC  
GND  
RL = 50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
12. Crosstalk Between MIC and AGND (XTALKMICGND  
)
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
ISOOFF_MICGND1 = S31  
ISOOFF_MICGND2 = S42  
Network Analyzer  
Port 2  
Port 4  
Port 1  
50Terminations  
Port 3  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
MIC_GND2/Ln2  
LnAp  
SBU2  
RL = 50 ꢀ  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
RL = 50 ꢀ  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
RL = 50 ꢀ  
VCC  
GND  
RL = 50 ꢀ  
Copyright © 2018, Texas Instruments Incorporated  
13. OFF Isolation (ISOOFF_MICGND  
)
20  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
VPU  
VPU = 1.8 V, RPU = 2.1 K, CL = 50 pF  
RPU  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
VO  
+
-
CL  
VS1  
MIC_GND2/Ln2  
LnAp  
SBU2  
+
-
VS2  
RL = 50  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
RL = 50 ꢀ  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
VCC  
GND  
RL = 50 ꢀ  
RL = 50 ꢀ  
3.3 V  
SEL[1:0]  
3.3 V  
SEL[1:0]  
50%  
50%  
0 V  
VS1 = 3.3 V  
VS2 = 0 V  
0 V  
VS1 = 3.3 V  
VS2 = 0 V  
VO  
90%  
10%  
VO  
tON_MICGND  
tOFF_MICGND  
Copyright © 2018, Texas Instruments Incorporated  
14. Turn-ON time (tON) and Turn-OFF time (tOFF) for MIC and AGND  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
VPU  
VPU = 1.8 V, RPU = 2.1K, CL = 50 pF  
RPU  
TS3USBCA420  
ZS = 50  
VS1  
MIC_GND1/Ln1  
SBU1  
CL  
VS2  
ZS = 50 ꢀ  
MIC_GND2/Ln2  
LnAp  
SBU2  
RL = 50 ꢀ  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
RL = 50 ꢀ  
VO1  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
VO2  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
VCC  
GND  
RL = 50 ꢀ  
RL = 50 ꢀ  
50%  
50%  
SEL[1:0]  
SEL[1:0]  
VS1 = 3.3 V  
VS2 = 0 V  
VS1 = 3.3 V  
VS2 = 0 V  
VO1  
90%  
10%  
VO1  
tON_HS  
tOFF_HS  
Copyright © 2018, Texas Instruments Incorporated  
15. Turn-ON time (tON) and Turn-OFF time (tOFF) for High-Speed Data Paths  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Parameter Measurement Information (接下页)  
VPU  
VPU = 1.8 V, RPU = 2.1K, CL = 50 pF  
RPU  
TS3USBCA420  
MIC_GND1/Ln1  
SBU1  
VO  
+
-
CL  
VS1  
MIC_GND2/Ln2  
LnAp  
SBU2  
+
-
VS2  
RL = 50  
LnAn  
LnBp  
LnBn  
I2C_EN  
SEL0/SDA  
RL = 50 ꢀ  
VO1  
SEL1/SCL  
OEn  
RL = 50 ꢀ  
VO2  
RL = 50 ꢀ  
LnCp  
LnCn  
3.3 V  
VCC  
GND  
RL = 50 ꢀ  
RL = 50 ꢀ  
3.3 V  
SEL[1:0]  
0 V  
VS1 = 3.3 V  
VS2 = 0 V  
VO1  
10%  
10%  
tBBM  
VO  
Copyright © 2018, Texas Instruments Incorporated  
16. Break-Before-Make Time (tBBM  
)
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TS3USBCA4 is a passive 4:1 (TS3USBCA420) and 3:1 (TS3USBCA410) MUX. It supports differential or  
single-ended signals on the SBU1/SBU2 terminals of a USB Type-C connected to different interfaces. The  
signals can be DisplayPort auxiliary (AUX), analog audio MIC and AGND, PCIe differential clock, or any other  
supported generic differential or single-ended signals.  
The audio path features ultra-low ON-state resistance (RON), low crosstalk and excellent total harmonic distortion  
(THD). The break-before-make feature prevents signal distortion during signal transfer from one channel to  
another. The high-speed paths support bandwidth as high as 500 MHz to provide adequate support for  
DisplayPort AUX, PCIe clock, and other similar signals. Together with low power consumption, these features  
make this device suitable for portable audio applications.  
The TS3USBCA4 supports operation from a wide VCC range between 2.4 V and 5.5 V, which gives the system  
designer the flexibility of powering the device from various sources, such as a regulator, a single-cell battery, or  
VBUS. The TS3USBCA4 provides options for both commercial and industrial temperature ranges.  
8.2 Functional Block Diagram  
TS3USBCA420  
VBUS  
VBUS  
SBU1  
MIC_GND1/Ln1  
SBU1  
D-  
D+  
D-  
Audio Codec,  
UART, I2C  
D+  
MIC_GND2/Ln2  
LnAp  
SBU2  
SBU2  
VBUS  
VBUS  
DP AUX, Debug,  
PCIe CK, UART,  
I2C  
USB Type-C  
LnAn  
LnBp  
LnBn  
I2C_EN  
DP AUX, Debug,  
PCIe CK, UART,  
I2C  
Logic  
Control  
SEL0/SDA  
SEL1/SCL  
LnCp  
LnCn  
OEn  
DP AUX, Debug,  
PCIe CK, UART,  
I2C  
VCC  
GND  
Copyright © 2018, Texas Instruments Incorporated  
17. Functional Block Diagram  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.3 Feature Description  
8.3.1 Analog Audio Path  
The TS3USBCA4 supports analog audio switching between the SBU1 and SBU2 pins on one side of the switch.  
It supports the MIC_GND1 and MIC_GND2 pins on the other side of the switch. This audio path has an ultra-low  
ON resistance and low total harmonic distortion for better audio performance.  
The MIC and AGND paths are identical by design, with both providing ultra-low RON. The audio path does not  
support flipping MIC and AGND. The audio codec should provide this function.  
8.3.2 High-Speed Paths  
The TS3USBCA4 supports three (TS3USBCA420) or two (TS3USBCA410) high-speed paths between the SBU1  
and SBU2 pins on one side of the switch. The LnAp/LnAn, LnBp/LnBn or LnCp/LnCn pins on the other side of  
the switch. The high-speed paths are identical by design. All high-speed paths have a 500-MHz bandwidth, a low  
ON-state resistance, and low additive random jitter for signal integrity. For different USB Type-C plug  
orientations, the polarity of each high-speed lane can be flipped through the I2C interface in TS3USBCA420, or  
though either the I2C interface or pin control in TS3USBCA410.  
8.3.3 3-level Input  
The 3-level input pin I2C_EN is used to enable the I2C interface and to choose between two I2C slave addresses  
to avoid address conflict. The settings for the three levels are shown in 1.  
1. 3-Level Control Pin Settings  
Level  
I2C_EN Pin Settings  
Tied directly to GND or left floating  
Tied directly to VCC/2  
Configuration Mode  
L
M
H
Pin-configuration mode  
I2C-configuration mode with ADDR0  
I2C-configuration mode with ADDR1  
Tied directly to VCC  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
Switch selection and flipping can be controlled either through the I2C interface in I2C-configuration mode or  
through the control pins (SEL0, SEL1, and FLIP when applicable) in pin-configuration mode, according to 1.  
2 and 3 show the configuration truth table for TS3USBCA420 and TS3USBCA410, respectively. Note in  
TS3USBCA420 the flipping capability is available only in I2C-configuration mode.  
2. TS3USBCA420 Switch Configuration Truth Table(1)  
{SWSEL[1:0], FLIPSEL}  
(I2C-Configuration Mode)  
{SEL1, SEL0}  
(Pin-Configuration Mode)  
Input Pin  
Output Pin  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
LnBp  
LnBn  
000  
001  
010  
011  
100  
101  
110  
111  
LL  
LH  
HL  
HH  
LnBn  
LnBp  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
LnCp  
LnCn  
LnCp  
LnCn  
LnAp  
LnAn  
LnAn  
LnAp  
(1) For normal operation, drive OEn low (and in I2C mode set DEVICE_ENABLE = 1’b1). Driving the OEn pin high (or in I2C mode setting  
DEVICE_ENABLE = 1’b0) disables the switch. Note: The ports which are not selected by the control lines are in high impedance state  
3. TS3USBCA410 Switch Configuration Truth Table(1)  
{SWSEL[1:0], FLIPSEL}  
(I2C-Configuration Mode)  
{SEL1, SEL0, FLIP}  
(Pin-Configuration Mode)  
Input Pin  
Output Pin  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
SBU1  
SBU2  
LnBp  
LnBn  
000  
001  
010  
011  
100  
101  
110  
111  
LLL  
LLH  
LHL  
LHH  
HLL  
HLH  
HHL  
HHH  
LnBn  
LnBp  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
MIC_GND1/Ln1  
MIC_GND2/Ln2  
LnAp  
LnAn  
LnAn  
LnAp  
(1) For normal operation, drive OEn low (and in I2C mode set DEVICE_ENABLE = 1’b1). Driving the OEn pin high (or in I2C mode setting  
DEVICE_ENABLE = 1’b0) disables the switch. Note: The ports which are not selected by the control lines are in high impedance state  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
In addition to switch control, the I2C-configuration mode also allows enabling and disabling the device through  
the DEVICE_ENABLE register. 4 shows the details.  
4. TS3USBCA4 Enable/Disable Truth Table  
OEn  
L
DEVICE_ENABLE  
Device Behavior  
Device is shut down with IOFF_I2C  
.
On-chip bandgap and IO buffers are still on.  
I2C is functional.  
0
1
X
L
Normal operation.  
Device is under reset with IOFF_OEN  
.
H
On-chip bandgap and IO buffers are off.  
I2C is not functional.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.5 Programming  
The TS3USBCA4 can be controlled using I2C. The SCL and SDA terminals are used for I2C clock and I2C data  
respectively.  
5. TS3USBCA4 I2C Slave Address  
ADDR  
ADDR0  
ADDR1  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
1
1
0
0
1
1
1
1
1
1
0
0
0
1
0/1  
0/1  
The following procedure should be followed to write to TS3USBCA4 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TS3USBCA4 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle  
2. The TS3USBCA4 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TS3USBCA4) to be written, consisting of one byte  
of data, MSB-first.  
4. The TS3USBCA4 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TS3USBCA4 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TS3USBCA4.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure should be followed to read the TS3USBCA4 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TS3USBCA4 7-bit  
address and a one-value “W/R” bit to indicate a read cycle  
2. The TS3USBCA4 acknowledges the address cycle.  
3. The TS3USBCA4 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
sub-address+1. If a write to the I2C.register occurred prior to the read, then the TS3USBCA4 shall start at the  
sub-address specified in the write.  
4. The TS3USBCA4 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TS3USBCA4 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure should be followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the TS3USBCA4 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TS3USBCA4 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TS3USBCA4) to be written, consisting of one byte  
of data, MSB-first.  
4. The TS3USBCA4 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
Upon reset, the TS3USBCA4 sub-address is always set to 0x00. The TS3USBCA4  
increments the sub-address by one after each successful read or write transaction, so that  
the next read transaction that does not explicitly specify the sub-address will start from the  
next register.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
8.6 Register Maps  
8.6.1 TS3USBCA4 Registers  
Table 6 lists the memory-mapped registers for the TS3USBCA4 registers. All register offset addresses not listed  
in Table 6 should be considered as reserved locations and the register contents should not be modified.  
Table 6. TS3USBCA4 Registers  
Offset  
9h  
Acronym  
Revision_ID  
General_1  
General_2  
Register Name  
Section  
Go  
Revsion ID  
Ah  
Enable and FLIPSEL control  
SWSEL control  
Go  
Bh  
Go  
Complex bit access types are encoded to fit into small table cells. Table 7 shows the codes that are used for  
access types in this section.  
Table 7. TS3USBCA4 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1.1 Revision_ID Register (Offset = 9h) [reset = 0h]  
Revision_ID is shown in Figure 18 and described in Table 8.  
Return to Summary Table.  
Figure 18. Revision_ID Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
REVISION_ID  
R-0h  
Table 8. Revision_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7-4  
3-0  
RESERVED  
R
0h  
REVISION_ID  
R
0h  
Silicon revision.  
8.6.1.2 General_1 Register (Offset = Ah) [reset = 0h]  
General_1 is shown in Figure 19 and described in Table 9.  
Return to Summary Table.  
Figure 19. General_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
DEVICE_ENAB  
LE  
FLIPSEL  
R/W-0h  
R/W-0h  
Copyright © 2018–2019, Texas Instruments Incorporated  
29  
 
 
 
 
 
 
 
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Table 9. General_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
RESERVED  
R
0h  
Reserved  
1
DEVICE_ENABLE  
R/W  
R/W  
0h  
0h  
Controls the switch enable.  
0h = Disabled  
1h = Enabled  
0
FLIPSEL  
Controls the USB-C orientation.  
0h = Normal Orientation  
1h = Flip orientation.  
8.6.1.3 General_2 Register (Offset = Bh) [reset = 0h]  
General_2 is shown in Figure 20 and described in Table 10.  
Return to Summary Table.  
Figure 20. General_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SWSEL  
R/W-0h  
Table 10. General_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1-0  
RESERVED  
SWSEL  
R
0h  
Reserved  
R/W  
0h  
This field along with FLIPSEL controls the SBU switch connections.  
0h = SBU to LnB  
1h = SBU to MICGND  
2h = SBU to LnC  
3h = SBU to LnA  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SBU1 and SBU2 pins of a USB type-C connector can be re-purposed in different applications. Examples  
include DisplayPort AUX, analog audio MIC and AGND, and debug signals. The TS3USBCA4 is controlled by a  
micro-processor (that is, an application processor in a smartphone) that routes SBU1 and SBU2 to the desired  
destination, such as a DisplayPort source or sink, an audio codec, or a processor. The TS3USBCA4 provides  
cross-switch capability for different USB type-C plug orientations.  
9.2 Typical Application  
21 shows the typical application of TS3USBCA420 in I2C-configuration mode from a 3.3-V supply. The I2C  
slave address is set to ADDR1. VIO_uP is the supply for the micro-processor IOs.  
USB 2.0  
USB Host  
DP/DM  
TS5USBA224  
L/R  
3.3V  
Audio Codec  
VCC  
MIC_GND1/Ln1  
I2C_EN  
MIC_GND2/Ln2  
MIC/AGND  
TS3USBCA420  
LnAp  
LnAn  
AUX  
CK  
DP  
SBU1  
SBU2  
LnBp  
LnBn  
SBU1/SBU2  
PCIe  
LnCp  
LnCn  
OEn  
Debug  
SDA  
SCL  
I2C  
GND  
µP  
VI2C  
VIO_µP  
SDA  
SCL  
INT_N  
CC1/CC2  
TUSB320  
Copyright © 2018, Texas Instruments Incorporated  
21. Application of TS3USBCA420 in I2C-Configuration Mode  
22 shows the typical application of TS3USBCA420 in pin-configuration mode from VBUS. VIO_uP is the supply  
for the micro-processor IOs.  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
USB 2.0  
L/R  
USB Host  
DP/DM  
VBUS  
TS5USBA224  
Audio Codec  
VCC  
MIC_GND1  
MIC/AGND  
I2C_EN  
MIC_GND2  
TS3USBCA420  
LnAp  
LnAn  
AUX  
CK  
DP  
SBU1  
SBU2  
LnBp  
LnBn  
SBU1/SBU2  
PCIe  
LnCp  
LnCn  
OEn  
Debug  
SEL0  
SEL1  
GND  
µP  
VIO_µP  
ID  
CC1/CC2  
DIR TUSB322I  
OUT3  
22. Application of TS3USBCA420 in Pin-Configuration Mode  
21 shows the typical application of TS3USBCA410 in I2C-configuration mode from VBAT. The I2C slave  
address is set to ADDR0. VIO_uP is the supply for the micro-processor IOs.  
USB 2.0  
USB Host  
DP/DM  
TS5USBA224  
L/R  
VBAT  
Audio Codec  
VCC  
MIC_GND1/Ln1  
MIC/AGND  
AUX  
I2C_EN  
MIC_GND2/Ln2  
TS3USBCA410  
LnAp  
DP  
LnAn  
SBU1  
SBU2  
SBU1/SBU2  
FLIP  
LnBp  
LnBn  
OEn  
Debug  
SDA  
SCL  
I2C  
µP  
GND  
VI2C VIO_µP  
SDA  
SCL  
INT_N  
CC1/CC2  
TUSB320  
Copyright © 2018, Texas Instruments Incorporated  
23. Application of TS3USBCA410 in I2C-Configuration Mode  
22 shows the typical application of TS3USBCA410 in pin-configuration mode from VBUS. VIO_uP is the supply  
for the micro-processor IOs.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
Typical Application (接下页)  
USB 2.0  
L/R  
USB Host  
DP/DM  
TS5USBA224  
VBUS  
Audio Codec  
VCC  
MIC_GND1  
MIC/AGND  
AUX  
I2C_EN  
MIC_GND2  
TS3USBCA410  
LnAp  
LnAn  
DP  
SBU1  
SBU2  
SBU1/SBU2  
FLIP  
LnBp  
LnBn  
OEn  
Debug  
SEL0  
SEL1  
µP  
GND  
VIO_µP  
ID  
DIR  
CC1/CC2  
TUSB322I  
OUT3  
24. Application of TS3USBCA410 in Pin-Configuration Mode  
9.2.1 Design Requirements  
Design requirements of USB type-C and other relevant standards (DisplayPort, analog audio, etc.) must be  
followed.  
9.2.2 Detailed Design Procedure  
The design procedure starts with the choice of supply. TS3USBCA4 wide supply range from 2.4 V to 5.5 V gives  
the designer flexibility when selecting a supply. Examples include, but are not limited to, a single-cell battery, a  
3.3-V regulator, or VBUS. The designer must account for the parametric variation of TS3USBCA4 with supply  
range, the supply range of other components in the system, the IO voltage levels of companion devices, and  
cost. For example, a regulated 3.3-V VCC has the advantage of smaller variation of TS3USBCA4 performance  
compared to a single-cell batter between 2.7 V and 4.3 V. This regulator may add to the system cost and board  
area.  
The next step in the design procedure is to choose between I2C- and pin-configuration mode. The I2C-  
configuration mode is preferred because it reduces the number of IOs needed from the micro-processor. Note  
that in TS3USBCA420 the flip functionality is only available in the I2C-configuration mode. The designer can  
choose from two I2C slave addresses through pin-strapping of I2C_EN to avoid address conflict. The IOs of  
TS3USBCA4 have well-controlled VIH and VIL and are supposed to work with a wide range of IO voltage levels of  
the micro-processor. However, the designer needs to check the compatibility of the IOs between the micro-  
processor and TS3USBCA4, and insert level translators when necessary.  
In I2C-configuration mode, when it is necessary to set I2C_EN to the middle level to avoid slave address conflict,  
it is desirable to use as high a resistor value as possible for the resistor divider to minimize the static current  
through the resistor divider. However, the designer needs to take into account the resistor tolerance and the  
effect of the on-chip pull-down resistor to ensure a satisfactory voltage margin for VIM of the I2C_EN pin.  
It should be noted that the bandwidth of the high-speed lanes is defined with the audio channel open. Due to the  
low RON of the audio channel, big parasitic capacitance exists between the audio output port and the SBU port.  
The load (capacitive and/or resistive) at the audio output port may significantly impact the bandwidth of the high-  
speed lanes. If bandwidth is importance, the audio channel is preferred. If certain high-speed signals have to go  
through the high-speed lanes, care should be taken to minimize the load at the audio output port, including the  
traces.  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.3 Application Curves  
300  
250  
200  
150  
100  
50  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
Contact Resistance (mW)  
D001  
25. Max Current vs Contact Resistance  
10 Power Supply Recommendations  
The TS3USBCA4 is designed to operate from a VCC range between 2.4 V and 5.5 V. The supply is  
recommended to be decoupled to ground via two de-coupling capacitors of 0.1 µF and 1 µF placed as close as  
possible to the TS3USBCA4. To ensure a POR trip during a power-down and power-on event the power supply  
should follow the minimum and maximum VCC rise and fall times specified in the electrical specifications section.  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
TS3USBCA4  
www.ti.com.cn  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
The VCC pin must have de-coupling capacitors placed as closely to the device as possible. Typically  
recommended capacitors are a 0.1-µF and a 1-µF capacitor.  
The total resistance from SBU1 and SBU2 pins of the type-C connector to the MIC_GND1 and MIC_GND2  
pins of the audio codec should be kept low to avoid degrading the crosstalk performance.  
Route the I2C and digital signals away from the audio signals to prevent coupling onto the audio lines.  
11.2 Layout Example  
26 shows a layout example of TS3USBCA420.  
1
2
3
4
12  
11  
10  
9
I2C_EN  
SBU1  
SBU2  
GND  
Via to VCC plane  
Via to GND plane  
26. Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
 
TS3USBCA4  
ZHCSHL5C FEBRUARY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS3USBCA410IRSVR  
TS3USBCA410IRSVT  
TS3USBCA410RSVR  
TS3USBCA410RSVT  
TS3USBCA420IRSVR  
TS3USBCA420IRSVT  
TS3USBCA420RSVR  
TS3USBCA420RSVT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
16  
16  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
410  
410  
410  
410  
420  
420  
420  
420  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
0 to 70  
-40 to 85  
-40 to 85  
0 to 70  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TS3USBCA410IRSVR  
TS3USBCA410IRSVT  
TS3USBCA410RSVR  
TS3USBCA410RSVT  
TS3USBCA420IRSVR  
TS3USBCA420IRSVT  
TS3USBCA420RSVR  
TS3USBCA420RSVT  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.9  
2.9  
2.9  
2.9  
2.9  
2.9  
2.9  
2.9  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
0.75  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TS3USBCA410IRSVR  
TS3USBCA410IRSVT  
TS3USBCA410RSVR  
TS3USBCA410RSVT  
TS3USBCA420IRSVR  
TS3USBCA420IRSVT  
TS3USBCA420RSVR  
TS3USBCA420RSVT  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
UQFN  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
16  
16  
16  
16  
16  
16  
16  
16  
3000  
250  
189.0  
189.0  
189.0  
189.0  
189.0  
189.0  
189.0  
189.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
36.0  
36.0  
36.0  
36.0  
36.0  
36.0  
36.0  
36.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TS3USBCA420IRSVT

USB Type-C SBU 多路复用器 | RSV | 16 | -40 to 85
TI

TS3USBCA420RSVR

USB Type-C SBU 多路复用器 | RSV | 16 | 0 to 70
TI

TS3USBCA420RSVT

USB Type-C SBU 多路复用器 | RSV | 16 | 0 to 70
TI

TS3V330

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON STATE RESISTANCE
TI

TS3V330D

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON STATE RESISTANCE
TI

TS3V330DBQR

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON STATE RESISTANCE
TI

TS3V330DBQRE4

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE
TI

TS3V330DBQRG4

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE
TI

TS3V330DE4

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE
TI

TS3V330DG4

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE
TI

TS3V330DGVR

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON STATE RESISTANCE
TI

TS3V330DGVRE4

QUAD SPDT WIDE-BANDWIDTH VIDEO SWITCH WITH LOW ON-STATE RESISTANCE
TI