TSB12LV23 [TI]

TSB12LV23 OHCI-Lynx PCI-Based IEEE 1394 Host Controller; TSB12LV23 OHCI -山猫基于PCI的IEEE 1394主机控制器
TSB12LV23
型号: TSB12LV23
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TSB12LV23 OHCI-Lynx PCI-Based IEEE 1394 Host Controller
TSB12LV23 OHCI -山猫基于PCI的IEEE 1394主机控制器

微控制器和处理器 外围集成电路 uCs集成电路 uPs集成电路 PC
文件: 总85页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSB12LV23 OHCI-Lynx PCI-Based  
IEEE 1394 Host Controller  
Data Manual  
Literature Number: SLLS328A  
April 1999  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products  
or to discontinue any product or service without notice, and advise customers to obtain the latest  
version of relevant information to verify, before placing orders, that information being relied on  
is current and complete. All products are sold subject to the terms and conditions of sale supplied  
at the time of order acknowledgement, including those pertaining to warranty, patent  
infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the  
time of sale in accordance with TI’s standard warranty. Testing and other quality control  
techniquesareutilizedtotheextentTIdeemsnecessarytosupportthiswarranty. Specifictesting  
of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE  
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR  
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR  
PRODUCTS ARENOTDESIGNED, AUTHORIZED, ORWARRANTED TOBESUITABLEFOR  
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY  
AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards must be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not  
warrantorrepresentthatanylicense, eitherexpressorimplied, isgrantedunderanypatentright,  
copyright, mask work right, or other intellectual property right of TI covering or relating to any  
combination, machine, or process in which such semiconductor products or services might be  
or are used. TI’s publication of information regarding any third party’s products or services does  
not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
TSB12LV23 Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
PCI/CardBus Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
PCI Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
PCI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
Latency Timer and Class Cache Line Size Register . . . . . . . . . . . . . . 3–6  
Header Type and BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
OHCI Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
3.10 TI Extension Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
3.11 CIS Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
3.12 CardBus CIS Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3.13 PCI Subsystem Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3.14 PCI Power Management Capabilities Pointer Register . . . . . . . . . . . . 3–10  
3.15 Interrupt Line and Pin Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3.16 MIN_GNT and MAX_LAT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
3.17 PCI OHCI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
3.18 Capability ID and Next Item Pointer Registers . . . . . . . . . . . . . . . . . . . 3–12  
3.19 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 3–13  
3.20 Power Management Control and Status Register . . . . . . . . . . . . . . . . 3–14  
3.21 Power Management Extension Registers . . . . . . . . . . . . . . . . . . . . . . . 3–14  
3.22 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . 3–15  
3.23 Link Enhancement Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16  
3.24 Subsystem Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
3.25 GPIO Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18  
OHCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4
4.1  
4.2  
4.3  
4.4  
OHCI Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
GUID ROM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Asynchronous Transmit Retries Register . . . . . . . . . . . . . . . . . . . . . . . 4–6  
CSR Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
iii  
4.5  
4.6  
4.7  
4.8  
4.9  
CSR Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
CSR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
Configuration ROM Header Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Bus Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Bus Options Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.10 GUID High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.11 GUID Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.12 Configuration ROM Mapping Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.13 Posted Write Address Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.14 Posted Write Address High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.15 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.16 Host Controller Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.17 Self ID Buffer Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.18 Self ID Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.19 Isochronous Receive Channel Mask High Register . . . . . . . . . . . . . . 4–15  
4.20 Isochronous Receive Channel Mask Low Register . . . . . . . . . . . . . . . 4–16  
4.21 Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
4.22 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4.23 Isochronous Transmit Interrupt Event Register . . . . . . . . . . . . . . . . . . 4–21  
4.24 Isochronous Transmit Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 4–22  
4.25 Isochronous Receive Interrupt Event Register . . . . . . . . . . . . . . . . . . . 4–22  
4.26 Isochronous Receive Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 4–23  
4.27 Fairness Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.28 Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4.29 Node Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4.30 PHY Layer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.31 Isochronous Cycle Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4.32 Asynchronous Request Filter High Register . . . . . . . . . . . . . . . . . . . . . 4–28  
4.33 Asynchronous Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . 4–30  
4.34 Physical Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4.35 Physical Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–34  
4.36 Physical Upper Bound Register (Optional Register) . . . . . . . . . . . . . . 4–36  
4.37 Asynchronous Context Control Register . . . . . . . . . . . . . . . . . . . . . . . . 4–37  
4.38 Asynchronous Context Command Pointer Register . . . . . . . . . . . . . . 4–38  
4.39 Isochronous Transmit Context Control Register . . . . . . . . . . . . . . . . . . 4–39  
4.40 Isochronous Transmit Context Command Pointer Register . . . . . . . . 4–40  
4.41 Isochronous Receive Context Control Register . . . . . . . . . . . . . . . . . . 4–40  
4.42 Isochronous Receive Context Command Pointer Register . . . . . . . . 4–41  
4.43 Isochronous Receive Context Match Register . . . . . . . . . . . . . . . . . . . 4–42  
GPIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
Serial EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
5
6
7
7.1  
Absolute Maximum Ratings Over Operating  
Temperature Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
iv  
7.2  
7.3  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2  
Electrical Characteristics Over Recommended  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
7.4  
7.5  
Switching Characteristics for PCI Interface . . . . . . . . . . . . . . . . . . . . . . 7–3  
Switching Characteristics for PHY-Link Interface . . . . . . . . . . . . . . . . . 7–3  
8
Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
List of Illustrations  
Figure  
Title  
Page  
2–1 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
3–1 TSB12LV23 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
5–1 GPIO2 and GPIO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1  
List of Tables  
Table  
Title  
Page  
2–1 Signals Sorted by Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2–2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2  
2–3 PCI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
2–4 PCI Address and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3  
2–5 PCI Interface Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2–6 IEEE1394 PHY/Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2–7 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5  
3–1 Bit Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3–2 PCI Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
3–3 PCI Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4  
3–4 PCI Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
3–5 Class Code and Revision ID Register Description . . . . . . . . . . . . . . . . . . . . . 3–6  
3–6 Latency Timer and Class Cache Line Size Register Description . . . . . . . . . 3–6  
3–7 Header Type and BIST Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
3–8 OHCI Base Address Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7  
3–9 CIS Base Address Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
3–10 CardBus CIS Pointer Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3–11 PCI Subsystem Identification Register Description . . . . . . . . . . . . . . . . . . . . 3–9  
3–12 Interrupt Line and Pin Registers Description . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3–13 MIN_GNT and MAX_LAT Register Description . . . . . . . . . . . . . . . . . . . . . . . 3–11  
3–14 PCI OHCI Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
3–15 Capability ID and Next Item Pointer Registers Description . . . . . . . . . . . . . 3–12  
3–16 Power Management Capabilities Register Description . . . . . . . . . . . . . . . . 3–13  
3–17 Power Management Control and Status Register Description . . . . . . . . . . 3–14  
3–18 Power Management Extension Registers Description . . . . . . . . . . . . . . . . . 3–14  
v
3–19 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15  
3–20 Link Enhancement Control Register Description . . . . . . . . . . . . . . . . . . . . . 3–16  
3–21 Subsystem Access Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
3–22 General-Purpose Input/Output Control Register Description . . . . . . . . . . . 3–18  
4–1 OHCI Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1  
4–2 OHCI Version Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
4–3 GUID ROM Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
4–4 Asynchronous Transmit Retries Register Description . . . . . . . . . . . . . . . . . . 4–6  
4–5 CSR Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4–6 Configuration ROM Header Register Description . . . . . . . . . . . . . . . . . . . . . . 4–8  
4–7 Bus Options Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4–8 Configuration ROM Mapping Register Description . . . . . . . . . . . . . . . . . . . . . 4–11  
4–9 Posted Write Address Low Register Description . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4–10 Posted Write Address High Register Description . . . . . . . . . . . . . . . . . . . . . 4–12  
4–11 Host Controller Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4–12 Self ID Count Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4–13 Isochronous Receive Channel Mask High Register Description . . . . . . . . 4–15  
4–14 Isochronous Receive Channel Mask Low Register Description . . . . . . . . . 4–16  
4–15 Interrupt Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18  
4–16 Interrupt Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4–17 Isochronous Transmit Interrupt Event Register Description . . . . . . . . . . . . 4–21  
4–18 Isochronous Receive Interrupt Event Register Description . . . . . . . . . . . . . 4–22  
4–19 Fairness Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–20 Link Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4–21 Node Identification Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25  
4–22 PHY Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–23 Isochronous Cycle Timer Register Description . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–24 Asynchronous Request Filter High Register Description . . . . . . . . . . . . . . . 4–28  
4–25 Asynchronous Request Filter Low Register Description . . . . . . . . . . . . . . . 4–30  
4–26 Physical Request Filter High Register Description . . . . . . . . . . . . . . . . . . . . 4–32  
4–27 Physical Request Filter Low Register Description . . . . . . . . . . . . . . . . . . . . 4–34  
4–28 Asynchronous Context Control Register Description . . . . . . . . . . . . . . . . . . 4–37  
4–29 Asynchronous Context Command Pointer Register Description . . . . . . . . 4–38  
4–30 Isochronous Transmit Context Control Register Description . . . . . . . . . . . 4–39  
4–31 Isochronous Receive Context Control Register Description . . . . . . . . . . . . 4–40  
4–32 Isochronous Receive Context Match Register Description . . . . . . . . . . . . . 4–42  
6–1 Registers and Bits Loadable through Serial EEPROM . . . . . . . . . . . . . . . . . 6–1  
6–2 Serial EEPROM Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
vi  
1 Introduction  
1.1 Description  
The Texas Instruments TSB12LV23 is a PCI-to-1394 host controller compatible with the latest PCI Local Bus, PCI  
Bus Power Management Interface, IEEE 1394-1995, and 1394 Open Host Controller Interface Specifications. The  
chip provides the IEEE 1394 link function, and is compatible with serial bus data rates of 100 Mbits/s, 200 Mbits/s,  
and 400 Mbits/s.  
As required by the 1394 Open Host Controller Interface (OHCI) and IEEE 1394A Specifications, internal control  
registers are memory mapped and non-prefetchable. The PCI configuration header is accessed through  
configuration cycles specified by PCI, and provides Plug-and-Play (PnP) compatibility. Furthermore, the TSB12LV23  
is compliant with the PCI Bus Power Management Interface Specification, per the PC 98 requirements. TSB12LV23  
supports the D0, D2, and D3 power states.  
The TSB12LV23 design provides PCI bus master bursting, and is capable of transferring a cacheline of data at 132  
Mbytes/s after connection to the memory controller. Since PCI latency can be large even on a PCI Revision 2.1  
system, deep FIFOs are provided to buffer 1394 data.  
TheTSB12LV23providesphysicalwritepostingbuffersandahighlytunedphysicaldatapathforSBP-2performance.  
The TSB12LV23 also provides multiple isochronous contexts, multiple cacheline burst transfers, advanced internal  
arbitration, and bus holding buffers on the PHY/Link interface, thus, making the TSB12LV23 the best-in-class 1394  
OHCI solution.  
An advanced CMOS process is used to achieve low power consumption while operating at PCI clock rates up to  
33 MHz.  
1.2 Features  
The TSB12LV23 supports the following features:  
3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments  
Supports serial bus data rates of 100, 200, and 400 Mbits/s  
Provides bus-hold buffers on physical interface for low-cost single capacitor isolation  
Supports physical write posting of up to three outstanding transactions  
Serial ROM interface supports 2-wire devices  
Supports external cycle timer control for customized synchronization  
Implements PCI burst transfers and deep FIFOs to tolerate large host latency  
Provides two general-purpose I/Os  
Fabricated in advanced low-power CMOS process  
Packaged in 100 LQFP (PZ)  
Supports CLKRUN  
Drop-in replacement for the TSB12LV22  
Supports PCI and CardBus applications  
1–1  
1.3 Related Documents  
1394 Open Host Controller Interface Specification  
IEEE 1394-1995 and Compatible with Proposal 1394A  
PC 98  
PCI Bus Power Management Interface Specification (Revision 1.1)  
PCI Local Bus Specification (Revision 2.2)  
1.4 Ordering Information  
ORDERING NUMBER  
NAME  
OHCI-Lynx PCI-Based IEEE 1394 Host Controller  
VOLTAGE  
PACKAGE  
TSB12LV23  
3.3 V, 5-V Tolerant I/Os  
100-pin LQFP  
1–2  
2 Terminal Descriptions  
This section provides the terminal descriptions for the TSB12LV23.  
PZ PACKAGE  
(TOP VIEW)  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
GND  
GPIO2  
GPIO3  
SCL  
GND  
PCI_AD0  
PCI_AD1  
PCI_AD2  
2
3
4
5
SDA  
PCI_AD3  
3.3 V  
6
V
CCP  
CC  
7
CLKRUN  
PCI_INTA/CINT  
PCI_AD4  
PCI_AD5  
PCI_AD6  
PCI_AD7  
PCI_C/BE0  
PCI_AD8  
8
3.3 V  
9
CC  
G_RST  
GND  
PCI_CLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
3.3 V  
V
CC  
CCP  
PCI_GNT  
PCI_REQ  
PCI_AD9  
PCI_AD10  
GND  
PCI_AD11  
PCI_AD12  
PCI_AD13  
PCI_AD14  
V
CCP  
PCI_PME/CSTSCHG  
PCI_AD31  
PCI_AD30  
3.3 V  
CC  
PCI_AD29  
3.3 V  
CC  
PCI_AD28  
PCI_AD27  
GND  
PCI_AD15  
PCI_C/BE1  
PCI_PAR  
PCI_AD26  
PCI_SERR  
Figure 2–1. Terminal Assignments  
2–1  
Table 2–1. Signals Sorted by Pin Number  
NO.  
1
TERMINAL NAME  
NO.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
TERMINAL NAME  
PCI_AD25  
PCI_AD24  
PCI_C/BE3  
PCI_IDSEL  
GND  
NO.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
TERMINAL NAME  
PCI_SERR  
PCI_PAR  
NO.  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
TERMINAL NAME  
RST  
GND  
GPIO2  
GPIO3  
SCL  
2
CARDBUS/CYCLEOUT  
CYCLEIN  
3
PCI_C/BE1  
PCI_AD15  
4
ISOLATED  
5
SDA  
3.3 V  
3.3 V  
CC  
CC  
6
V
CCP  
PCI_AD23  
PCI_AD22  
PCI_AD21  
PCI_AD20  
PCI_AD14  
PCI_AD13  
PCI_AD12  
PCI_AD11  
GND  
PHY_DATA7  
PHY_DATA6  
GND  
7
CLKRUN  
8
PCI_INTA/CINT  
9
3.3 V  
PHY_DATA5  
PHY_DATA4  
PHY_DATA3  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
G_RST  
GND  
3.3 V  
CC  
PCI_AD19  
PCI_AD18  
PCI_AD17  
PCI_AD10  
PCI_AD9  
PCI_CLK  
V
CCP  
3.3 V  
V
CCP  
PHY_DATA2  
PHY_DATA1  
PHY_DATA0  
CC  
PCI_GNT  
PCI_REQ  
V
CCP  
PCI_AD8  
PCI_C/BE0  
PCI_AD7  
PCI_AD6  
PCI_AD5  
PCI_AD4  
PCI_AD16  
PCI_C/BE2  
GND  
V
CCP  
3.3 V  
CC  
PCI_PME/CSTSCHG  
PCI_AD31  
PHY_CTL1  
PHY_CTL0  
GND  
PCI_FRAME  
PCI_IRDY  
PCI_TRDY  
PCI_AD30  
3.3 V  
3.3 V  
PHY_SCLK  
CC  
CC  
PCI_AD29  
PCI_AD28  
PCI_AD27  
GND  
3.3 V  
PCI_AD3  
PCI_AD2  
PCI_AD1  
PCI_AD0  
GND  
3.3 V  
CC  
CC  
PCI_DEVSEL  
PCI_STOP  
PCI_PERR  
GND  
PHY_LREQ  
PHY_LINKON  
PHY_LPS  
GND  
PCI_AD26  
The terminals are grouped in tables by functionality, such as PCI system function, power supply function, etc. The  
terminal numbers are also listed for convenient reference.  
Table 2–2. Power Supply  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
1, 11, 24, 30,  
42, 50, 60, 75,  
83, 94, 100  
GND  
I
Device ground terminals  
9, 13, 20, 35,  
46, 55, 70, 80,  
91, 96  
3.3 V  
I
I
3.3-V power supply terminals  
CC  
6, 16, 39, 63,  
87  
V
CCP  
PCI signaling clamp voltage power input. PCI signals are clamped per the PCI Local Bus Specification.  
2–2  
Table 2–3. PCI System  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
PCI bus clock. Provides timing for all transactions on the PCI bus. All PCI signals are sampled at rising edge  
of PCLK.  
PCI_CLK  
12  
I
I
Global power reset. This reset brings all of the TSB12LV23 to its default state, including those registers not  
reset by RST. When asserted, the device is completely nonfunctional.  
G_RST  
10  
8
Interrupt signal. This output indicates interrupts from the TSB12LV23 to the host. This terminal signals an  
interrupt based upon the CARDBUS input terminal.  
PCI_INTA/CINT  
O
PCI or CardBus reset. When this bus reset is asserted, the TSB12LV23 places all output buffers in a high  
impedance state and resets all internal registers except device power management context- and  
vendor-specific bits initialized by host power on software. When asserted, the device is completely  
nonfunctional.  
RST  
76  
I
Table 2–4. PCI Address and Data  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
PCI_AD31  
PCI_AD30  
PCI_AD29  
PCI_AD28  
PCI_AD27  
PCI_AD26  
PCI_AD25  
PCI_AD24  
PCI_AD23  
PCI_AD22  
PCI_AD21  
PCI_AD20  
PCI_AD19  
PCI_AD18  
PCI_AD17  
PCI_AD16  
PCI_AD15  
PCI_AD14  
PCI_AD13  
PCI_AD12  
PCI_AD11  
PCI_AD10  
PCI_AD9  
PCI_AD8  
PCI_AD7  
PCI_AD6  
PCI_AD5  
PCI_AD4  
PCI_AD3  
PCI_AD2  
PCI_AD  
18  
19  
21  
22  
23  
25  
26  
27  
31  
32  
33  
34  
36  
37  
38  
40  
54  
56  
57  
58  
59  
61  
62  
64  
66  
67  
68  
69  
71  
72  
73  
74  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the PCI interface  
during the address phase of a PCI cycle, AD31–AD0 contain a 32-bit address or other destination information.  
During the data phase, AD31–AD0 contain data.  
I/O  
PCI_AD0  
PCI_C/BE0  
PCI_C/BE1  
PCI_C/BE2  
PCI_C/BE3  
65  
53  
41  
28  
PCI bus commands and byte enables. The command and byte enable signals are multiplexed on the same PCI  
terminals. During the address phase of a bus cycle C/BE3–C/BE0 defines the bus command. During the data  
phase, this 4-bit bus is used as byte enables.  
I/O  
I/O  
PCI parity. In all PCI bus read and write cycles, the TSB12LV23 calculates even parity across the AD and C/BE  
buses. As an initiator during PCI cycles, the TSB12LV23 outputs this parity indicator with a one PCLK delay. As  
a target during PCI cycles, the calculated parity is compared to the initiator’s parity indicator; a miscompare can  
result in a parity error assertion (PERR).  
PCI_PAR  
52  
2–3  
Table 2–5. PCI Interface Control  
DESCRIPTION  
TERMINAL  
NAME  
I/O  
NO.  
PCI device select. The TSB12LV23 asserts this signal to claim a PCI cycle as the target device. As a PCI  
PCI_DEVSEL  
PCI_FRAME  
47  
I/O initiator, the TSB12LV23 monitors this signal until a target responds. If no target responds before time-out  
occurs, then the TSB12LV23 terminates the cycle with an initiator abort.  
PCI cycle frame. This signal is driven by the initiator of a PCI bus cycle. FRAME is asserted to indicate that a  
I/O bus transaction is beginning, and data transfers continue until while this signal is asserted. When FRAME is  
deasserted, the PCI bus transaction is in the final data phase.  
43  
PCI bus grant. This signal is driven by the PCI bus arbiter to grant the TSB12LV23 access to the PCI bus after  
PCI_GNT  
PCI_IDSEL  
PCI_IRDY  
14  
29  
44  
I
I
the current data transaction has completed. This signal may or may not follow a PCI bus request depending  
upon the PCI bus parking algorithm.  
Initializationdevice select. IDSEL selects the TSB12LV23 during configuration space accesses. IDSEL can be  
connected to 1 of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. IRDY indicates the PCI bus initiator’s ability to complete the current data phase of the  
I/O transaction. A data phase is completed upon a rising edge of PCLK where both IRDY and TRDY are asserted;  
until which wait states are inserted.  
PCI cycle stop signal. This signal is driven by a PCI target to request the initiator to stop the current PCI bus  
I/O transaction. This signal is used for target disconnects, and is commonly asserted by target devices which do  
not support burst data transfers.  
PCI_STOP  
48  
Clock run. This terminal provides clock control through the CLKRUN protocol. An internal pulldown resistor is  
implemented on this terminal for TSB12LV22 drop-in compatibility.  
CLKRUN  
7
I/O  
PCI parity error indicator. This signal is driven by a PCI device to indicate that calculated parity does not match  
PAR when enabled through the command register.  
PCI_PERR  
49  
17  
15  
51  
I/O  
PCI_PME/  
CSTSCHG  
PME or card status change. This terminal indicates wake events to the host. When in a CardBus configuration,  
per the CARDBUS sample, the CSTSCHG output is an active high.  
O
PCI bus request. Asserted by the TSB12LV23 to request access to the bus as an initiator. The host arbiter  
asserts the GNT signal when the TSB12LV23 has been granted access to the bus.  
PCI_REQ  
O
PCI system error. Output pulsed from the TSB12LV23 when enabled indicating an address parity error has  
occurred. The TSB12LV23 needs not be the target of the PCI cycle to assert this signal.  
PCI_SERR  
O
PCI target ready. TRDY indicates the PCI bus target’s ability to complete the current data phase of the  
I/O transaction. A data phase is completed upon a rising edge of PCLK where both IRDY and TRDY are asserted;  
until which wait states are inserted.  
PCI_TRDY  
45  
Table 2–6. IEEE1394 PHY/Link  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
Phy-link interface control. These bidirectional signals control passage of information between the two devices.  
I/O The TSB12LV23 can only drive these terminals after the PHY has granted permission following a link request  
(LREQ).  
PHY_CTL1  
PHY_CTL0  
92  
93  
PHY_DATA7  
PHY_DATA6  
PHY_DATA5  
PHY_DATA4  
PHY_DATA3  
PHY_DATA2  
PHY_DATA1  
PHY_DATA0  
81  
82  
84  
85  
86  
88  
89  
90  
Phy-link interface data. These bidirectional signals pass data between the TSB12LV23 and the PHY device.  
These terminals are driven by the TSB12LV23 on transmissions and are driven by the PHY on reception. Only  
DATA1–DATA0 are valid for 100-Mbit speeds, DATA3–DATA0 are valid for 200-Mbit speeds, and  
DATA7–DATA0 are valid for 400-Mbit speeds.  
I/O  
PHY_SCLK  
PHY_LREQ  
PHY_LINKON  
PHY_LPS  
95  
97  
98  
99  
I
System clock. This input from the PHY provides a 49.152 MHz clock signal for data synchronization.  
Link request. This signal is driven by the TSB12LV23 to initiate a request for the PHY to perform some service.  
O
I/O LinkOn wake indication. Used and defined by 1394A and 3.3-V signaling is required.  
I/O Link power status. Used and defined by 1394A and 3.3-V signaling is required.  
2–4  
Table 2–7. Miscellaneous  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
Serial data. The TSB12LV23 determines whether a two-wire serial ROM, or no serial ROM is implemented at  
SDA  
5
I/O reset. If a two-wire serial ROM is detected, then this terminal provides the SDA serial data signaling. This  
terminal must be wired low to indicate no serial ROM is present.  
Serial clock. The TSB12LV23 determines whether a two-wire, or no serial ROM is implemented at reset. If a  
two-wire serial ROM is implemented, then this terminal provides the SCL serial clock signaling.  
SCL  
4
I/O  
Phy-link isolation barrier mode. This terminal should be asserted when the PHY device is electrically isolated  
from the TSB12LV23. This input controls bus-hold I/Os.  
ISOLATED  
CYCLEIN  
79  
78  
I
The CYCLEIN terminal can provide an optional external 8 kHz clock set up as a cycle timer that can be used  
for synchronization with other system devices.  
I/O  
This terminal is sampled when G_RST is asserted, and it selects between PCI buffers and CardBus buffers.  
I/O Afterreset, this terminal may also function as CYCLEOUT which provides an 8 kHz cycle timer synchronization  
signal.  
CARDBUS/  
CYCLEOUT  
77  
GPIO3  
GPIO2  
3
2
I/O General-purpose I/O [3]  
I/O General-purpose I/O [2]  
2–5  
2–6  
3 TSB12LV23 Controller Programming Model  
This section describes the internal registers used to program the TSB12LV23, including both PCI configuration  
registers and OHCI registers (see Section 4). All registers are detailed in the same format: a brief description for each  
register, followed by the register offset and a bit table describing the reset state for each register.  
A bit description table, typically included, indicates bit field names, a detailed field description, and field access tags.  
Table 3–1 describes the field access tags.  
Table 3–1. Bit Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
Field may be read by software.  
R
W
S
Field may be written by software to any value.  
Field may be set by a write of 1. Writes of 0 have no effect.  
Field may be cleared by a write of 1. Writes of 0 have no effect.  
Field may be autonomously updated by the TSB12LV23.  
C
U
Clear  
Update  
A simplified block diagram of the TSB12LV23 is provided in Figure 3–1.  
3–1  
Serial  
ROM  
PCI  
Target  
SM  
Internal  
Registers  
OHCI PCI Power  
Mgmt & CLKRUN  
GPIOs  
MISC  
Interface  
ISO Transmit  
Contexts  
Transmit  
FIFO  
Async Transmit  
Contexts  
Physical DMA  
& Response  
Link  
Transmit  
Resp  
Timeout  
Receive  
Acknowledge  
PCI  
Host  
Bus  
Central  
Arbiter  
&
PCI  
Initiator  
SM  
PHY  
Cycle Start  
Generator &  
Cycle Monitor  
Interface  
Register  
Access  
& Status  
Monitor  
CRC  
PHY /  
Link  
Interface  
Synthesized  
Bus Reset  
Request  
Filters  
Link  
General  
Receive  
Request Receive  
Receive  
FIFO  
Async Response  
Receive  
ISO Receive  
Contexts  
Figure 3–1. TSB12LV23 Block Diagram  
3–2  
3.1 PCI/CardBus Configuration Registers  
The TSB12LV23 is a single-function PCI device that can be configured as either a PCI or CardBus device. The  
configuration header is compliant with the PCI Local Bus Specification as a standard header. Table 3–2 illustrates  
the PCI configuration header that includes both the predefined portion of the configuration space and the user  
definable registers. Most of the registers in this configuration have not changed from the TSB12LV22 design.  
Table 3–2. PCI Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
OHCI registers base address  
TI extension registers base address  
CIS base address  
Reserved  
14h  
18h  
1Ch  
20h  
Reserved  
Reserved  
24h  
CardBus CIS pointer  
28h  
Subsystem ID  
Subsystem vendor ID  
2Ch  
30h  
Reserved  
Reserved  
Capabilities pointer  
Interrupt line  
34h  
Reserved  
38h  
Maximum latency Minimum grant  
PCI OHCI control register  
Power management capabilities Next item pointer  
PM data PMCSR_BSE  
Reserved  
Interrupt pin  
3Ch  
40h  
Capability ID  
44h  
Power management CSR  
48h  
4C–ECh  
F0h  
F4h  
F8h  
FCh  
PCI miscellaneous configuration register  
Link_Enhancements register  
Subsystem ID alias  
Subsystem vendor ID alias  
Reserved  
GPIO3  
GPIO2  
3.2 Vendor ID Register  
The vendor ID register contains a value allocated by the PCI SIG and identifies the manufacturer of the PCI device.  
The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
00h  
104Ch  
3–3  
3.3 Device ID Register  
The device ID register contains a value assigned to the TSB12LV23 by Texas Instruments. The device identification  
for the TSB12LV23 is 8019.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Device ID  
Read-only  
02h  
8019h  
3.4 PCI Command Register  
The command register provides control over the TSB12LV23 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification, as seen in the following bit descriptions.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
Offset:  
Default:  
PCI command  
Read/Write  
04h  
0000h  
Table 3–3. PCI Command Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–10 RSVD  
R
R
Reserved. Bits 15–10 return 0s when read.  
9
8
7
6
5
4
FBB_ENB  
Fast back-to-back enable. The TSB12LV23 does not generate fast back-to-back transactions, thus  
this bit returns 0 when read.  
SERR_ENB  
STEP_ENB  
PERR_ENB  
VGA_ENB  
MWI_ENB  
R/W  
R
SERR enable. When this bit is set, the TSB12LV23 SERR driver is enabled. SERR can be asserted  
after detecting an address parity error on the PCI bus.  
Address/data stepping control. The TSB12LV23 does not support address/data stepping, thus this bit  
is hardwired to 0.  
R/W  
R
Parity error enable. When this bit is set, the TSB12LV23 is enabled to drive PERR response to parity  
errors through the PERR signal.  
VGA palette snoop enable. The TSB12LV23 does not feature VGA palette snooping. This bit returns 0  
when read.  
R/W  
Memory write and invalidate enable. When this bit is set, the TSB12LV23 is enabled to generate MWI  
PCI bus commands. If this bit is reset, then the TSB12LV23 generates memory write commands  
instead.  
3
SPECIAL  
R
Specialcycle enable. The TSB12LV23function does not respond to special cycle transactions. This bit  
returns 0 when read.  
2
1
MASTER_ENB  
MEMORY_ENB  
R/W  
R/W  
Bus master enable. When this bit is set, the TSB12LV23 is enabled to initiate cycles on the PCI bus.  
Memoryresponse enable. Setting this bit enables the TSB12LV23 to respond to memory cycles on the  
PCI bus. This bit must be set to access OHCI registers.  
0
IO_ENB  
R
I/O space enable. The TSB12LV23 does not implement any I/O mapped functionality; thus, this bit re-  
turns 0 when read.  
3–4  
3.5 PCI Status Register  
The status register provides status over the TSB12LV23 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification, as seen in the following bit descriptions.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI status  
RCU RCU RCU RCU RCU  
R
0
R
1
RCU  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
0
0
0
0
0
0
Register:  
Type:  
PCI status  
Read/Clear/Update  
Offset:  
Default:  
06h  
0210h  
Table 3–4. PCI Status Register Description  
BIT  
15  
FIELD NAME  
PAR_ERR  
TYPE  
RCU  
RCU  
DESCRIPTION  
Detected parity error. This bit is set when a parity error is detected, either address or data parity errors.  
14  
SYS_ERR  
Signaled system error. This bit is set when SERR is enabled and the TSB12LV23 has signaled a  
system error to the host.  
13  
12  
MABORT  
RCU  
RCU  
RCU  
R
Receivedmasterabort.ThisbitissetwhenacycleinitiatedbytheTSB12LV23onthePCIbushasbeen  
terminated by a master abort.  
TABORT_REC  
TABORT_SIG  
PCI_SPEED  
DATAPAR  
Received target abort. This bit is set when a cycle initiated by the TSB12LV23 on the PCI bus was  
terminated by a target abort.  
11  
Signaledtarget abort. This bit is set by the TSB12LV23 when it terminates a transaction on the PCI bus  
with a target abort.  
10–9  
8
DEVSEL timing. Bits 10–9 encode the timing of DEVSEL and are hardwired to 01b indicating that the  
TSB12LV23 asserts this signal at a medium speed on nonconfiguration cycle accesses.  
RCU  
Data parity error detected. This bit is set when the following conditions have been met:  
a. PERR was asserted by any PCI device including the TSB12LV23  
b. The TSB12LV23 was the bus master during the data parity error  
c. The parity error response bit is set in the command register (see Section 3.4)  
7
6
FBB_CAP  
UDF  
R
R
R
R
R
Fast back-to-back capable. The TSB12LV23 cannot accept fast back-to-back transactions; thus, this  
bit is hardwired to 0.  
User definable features (UDF) supported. The TSB12LV23 does not support the UDF; thus, this bit is  
hardwired to 0.  
5
66MHZ  
CAPLIST  
RSVD  
66 MHz capable. The TSB12LV23 operates at a maximum PCLK frequency of 33 MHz; therefore, this  
bit is hardwired to 0.  
4
Capabilitieslist. This bit returns 1 when read, indicating that capabilities additional to standard PCI are  
implemented. The linked list of PCI power management capabilities is implemented in this function.  
3–0  
Reserved. Bits 3–0 return 0s when read.  
3–5  
3.6 Class Code and Revision ID Register  
The class code and revision ID register categorizes the TSB12LV23 as a serial bus controller (0Ch), controlling an  
IEEE1394 bus (00h), with an OHCI programming model (10h). Furthermore, the TI chip revision is indicated in the  
lower byte.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
1
R
1
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Class code and revision ID  
Read-only  
08h  
0C00 1000h  
Table 3–5. Class Code and Revision ID Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–24 BASECLASS  
R
Base class. This field returns 0Ch when read, which broadly classifies the function as a serial bus  
controller.  
23–16 SUBCLASS  
R
R
R
Subclass. This field returns 00h when read, which specifically classifies the function as controlling an  
IEEE1394 serial bus.  
15–8  
7–0  
PGMIF  
Programming interface. This field returns 10h when read, indicating that the programming model is  
compliant with the 1394 Open Host Controller Interface Specification.  
CHIPREV  
Silicon revision. This field returns 00h when read, indicating the silicon revision of the TSB12LV23.  
3.7 Latency Timer and Class Cache Line Size Register  
The latency timer and class cache line size register is programmed by host BIOS to indicate system cache line size  
and the latency timer associated with the TSB12LV23.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer and class cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer and class cache line size  
Read/Write  
0Ch  
0000h  
Table 3–6. Latency Timer and Class Cache Line Size Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–8  
LATENCY_TIMER  
R/W  
PCI latency timer. The value in this register specifies the latency timer for the TSB12LV23, in units of  
PCI clock cycles. When the TSB12LV23 is a PCI bus initiator and asserts FRAME, the latency timer  
begins counting from zero. If the latency timer expires before the TSB12LV23 transaction has  
terminated, then the TSB12LV23 terminates the transaction when its GNT is deasserted.  
7–0  
CACHELINE_SZ  
R/W  
Cache line size. This value is used by the TSB12LV23 during memory write and invalidate, memory  
read line, and memory read multiple transactions.  
3–6  
3.8 Header Type and BIST Register  
The header type and BIST register indicates the TSB12LV23 PCI header type, and indicates no built-in self test.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type and BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Header type and BIST  
Read-only  
0Eh  
0000h  
Table 3–7. Header Type and BIST Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–8  
BIST  
R
Built-in self test. The TSB12LV23 does not include a built-in self test; thus, this field returns 00h when  
read.  
7–0  
HEADER_TYPE  
R
PCI header type. The TSB12LV23 includes the standard PCI header, and this is communicated by re-  
turning 00h when this field is read.  
3.9 OHCI Base Address Register  
The OHCI base address register is programmed with a base address referencing the memory-mapped OHCI control.  
WhenBIOSwritesall1stothisregister, thevaluereadbackisFFFFF800h, indicatingthatatleast2Kbytesofmemory  
address space are required for the OHCI registers.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
OHCI address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
OHCI base address  
Read/Write  
10h  
0000 0000h  
Table 3–8. OHCI Base Address Register Description  
BIT  
31–11  
10–4  
FIELD NAME  
OHCIREG_PTR  
OHCI_SZ  
TYPE  
DESCRIPTION  
OHCI register pointer. Specifies the upper 21 bits of the 32-bit OHCI base address register.  
R/W  
R
OHCI register size. This field returns 0s when read, indicating that the OHCI registers require a  
2-Kbyte region of memory.  
3
2–1  
0
OHCI_PF  
OHCI_MEMTYPE  
OHCI_MEM  
R
R
R
OHCI register prefetch. This bit returns 0 when read, indicating that the OHCI registers are  
nonprefetchable.  
OHCImemorytype. Thisfieldreturns0swhenread, indicatingthattheOHCIbaseaddressregisteris  
32 bits wide and mapping can be done anywhere in the 32-bit memory space.  
OHCI memory indicator. This bit returns 0 when read, indicating that the OHCI registers are mapped  
into system memory space.  
3–7  
3.10 TI Extension Base Address Register  
The TI extension base address register is programmed with a base address referencing the memory-mapped TI  
extension registers. Refer to the OHCI base address register (see Section 3.9) for bit field details.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
TI extension base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
TI extension base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
TI extension base address  
Read/Write  
Offset:  
Default:  
14h  
0000 0000h  
3.11 CIS Base Address Register  
If CARDBUS is sampled high on a PCI reset, then this 32-bit register returns 0s when read. If CARDBUS is sampled  
low, then this register is to be programmed with a base address referencing the memory mapped CIS. This register  
must be programmed with a nonzero value before the CIS may be accessed.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CIS base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CIS base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CIS base address  
Read/Write  
18h  
0000 0000h  
Table 3–9. CIS Base Address Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–11 CIS_BASE  
R/W  
CIS base address. Specifies the upper 21 bits of the 32-bit CIS base address. If the CARDBUS input is  
sampled high on a PCI reset, then this field is read-only, returning 0s when read.  
10–4  
3
CIS_SZ  
CIS_PF  
R
CIS address space size. This field returns 0s when read, indicating that the CIS space requires a  
2-Kbyte region of memory.  
R
CIS prefetch. This bit returns 0 whenread, indicatingthattheCISisnonprefetchable. Furthermore, the  
CIS is a byte-accessible address space, and double-word or 16-bit word access yields indeterminate  
results.  
2–1  
0
CIS_MEMTYPE  
CIS_MEM  
R
R
CIS memory type. This field returns 0s when read, indicating that the CIS base address register is  
32 bits wide and mapping can be done anywhere in the 32-bit memory space.  
CIS memory indicator. This bit returns 0 when read, indicating that the CIS is mapped into system  
memory space.  
3–8  
3.12 CardBus CIS Pointer Register  
The CARDBUS input to the TSB12LV23 is sampled at PCI reset to determine the TSB12LV23 application. If  
CARDBUS is sampled high, then this register is read-only returning 0s when read. If CARDBUS is sampled low, then  
this register is the CardBus card information structure pointer.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CardBus CIS pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CardBus CIS pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
x
R
0
Register:  
Type:  
CardBus CIS pointer  
Read-only  
Offset:  
Default:  
28h  
0000 000xh  
Table 3–10. CardBus CIS Pointer Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
Since the CIS is not implemented as a ROM image, this field returns 0s when read.  
31–28 ROM_IMAGE  
R
R
27–3  
CIS_OFFSET  
ThisfieldindicatestheoffsetintotheCISaddressspacewheretheCISbegins, andbits73areloaded  
from the serial ROM field CIS_Offset (7–3). This implementation allows the TSB12LV23 to produce  
serial ROM addresses equal to the lower PCI address byte to acquire data from the serial ROM.  
2–0  
CIS_INDICATOR  
R
This field indicates the address space where the CIS resides and returns 010b if CARDBUS is  
sampled asserted during a PCI reset. If CARDBUS is sampled high during a PCI reset, then this field  
returns 000b when read. Thus, bit 1 is implemented as the logical inverse of the CARDBUS input.  
3.13 PCI Subsystem Identification Register  
The PCI subsystem identification register is used for system and option card identification purposes. This register  
can be initialized from the serial EEPROM or programmed via the subsystem ID and subsystem vendor ID alias  
registers at offset 0XFC.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
Register:  
Type:  
PCI subsystem identification  
Read/Update  
Offset:  
Default:  
2Ch  
0000 0000h  
Table 3–11. PCI Subsystem Identification Register Description  
BIT  
31–16  
15–0  
FIELD NAME  
TYPE  
RU  
DESCRIPTION  
OHCI_SSID  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
OHCI_SSVID  
RU  
3–9  
3.14 PCI Power Management Capabilities Pointer Register  
The PCI power management capabilities pointer register provides a pointer into the PCI configuration header where  
the PCI power management register block resides. The TSB12LV23 configuration header double-words at offsets  
44h and 48h provide the power management registers. This register is read-only and returns 44h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI power management capabilities pointer  
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
PCI power management capabilities pointer  
Read-only  
34h  
44h  
3.15 Interrupt Line and Pin Registers  
The interrupt line and pin register is used to communicate interrupt line routing information.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line and pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Interrupt line and pin  
Read/Write  
3Ch  
0100h  
Table 3–12. Interrupt Line and Pin Registers Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–8  
INTR_PIN  
R
Interrupt pin register. This register returns 01h when read, indicating that the TSB12LV23 PCI function  
signals interrupts on the INTA pin.  
7–0  
INTR_LINE  
R/W  
Interrupt line register. This register is programmed by the system and indicates to software to which  
interrupt line the TSB12LV23 INTA is connected.  
3–10  
3.16 MIN_GNT and MAX_LAT Register  
The MIN_GNT and MAX_LAT register is used to communicate to the system the desired setting of the latency timer  
register (see Section 3.7). If a serial ROM is detected, then the contents of this register are loaded through the serial  
ROM interface after a PCI reset. If no serial ROM is detected, then this register returns a default value that  
corresponds to the MIN_GNT = 2, MAX_LAT = 4.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
MIN_GNT and MAX_LAT  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
Register:  
Type:  
Offset:  
Default:  
MIN_GNT and MAX_LAT  
Read/Update  
3Eh  
0202h  
Table 3–13. MIN_GNT and MAX_LAT Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–8  
MAX_LAT  
RU  
RU  
Maximum latency. The contents of this register may be used by host BIOS to assign an arbitration  
priority-level to the TSB12LV23. The default for this register indicates that the TSB12LV23 may need to  
access the PCI bus as often as every 0.25 µs; thus, an extremely high priority level is requested. The  
contents of this field may also be loaded through the serial ROM.  
7–0  
MIN_GNT  
Minimum grant. The contents of this register may be used by host BIOS to assign a latency timer register  
value to the TSB12LV23. The default for this register indicates that the TSB12LV23 may need to sustain  
burst transfers for nearly 64 µs; thus, requesting a large value be programmed in the TSB12LV23 latency  
timer register (see Section 3.7).  
3.17 PCI OHCI Control Register  
The PCI OHCI control register is defined by the 1394 Open Host Controller Interface Specification and provides a  
bit for big endian PCI support.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
PCI OHCI control  
Read/Write  
40h  
0000 0000h  
Table 3–14. PCI OHCI Control Register Description  
BIT  
31–1  
0
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
R
Reserved. Bits 31–1 return 0s when read.  
GLOBAL_SWAP  
R/W  
When this bit is set, all quadlets read from and written to the PCI interface are byte swapped (big  
endian).  
3–11  
3.18 Capability ID and Next Item Pointer Registers  
The capability ID and next item pointer register identifies the linked list capability item and provides a pointer to the  
next capability item.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID and next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID and next item pointer  
Read-only  
44h  
0001h  
Table 3–15. Capability ID and Next Item Pointer Registers Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–8  
NEXT_ITEM  
R
Next item pointer. The TSB12LV23 supports only one additional capability that is communicated to  
the system through the extended capabilities list; thus, this field returns 00h when read.  
7–0  
CAPABILITY_ID  
R
Capabilityidentification. This field returns 01h when read, which is the unique ID assigned by the PCI  
SIG for PCI power management capability.  
3–12  
3.19 Power Management Capabilities Register  
The power management capabilities register indicates the capabilities of the TSB12LV23 related to PCI power  
management.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
RU  
0
RU  
1
RU  
1
RU  
0
RU  
0
RU  
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Power management capabilities  
Read/Update  
46h  
6411h  
Table 3–16. Power Management Capabilities Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15  
PME_D3COLD  
RU  
PME support from D3  
D3  
COLD  
. When this bit is set, the TSB12LV23 generates a PME wake event from  
COLD  
. This bit state is dependent upon the TSB12LV23 V  
implementation and may be  
AUX  
configured by host software using the PCI miscellaneous configuration register (see Section 3.22).  
14–11  
PME_SUPPORT  
RU  
PME support. This 4-bit field indicates the power states from which the TSB12LV23 may assert PME.  
Thisfieldreturnsavalueof1100bbydefault,indicatingthatPMEmay be asserted from the D3  
D2 power states. Bit 13 may be modified by host software using the PCI miscellaneous configuration  
register (see Section 3.22).  
and  
HOT  
10  
9
D1_SUPPORT  
D1_SUPPORT  
DYN_DATA  
RU  
R
D2 support. This bit returns a 1 when read, indicating that the TSB12LV23 does not support the D2  
power state.  
D1 support. This bit returns a 0 when read, indicating that the TSB12LV23 does not support the D1  
power state.  
8
R
Dynamic data support. This bit returns a 0 when read, indicating that the TSB12LV23 does not report  
dynamic power consumption data.  
7–6  
5
RSVD  
DSI  
R
R
Reserved. Bits 7–6 return 0s when read.  
Device specific initialization. This bit returns 0 when read, indicating that the TSB12LV23 does not  
require special initialization beyond the standard PCI configuration header before a generic class  
driver is able to use it.  
4
3
AUX_PWR  
PME_CLK  
R
R
R
Auxiliarypowersource.SincetheTSB12LV23doesnotsupportPMEgenerationintheD3  
state, this bit returns 0 when read.  
device  
COLD  
PME clock. This bit returns 0 when read, indicating that no host bus clock is required for the  
TSB12LV23 to generate PME.  
2–0  
PM_VERSION  
Power management version. This field returns 001b when read, indicating that the TSB12LV23 is  
compatible with the registers described in the PCI Bus Power Management Interface Specification.  
3–13  
3.20 Power Management Control and Status Register  
The power management control and status register implements the control and status of the PCI power management  
function. This register is not affected by the internally generated reset caused by the transition from the D3  
state.  
to D0  
HOT  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control and status  
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Power management control and status  
Read/Write/Clear  
48h  
0000h  
Table 3–17. Power Management Control and Status Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15  
PME_STS  
RC  
This bit is set when the TSB12LV23 would normally be asserting the PME signal, independent of the  
state of the PME_ENB bit. This bit is cleared by a write back of 1, and this also clears the PME signal  
driven by the TSB12LV23. Writing a 0 to this bit has no effect.  
14–9  
8
DYN_CTRL  
PME_ENB  
R
Dynamic data control. This field returns 0s when read since the TSB12LV23 does not report dynamic  
data.  
R/W  
PME enable. This bit enables the function to assert PME. If this bit is cleared, then assertion of PME is  
disabled.  
7–5  
4
RSVD  
DYN_DATA  
RSVD  
R
R
Reserved. Bits 7–5 return 0s when read.  
Dynamic data. This bit returns 0 when read since the TSB12LV23 does not report dynamic data.  
Reserved. Bits 3–2 return 0s when read.  
3–2  
1–0  
R
PWR_STATE  
R/W  
Power state. This 2-bit field is used to set the TSB12LV23 device power state and is encoded as  
follows:  
00 = Current power state is D0  
01 = Current power state is D1  
10 = Current power state is D2  
11 = Current power state is D3  
3.21 Power Management Extension Registers  
The power management extension register provides extended power management features not applicable to the  
TSB12LV23, thus it is read-only and returns 0 when read.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management extension  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management extension  
Read-only  
4Ah  
0000h  
Table 3–18. Power Management Extension Registers Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
15–8  
PM_DATA  
R
Power management data. This field returns 00h when read since the TSB12LV23 does not report  
dynamic data.  
7–0  
PMCSR_BSE  
R
Power management CSR – bridge support extensions. This field returns 00h when read since the  
TSB12LV23 does not provide P2P bridging.  
3–14  
3.22 PCI Miscellaneous Configuration Register  
The PCI miscellaneous configuration register provides miscellaneous PCI-related configuration.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI miscellaneous configuration  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI miscellaneous configuration  
R/W  
0
R
0
R/W  
1
R
0
R
0
R/W  
1
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
PCI miscellaneous configuration  
Read/Write  
F0h  
0000 2400h  
Table 3–19. PCI Miscellaneous Configuration Register  
BIT  
31–16  
15  
FIELD NAME  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31–16 return 0s when read.  
PME support from D3 . This bit is used to program the corresponding read-only value read  
RSVD  
PME_ D3COLD  
R/W  
COLD  
from power management capabilities.  
14  
13  
RSVD  
R
Reserved. Bit 14 returns 0 when read.  
PME_SUPPORT_D2  
R/W  
PME support. This bit is used to program the corresponding read-only value read from power  
managementcapabilities. If wake from the D2 power state implemented in the TSB12LV23 is not  
desired,thenthisbitmaybeclearedtoindicatetopowermanagementsoftwarethatwake-upfrom  
D2 is not supported.  
12–11  
10  
RSVD  
R
Reserved. Bits 12–11 return 0s when read.  
D2_SUPPORT  
R/W  
D2 support. This bit is used to program the corresponding read-only value read from power  
management capabilities. If the D2 power state implemented in the TSB12LV23 is not desired,  
then this bit may be cleared to indicate to power management software that D2 is not supported.  
9–5  
4
RSVD  
R
Reserved. Bits 9–5 return 0s when read.  
DIS_TGT_ABT  
R/W  
Thisbitdefaultsto0, whichprovidesOHCI-Lynxcompatibletargetabortsignaling. Whenthisbitis  
set, it enables the no-target-abort mode, in which the TSB12LV23 returns indeterminate data  
instead of signaling target abort.  
3
GP2IIC  
R/W  
Whenthisbitisset, theGPIO3andGPIO2signalsareroutedtoSDAandSCL. Whenthisbitisset,  
the GPIO3 and GPIO2 terminals are placed in a high impedance state.  
2
1
0
DISABLE_SCLKGATE  
DISABLE_PCIGATE  
KEEP_PCLK  
R/W  
R/W  
R/W  
When this bit is set, the internal SCLK runs identically with the chip input.  
When this bit is set, the internal PCI clock runs identically with the chip input.  
Whenthis bit is set, the PCI clock is always keptrunningthroughtheCLKRUNprotocol. Whenthis  
bit is cleared, the PCI clock may be stopped using CLKRUN.  
3–15  
3.23 Link Enhancement Control Register  
The link enhancement control register implements TI proprietary bits that are initialized by software or by a serial  
EEPROM, if present. After these bits are set, their functionality is enabled only if bit 22 (aPhyEnhanceEnable) in the  
host controller control register (see Section 4.16) is set.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link enhancement control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Link enhancement control  
R
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
Link enhancement control  
Read/Write  
Offset:  
Default:  
F4h  
0000 1000h  
Table 3–20. Link Enhancement Control Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31–14 return 0s when read.  
31–14  
13–12  
atx_thresh  
R/W  
This field sets the initial AT threshold value, which is used until the AT FIFO is underrun. When the  
TSB12LV23 retries the packet, it uses a 2-Kbyte threshold resulting in a store-and-forward operation.  
00 = Threshold ~ 2K bytes resulting in a store-and-forward operation  
01 = Threshold ~ 1.7K bytes (default)  
10 = Threshold ~ 1K  
11 = Threshold ~ 512 bytes  
11–8  
RSVD  
enab_unfair  
RSVD  
R
R/W  
R
Reserved. Bits 11–8 return 0s when read.  
7
6
Enable asynchronous priority requests. OHCI-Lynx compatible.  
This bit is not assigned in the TSB12LV23 follow-on products since this bit location loaded by the serial  
ROM from the Enhancements field corresponds to bit 23 (programPhyEnable) in the host controller  
control register (see Section 4.16).  
5–3  
2
RSVD  
enab_insert_idle  
enab_accel  
RSVD  
R
Reserved. Bits 5–3 return 0s when read.  
R/W  
R/W  
R
Enable insert idle. OHCI-Lynx compatible  
Enable acceleration enhancements. OHCI-Lynx compatible.  
Reserved. Bit 0 returns 0 when read.  
1
0
3–16  
3.24 Subsystem Access Register  
Write access to the subsystem access register updates the subsystem identification registers identically to  
OHCI-Lynx. The system ID value written to this register may also be read back from this register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem access  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem access  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subsystem access  
Read/Write  
F8h  
0000 0000h  
Table 3–21. Subsystem Access Register Description  
BIT  
31–16  
15–0  
FIELD NAME  
SUBDEV_ID  
SUBVEN_ID  
TYPE  
DESCRIPTION  
R/W  
R/W  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
3–17  
3.25 GPIO Control Register  
The GPIO control register has the control and status bits for the GPIO2 and GPIO3 ports.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GPIO control  
RWU R/W  
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R
0
9
R
0
6
R/W  
0
R/W  
0
R
0
3
R
0
2
R
0
1
RWU  
0
0
0
15  
14  
13  
12  
11  
10  
8
7
5
4
0
Name  
Type  
Default  
GPIO control  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GPIO control  
Read/Write/Update  
FCh  
0000 1010h  
Table 3–22. General-Purpose Input/Output Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
INT_3EN  
R/W  
Whenthis bit is set, a TSB12LV23 GPInterrupt event occurs on a level change of the GPIO3 input. This  
eventmaygenerateaninterrupt, withmaskandeventstatusreportedthroughtheOHCIinterruptmask  
(see Section 4.22) and interrupt event (see Section 4.21) registers.  
30  
29  
28  
RSVD  
R
Reserved. Bit 30 returns 0 when read.  
GPIO_INV3  
GPIO_ENB3  
R/W  
R/W  
GPIO3 polarity invert. When this bit is set, the polarity of GPIO3 is inverted.  
GPIO3 enable control. When this bit is set, the output is enabled. Otherwise, the output is high  
impedance.  
27–25  
24  
RSVD  
R
Reserved. Bits 27–25 return 0s when read.  
GPIO_DATA3  
RWU  
GPIO3 data. Reads from this bit return the logical value of the input to GPIO3. Writes to this bit update  
the value to drive to GPIO3 when output is enabled.  
23  
INT_2EN  
R/W  
Whenthisbitisset, aTSB12LV23GPInterrupteventoccursonalevelchangeoftheGPIO3input. This  
eventmaygenerateaninterrupt, withmaskandeventstatusreportedthroughtheOHCIinterruptmask  
(see Section 4.22) and interrupt event (see Section 4.21) registers.  
22  
21  
20  
RSVD  
R
Reserved. Bit 22 returns 0 when read.  
GPIO_INV2  
GPIO_ENB2  
R/W  
R/W  
GPIO2 polarity invert. When this bit is set, the polarity of GPIO2 is inverted.  
GPIO2 enable control. When this bit is set, the output is enabled. Otherwise, the output is high  
impedance.  
19–17  
16  
RSVD  
R
Reserved. Bits 19–17 return 0s when read.  
GPIO_DATA2  
RWU  
GPIO2 data. Reads from this bit return the logical value of the input to GPIO2. Writes to this bit update  
the value to drive to GPIO2 when the output is enabled.  
15–0  
RSVD  
R
Reserved. Bits 15–0 return 0s when read.  
3–18  
4 OHCI Registers  
The OHCI registers defined by the 1394 Open Host Controller Interface Specification are memory mapped into a  
2-Kbyte region of memory pointed to by the OHCI base address register at offset 10h in PCI configuration space.  
These registers are the primary interface for controlling the TSB12LV23 IEEE1394 link function.  
This section provides the register interface and bit descriptions. There are several set and clear register pairs in this  
programming model, which are implemented to solve various issues with typical read-modify-write control registers.  
There are two addresses for a set/clear register: RegisterSet and RegisterClear. Refer to Table 4–1 for an illustration.  
A 1 bit written to RegisterSet causes the corresponding bit in the set/clear register to be set, while a 0 bit leaves the  
corresponding bit unaffected. A 1 bit written to RegisterClear causes the corresponding bit in the set/clear register  
to be reset, while a 0 bit leaves the corresponding bit in the set/clear register unaffected.  
Typically, a read from either RegisterSet or RegisterClear returns the contents of the set or clear register. However,  
sometimes reading the RegisterClear provides a masked version of the set or clear register. The interrupt event  
register is an example of this behavior.  
Table 4–1. OHCI Register Map  
DMA CONTEXT  
REGISTER NAME  
OHCI version  
ABBREVIATION  
Version  
OFFSET  
00h  
04h  
08h  
0Ch  
10h  
14h  
18h  
1Ch  
20h  
24h  
28h  
2Ch  
30h  
34h  
38h  
3Ch  
40h  
44h  
46h  
48h  
4Ah  
4Ch  
50h  
54h  
58h  
5Ch  
Global unique ID ROM  
Asynchronous transmit retries  
CSR data  
GUID_ROM  
ATRetries  
CSRData  
CSRCompareData  
CSRControl  
ConfigROMhdr  
BusID  
CSR compare data  
CSR control  
Configuration ROM header  
Bus identification  
Bus options  
BusOptions  
GUIDHi  
Global unique ID high  
Global unique ID low  
PCI subsystem identification  
Reserved  
GUIDLo  
SSID  
Configuration ROM map  
Posted write address low  
Posted write address high  
Vendor identification  
ConfigROMmap  
PostedWriteAddressLo  
PostedWriteAddressHi  
VendorID  
CAP_ID  
Capability ID and next item pointer  
Power management capabilities  
Power management control and status  
Power management extensions  
Reserved  
PM_CAP  
PMCSR  
PM_Ext  
HCControlSet  
HCControlClr  
Host controller control  
Reserved  
Reserved  
4–1  
Table 4–1. OHCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
60h  
Self ID  
Reserved  
Self ID buffer  
Self ID count  
Reserved  
SelfIDBuffer  
64h  
SelfIDCount  
68h  
6Ch  
IRChannelMaskHiSet  
IRChannelMaskHiClear  
IRChannelMaskLoSet  
IRChannelMaskLoClear  
IntEventSet  
70h  
Isochronous receive channel mask high  
Isochronous receive channel mask low  
Interrupt event  
74h  
78h  
7Ch  
80h  
IntEventClear  
84h  
IntMaskSet  
88h  
Interrupt mask  
IntMaskClear  
8Ch  
IsoXmitIntEventSet  
IsoXmitIntEventClear  
IsoXmitIntMaskSet  
IsoXmitIntMaskClear  
IsoRecvIntEventSet  
IsoRecvIntEventClear  
IsoRecvIntMaskSet  
IsoRecvIntMaskClear  
90h  
Isochronous transmit interrupt event  
Isochronous transmit interrupt mask  
Isochronous receive interrupt event  
Isochronous receive interrupt mask  
94h  
98h  
9Ch  
A0h  
A4h  
A8h  
ACh  
B0–D8h  
DCh  
E0h  
Reserved  
Fairness control  
FairnessControl  
LinkControlSet  
LinkControlClear  
NodeID  
Link control  
E4h  
Node identification  
PHY layer control  
Isochronous cycle timer  
Reserved  
E8h  
PhyControl  
ECh  
F0h  
Isocyctimer  
F4h  
Reserved  
F8h  
Reserved  
FCh  
100h  
104h  
108h  
10Ch  
110h  
114h  
118h  
11Ch  
120h  
124h–17Ch  
AsyncRequestFilterHiSet  
AsyncRequestFilterHiClear  
AsyncRequestFilterLoSet  
AsyncRequestFilterloClear  
PhysicalRequestFilterHiSet  
PhysicalRequestFilterHiClear  
PhysicalRequestFilterLoSet  
PhysicalRequestFilterloClear  
PhysicalUpperBound  
Asynchronous request filter high  
Asynchronous request filter low  
Physical request filter high  
Physical request filter low  
Physical upper bound  
Reserved  
4–2  
Table 4–1. OHCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
180h  
ContextControlSet  
ContextControlClear  
Context control  
Asychronous  
Request Transmit  
[ ATRQ ]  
184h  
Reserved  
188h  
Command pointer  
Reserved  
CommandPtr  
18Ch  
190h–19Ch  
1A0h  
ContextControlSet  
ContextControlClear  
Asychronous  
Response Transmit  
[ ATRS ]  
Context control  
1A4h  
Reserved  
1A8h  
Command pointer  
Reserved  
CommandPtr  
1ACh  
1B0h–1BCh  
1C0h  
ContextControlSet  
ContextControlClear  
Asychronous  
Request Receive  
[ ARRQ ]  
Context control  
1C4h  
Reserved  
1C8h  
Command pointer  
Reserved  
CommandPtr  
1CCh  
1D0h–1DCh  
1E0h  
ContextControlSet  
ContextControlClear  
Asychronous  
Response Receive  
[ ARRS ]  
Context control  
1E4h  
Reserved  
1E8h  
Command pointer  
Reserved  
CommandPtr  
1ECh  
1F0h–1FCh  
200h + 16*n  
204h + 16*n  
208h + 16*n  
20Ch + 16*n  
400h + 32*n  
404h + 32*n  
408h + 32*n  
40Ch + 32*n  
410h + 32*n  
Isochronous  
Transmit Context n  
n = 0, 1, 2, 3, 7  
ContextControlSet  
ContextControlClear  
Context control  
Reserved  
Command pointer  
CommandPtr  
ContextControlSet  
ContextControlClear  
Isochronous  
Receive Context n  
n = 0, 1, 2, 3, 4  
Context control  
Reserved  
Command pointer  
Context match  
CommandPtr  
ContextMatch  
4–3  
4.1 OHCI Version Register  
This register indicates the OHCI version support, and whether or not the serial ROM is present.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
X
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
OHCI version  
Read-only  
00h  
0X01 0000h  
Table 4–2. OHCI Version Register Description  
BIT  
31–25  
24  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
R
R
Reserved. Bits 31–25 return 0s when read.  
GUID_ROM  
The TSB12LV23 sets this bit if the serial ROM is detected. If the serial ROM is present, then the  
Bus_Info_Block is automatically loaded on hardware reset.  
23–16  
version  
R
Major version of the OHCI. The TSB12LV23 is compliant with the 1394 Open Host Controller Interface  
Specification; thus, this field reads 01h.  
15–8  
7–0  
RSVD  
R
R
Reserved. Bits 15–8 return 0s when read.  
revision  
Minor version of the OHCI. The TSB12LV23 is compliant with the 1394 Open Host Controller Interface  
Specification; thus, this field reads 00h.  
4–4  
4.2 GUID ROM Register  
The GUID ROM register is used to access the serial ROM, and is only applicable if bit 24 (GUID_ROM) in the OHCI  
version register (see Section 4.1) is set.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID ROM  
RSU  
0
R
0
R
0
R
0
R
0
R
0
RSU  
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
0
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
Name  
Type  
Default  
GUID ROM  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID ROM  
Read/Set/Update  
04h  
00XX 0000h  
Table 4–3. GUID ROM Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
addrReset  
RSU  
Software sets this bit to reset the GUID ROM address to 0. When the TSB12LV23 completes the reset,  
it clears this bit. The TSB12LV23 does not automatically fill bits 23–16 (rdData field) with the 0 byte.  
th  
30–26  
25  
RSVD  
rdStart  
R
Reserved. Bits 30–26 return 0s when read.  
RSU  
A read of the currently addressed byte is started when this bit is set. This bit is automatically cleared  
when the TSB12LV23 completes the read of the currently addressed GUID ROM byte.  
24  
RSVD  
rdData  
RSVD  
R
RU  
R
Reserved. Bit 24 returns 0 when read.  
23–16  
15–0  
This field represents the data read from the GUID ROM.  
Reserved. Bits 15–0 return 0s when read.  
4–5  
4.3 Asynchronous Transmit Retries Register  
The asynchronous transmit retries register indicates the number of times the TSB12LV23 attempts a retry for  
asynchronous DMA request transmit and for asynchronous physical and DMA response transmit.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Asynchronous transmit retries  
Read/Write  
08h  
0000 0000h  
Table 4–4. Asynchronous Transmit Retries Register Description  
BIT  
FIELD NAME  
TYPE  
R
DESCRIPTION  
31–29  
28–16  
15–12  
11–8  
secondLimit  
cycleLimit  
The second limit field returns 0s when read, since outbound dual-phase retry is not implemented.  
The cycle limit field returns 0s when read, since outbound dual-phase retry is not implemented.  
Reserved. Bits 15–12 return 0s when read.  
R
RSVD  
R
maxPhysRespRetries  
R/W  
This field tells the physical response unit how many times to attempt to retry the transmit operation  
for the response packet when a busy acknowledge or ack_data_error is received from the target  
node.  
7–4  
3–0  
maxATRespRetries  
maxATReqRetries  
R/W  
R/W  
This field tells the asynchronous transmit response unit how many times to attempt to retry the  
transmit operation for the response packet when a busy acknowledge or ack_data_error is re-  
ceived from the target node.  
This field tells the asynchronous transmit DMA request unit how many times to attempt to retry the  
transmit operation for the response packet when a busy acknowledge or ack_data_error is re-  
ceived from the target node.  
4.4 CSR Data Register  
The CSR data register is used to access the bus management CSR registers from the host through compare-swap  
operations. This register contains the data to be stored in a CSR if the compare is successful.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR data  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR data  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Offset:  
Default:  
CSR data  
Read-only  
0Ch  
XXXX XXXXh  
4–6  
4.5 CSR Compare Register  
The CSR compare register is used to access the bus management CSR registers from the host through  
compare-swap operations. This register contains the data to be compared with the existing value of the CSR  
resource.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR compare  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR compare  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Offset:  
Default:  
CSR compare  
Read-only  
10h  
XXXX XXXXh  
4.6 CSR Control Register  
The CSR control register is used to access the bus management CSR registers from the host through compare-swap  
operations. This register is used to control the compare-swap operation and to select the CSR resource.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR control  
RU  
1
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
X
R/W  
X
Register:  
Type:  
Offset:  
Default:  
CSR control  
Read/Write/Update  
14h  
8000 000Xh  
Table 4–5. CSR Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
csrDone  
RU  
ThisbitissetbytheTSB12LV23whenacompare-swapoperationiscomplete. Itisresetwheneverthis  
register is written.  
30–2  
1–0  
RSVD  
csrSel  
R
Reserved. Bits 30–2 return 0s when read.  
R/W  
This field selects the CSR resource as follows:  
00 = BUS_MANAGER_ID  
01 = BANDWIDTH_AVAILABLE  
10 = CHANNELS_AVAILABLE_HI  
11 = CHANNELS_AVAILABLE_LO  
4–7  
4.7 Configuration ROM Header Register  
The configuration ROM header register externally maps to the first quadlet of the 1394 configuration ROM, offset  
48’hFFFF_F000_0400.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM header  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM header  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Configuration ROM header  
Read/Write  
Offset:  
Default:  
18h  
0000 XXXXh  
Table 4–6. Configuration ROM Header Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–24  
info_length  
R/W  
IEEE1394 bus management field. Must be valid when bit 17 (linkEnable) of the host controller control  
register (see Section 4.16) is set.  
23–16  
15–0  
crc_length  
R/W  
R/W  
IEEE1394 bus management field. Must be valid when bit 17 (linkEnable) of the host controller control  
register (see Section 4.16) is set.  
rom_crc_value  
IEEE1394 bus management field. Must be valid at any time bit 17 (linkEnable) of the host controller  
control register (see Section 4.16) is set. The reset value is undefined if no serial ROM is present. If a  
serial ROM is present, then this field is loaded from the serial ROM.  
4.8 Bus Identification Register  
The bus identification register externally maps to the first quadlet in the Bus_Info_Block, and contains the constant  
32’h31333934, which is the ASCII value of 1394.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus identification  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
1
8
R
0
7
R
0
6
R
1
5
R
1
4
R
0
3
R
0
2
R
1
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Bus identification  
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
1
R
0
R
0
Register:  
Type:  
Bus identification  
Read-only  
Offset:  
Default:  
1Ch  
3133 3934h  
4–8  
4.9 Bus Options Register  
The bus options register externally maps to the second quadlet of the Bus_Info_Block.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus options  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
0
R
0
R
0
9
R
0
8
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bus options  
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R
0
R
0
R
0
R/W  
X
R/W  
X
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Bus options  
Read/Write  
20h  
X0XX A0X2h  
Table 4–7. Bus Options Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
irmc  
R/W  
Isochronous resource manager capable. IEEE1394 bus management field. Must be valid when bit 17  
(linkEnable) of the host controller control register (see Section 4.16) is set.  
30  
29  
28  
27  
cmc  
isc  
R/W  
R/W  
R/W  
R/W  
Cycle master capable. IEEE1394 bus management field. Must be valid when bit 17 (linkEnable) of the  
host controller control register (see Section 4.16) is set.  
Isochronoussupportcapable.IEEE1394busmanagementfield.Mustbevalidwhenbit17(linkEnable)  
of the host controller control register (see Section 4.16) is set.  
bmc  
pmc  
Bus manager capable. IEEE1394 bus management field. Must be valid when bit 17 (linkEnable) of the  
host controller control register (see Section 4.16) is set.  
IEEE1394 bus management field. Must be valid when bit 17 (linkEnable) of the host controller control  
register (see Section 4.16) is set.  
26–24  
23–16  
RSVD  
R
Reserved. Bits 26–24 return 0s when read.  
cyc_clk_acc  
R/W  
Cycle master clock accuracy. (accuracy in parts per million) IEEE1394 bus management field. Must be  
valid when bit 17 (linkEnable) of the host controller control register (see Section 4.16) is set.  
15–12  
max_rec  
R/W  
IEEE 1394 bus management field. Hardware initializes this field to indicate the maximum number of  
bytes in a block request packet that is supported by the implementation. This value, max_rec_bytes  
must be 512 greater, and is calculated by 2^(max_rec + 1). Software may change this field; however,  
this field must be valid at any time bit 17 (linkEnable) of the host controller control register (see  
Section 4.16) is set. A received block write request packet with a length greater than max_rec_bytes  
may generate an ack_type_error. This field is not affected by a soft reset, and defaults to value  
indicating 2048 bytes on a hard reset.  
11–8  
7–6  
RSVD  
g
R
Reserved. Bits 11–8 return 0s when read.  
R/W  
Generation counter. This field is incremented if any portion of the configuration ROM has been  
incremented since the prior bus reset.  
5–3  
2–0  
RSVD  
R
R
Reserved. Bits 5–3 return 0s when read.  
Lnk_spd  
Link speed. This field returns 010, indicating that the link speeds of 100, 200, and 400 Mbits/s are  
supported.  
4–9  
4.10 GUID High Register  
The GUID high register represents the upper quadlet in a 64-bit global unique ID (GUID) which maps to the third  
quadlet in the Bus_Info_Block. This register contains node_vendor_ID and chip_ID_hi fields. This register initializes  
to 0s on a hardware reset, which is an illegal GUID value. If a serial ROM is detected, then the contents of this register  
are loaded through the serial ROM interface after a PCI reset. At that point, the contents of this register cannot be  
changed. If no serial ROM is detected, then the contents of this register are loaded by the BIOS after a PCI reset.  
At that point, the contents of this register cannot be changed.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID high  
Read-only  
24h  
0000 0000h  
4.11 GUID Low Register  
The GUID low register represents the lower quadlet in a 64-bit global unique ID (GUID) which maps to chip_ID_lo  
in the Bus_Info_Block. This register initializes to 0s on a hardware reset and behaves identical to the GUID high  
register (see Section 4.10).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID low  
Read-only  
28h  
0000 0000h  
4–10  
4.12 Configuration ROM Mapping Register  
The configuration ROM mapping register contains the start address within system memory that maps to the start  
address of 1394 configuration ROM for this node.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Configuration ROM mapping  
Read/Write  
34h  
0000 0000h  
Table 4–8. Configuration ROM Mapping Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31–10  
configROMaddr  
R/W  
If a quadlet read request to 1394 offset48’hFFFF_F000_0400throughoffset48’hFFFF_F000_07FFis  
received, thentheloworder10bitsoftheoffsetareaddedtothisregistertodeterminethehostmemory  
address of the read request.  
9–0  
RSVD  
R
Reserved. Bits 9–0 return 0s when read.  
4.13 Posted Write Address Low Register  
The posted write address low register is used to communicate error information if a write request is posted and an  
error occurs while writing the posted data packet.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Default:  
Posted write address low  
Read/Update  
38h  
XXXX XXXXh  
Table 4–9. Posted Write Address Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
The lower 32 bits of the 1394 destination offset of the write request that failed.  
31–0  
offsetLo  
RU  
4–11  
4.14 Posted Write Address High Register  
The posted write address high register is used to communicate error information if a write request is posted and an  
error occurs while writing the posted data packet.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Posted write address high  
Read/Update  
Offset:  
Default:  
3Ch  
XXXX XXXXh  
Table 4–10. Posted Write Address High Register Description  
BIT  
31–16  
15–0  
FIELD NAME  
sourceID  
TYPE  
RU  
DESCRIPTION  
This field is the bus and node number of the node that issued the write request that failed.  
The upper 16 bits of the 1394 destination offset of the write request that failed.  
offsetHi  
RU  
4.15 Vendor ID Register  
The vendor ID register holds the company ID of an organization that specifies any vendor-unique registers. The  
TSB12LV23 does not implement Texas Instruments unique behavior with regards to OHCI. Thus, this register is  
read-only and returns 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
40h  
0000 0000h  
4–12  
4.16 Host Controller Control Register  
The host controller control set/clear register pair provides flags for controlling the TSB12LV23.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Host controller control  
R
0
RSC  
X
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RC  
0
RSC  
R
0
5
R
0
4
RSC  
RSC  
X
RSC RSCU  
0
0
0
0
15  
14  
13  
12  
11  
10  
7
6
3
2
1
0
Name  
Type  
Default  
Host controller control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Host controller control  
Read/Set/Clear/Update  
Offset:  
50h  
54h  
set register  
clear register  
Default:  
X00X 0000h  
Table 4–11. Host Controller Control Register Description  
BIT  
31  
FIELD NAME  
TYPE  
R
DESCRIPTION  
RSVD  
Reserved. Bit 31 returns 0 when read.  
30  
noByteSwapData  
RSC  
This bit is used to control whether physical accesses to locations outside the TSB12LV23 itself as  
well as any other DMA data accesses should be swapped.  
29–24  
23  
RSVD  
R
Reserved. Bits 29–24 return 0s when read.  
programPhyEnable  
RC  
This bit informs upper level software that lower level software has consistently configured the  
P1394aenhancementsintheLinkandPHY. Whenthisbitis1, genericsoftwaresuchastheOHCI  
driver is responsible for configuring P1394a enhancements in the PHY and bit 22  
(aPhyEnhanceEnable)in the TSB12LV23. When this bit is 0, the generic software may not modify  
the P1394a enhancements in the TSB12LV23 or PHY and cannot interpret the setting of bit 22  
(aPhyEnhanceEnable). This bit is initialized from serial EEPROM.  
22  
aPhyEnhanceEnable  
RSC  
When bits 23 (programPhyEnable) and 17 (linkEnable) are 1, the OHCI driver can set this bit to  
use all P1394a enhancements. When bit 23 (programPhyEnable) is set to 0, the software does  
not change PHY enhancements or this bit.  
21–20  
19  
RSVD  
LPS  
R
Reserved. Bits 21–20 return 0s when read.  
RSC  
This bit is used to control the link power status. Software must set this bit to 1 to permit the  
link-PHY communication. A 0 prevents link-PHY communication.  
18  
17  
postedWriteEnable  
linkEnable  
RSC  
RSC  
This bit is used to enable (1) or disable (0) posted writes. Software should change this bit only  
when bit 17 (linkEnable) is 0.  
This bit is cleared to 0 by either a hardware or software reset. Software must set this bit to 1 when  
the system is ready to begin operation and then force a bus reset. This bit is necessary to keep  
other nodes from sending transactions before the local system is ready. When this bit is cleared,  
the TSB12LV23 is logically and immediately disconnected from the 1394 bus, no packets are  
received or processed nor are packets transmitted.  
16  
SoftReset  
RSVD  
RSCU When this bit is set, all TSB12LV23 states are reset, all FIFOs are flushed, and all OHCI registers  
areset totheirhardwareresetvaluesunlessotherwisespecified. PCIregistersarenotaffectedby  
this bit. This bit remains set while the softReset is in progress and reverts back to 0 when the reset  
has completed.  
15–0  
R
Reserved. Bits 15–0 return 0s when read.  
4–13  
4.17 Self ID Buffer Pointer Register  
The self ID buffer pointer register points to the 2-Kbyte aligned base address of the buffer in host memory where the  
self ID packets are stored during bus initialization. Bits 31–11 are read/write accessible.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Self ID buffer pointer  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Default  
Default  
Bit  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Self ID buffer pointer  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Default  
Register:  
Type:  
Self ID buffer pointer  
Read/Write  
Offset:  
Default:  
64h  
XXXX XX00h  
4.18 Self ID Count Register  
The self ID count register keeps a count of the number of times the bus self ID process has occurred, flags self ID  
packet errors, and keeps a count of the amount of self ID data in the self ID buffer.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self ID count  
RU  
X
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self ID count  
R
0
R
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self ID count  
Read/Update  
68h  
X0XX 0000h  
Table 4–12. Self ID Count Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
selfIDError  
RU  
Whenthisbitis1, anerrorwasdetectedduringthemostrecentselfIDpacketreception. Thecontents  
of the self ID buffer are undefined. This bit is cleared after a self ID reception in which no errors are  
detected. Note that an error can be a hardware error or a host bus write error.  
30–24  
23–16  
RSVD  
R
Reserved. Bits 30–24 return 0s when read.  
selfIDGeneration  
RU  
The value in this field increments each time a bus reset is detected. This field rolls over to 0 after  
reaching 255.  
15–11  
10–2  
RSVD  
R
Reserved. Bits 15–11 return 0s when read.  
selfIDSize  
RU  
This field indicates the number of quadlets that have been written into the self ID buffer for the current  
bits 23–16 (selfIDGeneration field). This includes the header quadlet and the self ID data. This field is  
cleared to 0 when the self ID reception begins.  
1–0  
RSVD  
R
Reserved. Bits 1–0 return 0s when read.  
4–14  
4.19 Isochronous Receive Channel Mask High Register  
The isochronous receive channel mask high set/clear register is used to enable packet receives from the upper 32  
isochronous data channels. A read from either the set register or clear register returns the content of the isochronous  
receive channel mask high register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Default  
Default  
Bit  
X
0
9
X
0
8
X
0
7
X
0
6
X
0
5
X
0
4
X
0
3
X
0
2
X
0
1
X
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Default  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Type:  
Isochronous receive channel mask high  
Read/Set/Clear  
Offset:  
70h  
74h  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 4–13. Isochronous Receive Channel Mask High Register Description  
BIT  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
FIELD NAME  
isoChannel63  
isoChannel62  
isoChannel61  
isoChannel60  
isoChannel59  
isoChannel58  
isoChannel57  
isoChannel56  
isoChannel55  
isoChannel54  
isoChannel53  
isoChannel52  
isoChannel51  
isoChannel50  
isoChannel49  
isoChannel48  
isoChannel47  
isoChannel46  
isoChannel45  
isoChannel44  
isoChannel43  
isoChannel42  
isoChannel41  
isoChannel40  
isoChannel39  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 63.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 62.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 61.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 60.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 59.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 58.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 57.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 56.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 55.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 54.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 53.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 52.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 51.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 50.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 49.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 48.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 47.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 46.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 45.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 44.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 43.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 42.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 41.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 40.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 39.  
8
7
4–15  
Table 4–13. Isochronous Receive Channel Mask High Register Description (Continued)  
BIT  
6
FIELD NAME  
isoChannel38  
isoChannel37  
isoChannel36  
isoChannel35  
isoChannel34  
isoChannel33  
isoChannel32  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 38.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 37.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 36.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 35.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 34.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 33.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 32.  
5
4
3
2
1
0
4.20 Isochronous Receive Channel Mask Low Register  
The isochronous receive channel mask low set/clear register is used to enable packet receives from the lower 32  
isochronous data channels.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Default  
Default  
Bit  
X
0
9
X
0
8
X
0
7
X
0
6
X
0
5
X
0
4
X
0
3
X
0
2
X
0
1
X
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Default  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Type:  
Isochronous receive channel mask low  
Read/Set/Clear  
Offset:  
78h  
7Ch  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 4–14. Isochronous Receive Channel Mask Low Register Description  
BIT  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
FIELD NAME  
isoChannel31  
isoChannel30  
isoChannel29  
isoChannel28  
isoChannel27  
isoChannel26  
isoChannel25  
isoChannel24  
isoChannel23  
isoChannel22  
isoChannel21  
isoChannel20  
isoChannel19  
isoChannel18  
isoChannel17  
isoChannel16  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 31.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 30.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 29.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 28.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 27.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 26.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 25.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 24.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 23.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 22.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 21.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 20.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 19.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 18.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 17.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 16.  
4–16  
Table 4–14. Isochronous Receive Channel Mask Low Register Description (Continued)  
BIT  
15  
14  
13  
12  
11  
10  
9
FIELD NAME  
isoChannel15  
isoChannel14  
isoChannel13  
isoChannel12  
isoChannel11  
isoChannel10  
isoChannel9  
isoChannel8  
isoChannel7  
isoChannel6  
isoChannel5  
isoChannel4  
isoChannel3  
isoChannel2  
isoChannel1  
isoChannel0  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
DESCRIPTION  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 15.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 14.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 13.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 12.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 11.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 10.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 9.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 8.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 7.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 6.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 5.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 4.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 3.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 2.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 1.  
When this bit is set, the TSB12LV23 is enabled to receive from iso channel number 0.  
8
7
6
5
4
3
2
1
0
4–17  
4.21 Interrupt Event Register  
The interrupt event set/clear register reflects the state of the various TSB12LV23 interrupt sources. The interrupt bits  
are set by an asserting edge of the corresponding interrupt signal or by writing a 1 in the corresponding bit in the set  
register. The only mechanism to clear the bits in this register is to write a 1 to the corresponding bit in the clear register.  
This register is fully compliant with OHCI and the TSB12LV23 adds OHCI 1.0 compliant vendor-specific interrupt  
function to bit 30. When reading the interrupt event register, the return value is the bit-wise AND function of the  
interrupt event and interrupt mask registers per the 1394 Open Host Controller Interface Specification.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Interrupt event  
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
R
0
RSC  
X
R
0
R
0
R
0
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt event  
Read/Set/Clear/Update  
Offset:  
80h  
84h  
set register  
clear register [returns the content of the interrupt event and interrupt mask registers  
when read]  
Default:  
XXXX 0XXXh  
Table 4–15. Interrupt Event Register Description  
BIT  
31  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bit 31 returns 0 when read.  
30  
vendorSpecific  
RSC  
This vendor-specific interrupt event is reported when either of the general-purpose interrupts occur  
which are enabled via INT_EN3 and INT_EN2.  
29–27  
26  
RSVD  
R
Reserved. Bits 29–27 return 0s when read.  
phyRegRcvd  
RSCU TheTSB12LV23 has received a PHY register data byte which can be read from the PHY layercontrol  
register (see Section 4.30).  
25  
24  
23  
22  
cycleTooLong  
RSCU If bit 21 (cycleMaster) of the link control register (see Section 4.28) is set, then this indicates that over  
125 µshaveelapsedbetweenthestartofsendingacyclestartpacketandtheendofasubactiongap.  
The link control register bit 21 (cycleMaster) is cleared by this event.  
unrecoverableError RSCU This event occurs when the TSB12LV23 encounters any error that forces it to stop operations on any  
or all of its subunits, for example, when a DMA context sets its dead bit. While this bit is set, all normal  
interrupts for the context(s) that caused this interrupt are blocked from being set.  
cycleInconsistent  
RSCU A cycle start was received that had values for cycleSeconds and cycleCount fields that are different  
from the values in bits 31–25 (cycleSeconds field) and bits 24–12 (cycleCount field) of the  
isochronous cycle timer register (see Section 4.31).  
cycleLost  
RSCU A lost cycle is indicated when no cycle_start packet is sent/received between two successive  
cycleSynch events. A lost cycle can be predicted when a cycle_start packet does not immediately  
follow the first subaction gap after the cycleSynch event or if an arbitration reset gap is detected after  
a cycleSynch event without an intervening cycle start. This bit may be set either when it occurs or  
when logic predicts that it will occur.  
th  
21  
20  
cycle64Seconds  
cycleSynch  
RSCU Indicates that the 7 bit of the cycle second counter has changed.  
RSCU Indicates that a new isochronous cycle has started. This bit is set when the low order bit of the cycle  
count toggles.  
19  
18  
phy  
RSCU Indicates the PHY requests an interrupt through a status transfer.  
RSVD  
R
Reserved. Bit 18 returns 0 when read.  
4–18  
Table 4–15. Interrupt Event Register Description (Continued)  
BIT  
17  
FIELD NAME  
busReset  
TYPE  
DESCRIPTION  
RSCU Indicates that the PHY chip has entered bus reset mode.  
16  
selfIDcomplete  
RSCU A selfID packet stream has been received. It is generated at the end of the bus initialization process.  
This bit is turned off simultaneously when bit 17 (busReset) is turned on.  
15–10  
9
RSVD  
R
Reserved. Bits 15–10 return 0s when read.  
lockRespErr  
RSCU Indicates that the TSB12LV23 sent a lock response for a lock request to a serial bus register, but did  
not receive an ack_complete.  
8
7
postedWriteErr  
isochRx  
RSCU IndicatesthatahostbuserroroccurredwhiletheTSB12LV23wastryingtowritea1394writerequest,  
which had already been given an ack_complete, into system memory.  
RU  
RU  
Isochronous receive DMA interrupt. Indicates that one or more isochronous receive contexts have  
generatedaninterrupt. Thisisnotalatchedevent, itistheOR’ingofallbitsintheisochronousreceive  
interrupt event and isochronous receive interrupt mask registers. The isochronous receive interrupt  
event register (see Section 4.25) indicates which contexts have interrupted.  
6
isochTx  
Isochronous transmit DMA interrupt. Indicates that one or more isochronous transmit contexts have  
generated an interrupt. This is not a latched event, it is the OR’ing of all bits in the isochronous  
transmitinterrupt event and isochronous transmit interrupt mask registers. The isochronous transmit  
interrupt event register (see Section 4.23) indicates which contexts have interrupted.  
5
4
3
2
1
0
RSPkt  
RQPkt  
RSCU Indicates that a packet was sent to an asynchronous receive response context buffer and the  
descriptor’s xferStatus and resCount fields have been updated.  
RSCU Indicates that a packet was sent to an asynchronous receive request context buffer and the  
descriptor’s xferStatus and resCount fields have been updated.  
ARRS  
RSCU AsyncreceiveresponseDMAinterrupt.ThisbitisconditionallysetuponcompletionofanARRSDMA  
context command descriptor.  
ARRQ  
RSCU Async receive request DMA interrupt. This bit is conditionally set upon completion of an ARRQ DMA  
context command descriptor.  
respTxComplete  
reqTxComplete  
RSCU Asynchronous response transmit DMA interrupt. This bit is conditionally set upon completion of an  
ATRS DMA command.  
RSCU Asynchronous request transmit DMA interrupt. This bit is conditionally set upon completion of an  
ATRQ DMA command.  
4–19  
4.22 Interrupt Mask Register  
The interrupt mask set/clear register is used to enable the various TSB12LV23 interrupt sources. Reads from either  
the set register or the clear register always return the contents of the interrupt mask register. In all cases except  
masterIntEnable (bit 31), the enables for each interrupt event align with the interrupt event register bits detailed in  
Table 4–15.  
This register is fully compliant with OHCI and the TSB12LV23 adds an OHCI 1.0 compliant interrupt function to bit 30.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Interrupt mask  
R
X
RSC  
X
R
0
R
0
R
0
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt mask  
Read/Set/Clear/Update  
Offset:  
88h  
8Ch  
set register  
clear register  
Default:  
XXXX 0XXXh  
Table 4–16. Interrupt Mask Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
masterIntEnable  
RSCU Master interrupt enable. If this bit is set, then external interrupts are generated in accordance with the  
interruptmask register. If this bit is cleared, then external interrupts are not generated regardless of the  
interrupt mask register settings.  
30  
VendorSpecific  
RSC  
When this bit is set, this vendor-specific interrupt mask enables interrupt generation when bit 30  
(vendorSpecific) of the interrupt event register (see Section 4.21) is set.  
29–0  
See Table 4–15  
4–20  
4.23 Isochronous Transmit Interrupt Event Register  
The isochronous transmit interrupt event set/clear register reflects the interrupt state of the isochronous transmit  
contexts. An interrupt is generated on behalf of an isochronous transmit context if an OUTPUT_LAST command  
completes and its interrupt bits are set. Upon determining that the interrupt event register isochTx (bit 6) interrupt has  
occurred, software can check this register to determine which context(s) caused the interrupt. The interrupt bits are  
set by an asserting edge of the corresponding interrupt signal, or by writing a 1 in the corresponding bit in the set  
register. The only mechanism to clear the bits in this register is to write a 1 to the corresponding bit in the clear register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous transmit interrupt event  
Read/Set/Clear  
Offset:  
90h  
84h  
set register  
clear register [returns IsoXmitEvent and IsoXmitMask when read]  
Default:  
0000 00XXh  
Table 4–17. Isochronous Transmit Interrupt Event Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
31–8  
Reserved. Bits 31–8 return 0s when read.  
7
6
5
4
3
2
1
0
isoXmit7  
isoXmit6  
isoXmit5  
isoXmit4  
isoXmit3  
isoXmit2  
isoXmit1  
isoXmit0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Isochronous transmit channel 7 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 6 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 5 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 4 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 3 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 2 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 1 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 0 caused the interrupt event register bit 6 (isochTx) interrupt.  
4–21  
4.24 Isochronous Transmit Interrupt Mask Register  
The isochronous transmit interrupt mask set/clear register is used to enable the isochTx interrupt source on a per  
channel basis. Reads from either the set register or the clear register always return the contents of the isochronous  
transmit interrupt mask register. In all cases the enables for each interrupt event align with the event register bits  
detailed in Table 4–17.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous transmit interrupt mask  
Read/Set/Clear  
Offset:  
98h  
9Ch  
set register  
clear register  
Default:  
0000 00XXh  
4.25 Isochronous Receive Interrupt Event Register  
The isochronous receive interrupt event set/clear register reflects the interrupt state of the isochronous receive  
contexts. An interrupt is generated on behalf of an isochronous receive context if an INPUT_* command completes  
and its interrupt bits are set. Upon determining that the interrupt event register isochRx (bit 7) interrupt has occurred,  
software can check this register to determine which context(s) caused the interrupt. The interrupt bits are set by an  
asserting edge of the corresponding interrupt signal, or by writing a 1 in the corresponding bit in the set register. The  
only mechanism to clear the bits in this register is to write a 1 to the corresponding bit in the clear register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous receive interrupt event  
Read/Set/Clear  
Offset:  
A0h  
A4h  
set register  
clear register [returns the contents of isochronous receive interrupt event and  
isochronous receive mask registers when read]  
Default:  
0000 000Xh  
Table 4–18. Isochronous Receive Interrupt Event Register Description  
BIT  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31–4 return 0s when read.  
31–4  
3
2
1
0
isoRecv3  
isoRecv2  
isoRecv1  
isoRecv0  
RSC  
RSC  
RSC  
RSC  
Isochronous receive channel 3 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 2 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 1 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 0 caused the interrupt event register bit 7 (isochRx) interrupt.  
4–22  
4.26 Isochronous Receive Interrupt Mask Register  
TheisochronousreceiveinterruptmaskregisterisusedtoenabletheisochRxinterruptsourceonaperchannelbasis.  
Reads from either the set register or the clear register always return the contents of the isochronous receive interrupt  
mask register. In all cases the enables for each interrupt event align with the event register bits detailed in Table 4–18.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
Register:  
Type:  
Isochronous receive interrupt mask  
Read/Set/Clear  
Offset:  
A8h  
ACh  
set register  
clear register  
Default:  
0000 000Xh  
4.27 Fairness Control Register  
The fairness control register provides a mechanism by which software can direct the host controller to transmit  
multiple asynchronous requests during a fairness interval.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Fairness control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
9
R
0
0
8
R
0
0
7
R
0
0
6
R
0
0
5
R
0
0
4
R
0
0
3
R
0
0
2
R
0
0
1
R
0
0
0
Default  
Default  
Bit  
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Fairness control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
Register:  
Type:  
Offset:  
Default:  
Fairness control  
Read-only  
DCh  
0000 0000h  
Table 4–19. Fairness Control Register Description  
BIT  
31–8  
7–0  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
Reserved. Bits 31–8 return 0s when read.  
R
pri_req  
R/W  
This field specifies the maximum number of priority arbitration requests for asynchronous request  
packets that the link is permitted to make of the PHY during fairness interval.  
4–23  
4.28 Link Control Register  
The link control set/clear register provides the control flags that enable and configure the link core protocol portions  
of the TSB12LV23. It contains controls for the receiver and cycle timer.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
RSC RSCU RSC  
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
6
5
4
Name  
Type  
Default  
Link control  
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Link control  
Read/Set/Clear/Update  
Offset:  
E0h  
E4h  
set register  
clear register  
Default:  
00X0 0X00h  
Table 4–20. Link Control Register Description  
BIT  
31–23  
22  
FIELD NAME  
RSVD  
TYPE  
R
DESCRIPTION  
Reserved. Bits 31–23 return 0s when read.  
cycleSource  
RSC  
Whenthisbitisset, thecycletimerusesanexternalsource(CYCLEIN)todeterminewhentorollover  
the cycle timer. When this bit is cleared, the cycle timer rolls over when the timer reaches 3072 cycles  
of the 24.576 MHz clock (125 µs).  
21  
20  
cycleMaster  
RSCU Whenthisbitisset, andthePHYhasnotifiedtheTSB12LV23thatitisroot,theTSB12LV23generates  
a cycle start packet every time the cycle timer rolls over, based on the setting of bit 22. When this bit is  
cleared, the OHCI-Lynx accepts received cycle start packets to maintain synchronization with the  
nodewhichissendingthem. Thisbit is automatically reset when bit 25 (cycleTooLong)oftheinterrupt  
event register (see Section 4.21) is set and cannot be set until bit 25 (cycleTooLong) is cleared.  
CycleTimerEnable  
RSC  
When this bit is set, the cycle timer offset counts cycles of the 24.576 MHz clock and rolls over at the  
appropriatetimebasedonthesettingsoftheabovebits. Whenthisbitiscleared, thecycletimeroffset  
does not count.  
19–11  
10  
RSVD  
R
Reserved. Bits 19–11 return 0s when read.  
RcvPhyPkt  
RSC  
When this bit is set, the receiver accepts incoming PHY packets into the AR request context if the AR  
request context is enabled. This does not control receipt of self-identification packets.  
9
RcvSelfID  
RSVD  
RSC  
R
Whenthis bit is set, the receiver accepts incoming self-identification packets. Before setting this bit to  
1, software must ensure that the self ID buffer pointer register contains a valid address.  
8–0  
Reserved. Bits 8–0 return 0s when read.  
4–24  
4.29 Node Identification Register  
The node identification register contains the address of the node on which the OHCI-Lynx chip resides, and indicates  
the valid node number status. The 16-bit combination of the busNumber field (bits 15–6) and the NodeNumber field  
(bits 5–0) is referred to as the node ID.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Node identification  
RU  
0
RU  
0
R
0
R
0
RU  
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Node identification  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
1
1
1
1
1
1
1
1
1
1
Register:  
Type:  
Offset:  
Default:  
Node identification  
Read/Write/Update  
E8h  
0000 FFXXh  
Table 4–21. Node Identification Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
iDValid  
RU  
ThisbitindicateswhetherornottheTSB12LV23hasavalidnodenumber.Itisclearedwhena1394bus  
reset is detected and set when the TSB12LV23 receives a new node number from the PHY.  
30  
root  
RSVD  
RU  
R
This bit is set during the bus reset process if the attached PHY is root.  
Reserved. Bits 29–28 return 0s when read.  
29–28  
27  
CPS  
RU  
R
Set if the PHY is reporting that cable power status is OK.  
Reserved. Bits 26–16 return 0s when read.  
26–16  
15–6  
RSVD  
busNumber  
RWU  
This number is used to identify the specific 1394 bus the TSB12LV23 belongs to when multiple  
1394-compatible buses are connected via a bridge.  
5–0  
NodeNumber  
RU  
This number is the physical node number established by the PHY during self-identification. It is  
automatically set to the value received from the PHY after the self-identification phase. If the PHY sets  
the nodeNumber to 63, then software should not set ContextControl.run for either of the AT DMA  
contexts.  
4–25  
4.30 PHY Layer Control Register  
The PHY layer control register is used to read or write a PHY register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PHY layer control  
RU  
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PHY layer control  
RWU RWU  
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
0
Register:  
Type:  
Offset:  
Default:  
PHY layer control  
Read/Write/Update  
ECh  
0000 0000h  
Table 4–22. PHY Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
rdDone  
RU  
This bit is cleared to 0 by the TSB12LV23 when either bit 15 (rdReg) or bit 14 (wrReg) is set. This bit is  
set when a register transfer is received from the PHY.  
30–28  
27–24  
23–16  
15  
RSVD  
rdAddr  
rdData  
rdReg  
R
Reserved. Bits 30–28 return 0s when read.  
RU  
This is the address of the register most recently received from the PHY.  
This field is the contents of a PHY register which has been read.  
RU  
RWU  
This bit is set by software to initiate a read request to a PHY register and is cleared by hardware when  
the request has been sent. Bits 14 (wrReg) and 15 (rdReg) must be used exclusively.  
14  
wrReg  
RWU  
This bit is set by software to initiate a write request to a PHY register and is cleared by hardware when  
the request has been sent. Bits 14 (wrReg) and 15 (rdReg) must be used exclusively.  
13–12  
11–8  
7–0  
RSVD  
regAddr  
wrData  
R
Reserved. Bits 13–12 return 0s when read.  
R/W  
R/W  
This field is the address of the PHY register to be written or read.  
This field is the data to be written to a PHY register and is ignored for reads.  
4–26  
4.31 Isochronous Cycle Timer Register  
The isochronous cycle timer register indicates the current cycle number and offset. When the TSB12LV23 is cycle  
master, this register is transmitted with the cycle start message. When the TSB12LV23 is not cycle master, this  
registerisloadedwiththedatafieldinanincomingcyclestart. Intheeventthatthecyclestartmessageisnotreceived,  
the fields can continue incrementing on their own (if programmed) to maintain a local time reference.  
Bit  
31  
30  
29  
28  
27  
26  
25  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Default  
Bit  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
9
X
0
8
X
0
7
X
0
6
X
0
5
X
0
4
X
0
3
X
0
2
X
0
1
X
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
Default  
Default  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
Register:  
Type:  
Offset:  
Default:  
Isochronous cycle timer  
Read/Write/Update  
F0h  
XXXX XXXXh  
Table 4–23. Isochronous Cycle Timer Register Description  
BIT  
FIELD NAME  
cycleSeconds  
cycleCount  
TYPE  
RWU  
RWU  
RWU  
DESCRIPTION  
31–25  
24–12  
11–0  
This field counts seconds [rollovers from bits 24–12 (cycleCount field)] modulo 128.  
This field counts cycles [rollovers from bits 11–0 (cycleOffset field)] modulo 8000.  
cycleOffset  
This field counts 24.576 MHz clocks modulo 3072, i.e., 125 µs. If an external 8 kHz clock configuration  
is being used, then this bit must be set to 0 at each tick of the external clock.  
4–27  
4.32 Asynchronous Request Filter High Register  
The asynchronous request filter high set/clear register is used to enable asynchronous receive requests on a per  
node basis, and handles the upper node IDs. When a packet is destined for either the physical request context or  
the ARRQ context, the source node ID is examined. If the bit corresponding to the node ID is not set in this register,  
then the packet is not acknowledged and the request is not queued. The node ID comparison is done if the source  
node is on the same bus as the TSB12LV23. All nonlocal bus sourced packets are not acknowledged unless bit 31  
in this register is set.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Asynchronous request filter high  
Read/Set/Clear  
Offset:  
100h set register  
104h clear register  
0000 0000h  
Default:  
Table 4–24. Asynchronous Request Filter High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
asynReqAllBuses  
asynReqResource62  
asynReqResource61  
asynReqResource60  
asynReqResource59  
asynReqResource58  
asynReqResource57  
asynReqResource56  
asynReqResource55  
asynReqResource54  
asynReqResource53  
asynReqResource52  
asynReqResource51  
RSC  
If this bit is set, then all asynchronous requests received by the TSB12LV23 from non-local bus  
nodes are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 62, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 61, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 60, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 59, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 58, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 57, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 56, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 55, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 54, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 53, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 52, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 51, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
4–28  
Table 4–24. Asynchronous Request Filter High Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
18  
asynReqResource50  
RSC  
If this bit is set for local bus node number 50, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
17  
16  
15  
14  
13  
12  
11  
10  
9
asynReqResource49  
asynReqResource48  
asynReqResource47  
asynReqResource46  
asynReqResource45  
asynReqResource44  
asynReqResource43  
asynReqResource42  
asynReqResource41  
asynReqResource40  
asynReqResource39  
asynReqResource38  
asynReqResource37  
asynReqResource36  
asynReqResource35  
asynReqResource34  
asynReqResource33  
asynReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 49, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 48, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 47, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 46, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 45, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 44, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 43, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 42, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 41, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
8
If this bit is set for local bus node number 40, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
7
If this bit is set for local bus node number 39, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
6
If this bit is set for local bus node number 38, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
5
If this bit is set for local bus node number 37, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
4
If this bit is set for local bus node number 36, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
3
If this bit is set for local bus node number 35, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
2
If this bit is set for local bus node number 34, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
1
If this bit is set for local bus node number 33, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
0
If this bit is set for local bus node number 32, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
4–29  
4.33 Asynchronous Request Filter Low Register  
The asynchronous request filter low set/clear register is used to enable asynchronous receive requests on a per node  
basis, and handles the lower node IDs. Other than filtering different node IDs, this register behaves identically to the  
asynchronous request filter high register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Asynchronous request filter low  
Read/Set/Clear  
Offset:  
108h set register  
10Ch clear register  
0000 0000h  
Default:  
Table 4–25. Asynchronous Request Filter Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
asynReqResource31  
asynReqResource30  
asynReqResource29  
asynReqResource28  
asynReqResource27  
asynReqResource26  
asynReqResource25  
asynReqResource24  
asynReqResource23  
asynReqResource22  
asynReqResource21  
asynReqResource20  
asynReqResource19  
asynReqResource18  
asynReqResource17  
RSC  
If this bit is set for local bus node number 31, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 30, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 29, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 28, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 27, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 26, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 25, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 24, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 23, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 22, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 21, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 20, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 19, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 18, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 17, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
4–30  
Table 4–25. Asynchronous Request Filter Low Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
16  
asynReqResource16  
RSC  
If this bit is set for local bus node number 16, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
15  
14  
13  
12  
11  
10  
9
asynReqResource15  
asynReqResource14  
asynReqResource13  
asynReqResource12  
asynReqResource11  
asynReqResource10  
asynReqResource9  
asynReqResource8  
asynReqResource7  
asynReqResource6  
asynReqResource5  
asynReqResource4  
asynReqResource3  
asynReqResource2  
asynReqResource1  
asynReqResource0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 15, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 14, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 13, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 12, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 11, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 10, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
If this bit is set for local bus node number 9, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
8
If this bit is set for local bus node number 8, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
7
If this bit is set for local bus node number 7, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
6
If this bit is set for local bus node number 6, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
5
If this bit is set for local bus node number 5, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
4
If this bit is set for local bus node number 4, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
3
If this bit is set for local bus node number 3, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
2
If this bit is set for local bus node number 2, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
1
If this bit is set for local bus node number 1, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
0
If this bit is set for local bus node number 0, then asynchronous requests received by the  
TSB12LV23 from that node are accepted.  
4–31  
4.34 Physical Request Filter High Register  
The physical request filter high set/clear register is used to enable physical receive requests on a per node basis and  
handles the upper node IDs. When a packet is destined for the physical request context and the node ID has been  
compared against the ARRQ registers, then the comparison is done again with this register. If the bit corresponding  
to the node ID is not set in this register, then the request is handled by the ARRQ context instead of the physical  
request context.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter high  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Physical request filter high  
Read/Set/Clear  
Offset:  
110h set register  
114h clear register  
0000 0000h  
Default:  
Table 4–26. Physical Request Filter High Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
physReqAllBusses  
physReqResource62  
physReqResource61  
physReqResource60  
physReqResource59  
physReqResource58  
physReqResource57  
physReqResource56  
physReqResource55  
physReqResource54  
physReqResource53  
physReqResource52  
physReqResource51  
physReqResource50  
RSC  
If this bit is set, then all asynchronous requests received by the TSB12LV23 from non-local bus  
nodes are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Ifthisbitissetforlocalbusnodenumber62, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber61, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber60, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber59, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber58, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber57, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber56, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber55, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber54, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber53, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber52, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber51, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber50, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
4–32  
Table 4–26. Physical Request Filter High Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
17  
physReqResource49  
RSC  
Ifthisbitissetforlocalbusnodenumber49, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
16  
15  
14  
13  
12  
11  
10  
9
physReqResource48  
physReqResource47  
physReqResource46  
physReqResource45  
physReqResource44  
physReqResource43  
physReqResource42  
physReqResource41  
physReqResource40  
physReqResource39  
physReqResource38  
physReqResource37  
physReqResource36  
physReqResource35  
physReqResource34  
physReqResource33  
physReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Ifthisbitissetforlocalbusnodenumber48, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber47, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber46, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber45, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber44, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber43, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber42, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
Ifthisbitissetforlocalbusnodenumber41, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
8
Ifthisbitissetforlocalbusnodenumber40, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
7
Ifthisbitissetforlocalbusnodenumber39, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
6
Ifthisbitissetforlocalbusnodenumber38, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
5
Ifthisbitissetforlocalbusnodenumber37, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
4
Ifthisbitissetforlocalbusnodenumber36, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
3
Ifthisbitissetforlocalbusnodenumber35, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
2
Ifthisbitissetforlocalbusnodenumber34, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
1
Ifthisbitissetforlocalbusnodenumber33, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
0
Ifthisbitissetforlocalbusnodenumber32, thenphysicalrequestsreceivedbytheTSB12LV23  
from that node are handled through the physical request context.  
4–33  
4.35 Physical Request Filter Low Register  
The physical request filter low set/clear register is used to enable physical receive requests on a per node basis and  
handles the lower node IDs. When a packet is destined for the physical request context and the node ID has been  
compared against the asynchronous request filter registers, then the node ID comparison is done again with this  
register. If the bit corresponding to the node ID is not set in this register, then the request is handled by the  
asynchronous request context instead of the physical request context.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter low  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
Register:  
Type:  
Physical request filter low  
Read/Set/Clear  
Offset:  
118h set register  
11Ch clear register  
0000 0000h  
Default:  
Table 4–27. Physical Request Filter Low Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
physReqResource31  
physReqResource30  
physReqResource29  
physReqResource28  
physReqResource27  
physReqResource26  
physReqResource25  
physReqResource24  
physReqResource23  
physReqResource22  
physReqResource21  
physReqResource20  
physReqResource19  
physReqResource18  
RSC  
If this bit is set for local bus node number 31, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 30, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 29, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 28, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 27, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 26, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 25, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 24, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 23, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 22, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 21, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 20, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 19, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 18, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
4–34  
Table 4–27. Physical Request Filter Low Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
17  
physReqResource17  
RSC  
If this bit is set for local bus node number 17, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
16  
15  
14  
13  
12  
11  
10  
9
physReqResource16  
physReqResource15  
physReqResource14  
physReqResource13  
physReqResource12  
physReqResource11  
physReqResource10  
physReqResource9  
physReqResource8  
physReqResource7  
physReqResource6  
physReqResource5  
physReqResource4  
physReqResource3  
physReqResource2  
physReqResource1  
physReqResource0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If this bit is set for local bus node number 16, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 15, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 14, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 13, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 12, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 11, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 10, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
If this bit is set for local bus node number 9, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
8
If this bit is set for local bus node number 8, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
7
If this bit is set for local bus node number 7, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
6
If this bit is set for local bus node number 6, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
5
If this bit is set for local bus node number 5, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
4
If this bit is set for local bus node number 4, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
3
If this bit is set for local bus node number 3, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
2
If this bit is set for local bus node number 2, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
1
If this bit is set for local bus node number 1, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
0
If this bit is set for local bus node number 0, then physical requests received by the TSB12LV23  
from that node are handled through the physical request context.  
4–35  
4.36 Physical Upper Bound Register (Optional Register)  
The physical upper bound register is an optional register and is not implemented. It returns all 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Physical upper bound  
Read-only  
Offset:  
Default:  
120h  
0000 0000h  
4–36  
4.37 Asynchronous Context Control Register  
The asynchronous context control set/clear register controls the state and indicates status of the DMA context.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous context control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Asynchronous context control  
Read/Set/Clear/Update  
Offset:  
180h set register  
184h clear register [ATRQ]  
1A0h set register [ATRS]  
1A4h clear register [ATRS]  
1C0h set register [ARRQ]  
1C4h clear register [ARRQ]  
1E0h set register [ATRS]  
[ATRQ]  
1E4h clear register [ATRS]  
0000 X0XXh  
Default:  
Table 4–28. Asynchronous Context Control Register Description  
BIT  
31–16  
15  
FIELD NAME  
RSVD  
TYPE  
DESCRIPTION  
Reserved. Bits 31–16 return 0s when read.  
R
run  
RSCU This bit is set by software to enable descriptor processing for the context and cleared by software to  
stop descriptor processing. The TSB12LV23 changes this bit only on a hardware or software reset.  
14–13  
12  
RSVD  
wake  
R
Reserved. Bits 14–13 return 0s when read.  
RSU  
Software sets this bit to cause the TSB12LV23 to continue or resume descriptor processing. The  
TSB12LV23 clears this bit on every descriptor fetch.  
11  
dead  
RU  
The TSB12LV23 sets this bit when it encounters a fatal error and clears the bit when software resets  
bit 15 (run).  
10  
active  
RSVD  
spd  
RU  
R
The TSB12LV23 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9–8 return 0s when read.  
9–8  
7–5  
RU  
This field indicates the speed at which a packet was received or transmitted, and only contains  
meaningful information for receive contexts. This field is encoded as:  
000 = 100 Mbits/sec,  
001 = 200 Mbits/sec,  
010 = 400 Mbits/sec, and all other values are reserved.  
4–0  
eventcode  
RU  
This field holds the acknowledge sent by the Link core for this packet or an internally generated error  
code if the packet was not transferred successfully.  
4–37  
4.38 Asynchronous Context Command Pointer Register  
The asynchronous context command pointer register contains a pointer to the address of the first descriptor block  
that the TSB12LV23 accesses when software enables the context by setting the asynchronous context control  
register bit 15 (run).  
Bit  
31  
30  
29  
28  
27  
26  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Asynchronous context command pointer  
Read/Write/Update  
19Ch [ATRQ]  
1ACh [ATRS]  
1CCh [ATRQ]  
1ECh [ATRS]  
Default:  
XXXX XXXXh  
Table 4–29. Asynchronous Context Command Pointer Register Description  
BIT  
31–4  
3–0  
FIELD NAME  
descriptorAddress  
Z
TYPE  
RWU  
RWU  
DESCRIPTION  
Contains the upper 28 bits of the address of a 16-byte aligned descriptor block.  
Indicatesthe number of contiguous descriptors at the address pointed to by the descriptor address. If  
Z is 0, then it indicates that the descriptorAddress field (bits 31–4) is not valid.  
4–38  
4.39 Isochronous Transmit Context Control Register  
The isochronous transmit context control set/clear register controls options, state, and status for the isochronous  
transmit DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3,).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context control  
RSCU RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous transmit context control  
RSC  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous transmit context control  
Read/Set/Clear/Update  
Offset:  
200h + (16 * n)  
204h + (16 * n)  
XXXX X0XXh  
set register  
clear register  
Default:  
Table 4–30. Isochronous Transmit Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
cycleMatchEnable  
RSCU When this bit is set to 1, processing occurs such that the packet described by the context’s first  
descriptor block is transmitted in the cycle whose number is specified in the cycleMatch field  
(bits 30–16). The cycleMatch field (bits 30–16) must match the low order 2 bits of cycleSeconds and  
the 13-bit cycleCount field in the cycle start packet that is sent or received immediately before  
isochronous transmission begins. Since the isochronous transmit DMA controller may work ahead,  
the processing of the first descriptor block may begin slightly in advance of the actual cycle in which  
the first packet is transmitted.  
The effects of this bit, however, are impacted by the values of other bits in this register and are  
explained in the 1394 Open Host Controller Interface Specification. Once the context has become  
active, hardware clears this bit.  
30–16  
cycleMatch  
RSC  
Contains a 15-bit value, corresponding to the low order 2 bits of the bus isochronous cycle timer  
register cycleSeconds field (bits 31–25) and the cycleCount field (bits 24–12). If bit 31  
(cycleMatchEnable) is set, then this isochronous transmit DMA context becomes enabled for  
transmits when the low order 2 bits of the bus isochronous cycle timer register cycleSeconds field  
(bits 31–25) and the cycleCount field (bits 24–12) value equal this field’s (cycleMatch) value.  
15  
run  
RSC  
This bit is set by software to enable descriptor processing for the context and cleared by software to  
stop descriptor processing. The TSB12LV23 changes this bit only on a hardware or software reset.  
14–13  
12  
RSVD  
wake  
R
Reserved. Bits 14–13 return 0s when read.  
RSU  
Software sets this bit to cause the TSB12LV23 to continue or resume descriptor processing. The  
TSB12LV23 clears this bit on every descriptor fetch.  
11  
dead  
RU  
The TSB12LV23 sets this bit when it encounters a fatal error and clears the bit when software resets  
bit 15 (run).  
10  
active  
RSVD  
RU  
R
The TSB12LV23 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9–8 return 0s when read.  
9–8  
7–5  
4–0  
spd  
RU  
RU  
This field in not meaningful for isochronous transmit contexts.  
event code  
Following an OUTPUT_LAST* command, the error code is indicated in this field. Possible values  
are: ack_complete, evt_descriptor_read, evt_data_read, and evt_unknown.  
4–39  
4.40 Isochronous Transmit Context Command Pointer Register  
The isochronous transmit context command pointer register contains a pointer to the address of the first descriptor  
block that the TSB12LV23 accesses when software enables an isochronous transmit context by setting the  
isochronous transmit context control register bit 15 (run). The n value in the following register addresses indicates  
the context number (n = 0, 1, 2, 3,).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous transmit context command pointer  
Read-only  
Offset:  
Default:  
20Ch + (16 * n)  
XXXX XXXXh  
4.41 Isochronous Receive Context Control Register  
The isochronous receive context control set/clear register controls options, state, and status for the isochronous  
receive DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3,).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context control  
RSC  
X
RSC RSCU RSC  
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous receive context control  
Read/Set/Clear/Update  
Offset:  
400h + (32 * n)  
404h + (32 * n)  
X000 X0XXh  
set register  
clear register  
Default:  
Table 4–31. Isochronous Receive Context Control Register Description  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
31  
bufferFill  
RSC  
When this bit is set, received packets are placed back-to-back to completely fill each receive buffer.  
When this bit is cleared, each received packet is placed in a single buffer. If bit 28 (multiChanMode)  
is set to 1, then this bit must also be set to 1. The value of this bit must not be changed while bit 10  
(active) or bit 15 (run) is set.  
30  
isochHeader  
RSC  
When this bit is 1, received isochronous packets include the complete 4-byte isochronous packet  
header seen by the link layer. The end of the packet is marked with a xferStatus in the first doublet,  
and a 16-bit timeStamp indicating the time of the most recently received (or sent) cycleStart packet.  
When this bit is cleared, the packet header is stripped off of received isochronous packets. The  
packet header, if received, immediately precedes the packet payload. The value of this bit must not  
be changed while bit 10 (active) or bit 15 (run) is set.  
4–40  
Table 4–31. Isochronous Receive Context Control Register Description (Continued)  
BIT  
FIELD NAME  
TYPE  
DESCRIPTION  
29  
cycleMatchEnable  
RSCU When this bit is set, the context begins running only when the 13-bit cycleMatch field (bits 24–12) in  
the isochronous receive context match register matches the 13-bit cycleCount field in the cycleStart  
packet. The effects of this bit, however, are impacted by the values of other bits in this register. Once  
the context has become active, hardware clears this bit. The value of this bit must not be changed  
while bit 10 (active) or bit 15 (run) is set.  
28  
multiChanMode  
RSC  
When this bit is set, the corresponding isochronous receive DMA context receives packets for all  
isochronous channels enabled in the isochronous receive channel mask high and isochronous  
receive channel mask low registers. The isochronous channel number specified in the isochronous  
receive DMA context match register is ignored.  
When this bit is cleared, the isochronous receive DMA context receives packets for that single  
channel. Only one isochronous receive DMA context may use the isochronous receive channel  
mask registers. If more that one isochronous receive context control register has this bit set, then  
results are undefined. The value of this bit must not be changed while bit 10 (active) or bit 15 (run) is  
set to 1.  
27–16  
15  
RSVD  
run  
R
Reserved. Bits 27–16 return 0s when read.  
RSCU This bit is set by software to enable descriptor processing for the context and cleared by software to  
stop descriptor processing. The TSB12LV23 changes this bit only on a hardware or software reset.  
14–13  
12  
RSVD  
wake  
R
Reserved. Bits 14–13 return 0s when read.  
RSU  
Software sets this bit to cause the TSB12LV23 to continue or resume descriptor processing. The  
TSB12LV23 clears this bit on every descriptor fetch.  
11  
dead  
RU  
The TSB12LV23 sets this bit when it encounters a fatal error and clears the bit when software resets  
bit 15 (run).  
10  
active  
RSVD  
spd  
RU  
R
The TSB12LV23 sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9–8 return 0s when read.  
9–8  
7–5  
RU  
This field indicates the speed at which the packet was received.  
000 = 100 Mbits/sec,  
001 = 200 Mbits/sec, and  
010 = 400 Mbits/sec. All other values are reserved.  
4–0  
event code  
RU  
Following an INPUT* command, the error code is indicated in this field.  
4.42 Isochronous Receive Context Command Pointer Register  
The isochronous receive context command pointer register contains a pointer to the address of the first descriptor  
block that the TSB12LV23 accesses when software enables an isochronous receive context by setting the  
isochronous receive context control register bit 15 (run). The n value in the following register addresses indicates the  
context number (n = 0, 1, 2, 3,).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous receive context command pointer  
Read-only  
Offset:  
Default:  
40Ch + (32 * n)  
XXXX XXXXh  
4–41  
4.43 Isochronous Receive Context Match Register  
The isochronous receive context match register is used to start an isochronous receive context running on a specified  
cycle number, to filter incoming isochronous packets based on tag values, and to wait for packets with a specified  
sync value. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3,).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context match  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R
0
R
0
9
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive context match  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Isochronous receive context match  
Read/Write  
Offset:  
Default:  
410Ch + (32 * n)  
XXXX XXXXh  
Table 4–32. Isochronous Receive Context Match Register Description  
BIT  
31  
FIELD NAME  
tag3  
TYPE  
R/W  
R/W  
R/W  
R/W  
R
DESCRIPTION  
If this bit is set, then this context matches on iso receive packets with a tag field of 11b.  
If this bit is set, then this context matches on iso receive packets with a tag field of 10b.  
If this bit is set, then this context matches on iso receive packets with a tag field of 01b.  
If this bit is set, then this context matches on iso receive packets with a tag field of 00b.  
Reserved. Bits 27–25 return 0s when read.  
30  
tag2  
29  
tag1  
28  
tag0  
27–25  
24–12  
RSVD  
cycleMatch  
R/W  
Contains a 15-bit value, corresponding to the low order 2 bits of cycleSeconds and the 13-bit  
cycleCount field in the cycleStart packet. If isochronous receive context control register bit 29  
(cycleMatchEnable)is set, then this context is enabled for receives when the 2 low order bits of the bus  
isochronous cycle timer register cycleSeconds field (bits 31–25) and cycleCount field (bits 24–12)  
value equal this field’s (cycleMatch) value.  
11–8  
sync  
R/W  
This field contains the 4-bit field which is compared to the sync field of each iso packet for this channel  
when the command descriptor’s w field is set to 11b.  
7
6
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
tag1SyncFilter  
R/W  
If this bit and bit 29 (tag1) are set , then packets with tag2b01 are accepted into the context if the two  
most significant bits of the packets sync field are 00b. Packets with tag values other than 01b are  
filtered according to tag0, tag2, and tag3 (bits 28, 30, and 31, respectively) without any additional  
restrictions.  
If this bit is cleared, then this context matches on isochronous receive packets as specified in  
bits 28–31 (tag0–tag3) with no additional restrictions.  
5–0  
channelNumber  
R/W  
This 6-bit field indicates the isochronous channel number for which this isochronous receive DMA  
context accepts packets.  
4–42  
5 GPIO Interface  
The general-purpose input/output (GPIO) interface consists of two GPIO ports. GPIO2 and GPIO3 power up as  
general-purpose inputs and are programmable via the GPIO control register. Figure 5–1 shows the schematic for  
GPIO2 and GPIO3 implementation.  
GPIO0 and GPIO1 are not implemented in the TSB12LV23. The terminals for these legacy GPIOs from the  
TSB12LV23 have been dedicated to BMC/LINKON and LPS, respectively.  
GPIO Read Data  
GPIO Port  
GPIO Write Data  
D
Q
GPIO_Invert  
GPIO Enable  
Figure 5–1. GPIO2 and GPIO3  
5–1  
5–2  
6 Serial EEPROM Interface  
The TSB12LV23 provides a serial bus interface to initialize the 1394 global unique ID register and a few PCI  
configuration registers through a serial EEPROM. The TSB12LV23 communicates with the serial EEPROM via the  
2-wire serial interface.  
After power-up the serial interface initializes the locations listed in Table 6–1. While the TSB12LV23 is accessing the  
serial ROM, all incoming PCI slave accesses are terminated with retry status. Table 6–2 shows the serial ROM  
memory map required for initializing the TSB12LV23 registers.  
Table 6–1. Registers and Bits Loadable through Serial EEPROM  
BITS LOADED  
OFFSET  
REGISTER  
1394 GlobalUniqueIDHi  
FROM EEPROM  
OHCI register (24h)  
OHCI register(28h)  
OHCI register (50h)  
PCI register (2Ch)  
PCI register (2Dh)  
PCI register (3Eh)  
PCI register (F4h)  
PCI register (F0h)  
PCI register (40h)  
31–0  
1394 GlobalUniqueIDLo  
Host control register  
31–0  
23  
PCI subsystem ID  
15–0  
PCI vendor ID  
15–0  
15–0  
PCI maximum latency, PCI minimum grant  
Link enhancements control register  
PCI miscellaneous register  
PCI OHCI register  
13, 12, 9, 8, 7, 2, 1  
15, 13, 10, 5–0  
0
6–1  
Table 6–2. Serial EEPROM Map  
BYTE  
ADDRESS  
BYTE DESCRIPTION  
00  
01  
02  
03  
04  
05  
PCI maximum latency (0h)  
PCI_minimum grant (0h)  
PCI vendor ID  
PCI vendor ID (msbyte)  
PCI subsystem ID (lsbyte)  
PCI subsystem ID  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Link_enhancement-  
HCControl.  
RSVD  
RSVD  
RSVD Link_enhancement- Link_enhancement-  
RSVD  
Control.enab_unfair ProgramPhy  
Enable  
Control.enab_  
insert_idle  
Control.enab_accel  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
Mini ROM address  
1394 GlobalUniqueIDHi (lsbyte 0)  
1394 GlobalUniqueIDHi (byte 1)  
1394 GlobalUniqueIDHi (byte 2)  
1394 GlobalUniqueIDHi (msbyte 3)  
1394 GlobalUniqueIDLo (lsbyte 0)  
1394 GlobalUniqueIDLo (byte 1)  
1394 GlobalUniqueIDLo (byte 2)  
1394 GlobalUniqueIDLo (msbyte 3)  
Checksum  
[15]  
[14]  
[13–12]  
[11]  
[10]  
[9]  
[8]  
RSVD  
RSVD  
AT threshold  
RSVD  
RSVD  
Enable audio  
timestamp  
Enable  
DV CIP  
timestamp  
11  
12  
13  
[7]  
RSVD  
[6]  
RSVD  
[5]  
RSVD  
[4]  
[3]  
[2]  
[1]  
[0]  
Keep PCI  
Disable GP2IIC Disable SCLK gate  
Target  
Abort  
Disable PCI gate  
[15]  
PME D3 Cold  
[14]  
RSVD  
[13]  
PME  
Support  
D2  
[12]  
RSVD  
[11]  
RSVD  
[10]  
D2 support  
[9]  
RSVD  
[8]  
RSVD  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Global  
swap  
14  
15–1E  
1F  
CIS offset address  
RSVD  
RSVD  
6–2  
7 Electrical Characteristics  
7.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Supply voltage range, V  
Input voltage range for PCI, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
Input voltage range for Miscellaneous and PHY interface, V . . . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
Output voltage range for PCI, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 5.5 V  
CC  
CCP  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
I
CCI  
CCP  
CCP  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
O
Input voltage range for Miscellaneous and PHY interface, V . . . . . . . . . . . . . . . . . . . . . –0.5 to V  
O
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O O CC  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderrecommendedoperatingconditionsisnotimplied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies to external input and bidirectional buffers. For 5-V tolerant use V > V  
. For PCI use V > V  
CCI  
.
I
I
CCP  
. For PCI use V > V .  
CCP  
2. Applies to external output and bidirectional buffers. For 5-V tolerant use V > V  
O
CCI  
O
7–1  
7.2 Recommended Operating Conditions  
OPERATION  
3.3 V  
MIN  
3
NOM  
3.3  
3.3  
5
MAX  
3.6  
UNIT  
V
V
Core voltage  
Commercial  
Commercial  
V
CC  
3.3 V  
3
3.6  
PCI I/O clamping voltage  
V
V
CCP  
5 V  
4.5  
5.5  
3.3 V  
0.475 V  
V
CCP  
CCP  
CCP  
CCP  
CCP  
PCI  
5 V  
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
V
V
V
V
IH  
High-level input voltage  
Low-level input voltage  
PHY interface  
Miscellaneous  
3.3 V  
5 V  
0.325 V  
CCP  
PCI  
0.8  
V
IL  
V
PHY interface  
Miscellaneous  
PCI  
0.8  
0.8  
3.3 V  
3.3 V  
V
V
V
V
V
V
CCP  
PHY interface  
Miscellaneous  
PCI  
V
V
Input voltage  
V
V
CCP  
CCP  
CCP  
CCP  
I
§
PHY interface  
Miscellaneous  
PCI  
Output voltage  
O
CCP  
6
t
t
Input transition time (t and t )  
ns  
°C  
°C  
r
f
T
A
Operating ambient temperature  
Virtual junction temperature  
25  
25  
70  
T
J
115  
§
Applies for external inputs and bidirectional buffers without hysteresis.  
Miscellaneous pins are: GPIO2, GPIO3, SDA, SCL, CYCLEOUT.  
Applies for external output buffers.  
The junction temperatures reflect simulation conditions. Customer is responsible for verifying junction temperature.  
7–2  
7.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
TEST  
OPERATION  
MIN  
0.9 V  
MAX  
UNIT  
CONDITIONS  
I
I
I
I
I
I
I
I
I
I
= – 0.5 mA  
= – 2 mA  
= – 4 µA  
= – 8 mA  
= – 4 mA  
= 1.5 mA  
= 6 mA  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
CC  
PCI  
2.4  
2.8  
V
High-level output voltage  
Low-level output voltage  
V
OH  
PHY interface  
Miscellaneous  
PCI  
V
V
– 0.6  
CC  
– 0.6  
CC  
0.1 V  
CC  
0
0.55  
0.4  
V
OL  
= 4 mA  
V
PHY interface  
= 8 mA  
Miscellaneous  
Output pins  
Input pins  
= 4 mA  
0.5  
±20  
±20  
I
I
3-state output high-impedance  
Low-level input current  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
V
= V or GND  
CC  
µA  
µA  
OZ  
O
V = GND  
I
IL  
I/O pins  
V = GND  
±20  
±20  
I
PCI  
V = V  
±20  
I
CC  
CC  
I
IH  
High-level input current  
µA  
Others  
V = V  
I
For I/O pins, input leakage (I and I ) includes I  
IL IH  
of the disabled output.  
OZ  
Miscellaneous pins are: GPIO2, GPIO3, SDA, SCL, CYCLEOUT.  
§
7.4 Switching Characteristics for PCI Interface  
PARAMETER  
MEASURED  
–50% to 50%  
–50% to 50%  
–50% to 50%  
MIN  
TYP  
MAX  
UNIT  
ns  
t
su  
Setup time before PCLK  
7
0
2
t
t
Hold time before PCLK  
ns  
h
Delay time, PHY_CLK to data valid  
11  
ns  
d
§
These parameters are ensured by design.  
§
7.5 Switching Characteristics for PHY-Link Interface  
PARAMETER  
MEASURED  
–50% to 50%  
–50% to 50%  
–50% to 50%  
MIN  
6
TYP  
MAX  
UNIT  
ns  
t
su  
Setup time, Dn, CTLn, LREQ to PHY_CLK  
Hold time, Dn, CTLn, LREQ before PHY_CLK  
Delay time, PHY_CLK to Dn, CTLn  
t
t
1
ns  
h
2
11  
ns  
d
§
These parameters are ensured by design.  
7–3  
7–4  
8 Mechanical Information  
The TSB12LV23 is packaged in a 100-pin PZ package. The following shows the mechanical dimensions for the PZ  
package.  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-136  
8–1  
8–2  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TSB12LV23A

IC,BUS CONTROLLER,CMOS,QFP,100PIN
TI

TSB12LV23APZT

IEEE 1394-1995, 1394a Serial Link Layer Controller 100-TQFP 0 to 70
TI

TSB12LV23PZ

TSB12LV23 OHCI-Lynx PCI-Based IEEE 1394 Host Controller
TI

TSB12LV23PZR

PCI BUS CONTROLLER, PQFP100, PLASTIC, QFP-100
TI

TSB12LV26

OHCI-Lynx PCI-BASED IEEE 1394 HOST CONTROLLER
TI

TSB12LV26-EP

OHCI-LYNX PCI-BASED IEEE 1394 HOST CONTROLLER
TI

TSB12LV26-EP_14

OHCI-Lynx PCI-Based IEEE 1394 Host controller
TI

TSB12LV26I

OHCI-Lynx PCI-Based IEEE 1394 Host Controller
TI

TSB12LV26IPZT

IC I2C BUS CONTROLLER, PQFP100, PLASTIC, LQFP-100, Serial IO/Communication Controller
TI

TSB12LV26IPZTEP

暂无描述
TI

TSB12LV26PZ

OHCI-Lynx PCI-BASED IEEE 1394 HOST CONTROLLER
TI

TSB12LV26PZT

OHCI-Lynx PCI-Based IEEE 1394 Host Controller
TI