TSB15LV01IPFC [TI]

VIDEO SIGNAL PROCESSOR WITH IEEE 1394 LINK LAYER CONTROLLER; 符合IEEE 1394链路层控制器视频信号处理器
TSB15LV01IPFC
型号: TSB15LV01IPFC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

VIDEO SIGNAL PROCESSOR WITH IEEE 1394 LINK LAYER CONTROLLER
符合IEEE 1394链路层控制器视频信号处理器

控制器
文件: 总74页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢆꢊ ꢋ ꢌ ꢍ ꢁ ꢊꢎ ꢏ ꢐꢑ ꢒ ꢓꢍ ꢔꢌ ꢕꢕꢍꢓ ꢖ ꢊꢗꢘ ꢉ ꢙꢙ ꢙꢚ ꢃꢛꢜꢝ ꢅꢊꢏꢞ  
ꢅ ꢐꢟ ꢌꢓ ꢠ ꢍ ꢏꢗ ꢓꢍ ꢑꢑꢌ ꢓ  
Data Manual  
2002  
Mixed Signal Products  
SLLS425A  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
2.1  
1394 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Isochronous Versus Asynchronous Protocols . . . . . . . . . . . 21  
Packet Format/Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
1394 Serial Bus Management Capabilities . . . . . . . . . . . . . 26  
PHY/Link Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Enabling the Transmission of Video . . . . . . . . . . . . . . . . . . . 27  
2.2  
Sensor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2.2.1  
2.2.2  
2.2.3  
CCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Analog Front End Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
CCD/AFE Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
2.3  
2.4  
STAT Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Motor Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
2.4.1  
2.4.2  
2.4.3  
Motor Driver Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Pushbutton Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
2.5  
2.6  
EEPROM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Video Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
2.6.8  
2.6.9  
2.6.10  
2.6.11  
De-Mosaicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Gain and Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Sharpness and Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
White Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
YUV Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Antiblooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Backlight Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
White Spot Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Test Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
3
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
1394 Node Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Top-Level Memory Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
iii  
3.3  
Register Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.3.1  
3.3.2  
3.3.3  
1394 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Inquiry Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Control and Configuration Registers . . . . . . . . . . . . . . . . . . . 314  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.1  
Absolute Maximum Ratings Over Operating Free-Air  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.2  
4.3  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical Characteristics Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . 42  
5
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
List of Illustrations  
Figure  
Title  
Page  
21 Top-Level Sensor Interface Signal Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
22 TLV990 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
23 AFE Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
24 Sensor Interface Timing for ICX098/LZ24BP Sensor, Full Frame . . . . . . . . 213  
25 Sensor Interface Timing for ICX084 Sensor, Full Frame . . . . . . . . . . . . . . . . 214  
26 Sensor Interface Timing for TC237 Sensor, Full Frame . . . . . . . . . . . . . . . . . 215  
27 Sensor Interface Timing for ICX098/LZ24BP Sensor,  
Start of Frame Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
28 Sensor Interface Timing for ICX084 Sensor, Start of Frame . . . . . . . . . . . . . 217  
29 Sensor Interface Timing for TC237 Sensor, Start of Frame . . . . . . . . . . . . . 218  
210 Sensor Interface Timing for ICX098/LZ24BP/ICX084 Sensor,  
Start of Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
211 Sensor Interface Timing for TC237 Sensor, Start of Line . . . . . . . . . . . . . . 220  
212 Sensor Interface Timing for All Sensors, Horizontal Drive . . . . . . . . . . . . . 221  
213 STATn Motor Select Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
214 Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
215 Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
216 Gain and Exposure Automatic and Manual Controls . . . . . . . . . . . . . . . . . . 228  
217 TSB15LV01 Built-In Test Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
31 TSB15LV01 Root Directory Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
iv  
List of Tables  
Table  
Title  
Page  
21 Isochronous Data Block Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
22 Data Payload Per Isochronous Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
23 Video Data Payload Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
24 Data Structure for Y, R, G, and B Data Components . . . . . . . . . . . . . . . . . . . 24  
25 Data Structure for U and V Data Components . . . . . . . . . . . . . . . . . . . . . . . . 24  
26 Asynchronous Quadlet Write Request Packet Format . . . . . . . . . . . . . . . . . . 24  
27 Asynchronous Block Write Request Packet Format . . . . . . . . . . . . . . . . . . . . 25  
28 Asynchronous Quadlet Read Request Packet Format . . . . . . . . . . . . . . . . . 26  
29 Asynchronous Block Read Request Packet Format . . . . . . . . . . . . . . . . . . . . 26  
210 Approved CCD Sensors and Recommended Drivers . . . . . . . . . . . . . . . . . 28  
211 Values Transmitted to AFE via Serial Interface . . . . . . . . . . . . . . . . . . . . . . . 211  
212 AFE Interface Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
213 ICX098/LZ24BP Full Frame Timing Parameters . . . . . . . . . . . . . . . . . . . . . . 213  
214 ICX084 Full Frame Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
215 TC237 Full Frame Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
216 ICX098/LZ24BP Frame Start Timing Parameters . . . . . . . . . . . . . . . . . . . . . 216  
217 ICX084 Frame Start Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
218 TC237 Frame Start Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
219 ICX098/LZ24BP/ICX084 Line Start Timing Parameters . . . . . . . . . . . . . . . 219  
220 TC237 Line Start Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
221 Horizontal Drive Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
222 Status Terminal Functions Determined by STATn Register Fields . . . . . . . 222  
223 Stepper Drive Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
224 EEPROM Interface Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
225 CCD Sensor Processing Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
226 Backlight Compensation Hot Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
31 TSB15LV01 Register Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
32 1394 Address Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
33 Top-Level Memory Map: 1394 Memory (Core CSRs) . . . . . . . . . . . . . . . . . . 32  
34 Top-Level Memory Map: 1394 Memory (Device Configuration ROM) . . . . . 33  
35 Top-Level Memory Map: Inquiry Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
36 Top-Level Memory Map: Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
37 Top-Level Memory Map: Configuration Registers . . . . . . . . . . . . . . . . . . . . . . 35  
38 Implemented Core CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
39 Serial-Bus-Dependent CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
310 Base Configuration ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
311 Node_Unique_ID Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
v
312 Unit Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
313 Unit-Dependent Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
314 Vendor Name Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
315 Model Name Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
316 Video Format Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
317 Video Format Register Proper Values for TSB15LV01 . . . . . . . . . . . . . . . . 38  
318 Video Format Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
319 Video Mode Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
320 Video Mode Proper Values for TSB15LV01 . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
321 Video Mode Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
322 Video Frame Rate Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
323 Video Frame Rate Proper Values for TSB15LV01 . . . . . . . . . . . . . . . . . . . . 310  
324 Video Frame Rate Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
325 Memory Map for Basic Function Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
326 Basic Function Register Proper Values for TSB15LV01 . . . . . . . . . . . . . . . 311  
327 Field Descriptions for Basic Function Register . . . . . . . . . . . . . . . . . . . . . . . 311  
328 Memory Map for Feature Presence Registers . . . . . . . . . . . . . . . . . . . . . . . 312  
329 Feature Presence Registers Proper Values for TSB15LV01 . . . . . . . . . . . 312  
330 Field Descriptions for Feature Presence Registers . . . . . . . . . . . . . . . . . . . 312  
331 Memory Map for Feature Elements Inquiry Registers . . . . . . . . . . . . . . . . . 313  
332 Feature Elements Registers Proper Values for TSB15LV01 . . . . . . . . . . . . 314  
333 Field Descriptions for Feature Elements Registers . . . . . . . . . . . . . . . . . . . 314  
334 Camera Initialize Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
335 Camera Initialize Register Field Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 315  
336 Memory Map for Camera Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
337 Field Descriptions for Camera Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
338 Memory Map for Feature Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . 317  
339 Field Descriptions for Feature Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318  
340 Configuration Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
341 Field Descriptions for Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . 320  
vi  
1 Introduction  
The TSB15LV01 is a video signal processor integrated with a 1394 link layer controller. It is designed to be the center  
of a host-controlled, full-motion color camera when coupled with a 1394 PHY, CCD sensor and driver, analog front  
end, and an external EEPROM device. A camera based on the TSB15LV01 is compliant with the IEEE 1394a  
standard and the 1394 Trade Associations Digital Camera specification, Draft 1.04.  
The TSB15LV01 offers the advantage of 24-bit true-color digital video processing. This gives superior video quality  
at higher sustained data rates. Isochronous transfer of the video data and asynchronous control of the camera are  
accomplished via the 1394 high-speed serial bus, operating at data rates of up to 400 Mbits/s. This bus allows  
noncompressed full-motion digital video at rates of 30 frames/sec. Use of this serial connection eliminates the need  
for expensive video capture cards. The chipset supports the YUV 4:1:1, YUV 4:2:2, YUV 4:4:4, and RGB 24-bit  
formats.  
The video signal processor (VSP) portion of the device incorporates proprietary digital image processing techniques,  
implemented with an advanced digital signal processing (DSP) ASIC. These techniques enable a camera to achieve  
excellent color accuracy and resolution. The use of a custom advanced CMOS ASIC process allows for both the  
advanced digital image processing techniques and for advanced color space conversion. This allows the multiple  
output formats required for a multipurpose video conferencing camera. Use of this advanced, low-power CMOS  
process also enables the camera to be powered by a notebook computer operating on battery power. The device is  
designed to work with CCDs that have a pixel resolution of 640(H) y 480(V). This resolution meets the VGA square  
pixel standards.  
The 1394 link layer controller is capable of up to 400 Mbits/s operation and is compatible with both the IEEE  
13941995 and 1394a standards. The TSB15LV01 implements all registers and address space required by the 1394  
Trade Associations Digital Camera specification, Draft 1.04 (hereafter referred to as the Digital Camera  
Specification).  
The device supports packet speeds of up to 400 Mbits/s, but the maximum bandwidth consumed by the device is  
200 Mbits/s. This means that a TSB15LV01-based camera leaves at least 200 Mbits/s available to other functions.  
With its balance of features and low cost, a system based on TSB15LV01 is well-suited for applications such as:  
PC Video Camera  
Video Conferencing  
Video Capture  
Still Picture Capture  
Set-Top Boxes  
Video Phone  
Gaming  
Webcam  
Robotics  
Security  
11  
1.1 Features  
Compatible With 1394 Trade Associations Digital Camera Specification, Draft 1.04  
1394a Link Layer Controller With 400 Mbits/s Capability  
Support for Several CCD Sensors  
Sony ICX084AK, ICX098AK  
Sharp LZ24BP  
Texas Instruments TC237  
Integrated CCD (Charge-Coupled Device) and CDS (Correlated Double Sampling) Pulse Timer With  
Programmable Pulse Skew  
Video Controls  
Brightness (Auto/Manual)  
Exposure (Auto/Manual)  
Sharpness (Manual)  
Saturation (Manual)  
White Balance (Auto/Manual)  
Gamma (Manual)  
Backlight Compensation (Manual)  
Three Stepper Motor Controls for Focus/Zoom/Tilt or Other Motorized Functions  
EEPROM Interface  
Programmable Status/Test Terminals  
Seamlessly Connects to TIs 1394 Physical Layer Devices  
12  
1.2 Functional Block Diagram  
CCD Interface;  
Analog Front End (AFE)  
Video Data Interface  
Analog Front End (AFE)  
Serial Interface  
AFE Sample/Hold and  
Black Clamp Interface  
Timing  
Generator  
Pipelined Video  
Signal Processor  
Controls:  
RGB / YUV  
and Quadlet  
Data Formatter  
Motor  
Gain White Balance  
Gamma  
Motor  
Control  
Interface  
Brightness  
Saturation  
Sharpness  
STAT  
Interface  
Control  
Data  
Master  
Controller  
FIFO Buffer  
Feature  
Control/  
Configure  
EEPROM  
Interface  
ASYNC Command  
Processor  
Register RAM  
Host  
Interface  
Data  
Mover  
CFR  
ASYNC  
FIFO  
Link Core  
1394 Link Layer  
1394 PHY I/F  
13  
1.3 Terminal Assignments  
TQFP PACKAGE  
(TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
60  
VCC  
CLAMP  
LREQ  
PG1  
SCLK  
VCC  
CTL0  
CTL1  
GND  
D0  
D1  
D2  
D3  
VCC  
D4  
D5  
D6  
D7  
GND  
STAT0  
STAT1  
STAT2  
1
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SV  
SR  
NC  
3
4
5
OBCLP  
6
GND  
7
SERIAL_CS  
SERIAL_DATA  
SERIAL_CLK  
NC  
8
TSB15LV01PFC  
TSB15LV01IPFC  
(TQFP)  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
ADCLK  
VCC  
PIXEL_DATA9  
PIXEL_DATA8  
PIXEL_DATA7  
PIXEL_DATA6  
PIXEL_DATA5  
TEST_SE_IN  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC No internal connection  
14  
1.4 Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
Analog Front End (AFE) Interface  
ADCLK  
13  
O
ADC clock. Triggers the AFEs analog/digital converter to sample the amplifier output, and clocks the  
digital data out of the AFE to the TSB15LV01.  
CLAMP  
OBCLP  
2
6
O
O
Pulse that instructs AFE to electrically clamp the ac-coupled pixel pulse to a fixed reference voltage.  
Optical Black Clamp pulse. Instructs the AFE to clamp its ADC output to a digital black reference value.  
Samples occur during the black pixel portion of the CCDs image signal.  
PIXEL_DATA9–  
PIXEL_DATA0  
1519,  
2226  
I
Data bus that inputs processed video data from the AFEs analog/digital converter. PIXEL_DATA_IN9 is  
the MSB of these 10 bits.  
SERIAL _CS  
8
O
Serial interface chip select. Allows programming of AFE control registers. Signifies the beginning of data  
transmission on SERIAL_DATA.  
SERIAL _DATA  
SERIAL _CLK  
SR  
9
10  
4
O
O
O
Serial interface digital data input. Allows programming of AFE control registers.  
Serial interface clock. Allows programming of AFE control registers. Clocks data out of SERIAL_DATA.  
CCD reset-pedestal sampling pulse. Triggers the AFE to sample the reset pedestal of the pixel pulse  
received from the CCD image sensor.  
SV  
3
O
O
CCD video data sampling pulse. Triggers the AFE to sample the data pedestal of the pixel pulse received  
from the CCD image sensor.  
CCD Interface  
ABD_XSUB  
35  
Image area clear bias. Goes high to clear the image area. This pulse performs an electronic shutter  
function, controlling the integration time of the CCD image. Performed at the beginning of every frame.  
ABSP_XSG  
H2  
32  
37  
29  
39  
O
O
O
O
Antiblack smear. Goes low to increase the pixel well size during parallel transfer.  
Horizontal transfer 2. Horizontal charge transfer control for CCD.  
IAG_XV3  
RST_RG  
Image-area gate/vertical transfer 3. Charge transfer control for CCD.  
Reset gate. Reset pulse for the CCDs charge-detection amplifier, generated for every pixel moved out of  
the CCD.  
SAG_XV1  
SRG_H1  
XV2  
34  
38  
33  
O
O
O
Storage-area gate/vertical transfer 1. Charge transfer control for CCD.  
Serial register gate/horizontal transfer 1. Horizontal charge transfer control for CCD.  
Vertical transfer 2. Charge transfer control for CCD.  
PHY Interface  
CTL1,  
CTL0  
55  
56  
I/O Control 1 and control 0 of the PHY-link control bus.  
D[7..0]  
4548, I/O Data signals of the PHY-link data bus. Data is expected on D0-D1 at 100 Mbits/s, D0-D3 at 200 Mbits/s,  
5053  
and D0-D7 at 400 Mbits/s. D0 is the MSB.  
LREQ  
RESET  
SCLK  
60  
I/O Makes bus requests and accesses to the PHY.  
62  
I
I
Reset, active low. The asynchronous reset to the link controller.  
System clock. SCLK is a 49.152-MHz clock supplied by the PHY.  
EEPROM Interface  
58  
EEPROM_CS  
EEPROM_SCLK  
EEPROM_SI  
66  
64  
65  
68  
O
O
O
I
EEPROM chip select.  
EEPROM serial data clock.  
EEPROM serial data output.  
EEPROM_SO  
EEPROM serial data input.  
15  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
Motor Control Interface  
IR_SIG  
75  
I
Position feedback from infrared detectors on motorized mechanisms. Applies to the stepper motor  
currently selected by the STATn terminals.  
MOTOR_MINUS  
MOTOR_PLUS  
PHASE2_B  
73  
74  
77  
I
I
Negative pushbutton input. Applies to the stepper motor currently selected by the STATn terminals.  
Positive pushbutton input. Applies to the stepper motor currently selected by the STATn terminals.  
O
Drive signal for stepper motors, phase 2, signal B. Applies to the stepper motor currently selected by the  
STATn terminals.  
PHASE2_A  
PHASE1_B  
PHASE1_A  
78  
79  
80  
O
O
O
Drive signal for stepper motors, phase 2, signal A. Applies to the stepper motor currently selected by the  
STATn terminals.  
Drive signal for stepper motors, phase 1, signal B. Applies to the stepper motor currently selected by the  
STATn terminals.  
Drive signal for stepper motors, phase 1, signal A. Applies to the stepper motor currently selected by the  
STATn terminals.  
Miscellaneous Interface  
CAM_POWER  
28  
72  
O
I
Power switch. Toggles with bit in CAMERA_POWER_CNTL register, which is low upon device power up.  
Used to instruct system power supply to enter power saving mode.  
EN  
Regulatorenable. Whenlow, thedevicesupplypowerregulatorisactive. Shouldbekeptlowduringnormal  
operation.  
GND  
7, 12,  
21, 36,  
44, 54,  
61, 76  
Connect to ground.  
NC  
5, 11  
59, 69  
41  
No connect  
No connect  
PG1, PG2  
STAT2  
STAT1  
STAT0  
I/O Status signals  
42  
43  
TEST_SE_IN  
TESTMODE  
20  
63  
I
I
Factory test terminal. Connect to ground.  
Factory test terminal. Connect to ground.  
Power/Ground  
VCC_CORE  
VCC  
30,70  
Connect to 3.3 V.  
Connect to 3.3 V.  
1, 14,  
27, 40,  
49, 57,  
67  
VDD_CAP  
31,71  
Mid-supply. Connect to ground through a 0.1-µF capacitor.  
16  
2 Detailed Description  
2.1 1394 Interface  
The 1394 interface is used to connect the camera to external devices using the IEEE 1394 serial bus. This bus is  
currently capable of speeds up to 400 Mbits/s and provides adequate bandwidth in which to transmit a quality  
uncompressed video signal. It is assumed that the reader has a moderate level of familiarity with the 1394 serial bus.  
The TSB15LV01 serves as the application, transaction, and link layers of a 1394 node. This greatly simplifies  
implementation of the 1394 node, since only the physical layer remains to be implemented. This can be accomplished  
by placing a 1394 PHY, such as the TSB41LV01, between the TSB15LV01 and the 1394 connector. The 1394  
interface on the TSB15LV01 provides a glueless interface to the PHY.  
Note that while the device supports s400 1394 packets, the maximum bandwidth consumed by the device is  
200 Mbits/s. This means that a TSB15LV01-based camera leaves at least 200 Mbits/s available to other functions,  
assuming all devices on the bus use s400 packets.  
This section is not designed to be a tutorial on 1394. It is assumed that the reader has a basic knowledge of the 1394  
serial bus. For more information on the 1394 bus, see the 1394 standard.  
2.1.1 Isochronous Versus Asynchronous Protocols  
There are two types of packets used in the 1394 link layer: isochronous and asynchronous. The TSB15LV01 uses  
isochronous packets to send video data to the bus and asynchronous packets to exchange control/status information  
with the bus.  
An isochronous transaction delivers a consistent amount of data that is transferred at regular 125-µs intervals, with  
simplified addressing. Reception of an acknowledge packet is not required. Allocated flows of isochronous data are  
referred to as channels. Because the packets are assured to be delivered regularly, a constant data rate is achieved,  
making it ideal for video. In order to assure this bandwidth, a node must first request allocation of the bus resources  
from the node serving as the bus manager. The TSB15LV01 expects this to be performed by the node receiving the  
video data, referred to as the host node. The TSB15LV01 is capable of being an isochronous talker. However, it is  
not capable of listening to a channel of isochronous data. It is capable of transmitting isochronous data on channels  
0 to 15 only.  
An asynchronous transaction delivers a variable amount of data to a specific address. An acknowledge packet must  
be received from the designated target node, assuring delivery of the packet. This protocol allows packets to be sent  
without any prior permission or allocation. However, isochronous packets receive priority in order to maintain a  
consistent data rate. The TSB15LV01 is capable of sending and receiving asynchronous packets with a payload of  
up to 32 quadlets per packet. All request packets received by the device are answered with a response packet. If a  
request packet is received between a request and its corresponding response packet, the device acknowledges that  
packet with a busy acknowledge code.  
2.1.2  
Packet Format/Protocol  
2.1.2.1 Isochronous Packet Format/Protocol  
All video data sent from the camera is done so using isochronous communication. Before data can be sent, the node  
residing in the host must first request allocation of bus resources from the node serving as the bus manager. It must  
then configure the TSB15LV01s control and configuration registers. After the first CCD image integration cycle that  
follows completion of configuration, the camera will begin to send video data.  
The full isochronous packet structure is shown in Table 21. This packet structure is defined by the 1394 standard.  
21  
Table 21. Isochronous Data Block Packet Format  
07  
815  
1623  
2431  
tCode sy  
data_length  
tg  
channel  
header_CRC  
data payload quadlet 1  
data payload quadlet 2  
.
.
.
last quadlet of data payload (padded with zeroes if necessary)  
data_CRC  
The fields are defined as:  
data_length The number of bytes in the data payload field  
tg  
The tag field is set to zero  
channel  
tCode  
sy  
The isochronous channel number, as programmed in the ISO_CHANNEL_CNTL register  
The transaction code. The code for an isochronous data block transaction is 1010b.  
Synchronization value. For the first isochronous packet of a frame, this is set to 0001b.  
For all other isochronous packets, this is set to zero.  
data payload Contains the digital video information  
Isochronous data is formatted differently for each video transfer mode. Table 22 lists all supported transfer modes.  
For each mode, the table lists the total number of bits representing a single pixel. It also gives the data payload per  
packet for each mode, in terms of lines, pixels, and quadlets. The payload varies for each frame rate.  
Every video component, Y, U, V, R, G, and B, has 8-bit data.  
Table 22. Data Payload Per Isochronous Packet  
FRAME RATE (Frame per Second)  
MODE  
VIDEO FORMAT  
30  
15  
7.5  
3.75  
Mode_0  
160 x 120 YUV(4:4:4)  
24 bits/pixel  
1/2 L  
80 P  
60 Q  
1 L  
1/4 L  
40 P  
30 Q  
1/2 L  
160 P  
80 Q  
1 L  
1/8 L  
20 P  
15 Q  
1/4 L  
80 P  
Mode_1  
Mode_2  
Mode_3  
Mode_4  
Mode_5  
320 x 240 YUV(4:2:2)  
16 bits/pixel  
1/8 L  
40 P  
320 P  
160 Q  
40 Q  
1/2 L  
320 P  
120 Q  
1/2 L  
320 P  
160 Q  
1/2 L  
320P  
240Q  
1/2 L  
320 P  
80 Q  
20 Q  
1/4 L  
160 P  
60 Q  
1/4 L  
160 P  
80 Q  
1/4 L  
160P  
120Q  
1/4 L  
160 P  
40 Q  
2 L  
640 x 480 YUV(4:1:1)  
12 bits/pixel  
1280 P  
480 Q  
640 P  
240 Q  
1 L  
640 x 480 YUV(4:2:2)  
16 bits/pixel  
640 P  
320 Q  
1 L  
640 x 480 RGB  
24 bits/pixel  
640 P  
480 Q  
1 L  
2 L  
640 x 480 Y (Mono)  
8 bits/pixel  
1280P  
320 Q  
640 P  
160 Q  
Requires s200 or faster packet speed, as programmed in the ISO_CHANNEL/SPEED_CNTL  
register. The others can use s100 as well.  
Key: L: Lines/packet  
P: Pixel/packet  
Q: Quadlet/packet  
22  
2.1.2.2 Isochronous Video Payload  
Each transfer mode requires a different data format structure, each defining how the pixels are combined to build  
32-bit quadlets. Table 23 shows the payload structure for each mode, with the quadlets broken down into individual  
bytes. This data payload structure is slightly different for every video mode. In the table, N is the number of  
pixels/packet, as shown in Table 22.  
Table 23. Video Data Payload Structure  
07  
8 15  
1623  
2431  
YUV (4:4:4) format (Mode_0)  
U
Y
V
Y
V
U
V
U
Y
U
Y
V
0
1
2
0
1
3
0
2
3
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
U
Y
V
Y
V
U
V
U
Y
U
Y
V
N-4  
N-3  
N-2  
N-4  
N-3  
N-1  
N-4  
N-2  
N-1  
N-3  
N-2  
N-1  
YUV (4:2:2) format (Mode_1, Mode_3)  
U
U
U
Y
Y
Y
V
Y
0
2
4
0
2
4
0
2
4
1
3
5
V
Y
V
Y
.
.
.
.
.
.
.
.
.
.
.
.
U
U
U
Y
Y
Y
V
V
V
Y
Y
Y
N-6  
N-4  
N-2  
N-6  
N-4  
N-2  
N-6  
N-4  
N-2  
N-5  
N-3  
N-1  
YUV (4:1:1) format (Mode_2)  
U
Y
Y
Y
Y
V
Y
V
0
Y
4
Y
7
0
2
5
0
3
4
1
4
6
U
Y
.
.
.
.
.
.
.
.
.
.
.
.
U
Y
Y
Y
Y
V
Y
U
Y
V
Y
Y
N-8  
N-6  
N-3  
N-8  
N-5  
N-4  
N-7  
N-4  
N-2  
N-8  
N-4  
N-1  
RGB format (Mode_4)  
R
G
B
G
B
R
0
1
2
0
1
3
0
2
3
1
2
3
B
R
G
R
G
B
.
.
.
.
.
.
.
.
.
.
.
.
R
G
B
G
B
R
B
R
G
R
G
B
N-4  
N-3  
N-2  
N-4  
N-2  
N-1  
N-4  
N-2  
N-1  
N-3  
N-2  
N-1  
23  
Table 23. Video Data Payload Structure (Continued)  
07  
8 15  
1623  
2431  
Y (Mono) format (Mode_5)  
Y
Y
Y
V
U
Y
Y
Y
0
4
1
5
2
6
3
7
.
.
.
.
.
.
.
.
.
.
.
.
Y
Y
Y
V
U
Y
Y
Y
N-8  
N-4  
N-7  
N-3  
N-6  
N-2  
N-5  
N-1  
Table 24 shows the data structure for Y, R, G, and B video data components. All components are unsigned 8-bit  
values.  
Table 24. Data Structure for Y, R, G, and B Data Components  
SIGNAL LEVEL (Decimal)  
DATA (Hexadecimal)  
Highest  
255  
254  
:
0xFF  
0xFE  
:
1
0x01  
0x00  
Lowest  
0
Table 25 shows the data structure for U and V video data components. Both components are signed 8-bit values.  
Table 25. Data Structure for U and V Data Components  
SIGNAL LEVEL (Decimal)  
DATA (Hexadecimal)  
Highest(+)  
127  
126  
:
0xFF  
0xFE  
:
1
0x81  
0x80  
0x7F  
:
Lowest  
0
1  
:
127  
128  
0x01  
0x00  
Highest()  
2.1.2.3 Asynchronous Packet Format/Protocol  
Asynchronous packets are used to read status information from the TSB15LV01 and write control information to it.  
These packets are formatted as defined by the 1394 standard. All reads and writes should correlate with the memory  
maps as shown in section 3, Address Space.  
Asynchronous reads and writes can be performed either as quadlets or as blocks. Blocks can be read in sizes of up  
to 32 quadlets per packet. The structure of a quadlet write request packet is shown in Table 26, while the structure  
of a block write request packet is shown in Table 27.  
Table 26. Asynchronous Quadlet Write Request Packet Format  
07  
815  
destination_ID  
source_ID  
1623  
2431  
tCode  
destination_offset  
tl  
rt  
pri  
destination_offset  
quadlet data  
header_CRC  
24  
The fields are defined as:  
destination_ID 10-bit busID concatenated with 6-bit nodeID  
tl Transaction label, specified by the host that identifies this transaction. This optional value is  
returned in the response packet.  
rt Retry code. Indicates whether this packet is an attempted retry and defines retry protocol.  
tCode Transaction code. The code for an asynchronous write request for quadlet data is 0000b.  
pri Not used.  
source_ID Identifies host node by specifying its bus and physical ID  
destination_offset Address location within TSB15LV01 address space  
quadlet_data Contains the value being written to the addressed location  
header_CRC CRC value for the header  
Table 27. Asynchronous Block Write Request Packet Format  
07  
815  
destination_ID  
1623  
2431  
tCode  
destination_offset  
tl  
rt  
pri  
source_ID  
destination_offset  
extended_tcode (0000)  
data_length  
header_CRC  
data block  
.
.
.
last quadlet of data block  
The fields are defined as:  
destination_ID 10 bit busID concatenated with 6-bit nodeID.  
tl Transaction label, specified by the host that identifies this transaction. This optional value is returned  
in the response packet.  
rt Retry code. Indicates whether this packet is an attempted retry and defines retry protocol.  
tCode Transaction code. The code for an asynchronous write request for block data is 0001b.  
pri Not used.  
source_ID Identifies host node by specifying its bus and physical ID  
destination_offset Address location within TSB15LV01 address space  
data length Specifies the amount of data being sent in the data field. Maximum size is 128 bytes.  
extended_tcode Reserved during write request packets  
header_CRC CRC value for the header  
data_field Contains the value being written to the addressed location  
data_CRC CRC value for the data field  
ThestructureofaquadletreadrequestpacketisshowninTable28, whilethestructureofablockreadrequestpacket  
is shown in Table 29.  
25  
Table 28. Asynchronous Quadlet Read Request Packet Format  
07  
815  
destination_ID  
source_ID  
1623  
2431  
tCode  
destination_offset  
tl  
rt  
pri  
destination_offset  
header_CRC  
The fields are defined as:  
destination_ID 10-bit busID concatenated with 6-bit nodeID  
tl Transaction label is specified by the host that identifies this transaction. This optional value is  
returned in the response packet.  
rt Retry code. Indicates whether this packet is an attempted retry and defines retry protocol.  
tCode Transaction code. The code for an asynchronous read request for quadlet data is 0100b.  
pri Not used.  
source_ID Identifies host node by specifying its bus and physical ID  
destination_offset Address location within TSB15LV01 address space  
header_CRC CRC value for the header  
Table 29. Asynchronous Block Read Request Packet Format  
07  
815  
destination_ID  
1623  
2431  
tCode  
destination_offset  
tl  
rt  
pri  
source_ID  
destination_offset  
extended_tcode (0000h)  
header_CRC  
data_length  
The fields are defined as:  
destination_ID 10-bit busID concatenated with 6-bit nodeID.  
tl Transaction label is specified by the host that identifies this transaction. This value is reflected in the  
response packet that corresponds to this request packet.  
rt. Retry code. Indicates whether this packet is an attempted retry and defines retry protocol.  
tCode Transaction code. The code for an asynchronous read request for block data is 0101b.  
pri Not used  
source_ID Identifies host node by specifying its bus and physical ID  
destination_offset Address location within TSB15LV01 address space  
data_length Specifies the amount of data being sent in the data field. Maximum size is 128 bytes.  
extended_transaction_code Reserved during write request packets  
header_CRC CRC value for the header  
2.1.3 1394 Serial Bus Management Capabilities  
Nodes on the 1394 bus may be called on to serve in a number of bus management roles following a bus reset event.  
The TSB15LV01 is not designed to serve as the isochronous resource manager, a full bus manager, or the cycle  
master. The contents of the configuration ROM should reflect this level of capability.  
26  
2.1.4 PHY/Link Interface  
The PHY/link interface consists of the signals that connect the TSB15LV01, which serves as the link layer of the 1394  
node, to a physical layer device, or PHY. This interface carries all data, control, and status information that is  
transferred between the two layers.  
To take full advantage of the TSB15LV01s capabilities, a 400-Mbits/s PHY device should be used, such as TIs  
TSB41LV01.  
2.1.4.1 Principles of Operation  
The TSB15LV01 PHY/link interface consists of the SCLK, CTL0-CTL1, D0-D7, LREQ, and RESET terminals. The  
PHYs SYSCLK terminal provides a 49.152-MHz interface clock to the TSB15LV01s SCLK terminal. All control and  
data signals are synchronized to, and sampled on, the rising edge of SYSCLK.  
The CTL0 and CTL1 terminals form a bidirectional control bus, which controls the flow of information and data  
between the PHY and TSB15LV01.  
The D0-D7 terminals form a bidirectional data bus, which is used to transfer status information, control information,  
or packet data between the devices. In s100 operation only the D0 and D1 terminals are used; in s200 operation only  
the D0-D3 terminals are used; and in s400 operation all D0-D7 terminals are used for data transfer. When the PHY  
is in control of the D0-D7 bus, unused Dn terminals are driven low during s100 and s200 operations. When the  
TSB15LV01 is in control of the D0-D7 bus, unused Dn terminals are ignored by the PHY.  
The LREQ terminal is used by the TSB15LV01 to send serial service requests to the PHY in order to request access  
to the serial-bus for packet transmission.  
The PHY normally controls the CTL0-CTL1 and D0-D7 bidirectional buses. The TSB15LV01 is allowed to drive these  
buses only after it has been granted permission to do so by the PHY. There are three operations that may occur on  
the PHY-link interface: link service request, data transmit, and data receive. The TSB15LV01issues a service request  
when it wants to request the PHY to gain control of the 1394 serial bus in order to transmit a packet.  
The PHY may initiate a status transfer autonomously. The PHY initiates a receive operation whenever a packet is  
received from the 1394 serial bus. The PHY initiates a transmit operation after winning control of the serial bus  
following a bus request by the TSB15LV01. The transmit operation is initiated when the PHY grants control of the  
interface to the TSB15LV01.  
For details on how the PHY/link interface operates, consult the 1394 specification.  
2.1.5 Enabling the Transmission of Video  
2.1.5.1 Enabling Isochronous Video Streaming  
To enable the streaming of isochronous video data, the function control registers must be configured properly, as  
described in section 3.3.3.1.2. The last register to be written should be the CAMERA_POWER_CNTLregister, which  
asserts the CAM_POWER terminal (activating the CCD circuitry, if the signal is utilized), begins processing data from  
the AFE interface, and begins transmitting isochronous data.  
2.1.5.2 Enabling One-Shot Video Transmission  
Alternatively to transmitting an isochronous stream of video data, the one-shot feature can be utilized. With this  
feature, a single frame is sent using the same isochronous packet structure. It is activated by asserting the one_shot  
field of the ONE_SHOT_CNTL register. Note that in order to use this feature, isochronous video streaming should  
be disabled via the ISO_EN_CNTL register.  
When the feature is activated, the device automatically powers up the camera, activates isochronous transmission,  
sends a single image, then deactivates isochronous data and powers down the camera.  
2.2 Sensor Interface  
The TSB15LV01 obtains its raw video data from a charge-coupled device (CCD) sensor. This information is sent to  
an analog front end (AFE) that amplifies the analog video information provided by the CCD, performs correlated  
double sampling (CDS) and gain, and converts it to a digital format recognizable by the TSB15LV01.  
27  
Figure 2-1 shows the top-level signal flow in the sensor interface.  
Drive Signals  
CCD Drivers  
CCD  
Sensor  
Pixel  
Pulses  
CCD I/F  
Sample/Hold I/F  
Black Clamp I/F  
TSB15LV01  
AFE  
Serial I/F  
Video Data I/F  
Figure 21. Top-Level Sensor Interface Signal Flow  
2.2.1 CCD Interface  
2.2.1.1 General Description  
The video data is sourced by a CCD sensor. The TSB15LV01 contains a CCD timing generator for the approved  
sensors. Some of these signals must pass through a driver circuit to undergo voltage shifting.  
Because the timing of the CCD interface is closely integrated with the timing of the analog front end, this topic is  
discussed jointly in section 2.2.3, CCD/AFE Timing.  
2.2.1.2 Configuring for Different CCD Sensors  
The TSB15LV01 is designed to be used with several different CCD sensors and contains the necessary logic to drive  
each of them. The ccd_sel field of the AFE_SETUP_CNFG register must be set to the correct value, identified in  
section 3.3.3.2, Configuration Registers. If this field selects the TC237 CCD, field color_bw of  
VIDEO_OPTIONS_CNFG register must also be set to black and white, since this is a black and white sensor.  
Otherwise, it should be set to color.  
2.2.1.3 External Pulse Drivers  
As with nearly all CCD applications, the TSB15LV01 requires use of a dedicated driver chip for the vertical drive  
pulses. This device performs level-shifting to high-voltage rails, as well as some logic functions. Table 210 shows  
the approved sensors with their recommended driver devices.  
Table 210. Approved CCD Sensors and Recommended Drivers  
SENSOR  
DRIVER  
Sony CXD1267AN  
Sony ICX084AK 1/3color sensor  
Sony ICX098AK 1/4color sensor  
Sharp LZ24BP 1/4color sensor  
TI TC237 1/3black and white sensor  
Sony CXD1267AN  
Sony CXD1267AN or Sharp LR36685N  
TI TMC57253  
In addition, an external driver for horizontal pulses is required in order to drive the capacitive load of the CCD sensor.  
A CMOS inverter device is recommended, such as the TI SN74LVCU04A.  
2.2.2 Analog Front End Interface  
Circuitry must be used in a TSB15LV01-based system that processes the pixel pulses received from the CCD and  
converts them to digital data readable by the TSB15LV01. This circuit is referred to as the analog front end (AFE).  
The TSB15LV01 is designed to be used with the TLV990 AFE device.  
28  
2.2.2.1 AFE Function  
Figure 2-2 shows the block diagram of the TLV990.  
AVDD15  
CLVDO CLCCD CLREF  
RPD RBD RMD  
INT. REF.  
DV  
DD  
DIV  
DD  
OE  
D0  
Clamp  
1.2 V REF  
Three  
State  
Latch  
CDS/  
MUX  
10-Bit  
ADC  
PGA  
10  
CCDIN  
Σ
Σ
D9  
VIDEOIN  
RESET  
CLK  
Optical  
Black  
Pixel Limits  
8-Bit  
ADC  
8-Bit  
ADC  
PGA  
Regulator  
SV  
Timing  
and  
SR  
Control  
Logic  
BLKG  
OBCLP  
STBY  
ADDOS  
Offset  
Register  
Offset  
Register  
Digital  
Averager/  
Filter  
10-Bit  
ADC  
DAC  
REG  
DACO1  
DACO2  
SCKP  
CS  
8-Bit  
DAC  
DAC  
REG  
Serial  
Port  
SCLK  
SDIN  
VSS  
DGND  
DIGND  
AGND15  
Figure 22. TLV990 Block Diagram  
At the beginning of each image line, the AFE resets the dc bias of the incoming video data. It then performs correlated  
double sampling (CDS), which effectively extracts the video data from the pixel pulse and removes the most  
significant forms of noise. It then enters a programmable gain array (PGA) prior to conversion to digital form via a  
10-bit analog/digital converter (ADC).  
Before and after the PGA are offset correction circuits that maximize dynamic range of the video signal. The one prior  
to the PGA is considered the coarse adjustment offset, while the one after the PGA is considered the fine adjustment  
offset. These offset values are based either on the internal black clamping process or on values received from the  
TSB15LV01 via the serial interface, depending on the brightness mode. Digital/analog converters (DACs) in the AFE  
circuitry decode these values and apply them to the video signal flow. The TLV990 also contains a number of other  
registers that control operation of the device, which the TSB15LV01 is able to program.  
The TSB15LV01 contains an interface to the AFE that is divided into four sections. The first is the sample/hold  
interface, which provides the timing signals necessary for sampling of the pixel pulses. The second is the black  
clampinginterface. Thethirdistheserialinterface, whichprogramscontrolvaluesintotheAFE. Thefourthisthevideo  
data interface, which is a 10-bit parallel port that receives the video from the ADC after it has been converted.  
29  
2.2.2.2 Sample/Hold Interface  
This interface provides the signals necessary for dc bias clamping and correlated double sampling (CDS) of the CCD  
pixel pulse.  
The AFE should be capacitively coupled to the CCD output signal. At the beginning of each image line, the AFE must  
clampthissignaltoareferencevoltage, therebyproperlysettingthedcbiasoftheincomingvideodata. Toaccomplish  
this, the TSB15LV01 sends the CLAMP terminal low. This occurs during the CCDs dummy pixel output, prior to the  
active data pixels. CLAMP is held low only for a few pixels, but due to very low leakage current from this node, the  
clamped bias holds for the duration of the line.  
During the active pixels portion of the line, reset pedestal and video data pedestal of the pixel pulses are sampled.  
The data pedestal is subtracted from the reset pedestal prior to amplification. The SR signal supplies the sampling  
pulse for the reset pedestal, while SV supplies the sampling pulse for the video data pedestal.  
2.2.2.3 Black Clamping Interface  
The dc offset is directly related to the brightness of the image. The dc offset can be controlled automatically or  
manually. When the TSB15LV01 is configured for autobrightness, it utilizes the black clamping feature of the TLV990.  
In autobrightness mode, the AFE uses an internal feedback loop to adjust the offset. It adjusts the black pixels until  
they match a digital value received from the TSB15LV01 via the serial interface. When the TSB15LV01 sends the  
OBCLP terminal low, the AFE begins to acquire the digital pixel values produced by the ADC, average them, and  
compare them to the black reference value. If the values are not equal, the AFE attempts to make them equal by  
altering the fine adjustment offset value, which changes the offset that is summed with the signal prior to the ADC.  
Ifthenecessaryadjustmentisoutofrangeforthefineoffset, theAFEcanusethecoarseadjustment. Theadjustments  
are applied until the pixel data equals the black reference value.  
The TSB15LV01 sends the OBCLP pulse during a time in which it knows the selected CCD is sending its black pixels.  
The number of lines per image and the number of pixels per line that should be sampled are stored in internal  
registers, programmed by the TSB15LV01 from the lines_smpl and pix_smpl fields, respectively, of the  
VIDEO_OPTIONS_CNFG register.  
See section 2.6.6, Brightness, for more information on dc offset control.  
2.2.2.4 Serial Interface  
The TLV990 contains several control registers. The serial interface of the TSB15LV01 provides a means of  
programming these values. Table 211 shows the values that are transmitted from the TSB15LV01 to the TLV990.  
210  
Table 211. Values Transmitted to AFE via Serial Interface  
Source Within the TSB15LV01  
TLV990 Target Register  
Covered in Section…  
Gain/exposure control loop (auto mode)  
PGA register  
2.6.8, Gain and Exposure  
2.6.7, Anti-Blooming  
GAIN_CNTL register (manual mode)  
Blooming_value field of DAC_OFFSET_CNFG register  
Brightness control loop (auto mode)  
User DAC1 register  
Coarse dc offset DAC register  
BRIGHTNESS_CNTL register (manual mode)  
Brightness control loop (auto mode)  
Fine dc offset DAC register  
Optical black level register  
2.6.6, Brightness  
BRIGHTNESS_CNTL register (manual mode)  
Offset_level field of DAC_OFFSET_CNFG register  
Lines_smpl field of AFE_SETUP_CNFG register  
pixels_smpl field of AFE_SETUP_CNFG register  
Optical black calibration register  
Gain and offset (brightness) sources depend on whether the respective modes are manual or automatic.  
The lines_smpl and pix_smpl fields of AFE_SETUP_CNFG register control the lines per image, and pixels per line,  
respectively, that are to be averaged (see section 2.2.2.3, Black Clamping Interface, for more information). The  
offset_level field of the DAC_OFFSET_CNFG register is the digital black reference value to which the dc offset is  
normalized.  
The TLV990 contains two general purpose DACs with external outputs. One of these, DAC1, can be used to convert  
a digital code (sourced from the TSB15LV01s DAC_OFFSET_CNFG register) to an analog signal, which can be  
routed to the sensor for use in antiblooming. The second DAC, DAC2, is generally not utilized, but can be controlled  
from the TSB15LV01 as well.  
See the TLV990 data sheet (literature number SLAS298) for more information about the target registers.  
The timing of the AFE serial interface is shown in Figure 23. Table 212 shows the AFE interface timing parameters.  
S_CLK  
S_CS  
S_DATA  
t
h
t
su  
t
cl  
Figure 23. AFE Serial Interface Timing  
Table 212. AFE Interface Timing Parameters  
MIN  
TYP  
82  
MAX  
UNIT  
ns  
t
su  
t
cl  
t
h
164  
82  
ns  
ns  
In Figure 2-3, two words are being written by the TSB15LV01 to the AFE. Each word represents a value being written  
to an AFE register address. The number of values written depends on the mode. For example, if autoexposure is  
being used, different parameters are being programmed to the AFE than if the mode is manual.  
211  
2.2.2.5 Video Data Interface  
A 10-bit parallel interface is used to move the video data from the AFE ADC to the TSB15LV01. Data is clocked in  
with ADCLK.  
2.2.3 CCD/AFE Timing  
2.2.3.1 General Description  
The timing of these interfaces takes into consideration two asynchronous, periodic events. The first event is the  
integration of light in the sensor, which occurs at a frequency dictated by the cameras frame rate. The second event  
is the beginning of a 1394 isochronous cycle, which determines when video data is transmitted from the TSB15LV01.  
The TSB15LV01 reconciles these two events in a way that produces optimal video quality while minimizing the  
amount of memory necessary to store the pixel data.  
When the integration cycle is complete, the pixel charges are transferred out of the active region of the sensor. For  
the TC237, which is a full frame transfer CCD, this is the parallel transfer of charge from the image area to the storage  
area. For the other sensors, which are interline CCDs, this is the transfer of charge to the vertical shift registers.  
Several dummy/black lines are subsequently clocked and processed by the AFE.  
At this point, timing waits for the next 1394 isochronous cycle. As data is clocked out onto the serial bus, more data  
is needed and therefore clocked out of the sensor and into the TSB15LV01. This method of processing reconciles  
the two asynchronous, periodic events. It also minimizes the size of the internal FIFO needed to buffer the data  
stream, since data is only taken from the CCD as it is needed.  
The data is packetized on the bus such that there is a period of time between frames in which no data remains to be  
clocked out of the sensor, and no data is being transferred on the serial bus. During such periods of inactivity, the  
TSB15LV01 may clock pixels out of the serial register while ignoring the resulting processed data from the AFE. This  
results in lines of blank dummy pixels being clocked out of the CCD at regular intervals. This action is taken because  
extended idle periods can allow the CCD serial register to accumulate dark current. Clocking these pixels also keeps  
a constant dc level at the AFE ac-coupling capacitor.  
Figures 2-4 through 2-12 show the sensor interface for each approved sensor. For each sensor, there are four views  
shown. The first view contains the timing for the acquisition and transfer of a full frame of video. The second view is  
a magnified portion of the start frame. The third view is a magnified portion of the start of a line, while the fourth view  
is a magnified portion of the horizontal drive pulses. In some cases, the pulses are identical for the different sensor  
options, so they are consolidated under a single figure. In all figures, the mode is YUV 4:1:1 640 x 480, at 30 frames  
per second, with minimum exposure time.  
Note that these signals are intended to be processed by one of the recommended driver devices before reaching the  
CCD. In addition to level-shifting, these devices perform logic on the signals. Therefore, the signals at the sensor are  
different than the ones shown in Figures 2-4 through 2-12.  
212  
t
frame  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
Figure 27  
Figure 24. Sensor Interface Timing for ICX098/LZ24BP Sensor, Full Frame  
Table 213. ICX098/LZ24BP Full Frame Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
t
Frame period (@ 30 frames per sec.)  
33.3  
ms  
frame  
213  
t
frame  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
Figure 28  
Figure 25. Sensor Interface Timing for ICX084 Sensor, Full Frame  
Table 214. ICX084 Full Frame Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
t
Frame period (@ 30 frames per second)  
33.3  
ms  
frame  
214  
t
frame  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
Figure 29  
Figure 26. Sensor Interface Timing for TC237 Sensor, Full Frame  
Table 215. TC237 Full Frame Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
t
Frame period (@ 30 frames per second)  
33.3  
ms  
frame  
Figures 2-7 through 2-9 depict the start of a frame. Each block of pulses on the horizontal drive signals following the  
pulse on ABSP_XSG represents a line of video data. The gap between the fourth and fifth lines is the waiting period  
for the next 1394 isochronous cycle. Because the integration cycle is asynchronous with the 1394 isochronous cycle,  
this gap continually changes in length.  
215  
t
26 Pulses  
expo  
t
xh  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
Waiting for Next 1394  
Isochronous Cycle  
Figure 210  
Lines of Video  
Figure 27. Sensor Interface Timing for ICX098/LZ24BP Sensor, Start of Frame Data  
Table 216. ICX098/LZ24BP Frame Start Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
µs  
t
t
ABD_XSUB hold  
Exposure time  
11  
xh  
292  
µs  
expo  
216  
t
26 Pulses  
expo  
t
xh  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
Waiting for Next 1394  
Isochronous Cycle  
Figure 210  
42 µs  
Lines of Video  
Figure 28. Sensor Interface Timing for ICX084 Sensor, Start of Frame  
Table 217. ICX084 Frame Start Timing Parameters  
MIN  
TYP  
11  
MAX  
UNIT  
µs  
t
t
ABD_XSUB hold  
Exposure time  
xh  
292  
µs  
expo  
217  
t
expo  
t
xh  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
42 s  
Waiting for Next 1394  
Isochronous Cycle  
523  
Pulses  
Figure 211  
Lines of Video  
Figure 29. Sensor Interface Timing for TC237 Sensor, Start of Frame  
Table 218. TC237 Frame Start Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
µs  
t
t
ABD_XSUB/ABSP_XSG hold  
Exposure time  
11  
xh  
294  
µs  
expo  
t
Parallel transfer duration  
42  
µs  
ptd  
218  
t
xv1h  
t
xv2h  
t
t
xv3h  
xv2d  
t
t
hd  
xv3d  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
Figure 212  
t
cd  
t
od  
t
ch  
t
oh  
Figure 210. Sensor Interface Timing for ICX098/LZ24BP/ICX084 Sensor, Start of Line  
Table 219. ICX098/LZ24BP/ICX084 Line Start Timing Parameters  
MIN  
TYP  
2.7  
MAX  
UNIT  
µs  
µs  
µs  
ns  
t
t
t
t
t
t
t
t
t
t
SAG/XV1 hold time  
xv1h  
xv2h  
xv3h  
xv2d  
xv3d  
hd  
XV2 hold time  
2.7  
IAG/XV3 hold time  
2.7  
XV2 delay time  
900  
900  
350  
280  
652  
1.3  
IAG/XV3 delay time  
ns  
Horizontal drive delay following line transfer  
CLAMP delay following start of horizontal drive  
CLAMP hold time  
ns  
ns  
cd  
ns  
ch  
Time between OBCLP and end of line  
OBCLP hold time  
µs  
ns  
od  
160  
oh  
219  
t
hd  
t
xv1h  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
t
cd  
Figure 212  
t
oh  
t
xv3h  
t
od  
t
ch  
Figure 211. Sensor Interface Timing for TC237 Sensor, Start of Line  
Table 220. TC237 Line Start Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
SAG/XV1 hold time  
820  
810  
1.8  
xv1h  
xv3h  
hd  
IAG/XV3 hold time  
ns  
Horizontal drive delay following line transfer  
CLAMP delay following start of horizontal drive  
CLAMP hold time  
µs  
40  
ns  
cd  
244  
488  
1.056  
ns  
ch  
Time between clamp and OBCLP  
OBCLP hold time  
ns  
od  
µs  
oh  
Figure 212 depicts the horizontal drive pulses. Note that this diagram reflects the timing when all fields in the  
CCD_PULSE_CNFG and CCD_PULSE_CNFG registers are set to 00. This is the nominal position. Table 221  
shows the horizontal drive timing parameters.  
220  
t
t
h1lw  
h1hw  
ABD_XSUB  
ABSP_XSG  
SAG/XV1  
XV2  
IAG/XV3  
SRG/H1  
H2  
RST  
CLAMP  
OBCLP  
SR  
SV  
ADCLK  
t
t
svh  
rh  
t
srh  
t
t
ahw  
alw  
Figure 212. Sensor Interface Timing for All Sensors, Horizontal Drive  
Table 221. Horizontal Drive Timing Parameters  
MIN  
TYP  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
SRG/H1 high width  
SRG/H1 low width  
RST hold time  
40  
40  
20  
20  
20  
40  
40  
h1hw  
h1lw  
rh  
ns  
ns  
SR hold time  
ns  
srh  
SV hold time  
ns  
svh  
ahw  
alw  
ADCLK high width  
ADCLK low width  
ns  
ns  
2.2.3.2 Pulse Tuning  
Maintaining maximum dynamic range of the CCD image requires that the AFEs CDS clamp and sample pulses  
correspond perfectly to the analog output of the CCD, and thus to the CCD clock pulses as well. This means that after  
a camera has been built, the CCD/AFE drive pulses need to be tuned into their proper positions.  
Signals that need to be adjusted include RST, H2, SRG/H1, SR, SV, and ADCLK. For each of these signals, a field  
exists in the CCD_PULSE_CNFG and CDS_PULSE_CNFG registers. These 6-bit fields contain values that  
represent the amount of delay relative to the nominal position. Each field has a maximum value of 3 F, which  
corresponds to approximately 16 to 18 ns.  
2.3 STAT Interface  
Three status terminals are provided: STAT0, STAT1, and STAT2. These terminals can be configured to provide  
different functions. The function of a STATn terminal is changed by writing a new signal code into the corresponding  
field of the STATUS_CNFG register.  
When one or more of the terminals is configured as a signal input, the host can read the input value by reading the  
st_stat field of the STATUS_CNFG register. Similarly, when one or more of the terminals is configured as a signal  
output, the host can change its value by writing to the st_stat field.  
The functions provided by the STAT interface are shown in Table 222.  
221  
Table 222. Status Terminal Functions Determined by STATn Register Fields  
SIGNAL  
CODE  
I/O  
SIGNAL  
STAT0  
0
1
2
I
Signalinput. Configures this terminal as an input that can be read from the host via the 1394 serial bus. The input value can be  
found in bit 0 of the st_stat field of the STATUS_CNFG register.  
O
O
Signal output. Configures this terminal such that it outputs the value of bit 0 in the st_stat field of the STATUS_CNFG register,  
which can be written to by the host.  
Cycle_out. This is the links cycle clock. It is based on the timer controls and the cycle-start messages received from the 1394  
bus cyclemaster.  
3
4
5
6
7
O
O
O
O
O
ITF_Empty. This signal is high when the ITF (isochronous transfer FIFO) is empty.  
Line sync pulse. Pulses at the start of every horizontal line  
Clamping pulse  
Active region pulse. Vertical sync signal that pulses once per image frame.  
Focus motor select. Writing this value to the STAT0 register tells the TSB15LV01 that a motor is present that will derive its  
control from the FOCUS_CNTL register.  
STAT1  
0
1
I
Signalinput. Configures this terminal as an input that can be read from the host via the 1394 serial bus. The input value can be  
found in bit 1 of the st_stat field of the STATUS_CNFG register.  
O
Signal output. Configures this terminal such that it outputs the value of bit 1 in the st_stat field of the STATUS_CNFG Register,  
which can be written to by the host.  
2
3
O
O
Cycle_start. Isochronous cycle start indicator. Signals the beginning of an isochronous cycle by pulsing for one clock period.  
Cycle_Done. When high, an arbitration gap has been detected on the 1394 bus after the reception of a cycle-start packet. This  
indicates that the isochronous cycle is over.  
4
5
6
7
O
O
O
O
Line sync pulse. Pulses at the start of every horizontal line.  
Iso_Enable. Indicates that isochronous 1394 packet transmission has been activated.  
Active region pulse. Vertical sync signal that pulses once per image frame.  
Zoom motor select. Writing this value to the STAT1 register tells the TSB15LV01 that a motor is present that will derive its  
control from the ZOOM_CNTL register.  
STAT2  
0
1
I
Signalinput. Configures this terminal as an input that can be read from the host via the 1394 serial bus. The input value can be  
found in bit 2 of the st_stat field of the STATUS_CNFG register.  
O
Signal output. Configures this terminal such that it outputs the value of bit 2 in the st_stat field of the STATUS_CNFG register,  
which can be written to by the host.  
2
3
O
O
Dm_Rdy. Indicates that a 1394 isochronous stream is ready to be sent on the next iso cycle.  
While high, indicates that a valid video line is being clocked out of the CCD. If low, indicates that dummy lines are being  
clocked out.  
4
5
6
7
O
O
O
O
Line sync pulse. Pulses at the start of every horizontal line  
6-MHz clock  
Active region pulse. Vertical sync signal that pulses once per image frame  
Iris motor select. Writing this value to the STAT2 register tells the TSB15LV01 that a motor is present that will derive its control  
from the IRIS_CNTL register.  
222  
2.4 Motor Control Interface  
The TSB15LV01 provides control for three stepper motors that can be used for focus, zoom, and iris functions.  
Steppers provide exact, high-tolerance control.  
Note also that while the interface provides for focus, zoom, and iris motors, any motor with a similar function can be  
attached to those interfaces, such as pan or tilt.  
2.4.1 Motor Driver Timing  
Only one set of drivers is provided, and control of the motors is multiplexed. The STAT0, STAT1, and STAT2 terminals,  
when configured for stepper motors as discussed in section 2.3 STAT Interface, select which motor is being  
controlled. When  
a
STATn terminal goes low, all motor terminal signals (PHASEx_n, IR_SIG,  
MOTOR_PLUS/MINUS) are intended for the motor corresponding to the STATn terminal in question.  
If only one STATn terminal is configured as a motor select, that terminal is held low continually, while the others  
perform the function for which they were programmed. If more than one STATn terminal is configured as a motor  
select, their outputs alternately pulse low. For example, if two motors are being used, each STATn terminal is active  
half the time. If three motors are being used, each STATn terminal is active one third the time. This is shown in  
Figure 213.  
STAT0  
(Enables Focus Motor)  
STAT1  
(Enables Zoom Motor)  
STAT2  
(Enables Iris Motor)  
PHASE_xn  
MOTOR_PLUS/MINUS  
TERMINALS  
FOCUS  
POSITION  
ZOOM  
POSITION  
IRIS  
POSITION  
New Value Written to  
ZOOM_CNTL Register  
Pushbuttons For Focus  
and Zoom are Pressed  
Simultaneously  
Device Power Up  
Figure 213. STATn Motor Select Pulses  
In Figure 2-13, each pulse in the last three lines does not indicate a signal pulse, but rather a movement in the position  
of the motors. Also, the pulses for phase_xn are not literal. The pulses actually driven are as defined by the stepper  
drive table used by the TSB15LV01, shown in Table 223.  
223  
Table 223. Stepper Drive Table  
MOTOR DRIVE TERMINAL  
PHASE1_A  
PHASE1_B  
PHASE2_A  
PHASE2_B  
STEP 1  
STEP 2  
STEP 3  
STEP 4  
1
0
0
1
0
1
1
0
1
1
0
0
0
0
1
1
The table shows values for the forward direction. The values are driven in a cyclical pattern when the motor is to be  
driven forward. The values are driven cyclically in reverse when the motor is to be moved backwards.  
The default state for the drive terminals is high, resulting in the outgoing value of 1111. It is intended that the outputs  
will be used as inputs to an inverting drive circuit; therefore, the default state of the stepper drive windings is that both  
ends are grounded. As a result, the motor and driver assembly only draw current when actively stepping in one  
direction or another.  
Note that only one STATn terminal is needed per motor, such that if less than three motors are being used, the  
remaining STATn terminals can be used for other functions.  
2.4.2 Positioning System  
Positioning for the steppers is based on a linear scale from 000h to 3FFh (10 bit). Upon power up of the device, it  
seeks to align the physical motor position with the initial starting value stored in the corresponding field of the  
MOTOR_POS_CNFG register (ir_zoom, ir_focus, or ir_iris fields). To do this, the device first moves the stepper to  
a physical reference point indicated by the IR_SIG terminal. IR_SIG is assumed to have a position feedback signal  
attached to it, such as an infrared sensor. This point is likely near the beginning or end of the mechanisms motion.  
If the IR_SIG terminal is high when the device powers up, it indicates that the mechanism is in a position beyond the  
position reference. The TSB15LV01 steps the mechanism down until the terminal goes low. If the terminal is already  
low at power up, the motor steps the mechanism up until the terminal goes high, and then steps it back one.  
After each motor has been positioned at its reference, the TSB15LV01 associates those positions with the values in  
the corresponding fields of the MOTOR_POS_CNFG register. Using these values as starting points, it moves each  
motor to the position indicated in the value field of the feature control register corresponding to that motor  
(ZOOM_CNTL, FOCUS_CNTL, or IRIS_CNTL). For example, a camera can be preset to focus at a certain distance.  
After the TSB15LV01 has realigned the motor at the beginning or end of the focus mechanism movement, it moves  
the motor to the predetermined focus setting.  
Subsequently, any value written to the feature control registers that is not equal to the current position will cause the  
motor to step toward that value. Each incremental value written to the register represents one step the motor moves.  
When the motor position matches the value in the feature control register, the stepper shuts off, and the windings are  
grounded. Power up and movement of the motor can be seen in Figure 213.  
Initial positioning of the motors following power up occurs in sequential order, with the first motor pulling itself into  
position, then the second motor, and then the third. After this, all motor step sequences are multiplexed, which  
effectively causes the motors to move simultaneously.  
2.4.3 Pushbutton Interface  
The MOTOR_PLUS and MOTOR_MINUS terminals are designed as pushbutton inputs. Driving one of these  
terminals high causes the value field of the current motors feature control register to increment or decrement  
accordingly. In response, the corresponding motor moves forward or backward. Holding one of these inputs high will  
cause the motor to step continuously.  
The motor to which activity on MOTOR_PLUS/MINUS is applied is determined by which motor select (STATn  
terminal) is currently low. If only one motor is used, only one motor select is present, allowing pushbuttons to be  
attached directly to the terminals.  
224  
If more than one motor is being used, it is necessary to multiplex them. As a result of the alternating STATn pulses,  
the switches are scanned on a periodic basis. There is no need for a debounce circuit, because the buttons are  
scanned at a fixed rate of approximately 30 Hz.  
2.5 EEPROM Interface  
An external EEPROM with serial port interface (SPI) interface is required for TSB15LV01 operation. The entire  
address space of the TSB15LV01 accessible from the 1394 bus is stored there. The EEPROM must provide 4096  
bits of memory, such as a 512 × 8 configuration. The interface is designed to be used with the Atmel AT25040 or Xicor  
X25040. It utilizes a four-wire interface consisting of a chip select, an input, an output, and a clock.  
The 1394 bus uses 48-bit addresses. Since this is too large of a contiguous address space for most conventional  
EEPROMs, the TSB15LV01 converts these addresses into an 8-bit form called the internal address. The conversion  
is shown in section 3, Address Space.  
All registers are stored in the external EEPROM device. However, upon power up of the TSB15LV01, the feature  
control registers and the configuration registers are copied from the EEPROM into registers resident in the  
TSB15LV01 device. This includes all address space between F0F00800h and F0F00F24h. From that moment on,  
1394 bus accesses to this address space apply to the registers in the TSB15LV01. For address space outside this  
range, bus accesses are executed on the EEPROM device. As a result, the role of the EEPROM with respect to these  
registers is to store default values, these values are saved when power is removed from the device. The values in  
the TSB15LV01 registers are never written back to the EEPROM by the TSB15LV01 device, and the bus is not  
capable of changing them since all normal run-time bus accesses to this memory space operate on the TSB15LV01.  
This allows for the loading of power up initialization values into the EEPROM.  
However, it is possible to write values to the EEPROM for any address location once a value of 12345678h has been  
written to the write_protect_control field of the EEPROM_CNFG register. This value is known as the write-protect  
control code. Once this control code has been written to the device, all register space accesses will operate upon  
the EEPROM. Writes operate on both the EEPROM and the TSB15LV01. Reads operate on the EEPROM only. This  
mechanism provides a way to program new initialization values.  
Figures 214 and 215 show the read and write timing (Table 2-24) associated with the TSB15LV01 EEPROM  
interface.  
T
cssu  
T
csd  
EEPROM_CS  
EEPROM_SCLK  
EEPROM_SI  
T
CL  
0
1
2
3
4
5
6
7
8
7
9
6
10 11 12 13 14 15 16 17 18 19 20 21 22  
INSTRUCTION  
8
BYTE ADDRESS  
5
4
3
2
1
0
9th BIT of ADDRESS  
DATA OUT  
HIGH IMPEDANCE  
EEPROM_SO  
7
6
5
4
3
2
1
0
MSB  
Figure 214. Read Timing  
225  
T
cssu  
T
csd  
EEPROM_CS  
EEPROM_SCLK  
EEPROM_SI  
T
CL  
0
1
2
3
4
5
6
7
8
7
9
6
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
INSTRUCTION  
8
BYTE ADDRESS  
DATA IN  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
9th BIT of ADDRESS  
HIGH IMPEDANCE  
EEPROM_SO  
Figure 215. Write Timing  
Table 224. EEPROM Interface Timing Parameters  
MIN  
TYP  
652  
652  
MAX  
UNIT  
ns  
t
t
t
EEPROM CS setup time  
EEPROM CS delay time  
Clock period  
cssu  
csd  
cl  
ns  
1.304  
µs  
2.6 Video Signal Processor  
After the CCD image data is received from the AFE, it is processed by the video signal processor (VSP). The core  
of the VSP is a digital signal processor (DSP) that conducts numerous essential algorithms, discussed in the sections  
below.  
Most of the video processing features present in the TSB15LV01 are included as part of the digital camera  
specification. As such, they are controllable via the feature control registers (see section 3.3.3.1.3, Feature Control  
Registers). A few others are specific to the TSB15LV01 and can be controlled with the TSB15LV01 configuration  
registers.  
2.6.1 De-Mosaicing  
The CCD image data is comprised of individual component pixels, each of which is pure red, green, or blue. The VSP  
de-mosaics them, a process in which they are grouped to form composite pixels that fit the RGB standard.  
Several adjustments can be made in the configuration registers that affect how the sensor data is compiled into the  
RGB image frame. These are shown in Table 225.  
Table 225. CCD Sensor Processing Adjustments  
ADJUSTMENT  
COMMENT  
H-Center and V-Center fields of  
CCD_OPTICS_CNFG register  
The TSB15LV01 receives an image size greater than 640 x 480 pixels from the CCD. These fields  
determine which 640 x 480 rectangle is processed and transmitted to the host.  
pix_shp fields of  
VIDEO_OPTIONS_CNFG register  
Determines whether component pixels are grouped as squares or as L-shaped pieces. L-shaped pixels  
give a higher resolution image than square pixels but can create a jagged edge effect.  
Additional information for each of these adjustments can be found in section 3.3.3.2, Configuration Registers.  
226  
2.6.2 Brightness  
The brightness of the image is directly related to the DC offset of the image data in the AFE. This feature can be  
controlled automatically or manually.  
When brightness is configured for automatic control via the BRIGHTNESS_CNTL register, the TSB15LV01 utilizes  
the TLV990s black clamping feature. This feature sets the offset at the beginning of every image frame, adjusting  
it so that the black pedestal is equal to the value stored in the offset_level field of the DAC_OFFSET_CNFG register.  
(See section 2.2.2.3, Black Clamping Interface, for more information.)  
Brightness can also be controlled by setting the offset manually. If the TSB15LV01s auto-brightness feature is  
disabled, it divides the value field of the BRIGHTNESS_CNTL register into coarse (most significant eight bits) and  
fine (least significant eight bits) and sends those values directly to the AFE.  
If autobrightness is used, there are two parameters sent to TLV990 that affect how black clamping is performed. Both  
are found in the AFE_SETUP_CNFG register. The first, found in the lines_smpl field, informs the TLV990 how many  
lines per image should be included in the black clamp averaging. The second, found in the pix_smpl field, informs  
the TLV990 how many samples per line should be included in the averaging. The TLV990 datasheet can provide more  
information on the use of these values.  
2.6.3 Gain and Exposure  
Gain refers to the gain stage of the AFE, while exposure refers to the CCD image integration time. These parameters  
canbeconfiguredmanuallyusingtheircorrespondingfeaturecontrolregisters, GAIN_CNTLandEXPOSURE_CNTL  
(Figure 2-16).  
Alternatively, they can be controlled automatically using an internal feedback loop. This loop samples 4048 pixels  
within an image and calculates the average pixel luminance. It compares this value with the value stored in the  
auto-expo field of the AUTO_ADJ_CNFG register, adjusting the gain and exposure time accordingly.  
A control input to this block, stored in the expo_delta field of the AUTO_ADJ_CNFG register, regulates the speed at  
which adjustments are made to the algorithmic filter. This value must be adjusted to provide adequate damping for  
the feedback loop.  
227  
AFE  
PGA  
Clamp  
and  
CDS  
Coarse  
Offset  
Adjust  
CCD/  
Driver  
Fine  
+
Offset  
Adjust  
A/D  
Gain  
Black  
Clamp  
Control  
TSB15LV01  
Pixel  
Saturation  
Simulator  
SHUTTER_CNTL register –  
value field  
(backlight compensation)  
Algorithmic  
Comparator  
Adjustment  
with Digital  
Filter  
AUTO_ADJ_CNFG register –  
expo_deltafield  
AUTO_ADJ_CNFG register –  
expo_ref field  
(used with auto gain/exposure)  
Gain  
Serial  
Encoder  
GAIN_CNTL register –  
value field  
EXPOSURE_CNTL register –  
CCD Pulse  
Generator  
value field  
Image Clear Pulse  
(ABD_XSUB)  
(used with manual gain exposure)  
Figure 216. Gain and Exposure Automatic and Manual Controls  
The location of the sampled pixels is dictated by the backlight compensation feature, described in section 2.6.9.  
Gainandexposurehaveasimilareffectontheimage. Inotherwords, theeffectofareductioningaincanbecountered  
by a proportional increase in exposure, and vice versa. Therefore, there are many combinations of gain and exposure  
settings that produce a similar image.  
High gain settings can amplify any noise that may have been introduced to the analog signal, prior to or during its  
conversion to digital. Because of this, the autogain/exposure loop generally seeks to keep gain as low as possible,  
adjusting the exposure parameter to properly expose the image. Gain is increased when the exposure parameter  
alone is not sufficient to produce a proper exposure.  
2.6.4 Sharpness and Saturation  
Processing on the sharpness and saturation parameters is performed by the VSP. They are adjustable within  
reasonable boundaries by altering values in their corresponding feature control registers.  
The sharpness control utilizes a continuous extrapolation filter, providing smooth sharpness control. Saturation refers  
to color saturation, as opposed to saturation of a CCD charge.  
228  
2.6.5 White Balance  
This feature alters the degree to which red and blue CCD component pixels are weighted to form composite pixels.  
Green is considered constant. White balance often needs to be adjusted when image lighting changes. For example,  
when white balance has been configured for incandescent lighting, it will need adjustment if taken to an area with  
fluorescent or natural lighting. This is because the spectral content of these light sources differs from incandescent  
light.  
White balance can be adjusted manually or automatically, selectable in the WHITE_BALANCE_CNTL register. If the  
featureissetasmanual, itcorrespondsdirectlywiththevalueinthatregister. Thehostcanthenalterthewhitebalance  
value as it wishes. For example, it could implement its own autobalance feature.  
If the feature is set as automatic, an internal adjustment is used. This algorithm assumes that all incoming colors have  
a relatively equal amount of red, green, and blue, and makes small, iterative adjustments to the white balance. This  
provides very good white balance in most situations without necessitating manual adjustments. However, if red or  
blue is dominant in the image for a moderate period of time, the assumption is incorrect, and the image will begin to  
noticeably discolor.  
2.6.6 Gamma  
Gamma correction can be implemented to compensate for nonlinearities in cathode ray tubes, which in most cases  
is the device that is used to display the image. It is possible to turn this feature off, since some high-end CRTs are  
capable of providing their own gamma correction.  
The gamma correction implemented by the TSB15LV01 incorporates a correction factor equivalent to the 0.45 analog  
gamma standard.  
2.6.7 YUV Conversion  
If the transfer mode is one that uses the YUV color space, the VSP converts the RGB pixels into YUV.  
RGB to YUV color space conversion for gamma-corrected, fully-saturated RGB video is:  
Y = 0.257 R + 0.504 G + 0.098 B + 16  
Cb = -0.148 R - 0.291 G + 0.439 B + 128  
Cr = 0.439 R - 0.368 G - 0.071 B + 128  
This matrix is approximated in the TSB15LV01, which processes video data as 8-bit digital values, by fractionalizing  
the coefficients with respect to 8 bits:  
Y = (66/256) R + (129/256) G + (25/256) B + 16  
Cb = - ( 38/256) R - (74/256) G + (112/256) B + 128  
Cr = (112/256) R - (94/256) G - ( 18/256) B + 128  
This approximation introduces less than one least significant bit of error.  
229  
2.6.8 Antiblooming  
Blooming occurs when a CCD pixel becomes saturated and overflows into surrounding pixels. This can appear on  
the image display as discoloration or bright speckles. CCD sensors usually have a means of allowing a cutoff level  
to be set, above which charge is not allowed to exceed. Setting this antiblooming level just below the saturation level  
prevents charge overflow.  
The Sony ICX084, Sony ICX098, and the Sharp LZ24BP perform this function internally. The TI TC237, however,  
requires the level to be set externally. To provide this voltage reference, one of the general-purpose DACs on the AFE  
can be utilized. The TSB15LV01 designates DAC1 as the antiblooming DAC. The DAC output can be used to set the  
TC237 antiblooming level.  
The antiblooming feature must be activated by setting the bloom_en field of the DAC_OFFSET_CNFGregister. Once  
this has been done, the value of the blooming_value field of the DAC_OFFSET_CNFG register will be sent to the  
TLV990. This will set the antiblooming voltage level for the CCD sensor. The value of the other general-purpose DAC,  
DAC2, can be set as well via the DAC2_en and DAC2_value fields of the same corresponding registers.  
2.6.9 Backlight Compensation  
The TSB15LV01 provides a way to compensate for situations in which a forefront object appears dark due to  
excessive light in the background. This is accomplished by extracting more gain/exposure samples from image  
regions in which the intended object resides (see 2.6.3, Gain and Exposure). Hot regions for which this feature can  
be activated include those shown in Table 226.  
Table 226. Backlight Compensation Hot Regions  
VALUES OF  
SHUTTER_CNTL  
HOT REGION  
REGISTER  
0
1
2
Matrix (No compensation). Pixel samples are evenly spaced.  
Circle. All the pixel samples are taken from a circle in the center of the image. The region is 128 pixels wide.  
Circle, averaged. Half the samples are taken inside the same circle as circle mode, half the samples are taken outside  
the circle.  
3
Head and Shoulders. All the pixel samples are taken from a region that would be occupied by a person sitting in front  
of the camera.  
4
5
6
Top third. All the pixel samples are taken from the top third of the image.  
Bottom third. All the pixel samples are taken from the bottom third of the image.  
Middle third. All the pixel samples are taken from the middle third of the image.  
The hot region for backlight compensation is selected by the SHUTTER_CNTL register. As shown in Table 226, the  
feature can be disabled, causing the gain/exposure loop samples to be evenly distributed throughout the image.  
2.6.10 White Spot Compensation  
CCD sensors occasionally have nonuniformities that cause some pixels to build a charge significantly greater than  
the light that is activating them, due to leakage current in the pixel. In a black and white sensor, this causes white spots  
that appear out of place. In a color sensor, it can result in discoloration or speckles.  
The TSB15LV01 can be configured to compensate for this error using one of two built-in filters. The first filter is a  
medianfilter. Foreverypixel, themedianfilterconsidersitsvalueandthepixelsoneithersideandreplacestheoriginal  
pixel with the median of the three. This removes any single-pixel abnormalities from the pixel stream. The other filter  
is the nonlinear interpolation filter. It compares a pixel to the ones before and after it. If it is significantly different, such  
that it exceeds a preset threshold, it is thrown out and replaced by the average of the two surrounding pixels.  
Alternatively, white spot compensation can be disabled.  
The white spot compensation filter is chosen by the filter field of the CCD_OPTICS_CNFG register. The threshold  
for how deviant a pixel is allowed to be before it is discarded by the nonlinear interpolation filter is determined by the  
value of the filter_limit field, also in the CCD_OPTICS_CNFG register.  
230  
The tradeoff in using one of these filters lies in the fact that the filters are indiscriminate in discarding single-pixel  
abnormalities. Single-pixel abnormalities may be noise, or they may be a valid part of the image. As a result, the filters  
remove white spots but also result in some degradation of the image due to some loss of spacial high-frequency  
response. The median filter is more extreme in this regard. The nonlinear interpolation filter has an amplitude  
threshold that defines how extreme the abnormality must be before it is discarded, giving the user more control of  
the tradeoff.  
The median filter is more effective in removing white spots, but if it has an adverse effect on the sharpness of the  
image, it may be desirable to use the nonlinear interpolation filter and adjust the filter limit, or disable the filter  
altogether.  
2.6.11 Test Pattern  
The TSB15LV01 can send a continuous image consisting of color bars and linear ramps. The test pattern is activated  
using the test_en field of the TEST_CNFG register. It is shown in Figure 217.  
Figure 217. TSB15LV01 Built-In Test Pattern  
The upper portion of the test pattern consists of solid vertical bars of white, yellow, cyan, green, magenta, red, blue,  
and black (in order, as shown in Figure 217). The bottom portion consists of horizontal bars of white, red, green,  
and blue, with luminance increasing from left to right. The luminance value increases by one every two pixels (RGB  
640 x 480 mode).  
The test pattern image is subject to changes in saturation, white balance, sharpness, and gamma control. It is not  
affected by changes in gain, brightness, exposure, or backlight compensation.  
The test pattern is useful during camera development for determining whether image problems are originating after  
the VSP (1394 interface) or before it (sensor interface). That is, it can verify functionality between the host and the  
TSB15LV01 device, isolating image problems to the CCD or AFE interface.  
231  
232  
3 Address Space  
The address space for the TSB15LV01 is divided into four areas. The first consists of registers and ROM required  
for any 1394 node, called 1394 memory. The second area consists of registers that reflect the level of capability of  
the digital camera, known as the inquiry registers. These registers are required by the Digital Camera Specification.  
Both 1394 memory and the inquiry registers are considered read-only. The third and fourth areas consist of registers  
that can be read for camera status or written to for camera control. These are called the control registers and  
configuration registers. The control registers are dictated by the Digital Camera Specification, while the configuration  
registers are unique to the TSB15LV01.  
Table 31 gives a summary of the various register groupings referred to throughout this document.  
Table 31. TSB15LV01 Register Groupings  
REGISTER GROUP NAME  
1394 registers  
DESCRIPTION  
Registers required for 1394 nodes.  
REQUIRED BY  
DOCUMENTATION  
Section 3.3.1  
1394 Standard  
Inquiry registers  
Registers that describe the capability of the digital camera, Digital Camera  
allowing host to determine availability of features provided for by Specification  
the Digital Camera Specification.  
Section 3.3.2  
Control registers  
Registersthatcontrolbasiccamerafeatures, suchasframerate, Digital Camera  
Section 3.3.3.1  
output format, and video parameters.  
Specification  
Configuration registers  
Registers that control unique TSB15LV01 features and TSB15LV01-specific Section 3.3.3.2  
functions.  
The TSB15LV01 provides a memory map consistent with v1.04 of the 1394 Digital Camera Specification, and  
implements most of the features provided for by that document. There are a few features that are not implemented.  
This functionality should always be indicated in the inquiry registers. Recommended values are provided in Section  
3.3.2. The inquiry registers themselves are always valid, since their function is to tell the host which features are valid  
and which are not, and since they are read-only by definition. The only registers that are disabled for nonsupported  
features are control registers.  
3.1 1394 Node Memory Architecture  
To understand the memory allocation of the TSB15LV01, it is useful to first understand the addressing structure for  
1394 nodes in general. 1394 addresses consist of the components shown in Table 32.  
Table 32. 1394 Address Components  
COMPONENT  
Bus ID  
LENGTH  
10 bits  
6 bits  
COMMENT  
Identifies the 1394 bus  
Node ID  
Identifies the node within the bus  
Destination offset  
48 bits  
Identifies the address within the node  
The values of the first two components are environment-dependent. Note that address values shown throughout  
section 3 consist only of the 48-bit destination offset. In the case of the TSB15LV01, locations in 1394 memoryhave  
abasedestinationoffsetofFFFFF0000000h. Incontrast, theinquiry, control, andconfigurationregistershaveabase  
destination offset of FFFF F0F0 0000h. Various registers are determined by adding an additional offset value to the  
destination offset.  
Thememoryspaceofatypical1394nodeconsistsofasmallcollectionofregistersthatexistatfixedaddresses, called  
initial register space, and a number of dynamic memory structures called directories and leaves. Directories contain  
information and pointers to more directories and leaves. Leaves are blocks of memory that contain information but  
do not point to other directories or leaves.  
31  
These elements form a tree structure. A certain amount of freedom is granted to the developer of the 1394 node,  
allowing a variety of structures within the architecture guidelines. The root node for this structure exists in part of the  
initial register space, called the root directory. The root directory tree allotted in the TSB15LV01 is shown in  
Figure 31.  
Root Directory  
Node Unique ID Leaf  
Unit Directory  
Unit Dependent  
Directory  
Vendor  
Name  
Leaf  
Model  
Name Leaf  
Figure 31. TSB15LV01 Root Directory Tree  
TheTSB15LV01memorystructureisbasedonthisdynamicconceptbutassumesthatallmemorylocationsarefixed.  
Although all the components are present, including initial register space, root directory tree, and the appropriate  
pointers, these structures are assigned a fixed memory location. All memory locations can be legally addressed by  
their fixed addresses without needing to derive them from the corresponding base address and offset. (The  
exceptionsto this rule are the vendor and model name leaves, discussed in section 3.3.1.2, Configuration ROM). This  
scheme provides efficient usage of EEPROM memory.  
Because this memory structure is implemented in EEPROM, it is the responsibility of the system designer to ensure  
that it exists according to the maps shown in section 3. See section 2.5, EEPROM Interface, for more information.  
3.2 Top-Level Memory Maps  
The tables below give a top-level map of the TSB15LV01 address space. Along with the 1394 bus address, aninternal  
address is given. This is the address scheme used inside the TSB15LV01 and also in interfacing with the EEPROM  
(see sections entitled Physical Location of Register Data and EEPROM Interface for more information).  
Table 33. Top-Level Memory Map: 1394 Memory (Core CSRs)  
1394 BUS  
ADDRESS  
INTERNAL  
ADDRESS  
FFFF F000 0000  
FFFF F000 0004  
FFFF F000 0008  
FFFF F000 000C  
FFFF F000 0010  
FFFF F000 0014  
FFFF F000 0018  
FFFF F000 001C  
FFFF F000 0200  
FFFF F000 0204  
FFFF F000 0208  
FFFF F000 020C  
FFFF F000 0210  
0
1
2
3
5
6
8
9
10  
11  
12  
32  
Table 34. Top-Level Memory Map: 1394 Memory (Device Configuration ROM)  
1394 BUS  
ADDRESS  
INTERNAL  
ADDRESS  
REGISTER NAME  
FFFF F000 0400  
FFFF F000 0404  
FFFF F000 0408  
FFFF F000 040C  
FFFF F000 0410  
FFFF F000 0414  
FFFF F000 0418  
FFFF F000 041C  
FFFF F000 0420  
FFFF F000 0424  
FFFF F000 0428  
FFFF F000 042C  
FFFF F000 0430  
FFFF F000 0434  
FFFF F000 0438  
FFFF F000 043C  
FFFF F000 0440  
FFFF F000 0444  
FFFF F000 0448  
FFFF F000 044C  
FFFF F000 0450  
FFFF F000 0454  
FFFF F000 0458  
FFFF F000 045C  
FFFF F000 0460  
FFFF F000 0464  
FFFF F000 0468  
FFFF F000 046C  
FFFF F000 0470  
FFFF F000 0474  
FFFF F000 0478  
FFFF F000 047C  
FFFF F000 0480  
FFFF F000 0484  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
BUS INFO BLOCK  
ROOT DIRECTORY  
NODE UNIQUE  
UNIT DIRECTORY  
UNIT DEPENDENT DIRECTORY  
VENDOR NAME LEAF  
MODEL NAME LEAVES  
33  
Table 35. Top-Level Memory Map: Inquiry Registers  
1394 BUS  
ADDRESS  
INTERNAL  
ADDRESS  
REGISTER NAME  
FFFF F0F0 0000  
FFFF F0F0 0100  
64  
65  
CAMERA INITIALIZATION  
FORMAT_INQ  
FFFF F0F0 0180  
FFFF F0F0 0200  
FFFF F0F0 0204  
FFFF F0F0 0208  
FFFF F0F0 020C  
FFFF F0F0 0210  
FFFF F0F0 0214  
FFFF F0F0 0400  
66  
67  
68  
69  
70  
71  
72  
73  
VIDEO_MODE_INQ  
RATE_INQ  
BASIC_FUNC_INQ  
FEATURE_HI_INQ  
FEATURE_LO_INQ  
BRIGHTNESS_INQ  
EXPOSURE_INQ  
SHARPNESS_INQ  
WHITE_BAL_INQ  
HUE_INQ  
FFFF F0F0 0404  
FFFF F0F0 0408  
FFFF F0F0 0500  
FFFF F0F0 0504  
FFFF F0F0 0508  
FFFF F0F0 050C  
FFFF F0F0 0510  
FFFF F0F0 0514  
FFFF F0F0 0518  
FFFF F0F0 051C  
FFFF F0F0 0520  
FFFF F0F0 0524  
FFFF F0F0 0528  
FFFF F0F0 0580  
FFFF F0F0 0584  
FFFF F0F0 0588  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
111  
87  
88  
89  
SATURATION_INQ  
GAMMA_INQ  
SHUTTER_INQ  
GAIN_INQ  
IRIS_INQ  
FOCUS_INQ  
ZOOM_INQ  
PAN_INQ  
TILT_INQ  
34  
Table 36. Top-Level Memory Map: Control Registers  
1394 BUS  
ADDRESS  
INTERNAL  
ADDRESS  
REGISTER NAME  
FFFF F0F0 0600  
FFFF F0F0 0604  
FFFF F0F0 0608  
FFFF F0F0 060C  
FFFF F0F0 0610  
FFFF F0F0 0614  
FFFF F0F0 0618  
FFFF F0F0 061C  
FFFF F0F0 0620  
FFFF F0F0 0624  
FFFF F0F0 0800  
FFFF F0F0 0804  
FFFF F0F0 0808  
FFFF F0F0 080C  
FFFF F0F0 0810  
FFFF F0F0 0814  
FFFF F0F0 0818  
FFFF F0F0 081C  
FFFF F0F0 0820  
FFFF F0F0 0824  
FFFF F0F0 0828  
FFFF F0F0 0880  
FFFF F0F0 0884  
FFFF F0F0 0888  
90  
91  
CUR_V_FRM_RATE_CNTL  
CUR_V_MODE_CNTL  
CUR_V_FORMAT_CNTL  
ISO_CHANNEL/SPEED_CNTL  
CAMERA_POWER_CNTL  
ISO_EN_CNTL  
92  
93  
94  
95  
96  
RESERVED  
97  
ONE_SHOT_CNTL  
RESERVED  
98  
99  
RESERVED  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
112  
113  
114  
BRIGHTNESS_CNTL  
EXPOSURE_CNTL  
SHARPNESS_CNTL  
WHITE_BAL_CNTL  
RESERVED  
SATURATION_CNTL  
GAMMA_CNTL  
SHUTTER_CNTL (BACKLIGHT COMPENSATION)  
GAIN_CNTL  
IRIS_CNTL  
FOCUS_CNTL  
ZOOM_CNTL  
RESERVED  
RESERVED  
Table 37. Top-Level Memory Map: Configuration Registers  
1394 BUS  
ADDRESS  
INTERNAL  
ADDRESS  
REGISTER NAME  
FFFF F0F0 0F00  
FFFF F0F0 0F04  
FFFF F0F0 0F08  
FFFF F0F0 0F0C  
FFFF F0F0 0F10  
FFFF F0F0 0F14  
FFFF F0F0 0F18  
FFFF F0F0 0F1C  
FFFF F0F0 0F20  
FFFF F0F0 0F24  
127  
116  
117  
118  
119  
120  
121  
122  
123  
124  
EEPROM_CNFG  
TEST_CNFG  
CCD_PULSE_CNFG  
CDS_PULSE_CNFG  
AUTO_ADJ_CNFG  
DAC_OFFSET_CNFG  
CCD_OPTICS_CNFG  
STATUS_CNFG  
VIDEO_OPTIONS_CNFG  
MOTOR_POSITION_CNFG  
3.3 Register Detail  
3.3.1 1394 Memory  
The following sections define the CSR (Command and Status register) and ROM locations implemented in the  
TSB15LV01. For more information on the way 1394 CSR architectures are implemented, see section 3.1, 1394 Node  
Memory Architecture, and the 1394a specification.  
35  
3.3.1.1 Implemented Core CSRs  
The TSB15LV01 implements the following core CSRs, defined in the IEEE 1212-1991 standard (upon which the 1394  
standard is based). These are shown in Table 38.  
Table 38. Implemented Core CSRs  
Offset  
0-7  
8-15  
16-23  
24-31  
FFFF F000 0000h  
FFFF F000 0004h  
FFFF F000 0008h  
FFFF F000 000Ch  
FFFF F000 0010h  
FFFF F000 0014h  
FFFF F000 0018h  
FFFF F000 001Ch  
STATE_CLEAR  
STATE_SET  
NODE_IDS  
RESET_START  
SPLIT_TIMEOUT_HI  
SPLIT_TIMEOUT_LO  
The TSB15LV01 implements the following serial-bus-dependent CSRs, defined by the 1394 standard. These are  
shown in Table 39.  
Table 39. Serial-Bus-Dependent CSRs  
Offset  
0-7  
8-15  
16-23  
CYCLE_TIME  
24-31  
FFFF F000 0200h  
FFFF F000 0204h  
FFFF F000 0208h  
FFFF F000 020Ch  
FFFF F000 0210h  
BUSY_TIMEOUT  
3.3.1.2 Configuration ROM  
The TSB15LV01 implements Configuration ROM defined in the IEEE 1212-1991 standard, shown in Table 310.  
Table 310. Base Configuration ROM  
NAME  
Offset  
0-7  
04h  
8-15  
crc_length  
33h (3)  
16-23  
24-31  
FFFF F000 0400h  
FFFF F000 0404h  
rom_crc_value  
31h (1)  
39h (9)  
max_rec  
34h (4)  
FFFF F000 0408h 0 0 1 0  
FFFF F000 040Ch  
rsv  
FFh  
rsrv  
chip_id_hi  
Bus info block  
node_vendor_id  
FFFF F000 0410h  
chip_id_lo  
FFFF F000 0414h  
0004h  
CRC  
module_vendor_ID value  
FFFF F000 0418h  
FFFF F000 041Ch  
FFFF F000 0420h  
FFFF F000 0424h  
03h  
Root directory  
06h  
0Dh  
11h  
module_sw_version (070198h)  
Node_Unique_ID indirect_offset (000002h)  
unit_directory offset (000004h)  
Note that the last two quadlets of Table 310 are entries that point to a leaf and a directory, respectively. The leaves  
are shown in Table 311 and Table 312.  
Table 311. Node_Unique_ID Leaf  
NAME  
Offset  
0-7  
8-15  
16-23  
24-31  
FFFF F000 0428h  
FFFF F000 042Ch  
FFFF F000 0430h  
0002h  
node_vendor_ID  
chip_id_lo  
CRC  
Node_ Unique_ID leaf  
chip_id_hi  
36  
Table 312. Unit Directory  
NAME  
Offset  
0-7  
8-15  
16-23  
24-31  
FFFF F000 0434h  
FFFF F000 0438h  
FFFF F000 043Ch  
FFFF F000 0440h  
0003h  
CRC  
12h  
13h  
D4h  
unit_spec_ID (=0x00A02D)  
unit_sw_version (=0x000100)  
unit_dependent_directory offset  
Unit directory  
The last quadlet of the unit directory in Table 312 contains an offset to another directory, shown below in Table 313.  
Table 313. Unit-Dependent Directory  
NAME  
Offset  
0-7  
8-15  
16-23  
24-31  
FFFF F000 0444h  
FFFF F000 0448h  
FFFF F000 044Ch  
FFFF F000 0450h  
unit_dep_info_length  
CRC  
40h  
81h  
82h  
command_regs_base  
vendor_name_leaf  
model_name_leaf  
Unit-dependent directory  
In the unit-dependent directory, command_regs_base points to the base address of the inquiry, control, and  
configuration registers (FFFF F0F0 0000h). It is expressed in terms of quadlets, relative to the base address of initial  
register space (FFFF F000 0000h).  
Two leaves are provided that should contain ASCII strings representing the camera vendor and model names. These  
are referred to as the vendor name leaf and model name leaf. The unit-dependent directory also contains pointers  
totheseleaves. Vendor_name_leafspecifiesthenumberofquadletsfromtheaddressofthevendor_name_leafentry  
(FFFF F000 044Ch) to the address of the vendor name leaf. Model_name_leaf specifies the number of quadlets from  
the address of the model_name_leaf entry (FFFF F000 0450h) to the address of the model name leaf.  
The format of the vendor and model name leaves is shown in Table 314 and Table 315.  
Table 314. Vendor Name Leaf  
NAME  
Offset  
0-7  
8-15  
16-23  
00 0000h  
char_2  
24-31  
FFFF F000 0454h  
FFFF F000 0458h  
FFFF F000 045Ch  
FFFF F000 0460h  
leaf_length  
CRC  
00h  
Vendor name leaf  
0000 0000h  
char_0  
char_1  
char_3  
Table 315. Model Name Leaf  
NAME  
Offset  
0-7  
8-15  
16-23  
24-31  
FFFF F000 0464h  
FFFF F000 0468h  
FFFF F000 046Ch  
FFFF F000 0470h  
FFFF F000 0474h  
FFFF F000 047Ch  
FFFF F000 0480h  
FFFF F000 0480h  
leaf_length  
CRC  
00h  
00 0000h  
Model name leaf  
0000 0000h  
char_0  
char_4  
char_8  
char_1  
char_5  
char_2  
char_6  
char_3  
char_7  
Model name leaf  
char + n 3  
char_n 2  
char_n 1  
NUL  
NUL  
Notice that these leaves have length that varies according to the length of the ASCII strings. A total of 13 quadlets  
is provided for these two leaves. Because each leaf contains a three-quadlet header, seven quadlets are available  
for ASCII characters. These seven quadlets can be appropriated in any way between the two name leaves, providing  
that the directory length field in each leaf reflects the appropriation. Also, the vendor_name_leaf and  
model_name_leaf fields in the unit-dependent directory leaf must point to their appropriate leaves. This is especially  
important for the model name leaf, since its address can move depending on the length of the vendor name leaf.  
37  
3.3.2 Inquiry Registers  
The Digital Camera Specification provides for a wide variety of features a vendor can choose to implement. However,  
a compliant camera must include a series of registers that indicate exactly which of the standard features are  
supported. These inquiry registers also provide some basic information about the way in which the camera supports  
these features, such as whether an automatic control exists.  
These values are determined during camera system development and must be written to the EEPROM when  
cameras are built. TheTSB15LV01supportsthemajorityoffeaturesprovidedundertheDigitalCameraSpecification.  
Note that setting these values does not change any camera functionality. It only changes what the host perceives the  
capability of the camera to be.  
The inquiry registers have a base destination offset of FFFF F0F0 0000h. In the tables that follow, all listed offsets  
are specified in bytes, relative to this base address. Most fields serve as Boolean flags that indicate availability of the  
feature, with a 1 indicating availability. Other types of fields are marked accordingly.  
3.3.2.1 Video Format Inquiry Register  
The video format describes the format of the video information being transmitted by the TSB15LV01 across the 1394  
serial bus. The only formatsupportedbyv1.04ofthedigitalcameraspecificationisVGAnon-compresseddata, which  
has a maximum of 640 x 480 resolution. Space is reserved for future expansion to other formats.  
Table 316. Video Format Memory Map  
NAME  
OFFSET  
07  
815  
1623  
2431  
FORMAT_INQ  
100h  
Format_x  
Rsrv  
Table 317. Video Format Register Proper Values for TSB15LV01  
NAME  
OFFSET  
07  
815  
1623  
2431  
FORMAT_INQ  
100h  
1
XXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
Table 318. Video Format Field Descriptions  
FIELD NAME  
BITS  
0
DESCRIPTION  
VGA noncompressed format. (Maximum 640 x 480)  
Reserved for other formats  
Format_0  
Format_x  
Reserved  
1..7  
8..31  
Reserved (all zero)  
38  
3.3.2.2 Video Mode Inquiry Registers  
The video mode describes the type of data output by the digital camera. These modes correspond with those  
described in section 2.1.2.1, Isochronous Packet Format/Protocol.  
The base address is FFFF F0F0 0000h. All listed offsets are specified in bytes, relative to this base address. All fields  
are Boolean flags; a 1 indicates availability.  
Table 319. Video Mode Memory Map  
NAME  
OFFSET  
07  
815  
1623  
2431  
VIDEO_MODE_INQ_0  
100h  
Rsrv  
(640 × 480 VGA Format)  
VIDEO_MODE_INQ_0 184h..19Fh  
Reserved for other formats  
Table 320. Video Mode Proper Values for TSB15LV01  
NAME  
OFFSET  
07  
815  
1623  
2431  
VIDEO_MODE_INQ_0  
(640 × 480 VGA Format)  
100h  
1 1 1 1 1 1 XX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
VIDEO_MODE_INQ_0 184h..19Fh  
Table 321. Video Mode Field Descriptions  
FIELD NAME  
Mode_0  
Mode_1  
Mode_2  
Mode_3  
Mode_4  
Mode_5  
Mode_x  
BITS  
DESCRIPTION  
160 × 120 YUV(4:4:4) Mode (24 bit/pixel)  
320 × 240 YUV(4:2:2) Mode (16 bit/pixel)  
640 × 480 YUV(4:1:1) Mode (12 bit/pixel)  
640 × 480 YUV(4:2:2) Mode (16 bit/pixel)  
640 × 480 RGB Mode (24 bit/pixel)  
640 × 480 Y (Mono) Mode (8 bit/pixel)  
Reserved for other modes  
0
1
2
3
4
5
6..7  
8..31  
Reserved  
Reserved (all zero)  
3.3.2.3 Video Frame Rate Inquiry Registers  
These registers describe the availability of the various frame rates for the digital camera. A separate register is  
provided for each combination of format and mode, and this relationship is shown in Table 322.  
The base address is FFFF F0F0 0000h. All listed offsets are specified in bytes, relative to this base address. All fields  
are Boolean flags; a 1 indicates availability.  
39  
Table 322. Video Frame Rate Memory Map  
NAME  
OFFSET  
07  
815  
1623  
2431  
RATE_INQ_0  
200h  
Rsrv  
(160 × 120 YUV (4:4:4))  
RATE_INQ_1  
(320 × 240 YUV (4:2:2))  
204h  
208h  
20Ch  
Rsrv  
Rsrv  
Rsrv  
RATE_INQ_2  
(320 × 240 YUV (4:1:1))  
RATE_INQ_3  
(640 × 480 YUV (4:2:2))  
RATE_INQ_4  
(640 × 480 RGB)  
210h  
214h  
Rsrv  
Rsrv  
RATE_INQ_5  
(640 × 480 Mono)  
Table 323. Video Frame Rate Proper Values for TSB15LV01  
NAME  
OFFSET  
200h  
0-7  
1
8-15  
16-23  
24-31  
RATE_INQ_0  
RATE_INQ_1  
RATE_INQ_2  
RATE_INQ_3  
RATE_INQ_4  
RATE_INQ_5  
X
X
X
X
X
X
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
XXX  
XXX  
XXX  
XXX  
XXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
204h  
1
208h  
1
20Ch  
210h  
1
1
214h  
1
0 XX  
Table 324. Video Frame Rate Field Descriptions  
FIELD NAME  
BITS  
0
DESCRIPTION  
FrameRate_0  
FrameRate_1  
FrameRate_2  
FrameRate_3  
FrameRate_4  
FrameRate_5  
FrameRate_x  
FrameRate_y  
Reserved  
Reserved  
3.75 fps  
7.5 fps  
15 fps  
1
2
3
4
30 fps  
5
60 fps  
5..7  
6..7  
6..31  
Reserved for another frame rate  
Reserved for another frame rate  
Reserved (all zero)  
310  
3.3.2.4 Basic Function Inquiry Register  
This register describes the availability of some top-level features.  
The base address is FFFF F0F0 0000h. The listed offset is specified in bytes, relative to this base address. All fields  
are Boolean flags; a 1 indicates availability.  
Table 325. Memory Map for Basic Function Register  
NAME  
OFFSET  
07  
815  
1623  
2431  
BASIC_FUNC_INQ  
400h  
Rsrv  
Rsrv  
Table 326. Basic Function Register Proper Values for TSB15LV01  
NAME  
OFFSET  
07  
815  
1623  
2431  
0000  
BASIC_FUNC_INQ  
400h  
XXXXXXXX  
XXXXXXXX  
1 X X 1 XXXX XXXX  
Table 327. Field Descriptions for Basic Function Register  
FIELD NAME  
Reserved  
BITS  
0..15  
16  
DESCRIPTION  
Reserved  
cam_power_inq  
Reserved  
Camera process power on/off capability  
Reserved  
17..18  
19  
one_shot_inq  
Reserved  
One shot transmission capability  
Reserved  
20..27  
28..31  
memory_channel  
Maximum memory channel number (N) Memory channel number  
0 = Factory setting memory  
1 = Memory Ch 1  
2 = Memory Ch 2  
:
N = Memory Ch N  
If 0000, user memory is not available.  
311  
3.3.2.5 Feature Presence Inquiry Registers  
These registers indicate the availability of some low level features.  
The base address is FFFF F0F0 0000h. All listed offsets are specified in bytes, relative to this base address. All fields  
are Boolean flags; a 1 indicates availability.  
Table 328. Memory Map for Feature Presence Registers  
NAME  
OFFSET  
07  
815  
1623  
2431  
FEATURE_HI_INQ  
404h  
Rsrv  
FEATURE_LO_INQ  
408h  
Rsrv  
Table 329. Feature Presence Registers Proper Values for TSB15LV01  
NAME  
OFFSET  
404h  
07  
1 1 1 1 0 1 1 1 1 ? ? XXXXX  
? 0 0 XXXXX XXXXXXX  
815  
1623  
2431  
FEATURE_HI_INQ  
FEATURE_LO_INQ  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
408h  
Table 330. Field Descriptions for Feature Presence Registers  
FIELD NAME  
Brightness  
Exposure  
Sharpness  
White_Balance  
Hue  
BITS  
DESCRIPTION  
Brightness control  
0
1
Exposure control  
Sharpness control  
White Balance control  
Hue control  
2
3
4
Saturation  
Gamma  
Shutter  
5
Saturation control  
Gamma control  
6
7
Shutter control  
Gain  
8
Gain control  
Iris  
9
Iris control  
Focus  
10  
Focus control  
11..31 Reserved  
Zoom control  
Zoom  
Pan  
Tilt  
0
1
2
Pan control  
Tilt control  
3..31 Reserved  
On the TSB15LV01, the shutter register controls the backlight  
compensation feature.  
The proper setting of these bits depends on whether the designer has  
implemented focus, zoom, and iris motorized controls on the camera.  
3.3.2.6 Feature Elements Inquiry Registers  
These registers indicate the availability of features provided in the Digital Camera Specification. All registers are  
supported except hue, pan, and tilt, and this is reflected in the proper values in Table 331. (Note that pan and tilt  
features can still be supported, as described in section 2.4, Motor Control Interface).  
312  
The base address is FFFF F0F0 0000h. All listed offsets are specified in bytes, relative to this base address. All fields  
are Boolean flags; a 1 indicates availability.  
Table 331. Memory Map for Feature Elements Inquiry Registers  
NAME  
OFFSET  
07  
815  
1623  
2431  
BRIGHTNESS_INQ  
500h  
min_value  
max_value  
EXPOSURE_INQ  
SHARPNESS_INQ  
WHITE_BAL_INQ  
504h  
508h  
50Ch  
min_value  
min_value  
min_value  
max_value  
max_value  
max_value  
HUE_INQ  
510h  
514h  
min_value  
min_value  
max_value  
max_value  
SATURATION_INQ  
GAMMA_INQ  
518h  
min_value  
max_value  
SHUTTER_INQ  
51Ch  
520h  
min_value  
min_value  
max_value  
max_value  
GAIN_INQ  
IRIS_INQ  
524h  
528h  
580h  
min_value  
min_value  
min_value  
max_value  
max_value  
max_value  
FOCUS_INQ  
ZOOM_INQ  
PAN_INQ  
TILT_INQ  
584h  
588h  
min_value  
min_value  
max_value  
max_value  
On the TSB15LV01, the shutter register controls the backlight compensation feature  
The proper setting of these bits depends on whether the designer has implemented focus, zoom, and iris motorized  
mechanisms on the camera, and the individual characteristics of those mechanisms.  
313  
Table 332. Feature Elements Registers Proper Values for TSB15LV01  
NAME  
OFFSET  
500h  
504h  
508h  
50Ch  
510h  
514h  
518h  
51Ch  
520h  
524h  
528h  
580h  
584h  
588h  
0-7  
1
8-15  
16-23  
24-31  
BRIGHTNESS_INQ  
EXPOSURE_INQ  
SHARPNESS_INQ  
WHITE_BAL_INQ  
HUE_INQ  
1
1
1
1
0
1
1
1
1
?
?
?
0
0
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
XXX  
0
0
0
0
X
0
0
0
0
0
0
0
X
X
1
1
0
1
X
0
0
0
0
0
0
0
X
X
1
1
1
1
X
1
1
1
1
1
1
1
X
X
000  
000  
000  
000  
XXX  
000  
000  
000  
000  
???  
???  
???  
XXX  
XXX  
1FF  
1FF  
0FF  
0FF  
1
1
1
X
1
XXX  
0FF  
001  
007  
0FF  
???  
???  
???  
XXX  
XXX  
SATURATION_INQ  
GAMMA_INQ  
1
SHUTTER_INQ  
GAIN_INQ  
1
1
IRIS_INQ  
1
FOCUS_INQ  
1
ZOOM_INQ  
PAN_INQ  
TILT_INQ  
1
X
X
On the TSB15LV01, the shutter register controls the backlight compensation feature  
The proper setting of these bits depends on whether the designer has implemented focus, zoom, and iris motorized  
mechanisms on the camera, and the individual characteristics of those mechanisms.  
Table 333. Field Descriptions for Feature Elements Registers  
FIELD NAME  
BITS  
DESCRIPTION  
Presence  
0
1..3  
4
Presence of this feature  
Reserved  
§
Capability of reading the value of this feature  
ReadOut  
On/Off  
5
Capability of switching this feature on and off  
Auto mode (in which the feature is controlled automatically by camera)  
Manual mode (in which the feature is controlled directly by user)  
MIN Value for this feature control  
Auto  
6
Manual  
7
MIN_Value  
MAX_Value  
8..19  
20..31  
MAX Value for this feature control  
§
All control values in manual mode can be read. Values cannot be read during auto modes.  
3.3.3 Control and Configuration Registers  
These registers are used to control the digital camera, as well as allowing the host to read camera status. The control  
registers are required by the Digital Camera Specification. They control some of the basic camera operations, such  
as frame rate, output format, and video parameters. The configuration registers are unique to the TSB15LV01. They  
allow the user to configure features unique to the TSB15LV01 and fine-tune its interface with supporting components.  
As with the inquiry registers, the control and configuration registers have a base destination offset of FFFF F0F0  
0000h. In the tables that follow, all listed offsets are specified in bytes, relative to this base address.  
3.3.3.1 Control Registers  
As stated earlier, all features provided for by the digital camera specification are listed.  
314  
3.3.3.1.1 Camera Initialize Register  
This register is not used on the TSB15LV01.  
Table 334. Camera Initialize Register Memory Map  
NAME  
OFFSET  
07  
815  
1623  
2431  
INITIALIZE  
000h  
Rsrv  
Table 335. Camera Initialize Register Field Descriptions  
FIELD CODE  
BITS  
DESCRIPTION  
Rsrv  
0..31  
Reserved (all zero)  
3.3.3.1.2 Function Control Registers  
These registers control the basic functionality of the camera. The base address is FFFF F0F0 0000h. All listed offsets  
are specified in bytes, relative to this base address.  
Table 336. Memory Map for Camera Registers  
NAME  
OFFSET  
07  
815  
1623  
2431  
CUR_V_FRM_RATE_CNTL  
600h  
Rsrv  
Rsrv  
Rsrv  
CUR_V_MODE_CNTL  
604h  
608h  
CUR_V_FORMAT_CNTL  
ISO_CHANNEL/SPEED_CNTL  
60Ch  
Rsrv  
CAMERA_POWER_CNTL  
ISO_EN_CNTL  
610h  
614h  
Rsrv  
Rsrv  
RSRV  
618h  
61Ch  
Rsrv  
Rsrv  
ONE_SHOT_CNTL  
RSRV  
620h..  
624h  
Rsrv  
315  
Table 337. Field Descriptions for Camera Registers  
DESCRIPTION  
FIELD NAME  
Frame_rate  
Video_mode  
Video_format  
Iso_chnl  
BITS  
0..2  
0..2  
0..2  
0..3  
4..5  
6..7  
Current frame rate (FrameRate_0 .. FrameRate_7)  
Current video mode (Mode_0 .. Mode_7)  
Current video format (Format_0 .. Format_7)  
1394 isochronous channel number for video data transmission (0-15)  
Reserved  
Iso_speed  
1394 isochronous transmit speed code  
0 = s100  
1 = s200  
2 = s400  
Cam_power  
0
This register determines the on/off status of the TSB15LV01. It also directly controls the CAM_POWER terminal of  
the device, which can be used to control power to the CCD.  
1 = power up camera  
0 = power down camera.  
Iso_Enable  
One_shot  
0
0
1 = start isochronous transmission of video data  
0 = stop isochronous transmission of video data  
1 = only one frame of video data is transmitted. Self-cleared after transmission. Ignored if ISO_EN_CNTL (field  
iso_en) = 1.  
316  
3.3.3.1.3 Feature Control Registers  
These registers control features pertaining to video processing and motor control.  
The base address is FFFF F0F0 0000h. All listed offsets are specified in bytes, relative to this base address.  
Table 338. Memory Map for Feature Control Registers  
NAME  
OFFSET  
07  
815  
1623  
2431  
Value  
BRIGHTNESS_CNTL  
800h  
Rsrv  
Rsrv  
Rsrv  
Rsrv  
Rsrv  
EXPOSURE_CNTL  
SHARPNESS_CNTL  
WHITE_BAL_CNTL  
804h  
508h  
80Ch  
Value  
Value  
Rsrv  
U_Value  
V_Value  
RSRV  
510h  
814h  
Rsrv  
SATURATION_CNTL  
Rsrv  
Rsrv  
Rsrv  
Value  
Value  
GAMMA_CNTL  
818h  
Rsrv  
SHUTTER_CNTL  
81Ch  
820h  
Rsrv  
Rsrv  
Rsrv  
Rsrv  
Value  
Value  
GAIN_CNTL  
IRIS_CNTL  
824h  
828h  
Rsrv  
Rsrv  
Rsrv  
Rsrv  
Value  
Value  
FOCUS_CNTL  
RSRV  
82Ch..  
87CH  
Rsrv  
ZOOM_CNTL  
580h  
Rsrv  
Rsrv  
Value  
RSRV  
884h..  
8FCH  
Rsrv  
On the TSB15LV01, the shutter register controls the backlight compensation feature.  
317  
Table 339. Field Descriptions for Feature Registers  
FIELD NAME  
BITS  
DESCRIPTION  
Presence  
0
Presence of this feature should match the value in the corresponding feature control inquiry register.  
0 : Not available  
1 : Available  
Reserved  
ON_OFF  
1..5  
6
Reserved  
If this field is written to, it turns the feature on or off (1 or 0, respectively). If this field is read, it indicates the on/off  
status of the feature. (As the inquiry registers indicate, this feature is not enabled for any of the controls in the  
TSB15LV01.)  
A_M_Mode  
7
Indicates whether an automatic mode is active for this feature. Writing to this field changes the mode status.  
Reading from it indicates the mode status.  
0 : Manual  
1 : Auto  
8..19  
Reserved.  
Value  
20..31  
Value associated with the feature. If a value is written to this field while A_M_Mode indicates auto mode, this  
field is ignored. If readout capability for this feature is not available as indicated by the corresponding feature  
elements inquiry register, the value read from this address has no meaning.  
U_Value  
V_Value  
8..19  
U-Value. Target U-value for white balance. If a value is written when A_M_Mode indicates auto mode, this field  
is ignored. If readout capability for this feature is not available (see Feature Elements Inquiry Register), the  
value read from this address has no meaning.  
20..31  
V-Value. Target U-value for white balance. If a value is written when A_M_Mode indicates auto mode, this field  
is ignored. If readout capability for this feature is not available (see Feature Elements Inquiry Register), the  
value read from this address has no meaning.  
318  
3.3.3.1.4 Configuration Registers  
These registers control features and enhancements that are unique to the TSB15LV01. Most of these features have  
been addressed in prior sections of this document when applicable.  
Table 340 shows a memory map of the configuration registers. The base address is FFFF F0F0 0000h. All listed  
offsets are specified in bytes, relative to this base address.  
Table 340. Configuration Register Memory Map  
NAME  
OFFSET  
0F00h  
0F04h  
0F08h  
0
1
2
3
4
5
6
7
EEPROM_CNFG  
write_protect_control  
RSRV  
TEST_CNFG  
test_en  
CCD_PULSE_CNFG  
RSRV  
RSRV  
h2  
RSRV  
RSRV  
RSRV  
rst_rg  
srg_h1  
adclk  
CDS_PULSE_CNFG  
AUTO_ADJ_CNFG  
DAC_OFFSET_CNFG  
CCD_OPTICS_CNFG  
STATUS_CNFG  
0F0Ch  
0F10h  
0F14h  
0F18h  
0F1Ch  
RSRV  
RSRV  
RSRV  
sv  
sr  
stable  
min_gain  
expo_delta_high  
expo_delta_low  
expo_ref  
dac2_en bloom_en  
RSRV  
dac2_value  
blooming_value  
offset_level  
filter_limit  
RSRV  
filter  
h-center  
v-center  
stat_input  
stat2  
RSRV  
RSRV  
RSRV  
RSRV  
RSRV  
RSRV  
stat1  
stat0  
AFE_SETUP_CNFG  
0F20h  
0F22h  
lines_smpl  
pixels_smpl  
ccd_sel  
v_inv rb_shift  
internal_bias  
RSRV  
afe_sel  
ad_inv  
VIDEO_OPTIONS_CNFG  
h_inv  
Hz  
RSRV  
color_bw pix_shp  
319  
Table 340. Configuration Register Memory Map (Continued)  
NAME  
OFFSET  
0
1
2
3
4
5
6
7
MOTOR_POS_CNFG  
0F24h  
ir_en  
RSRV  
ir_zoom (msb)  
ir_focus (msb)  
ir_iris (msb)  
ir_zoom (lsb)  
ir_focus (lsb)  
ir_iris (lsb)  
Table 341. Field Descriptions for Configuration Registers  
REGISTER  
EEPROM_CNFG  
TEST_CNFG  
FIELD CODE  
write_protect_  
control  
BITS  
DESCRIPTION  
0..31 Write protect control code. Allows write access to EEPROM. Writing 12345678h unlocks,  
all other values lock.  
test_en  
0
Color bar test pattern. Setting this bit high enables color bar test pattern  
h2  
10..15 H2 pulse position. H2 pulse placement register.  
00h : places it at the nominal value for the chosen CCD  
3Fh : places it at maximum delay  
rst  
srg/h1  
adclk  
sv  
18..23 RST pulse position. RST pulse placement register.  
00h : places it at the nominal value for the chosen CCD  
3Fh : places it at maximum delay  
CCD_PULSE_CNFG  
26..31 SRG/H1 pulse position. SRG/H1 pulse placement register  
00h : places it at the nominal value for the chosen CCD  
3Fh : places it at maximum delay  
2..7  
ADCLK pulse position. ADCLK pulse placement register.  
00h : places it at the nominal value for the chosen CCD  
3Fh : places it at maximum delay  
18..23 SV pulse position. SV pulse placement register.  
00h : places it at the nominal value for the chosen CCD  
3Fh : places it at maximum delay  
CDS_PULSE_CNFG  
sr  
26..31 SR pulse position. SR pulse placement register.  
00h : places it at the nominal value for the chosen CCD  
3Fh : places it at maximum delay  
stable  
0..7  
Number of frames before enabling auto exposure. Gives the image time to stabilize at  
start-up to prevent oscillation.  
min_gain  
expo_delta_  
high  
8..15 Minimum gain to saturate CCD  
16..20 Speed control adjustment for auto exposure loop. Applies to frames in which the average  
luminanceis very far away from the level specified in expo_ref. As this value is increased,  
adjustments are made to gain/exposure more quickly, but setting higher than 11011b can  
lead to instability. Recommended value is 10011b.  
AUTO_ADJ_CNFG  
expo_delta_  
medium  
21..23 Speed control adjustment for auto exposure loop. Applies to frames in which the average  
luminance is deviant from the level specified in expo_ref, but not to the extent as those to  
which expo_delta_high applies. As this value is increased, adjustments are made to gain/  
exposure more quickly. Recommended value is 010b.  
expo_ref  
24..31 Autoexposure reference. Target value used in the auto-gain and -exposure feedback  
loop. This value is the average luminance of the hot region sampled for the autoexposure  
loop.  
320  
Table 341. Field Descriptions for Configuration Registers (Continued)  
REGISTER  
FIELD CODE  
BITS  
DESCRIPTION  
dac2_en  
0
DAC-2 enable. Enables output to general purpose DAC in AFE  
0 : Disabled  
1 : Enabled  
bloom_en  
1
Blooming DAC enable. Enables output to general purpose DAC in AFE, configured to  
supply blooming reference values to the CCD.  
0 : Disabled  
1 : Enabled  
DAC_OFFSET_CNFG  
dac2_value  
8..15 DAC-2 value. Output value for DAC-2 (see DAC-2 Enable, above)  
blooming_value 16..23 Blooming DAC value. Output value for Blooming DAC (see Blooming DAC Enable,  
above)  
offset_  
level  
24..31 Black offset reference. Black reference value for digital black clamping. Recommended  
value is 40h.  
filter_limit  
0..7  
Filter limit. Specifies the maximum amount of error allowed when the non-linear  
interpolation white spot compensation filter is used (see filter field).  
filter  
8..15 White spot compensation filter select. Selects between two white-spot compensation  
filters implemented in the TSB15LV01, or de-activates the filter.  
0 : Off  
1 : Median Filter  
CCD_OPTICS_CNFG  
2 : Non-linear Interpolation (requires limit value in filter_limit field, above)  
h-center  
20..23 Lens horizontal center. Indicates the horizontal position of the CCD images upper left  
corner, with respect to the left-most active pixels (does not include dummy and black  
pixels)  
v-center  
st_stat  
28..31 Lens vertical center. Indicates the vertical position of the CCD images upper left corner,  
with respect to the top-most pixels (does not include dummy and black pixels)  
5..7  
Status terminal input/output. Indicates the value being read from or written to the STAT2,  
STAT1, and STAT0 terminals, in order from MSB to LSB. If STAT2, STAT1, or STAT0 is  
configured as an output, writing to this register changes the output of that terminal.  
stat2  
stat1  
13..15 STAT2 configuration. Indicates which STAT input/output is tied to the STAT2 terminal.  
See Table 2-3-1 for corresponding values.  
STATUS_CNFG  
21..23 STAT1 configuration. Indicates which STAT input/output is tied to the STAT1 terminal.  
See Table 2-3-1 for corresponding values.  
stat0  
29..31 STAT0 configuration. Indicates which STAT input/output is tied to the STAT0 terminal.  
See Table 2-3-1 for corresponding values.  
lines_smpl  
pixels_smpl  
0..3  
Lines per image. This value is sent to the AFE to tell it the number of lines per image that  
should be sampled for black clamping.  
4..7  
Black clamp sampling. This value is sent to the AFE to tell it the number of pixels per line  
that should be sampled for black clamping.  
internal_bias  
ccd_sel  
8..11 AFE bias current. Set to 0110b.  
AFE_SETUP_CNFG  
12..14 CCD Select. Indicates the CCD being used with this device.  
0 : TI TC237 1/3 B&W sensor (if this is selected, color_bw field in  
VIDEO_OPTIONS_CNFG must be cleared also.  
1 : Sony ICX084AK 1/3 color sensor  
2 : Sony ICX098AK ¼ color sensor; Sharp LZ24BP 1/3 color sensor  
afe_sel  
15  
Always set to 1.  
321  
Table 341. Field Descriptions for Configuration Registers (Continued)  
REGISTER  
FIELD CODE  
BITS  
DESCRIPTION  
h_inv  
20  
Horizontal CCD pulse inversion. Inverts all horizontal drive pulses. Recommended value  
is 0.  
0 : No inversion  
1 : Inversion  
v_inv  
21  
22  
Vertical CCD pulse inversion. Inverts all vertical drive pulses. Recommended value is 0.  
0 : No inversion  
1 : Inversion  
rb_shft  
Red/Blue pixel shift. Indicates whether one-color pixel shift is implemented.  
Recommended value is 1.  
0 : No pixel shift  
1 : Pixel shift  
ad_inv  
Hz  
23  
24  
ADCLK Inversion. Inverts pulses from the ADCLK terminal. Recommended value is 0.  
0 : No inversion  
1 : Inversion  
VIDEO_OPTIONS_CNFG  
Integration Hz. Reduces the actual frame rate to approximately 83.3% of the one  
indicated in the CUR_V_FRM_RATE _CNTL register. For example, 30 fps becomes  
25 fps. This can be used to reduce flicker in countries using 50-Hz lighting.  
0 : No reduction  
1 : Reduction  
color_bw  
pix_shp  
30  
31  
0
Color/BW. Indicates the type of CCD being used.  
0 : Black and white CCD (TC237 only)  
1 : Color CCD (all others)  
Pixel shape. Indicates the way CCD pixel data are interpreted.  
0 : L-Shaped pixels  
1 : Square pixels  
ir_enable  
ir_zoom  
ir_focus  
ir_iris  
IR_Enable. Used internally.  
2..11 IR_Zoom. Starting position (IR sensor location) of the zoom stepper motor.  
12..21 IR_Focus. Starting position (IR sensor location) of the focus stepper motor.  
22..31 IR_Iris. Starting position (IR sensor location) of the iris stepper motor.  
MOTOR_POS_CNFG  
322  
4 Electrical Characteristics  
4.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless  
Otherwise Noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
CC  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
+ 0.5 V  
I
CC  
CC  
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
O
Input clamp current, I (V < 0 or V > V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
I
I
CC  
IK  
Output clamp current, I (V < 0 or V > V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O
O
CC  
Operating free-air temperature range (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
(Isuffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. This applies to external input and bidirectional buffers.  
2. This applies to external output and bidirectional buffers.  
4.2 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
V
Supply voltage, V  
CC  
3
0
0
3.3  
3.6  
Input voltage, V  
V
V
V
I
CC  
CC  
CC  
Output voltage, V (see Note 3)  
V
O
High-level input voltage, V  
IH  
0.7V  
V
V
CC  
0
Low-level input voltage, V  
0.3V  
V
IL  
Input transition time, t and t (10% to 90%)  
CC  
25  
0
0
ns  
f
r
No suffix  
25  
25  
25  
70  
85  
Operating free-air temperature, T  
°C  
°C  
A
Isuffix  
40  
Virtual junction temperature, T (see Note 4)  
JC  
NOTES: 3. This applies to external output buffers.  
0
115  
4. The junction temperatures listed reflect simulation conditions. The customer is responsible for verifying the junction temperature.  
41  
4.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature (Unless Otherwise Noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
= 12 mA  
0.8V  
OH  
OH  
OL  
OL  
CC  
V
V
High-level output voltage  
V
OH  
§
= 8 mA  
0.8V  
CC  
= 24 mA  
0.22V  
CC  
Low-level output voltage  
V
OL  
§
= 8 mA  
0.22V  
CC  
I
I
Low-level input current  
High-level input current  
V = V  
1  
µA  
µA  
IL  
I
IL  
V = V  
I
1
IH  
IH  
High-impedance output  
current  
I
V
O
= V or GND  
CC  
±20  
µA  
OZ  
CAMERA_POWER_CNTL  
and ISO_EN_CNTL  
activated  
22  
27  
All V  
and  
CC  
_CORE terminals  
I
Static supply current  
mA  
CC(Q)  
V
CC  
CAMERA_POWER_CNTL  
and ISO_EN_CNTL  
deactivated  
§
All typical characteristics are measured at V  
CC  
= 3.3 V and T = 2C.  
A
For ABSP_XSG, IAG_XV3, SAG_XV1, ABD_XSUB, SRG_H1, RST_RG  
For all other outputs.  
42  
5 Application Information  
A G N D  
A G N D  
D D A V  
D D A V  
/ R E S E T  
T E R F I 2 L  
T E R F I 1 L  
V D D P L L  
P L L G N D  
A G N D  
3 2  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
D D A V  
D D A V  
S M  
3 1  
3 0  
2 9  
2 8  
S E  
T E S T M  
2 7  
D V D D  
2 6  
D V D D  
2 5  
C P S  
2 4  
P L L G N D  
O
/ I S  
2 3  
P C 2  
2 2  
X 1  
X O  
D V D D  
D V D D  
D G N D  
D G N D  
P C 1  
2 1  
P C 0  
2 0  
C / L K L O N  
1 9  
D G N D  
1 8  
D G N D  
1 7  
D
P A  
V C C  
G N D  
R E S E T  
T E S T _ M O D E  
6 1  
6 2  
6 3  
6 4  
6 5  
6 6  
6 7  
6 8  
6 9  
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
7 6  
7 7  
7 8  
7 9  
8 0  
4 0  
R S T _ R G  
3 9  
S R G _ H 1  
3 8  
E E P R O M _ S C L K  
E E P R O M _ S I  
E E P R O M _ C S  
H 2  
3 7  
G N D  
3 6  
A B D _ X S U B  
3 5  
S A G _ X V 1  
3 4  
V C C  
P G 2  
E E P R O M _ S O  
X V 2  
3 3  
A B S P _ X S G  
3 2  
V C C _ C O R E  
V D D _ C A P  
V D D _ C A P  
3 1  
V C C _ C O R E  
3 0  
E N Z  
G A _ I X V 3  
2 9  
F O C U S _ M I N U S  
F O C U S _ P L U S  
I R _ S I G  
G N D  
P H A S E 2 B  
P H A S E 2 A  
P H A S E 1 B  
P H A S E 1 A  
C A M _ P O W E R  
2 8  
V C C  
2 7  
P D 0  
2 6  
P D 0  
P D 1  
P D 2  
P D 3  
P D 4  
P D 1  
2 5  
P D 2  
2 4  
P D 3  
2 3  
P D 4  
2 2  
G N D  
2 1  
51  
Sheet 2  
G A N D 5  
R B D  
/ O E  
S C K P  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
2 4  
2 3  
D A C O 2  
2 2  
R M D  
R P D  
D V D A 5  
V S S  
D V D A 1  
D A C O 1  
2 1  
A G N D 3  
2 0  
D V D A 3  
1 9  
D I G N D  
1 8  
A G N D 1  
D I V D D  
+ 3 .  
3 V  
P D 9  
P D 8  
P D 7  
P D 6  
1 7  
1 6  
1 5  
1 4  
1 3  
R / S  
V / S  
M A P / C L  
C L R E F  
D 9  
D 8  
D 7  
D 6  
3
2
V D D  
G N D  
S U B  
C S U B  
R G  
O U T  
G N D  
V L  
V O 2 B  
V O 2 A  
V O 3  
V O 1  
7
6
5
4
3
2
1
0 8  
0 9  
1 0  
1 1  
1 2  
1 3  
1 4  
H O 1  
H O 2  
1
3
52  
6 Mechanical Information  
The TSB15LV01 is packaged in a high-performance 80-pin PFC package. The following shows the mechanical  
dimensions of the PFC package.  
PFC (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
M
0,50  
60  
0,08  
0,17  
41  
40  
61  
80  
21  
0,13 NOM  
1
20  
Gage Plane  
9,50 TYP  
12,20  
SQ  
11,80  
0,25  
14,20  
SQ  
0,05 MIN  
0°ā7°  
13,80  
0,75  
0,45  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4073177/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
61  
62  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TQFP  
TQFP  
Drawing  
TSB15LV01IPFC  
TSB15LV01PFC  
ACTIVE  
ACTIVE  
PFC  
80  
80  
96  
96  
TBD  
TBD  
Call TI  
Level-3-235C-168 HR  
PFC  
CU NIPDAU Level-3-235C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF009A – OCTOBER 1994 – REVISED DECEMBER 1996  
PFC (S-PQFP-G80)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
M
0,50  
60  
0,08  
41  
40  
61  
80  
21  
0,13 NOM  
1
20  
Gage Plane  
9,50 TYP  
12,20  
SQ  
11,80  
0,25  
14,20  
SQ  
0,05 MIN  
0°7°  
13,80  
0,75  
0,45  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4073177/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  

相关型号:

TSB15LV01PFC

VIDEO SIGNAL PROCESSOR WITH IEEE 1394 LINK LAYER CONTROLLER
TI

TSB15LV01PFCG4

CAMERALYNX-High performance 1394 3.3V Camera ASIC &amp; Link Layer for PC cameras, webcams &amp; video conf. 80-TQFP 0 to 70
TI

TSB15U

TSB(480W) Series
SPSEMI

TSB16

Trans Voltage Suppressor Diode, 600W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSB16055X

Transistor
MICROSEMI

TSB16055Y

Transistor
MICROSEMI

TSB16055Z

Transistor
MICROSEMI

TSB160A

Trans Voltage Suppressor Diode, 600W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSB160C

Trans Voltage Suppressor Diode, 600W, Bidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSB1664CY

Low Frequency NPN Transistor
TSC

TSB1664CYP

Low Frequency NPN Transistor
TSC

TSB1664CYQ

Low Frequency NPN Transistor
TSC