TS5USBC400YFPT [TI]

具有 16V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFP | 12 | 0 to 70;
TS5USBC400YFPT
型号: TS5USBC400YFPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 16V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFP | 12 | 0 to 70

开关 输出元件 复用器
文件: 总30页 (文件大小:1279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
具有 16-V 过压保护功能的TS5USBC400双路 2:1 USB 2.0 多路复用器/多  
路信号分离器  
1 特性  
3 说明  
1
电源范围:2.3V 5.5V  
TS5USBC400 是一种双向低功耗双端口高速 USB 2.0  
模拟开关,具有针对 USB Type-C™系统的集成保护功  
能。该器件配置为双路 2:1 1:2 开关,并经过了优  
化,能够应对 USB Type-C™ 系统中的 USB 2.0 D+/-  
线路。  
差分 2:1 1:2 开关/多路复用器  
公共引脚上具有 0V 16V 过压保护 (OVP)  
VCC = 0V 时具有断电保护  
较低的 RON(最大值为 9Ω)  
典型带宽为 1.1GHz  
TS5USBC400 I/O 引脚上的保护功能可承受高达  
16V 的电压,并配备自动关闭电路来保护开关后面的  
系统组件。  
典型的 CON 4.5pF  
低功耗禁用模式  
1.8V 兼容型逻辑输入  
TS5USBC400 采用小型 12 引脚 DSBGA 封装,使其  
成为移动应用和空间受限型 应用中的杂音问题。中对  
于高效率、高电源密度和稳健性的需求。  
ESD 保护性能超出 JESD 22 标准  
2000V 人体模型 (HBM)  
TS5USBC400:标准温度范围为  
0°C 70°C  
器件信息(1)  
TS5USBC400I:工业温度范围为  
-40°C 85°C  
器件型号  
封装  
封装尺寸(标称值)  
TS5USBC400  
TS5USBC400I  
DSBGA (12)  
1.582mm × 1.182mm  
小型 DSBGA 封装  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用  
移动设备  
台式机/笔记本电脑  
平板电脑  
使用 USB Type-C™ Micro-B 连接器的任何场合  
简化电路原理图  
USB  
Connector  
TS5USBC400  
UART  
USB  
D1+  
VCC  
OVP  
D2+  
D1-  
D2-  
SEL1  
USB  
SEL2  
Logic  
Control  
OE  
FLT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCDS374  
 
 
 
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application .................................................. 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Dynamic Characteristics ........................................... 7  
6.7 Timing Requirements................................................ 7  
6.8 Typical Characteristics.............................................. 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
9
10 Power Supply Recommendations ..................... 18  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 20  
12 器件和文档支持 ..................................................... 21  
12.1 文档支持................................................................ 21  
12.2 社区资源................................................................ 21  
12.3 ....................................................................... 21  
12.4 静电放电警告......................................................... 21  
12.5 Glossary................................................................ 21  
13 机械、封装和可订购信息....................................... 22  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2017) to Revision A  
Page  
Added ICC Active supply current and Supply current during OVP condition to the Electrical Specification table .................. 4  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
5 Pin Configuration and Functions  
YFP Package  
12-Pin DSBGA  
Top View  
1
2
3
4
A
SEL1  
VCC  
D2+  
D+  
D-  
FLT  
SEL2  
D2-  
GND  
D1+  
OE  
B
C
D1-  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SEL1  
D+  
NO.  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
C1  
C2  
C3  
C4  
I
I/O  
I/O  
O
Switch select1 (Active high)  
Data switch input (Differential +)  
Data switch input (Differential –)  
D–  
FLT  
VCC  
SEL2  
GND  
OE  
Fault indicator output pin (Active low) - open drain  
Supply Voltage  
PWR  
I
Switch select2 (Active high)  
Ground  
GND  
I
Output enable (Active low)  
D2+  
D2–  
D1+  
D1–  
I/O  
I/O  
I/O  
I/O  
Data switch output 2 (Differential +)  
Data switch output 2 (Differential -)  
Data switch output 1 (Differential +)  
Data switch output 1 (Differential -)  
Copyright © 2017, Texas Instruments Incorporated  
3
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(2)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
VCC  
VI/O  
VI/O  
VI  
Supply voltage(3)  
6
18  
6
V
V
V
V
V
Input/Output DC voltage (D+, D-)(3)  
Input/Output DC voltage (D1+/D1-, D2+/D2-)  
Digital input voltage (SEL1, SEL2, OE)  
Digital output voltage (FLT)  
(3)  
6
VO  
6
Input-output port diode current (D+, D-,  
D1+, D1-, D2+, D2-)  
IK  
VIN < 0  
VI < 0  
–50  
–50  
mA  
mA  
Digital logic input clamp current (SEL1,  
IIK  
(3)  
SEL2, OE)  
ICC  
Continuous current through VCC  
Continuous current through GND  
Storage temperature  
100  
150  
mA  
mA  
°C  
IGND  
Tstg  
–100  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
18  
UNIT  
VCC  
Supply voltage  
2.3  
0
V
V
VI/O (D+, D-)  
Analog input/output voltage  
VI/O (D1, D1-, D2+, D2-)  
0
3.6  
5.5  
5.5  
50  
V
VI  
Digital input voltage (SEL1, SEL2, OE)  
Digital output voltage (FLT)  
0
V
VO  
0
V
II/O (D+, D-, D1+, D1-, D2+, D2-)  
Analog input/output port continuous current  
Digital output current  
-50  
mA  
mA  
ºC  
ºC  
ºC  
IOL  
TA  
TA  
TJ  
3
Operating free-air temperature (TS5USBC400) Standard  
Operating free-air temperature (TS5USBC400I) Industrial  
Junction temperature  
0
–40  
–40  
70  
85  
125  
4
Copyright © 2017, Texas Instruments Incorporated  
 
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
6.4 Thermal Information  
TS5USBC400  
(1)  
THERMAL METRIC  
YFP  
12 PINS  
91.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.8  
22.8  
0.5  
ψJB  
Junction-to-board characterization parameter  
23.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
TA = –40°C to +85°C (Industrial), TA = 0to 70(Standard), VCC = 2.3 V to 5.5 V, GND = 0V, Typical values are at VCC  
=
3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VCC  
Power supply voltage  
Active supply current  
2.3  
5.5  
V
OE = 0 V  
SEL1, SEL2 = 0 V, 1.8 V or VCC  
0 V < VI/O < 3.6 V  
72  
80  
100  
µA  
ICC  
OE = 0 V  
Supply current during OVP condition SEL1, SEL2 = 0 V, 1.8 V or VCC  
VI/O > VPOS_THLD  
120  
10  
µA  
µA  
OE = 1.8 V or VCC  
Standby powered down supply  
SEL1 = 0 V, 1.8 V, or VCC  
ICC_PD  
2.2  
current  
SEL2 = 0 V, 1.8 V, or VCC  
DC Characteristics  
VI/O = 0.4 V  
RON  
ON-state resistance  
ISINK = 8 mA  
Refer to ON-State Resistance Figure  
5.6  
0.07  
0.07  
9
0.3  
0.4  
VI/O = 0.4 V  
ISINK = 8 mA  
Refer to ON-State Resistance Figure  
ON-state resistance match between  
channels  
ΔRON  
VI/O = 0 V to 0.4 V  
ISINK = 8 mA  
Refer to ON-State Resistance Figure  
RON (FLAT)  
ON-state resistance flatness  
I/O pin OFF leakage current  
ON leakage current  
V= 0 V or 3.6 V  
VCC = 2.3 V to 5.5 V  
VD1±or VD2+/- = 3.6 V or 0 V  
Refer to Off Leakage Figure  
-1  
-1  
1.2  
6
µA  
IOFF  
V= 0 V or 16 V  
VCC = 2.3 V to 5.5 V  
VD1± or VD2+/- = 0 V  
165  
1.2  
200  
6
µA  
µA  
Refer to Off Leakage Figure  
V= 0 V or 3.6 V  
VD1± and VD2+/- = high-Z  
Refer to On Leakage Figure  
ION  
-1  
Digital Characteristics  
VIH  
VIL  
Input logic high  
SEL1, SEL2, OE  
SEL1, SEL2, OE  
1.4  
V
V
Input logic low  
0.5  
0.4  
FLT  
IOL = 3 mA  
VOL  
Output logic low  
V
IIH  
IIL  
Input high leakage current  
Input low leakage current  
SEL1, SEL2, OE = 1.8 V, VCC  
SEL1, SEL2, OE = 0 V  
-1  
-1  
1
5
5
μA  
μA  
±0.2  
Copyright © 2017, Texas Instruments Incorporated  
5
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = –40°C to +85°C (Industrial), TA = 0to 70(Standard), VCC = 2.3 V to 5.5 V, GND = 0V, Typical values are at VCC  
=
3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Internal pull-down resistor on digital  
input pins  
RPD  
CI  
6
MΩ  
SEL1, SEL2 = 0 V, 1.8 V or VCC  
f = 1 MHz  
Digital input capacitance  
3.4  
pF  
Protection  
VOVP_TH  
OVP positive threshold  
4.5  
75  
4.8  
5.2  
V
VOVP_HYST  
OVP threshold hysteresis  
230  
425  
mV  
V= 0 to 18 V  
tRISE and tFALL(10% to 90 %) = 100 ns  
RL = Open  
Switch on or off  
0
0
9.6  
9.0  
V
V
OE = 0 V  
Maximum voltage to appear on D1±  
and D2± pins during OVP scenario  
VCLAMP_V  
V= 0 to 18 V  
tRISE and tFALL(10% to 90 %) = 100 ns  
RL = 50Ω  
Switch on or off  
OE = 0 V  
RPU = 10 kΩ to VCC (FLT)  
CL = 35 pF  
Refer to OVP Timing Diagram Figure  
tEN_OVP  
OVP enable time  
0.6  
1.5  
3
5
μs  
μs  
RPU = 10 kΩ to VCC (FLT)  
CL = 35 pF  
tREC_OVP  
OVP recovery time  
Refer to OVP Timing Diagram Figure  
6
Copyright © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
6.6 Dynamic Characteristics  
TA = –40°C to +85°C (Industrial), TA = 0to 70(Standard), VCC = 2.3 V to 5.5V, GND = 0V, Typical values are at VCC  
=
3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VD+/- = 0 or 3.3 V,  
MIN  
TYP  
MAX UNIT  
OE = VCC  
D+, D- off capacitance  
Switch OFF  
1.2  
3.5  
6.2  
pF  
f = 240 MHz  
COFF  
VD+/- = 0 or 3.3 V,  
OE = VCC or OE = 0V with SEL1,  
SEL2 (switch not selected)  
f = 240 MHz  
D1+, D1-, D2+, D2- off  
capacitance  
Switch OFF or  
not selected  
1.2  
1.4  
3.5  
4.5  
-90  
6.2  
6.2  
pF  
pF  
dB  
VD+/- = 0 or 3.3 V,  
f = 240 MHz  
CON  
IO pins ON capacitance  
Switch ON  
RL = 50 Ω  
CL = 5 pF  
f = 100 kHz  
Switch OFF  
Refer to Off Isolation Figure  
OISO  
Differential off isolation  
RL = 50 Ω  
CL = 5 pF  
f = 240 MHz  
Switch OFF  
-22  
dB  
Refer to Off Isolation Figure  
RL = 50 Ω  
CL = 5 pF  
f = 100 kHz  
Refer to Crosstalk Figure  
XTALK  
BW  
Channel to Channel crosstalk  
Bandwidth  
Switch ON  
Switch ON  
-90  
1.1  
dB  
RL = 50 Ω; Refer to BW and  
GHz  
Insertion Loss Figure  
RL = 50 Ω  
ILOSS  
Insertion loss  
Switch ON  
-0.7  
dB  
f = 240 MHz; Refer to BW and  
Insertion Loss Figure  
6.7 Timing Requirements  
TA = –40°C to +85°C (Industrial), TA = 0to 70(Standard), VCC = 2.3 V to 5.5V, GND = 0V, Typical values are at VCC  
=
3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN NOM  
MAX UNIT  
VD+/- = 0.8 V  
Refer to Tswitch Timing Figure  
Switching time between channels  
(SEL1, SEL2 to output)  
tswitch  
ton  
0.45  
1.2  
250  
1
µs  
µs  
µs  
RL = 50 ,  
CL = 5 pF,  
VCC = 2.3 V to 5.5 V  
VD+/- = 0.8 V  
Refer to Ton and Toff Figure  
Device turn on time (OE to output)  
Device turn off time (OE to output)  
100  
VD+/- = 0.8 V  
Refer to Ton and Toff Figure  
toff  
0.35  
RL = 50 ,  
CL = 1 pF,  
VCC = 2.3 V to 5.5 V  
VD+/- = 0.4 V  
Refer to Tsk Figure  
Skew of opposite transitions of  
same output (between D+ and D-)  
tSK(P)  
9
50  
ps  
ps  
RL = 50 ,  
CL = 5 pF,  
VCC = 2.3 V to 5.5 V  
VD+/- = 0.4 V  
Refer to Tpd Figure  
tpd  
Propagation delay  
130  
180  
版权 © 2017, Texas Instruments Incorporated  
7
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
6.8 Typical Characteristics  
8
7.5  
7
6.5  
6
5.5  
5
4.5  
4
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
VIN, Input Voltage (V)  
D001  
VCC = 3.3 V  
TA = 25°C  
1. ON-Resistance vs Input Voltage  
8
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
7 Parameter Measurement Information  
V
VD+/-  
ISINK  
Switch  
Channel ON, RON = V/ISINK  
2. ON-State Resistance (RON  
)
VDX+/-  
VD+/-  
A
A
Switch  
3. Off Leakage  
VD+/-  
A
Switch  
4. On Leakage  
VD1+/-  
VD2+/-  
VD+/-  
SEL  
CL  
RL  
RL  
CL  
VSEL  
1.8 V  
0 V  
1.8 V  
0 V  
0.8 V  
1.2 V  
1.2 V  
0.8 V  
VSEL  
tSWITCH  
VD1+/-  
VSEL  
tSWITCH  
VD2+/-  
tSWITCH  
tSWITCH  
VD+/-  
VD+/-  
0 V  
80 %  
80 %  
20 %  
20 %  
0 V  
Copyright © 2017, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
5. tSWITCH Timing  
版权 © 2017, Texas Instruments Incorporated  
9
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
2.3 V  
VCC  
VD+/-  
1.8 V  
0 V  
VOE  
0.8 V  
1.2 V  
CL  
RL  
OE  
tON  
tOFF  
10 %  
VD+/-  
0 V  
90 %  
VDX+/-  
VOE  
Copyright © 2017, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
6. tON, tOFF for OE  
Network Analyzer  
Switch  
50 O  
D+  
D-  
50 O  
Source  
Signal  
50 O  
50 O  
Source  
Signal  
50 O  
50 O  
Copyright © 2017, Texas Instruments Incorporated  
7. Off Isolation  
Network Analyzer  
50  
Switch  
D+  
D-  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
50 ꢀ  
50 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
8. Cross Talk  
10  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
Parameter Measurement Information (接下页)  
Network Analyzer  
Switch  
50  
D+  
50 ꢀ  
Source  
Signal  
50 ꢀ  
D-  
50 ꢀ  
Source  
Signal  
50 ꢀ  
50 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
9. BW and Insertion Loss  
18 V  
0 V  
VD+/-  
OE  
VPOS_THLD  
VD+/-  
CL  
RL  
tEN_OVP  
FLT  
tREC_OVP  
VOE  
VCC  
0 V  
10 %  
10 %  
Copyright © 2017, Texas Instruments Incorporated  
10. tEN_OVP and tDIS_OVP Timing Diagram  
Switch  
D+/-  
50  
0.4 V  
0 V  
VD+/-  
50 %  
50 %  
50 ꢀ  
tPD  
50 %  
tPD  
0.4 V  
0 V  
VDX+/-  
50 %  
Copyright © 2017, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
11. tPD  
版权 © 2017, Texas Instruments Incorporated  
11  
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
Switch  
0.4 V  
D+  
D-  
50 O  
50 O  
VD+/-  
VDX+  
VDX-  
0 V  
50 O  
50 O  
0.4 V  
50 %  
50 %  
0 V  
0.4 V  
0 V  
tSK  
tSK  
50 %  
50 %  
Copyright © 2017, Texas Instruments Incorporated  
(1) All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω, tr < 500  
ps, tf < 500 ps.  
(2) CL includes probe and jig capacitance.  
12. tSK  
12  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
8 Detailed Description  
8.1 Overview  
The TS5USBC400 is a bidirectional low-power dual port, high-speed, USB 2.0 analog switch with integrated  
protection for USB Type-C systems. The device is configured as a dual 2:1 or 1:2 switch and is optimized for  
handling the USB 2.0 D+/- lines in a USB Type-C system as shown in 13.  
13. USB Type-C Connector Pinout  
The TS5USBC400 also works in traditional USB systems that need protection from fault conditions such as  
automotive and applications that require higher voltage charging. The device maintains excellent signal integrity  
through the optimization of both RON and BW while protecting the system with 0 V to 16 V OVP protection. The  
OVP implementation is designed to protect sensitive system components behind the switch that cannot survive a  
fault condition where VBUS is shorted the D+ and D- pins on the connector.  
8.2 Functional Block Diagram  
VCC  
SEL1  
6 M  
SEL2  
Control  
Logic  
FLT  
6 Mꢀ  
OE  
6 Mꢀ  
VOVP  
OVP  
D1+  
D+  
D1-  
D2+  
D-  
D2-  
Switches  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017, Texas Instruments Incorporated  
13  
 
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Powered-off Protection  
When the TS5USBC400 is powered off the I/Os of the device remain in a high-Z state. The crosstalk, off-  
isolation, and leakage remain within the Electrical Specifications.  
This prevents errant voltages from reaching the rest of the system and maintains isolation when the system is  
powering up.  
8.3.2 Overvoltage Protection  
The OVP of the TS5USBC400 is designed to protect the system from D+/- shorts to VBUS at the USB and USB  
Type-C connector. 14 depicts a moisture short that would cause 16 V to appear on an existing USB solution  
that could pass through the device and damage components behind the device.  
VBUS  
SBU2  
D-  
VBUS  
CC1  
D+  
UART  
USB  
Existing Solutions  
D+  
D1+  
D2+  
D1-  
D-  
D
D-  
D2-  
CC
SBU1  
VBUS  
USB  
16 V  
VBU
Copyright © 2017, Texas Instruments Incorporated  
14. Existing Solution Being Damaged by a Short, 16 V  
The TS5USBC400 will open the switches and protect the rest of the system by blocking the 16 V as depicted in .  
14  
版权 © 2017, Texas Instruments Incorporated  
 
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
Feature Description (接下页)  
16 V doesn‘t reach  
rest of system  
VBUS  
SBU2  
D-  
VBUS  
UART  
USB  
CC1  
D+  
D1+  
D+  
D-  
D2+  
D1-  
D
D-  
D2-  
CC
SBU1  
VBUS  
USB  
16 V  
VBU
Copyright © 2017, Texas Instruments Incorporated  
15. Protecting During a 16-V Short  
16 is a waveform showing the voltage on the pins during an over-voltage scenario.  
16 V  
VOVP_THLD  
D+/-  
0 V  
D1/D2  
0 V  
FLT  
16. Overvoltage Protection Waveform, 16 V  
版权 © 2017, Texas Instruments Incorporated  
15  
 
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Pin Functions  
1. Function Table  
OE  
H
L
SEL1  
SEL2  
D- Connection  
High-Z  
D+ Connection  
X
L
X
L
High-Z  
D- to D1-  
D- to D1-  
D- to D2-  
D- to D2-  
D+ to D1+  
D+ to D2+  
D+ to D1+  
D+ to D2+  
L
L
H
L
L
H
H
L
H
16  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
There are many USB applications in which the USB hubs or controllers have a limited number of USB I/Os or  
need to route signals from a single USB connector. The TS5USBC400 solution can effectively expand the limited  
USB I/Os by switching between multiple USB buses to interface them to a single USB hub or controller or route  
signals from on connector to two different locations. With independent control of the two switches using SEL1  
and SEL2, TS5USBC400 can be used to cross switch single ended signals.  
9.2 Typical Application  
TS5USBC400 USB/UART switch. The TS5USBC400 is used to switch signals between the USB path, which  
goes to the baseband or application processor, or the UART path, which goes to debug port. The TS5USBC400  
has internal 6-Mpull-down resistors on SEL1, SEL2, and OE. The pull-down on SEL1 and SEL2 pins ensure  
the D1+/D1- channel is selected by default. The pull-down on OE enables the switch when power is applied.  
USB  
Connector  
V
CC  
100 nF  
UART  
USB  
VCC  
OVP  
D1+  
D2+  
D1-  
D2-  
SEL1  
SEL2  
USB  
Logic  
Control  
OE  
FLT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
17. Typical TS5USBC400 Application  
9.2.1 Design Requirements  
Design requirements of USB 1.0,1.1, and 2.0 standards must be followed. The TS5USBC400 has internal 6-MΩ  
pulldown resistors on SEL1, SEL2, and OE, so no external resistors are required on the logic pins. The internal  
pull-down resistor on SEL1 and SEL2 pins ensures the D1+ and D1- channels are selected by default. The  
internal pull-down resistor on OE enables the switch when power is applied to VCC.  
9.2.2 Detailed Design Procedure  
The TS5USBC400can be properly operated without any external components. However, TI recommends that  
unused pins must be connected to ground through a 50-Ω resistor to prevent signal reflections back into the  
device. TI does recommend a 100nF bypass capacitor placed close to TS5USBC400 VCC pin.  
版权 © 2017, Texas Instruments Incorporated  
17  
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
9.2.3 Application Curves  
0.4  
0.2  
0.0  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.2  
-0.4  
1.0  
0.0  
0.5  
1.5  
2.0  
1.0  
0.0  
0.5  
1.5  
2.0  
Time (ns)  
Time (ns)  
18. High Speed Eye Diagram With TS5USBC400  
19. High Speed Eye Diagram Without TS5USBC400  
10 Power Supply Recommendations  
Power to the device is supplied through the VCC pin and must follow the USB 1.0, 1.1, and 2.0 standards. TI  
recommends placing a 100nF bypass capacitor as close to the supply pin VCC as possible to help smooth out  
lower frequency noise to provide better load regulation across the frequency spectrum.  
18  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
1. Place supply bypass capacitors as close to VCC pin as possible and avoid placing the bypass caps near the  
D± traces.  
2. The high-speed D± must match and be no more than 4 inches long; otherwise, the eye diagram performance  
may be degraded. A high-speed USB connection is made through a shielded, twisted pair cable with a  
differential characteristic impedance. In layout, the impedance of D+ and D– traces must match the cable  
characteristic differential impedance for optimal performance.  
3. Route the high-speed USB signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points on twisted  
pair lines; through-hole pins are not recommended.  
4. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This  
reduces reflections on the signal traces by minimizing impedance discontinuities.  
5. Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators,  
mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
6. Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable,  
then the stub must be less than 200 mm.  
7. Route all high-speed USB signal traces over continuous GND planes, with no interruptions.  
8. Avoid crossing over anti-etch, commonly found with plane splits.  
9. Due to high frequencies associated with the USB, a printed circuit board with at least four layers is  
recommended; two signal layers separated by a ground and power layer as shown in 20.  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
20. Four-Layer Board Stack-Up  
The majority of signal traces must run on a single layer, preferably Signal 1. Immediately next to this layer must  
be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power  
plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the  
number of signal vias reduces EMI by reducing inductance at high frequencies.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
11.2 Layout Example  
Example 4 layer PCB Stackup  
Top Layer 1 (Signal1)  
Inner Layer 2 (GND)  
Inner Layer 3 (VCC)  
Bottom Layer 4 (Signal2)  
Via to layer 2 (GND)  
Via to layer 3 (VCC)  
Via to layer 4 (Signal)  
D+  
D-  
FLT#  
OE#  
SEL1  
A1  
A3  
B4  
C4  
A2  
A2  
Place near VCC pin.  
B2  
SEL2  
C2  
B3  
VCC  
B1  
GND  
C1  
C3  
D2-  
D1+  
D1-  
D2+  
21. Layout Example  
20  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
USB 2.0 电路板设计及布线指南  
应用报告《高速布局指南》  
《高速接口布局指南》  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017, Texas Instruments Incorporated  
21  
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
22  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
PACKAGE OUTLINE  
YFP0012-C01  
DSBGA - 0.5 mm max height  
S
C
A
L
E
8
.
0
0
0
DIE SIZE BALL GRID ARRAY  
1.612  
1.552  
B
A
BALL A1  
CORNER  
1.212  
1.152  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
1.2 TYP  
SYMM  
C
B
0.8  
TYP  
SYMM  
0.4 TYP  
A
1
2
3
4
0.25  
0.21  
12X  
0.015  
0.4  
TYP  
C A B  
4223498/B 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
版权 © 2017, Texas Instruments Incorporated  
23  
TS5USBC400  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
YFP0012-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
12X ( 0.23)  
1
2
3
4
A
(0.4) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:50X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
EXPOSED  
EXPOSED  
METAL  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223498/B 04/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
24  
版权 © 2017, Texas Instruments Incorporated  
TS5USBC400  
www.ti.com.cn  
ZHCSGS1A SEPTEMBER 2017REVISED SEPTEMBER 2017  
EXAMPLE STENCIL DESIGN  
YFP0012-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
12X ( 0.25)  
1
2
3
4
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:50X  
4223498/B 04/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
版权 © 2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TS5USBC400IYFPR  
TS5USBC400IYFPT  
TS5USBC400YFPR  
TS5USBC400YFPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
12  
12  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 70  
USB4  
USB4  
USB4  
USB4  
SNAGCU  
SNAGCU  
SNAGCU  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Mar-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TS5USBC400IYFPR  
TS5USBC400IYFPT  
TS5USBC400YFPR  
TS5USBC400YFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
12  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
1.32  
1.32  
1.32  
1.32  
1.72  
1.72  
1.72  
1.72  
0.62  
0.62  
0.62  
0.62  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Mar-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TS5USBC400IYFPR  
TS5USBC400IYFPT  
TS5USBC400YFPR  
TS5USBC400YFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
12  
12  
12  
12  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TS5USBC402

具有 20V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC402IYFPR

具有 20V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFP | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC402IYFPT

具有 20V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFP | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC402YFPR

具有 20V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFP | 12 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC402YFPT

具有 20V 过压保护功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFP | 12 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC41

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC410IYFFR

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFF | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC410IYFFT

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFF | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC410YFFR

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFF | 12 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC410YFFT

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFF | 12 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC412IYFFR

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFF | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TS5USBC412IYFFT

具有 20V/24V OVP 功能的双路 2:1 USB 2.0 多路复用器/多路信号分离器或单端交叉点开关 | YFF | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI