TSB43CA42 [TI]

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution; TI iceLynx - Micro⑩器IEEE 1394a -2000消费电子解决方案
TSB43CA42
型号: TSB43CA42
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI iceLynx - Micro⑩器IEEE 1394a -2000消费电子解决方案

电子
文件: 总97页 (文件大小:1383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSB43CA43A/TSB43CB43A/TSB43CA42  
iceLynx-Micro  
IEEE 1394a-2000  
Consumer Electronics Solution  
ABBREVIATED DATA MANUAL  
SLLS546F – September 2004  
Texas Instruments Incorporated, Copyright 2004  
For more information and/or a complete data manual on this product, contact the  
Texas Instruments Product Information Center (PIC). Local PIC contact numbers  
are listed on http://www.ti.com/corp/technical_support.htm  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue any  
product or service without notice. Customers should obtain the latest relevant information before placing orders and  
should verify that such information is current and complete. All products are sold subject to Texas Instruments terms  
and conditions of sale supplied at the time of order acknowledgment.  
Texas Instruments warrants performance of its hardware products to the specifications applicable at the time of sale  
in accordance with Texas Instruments standard warranty. Testing and other quality control techniques are used to the  
extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of  
all parameters of each product is not necessarily performed.  
Texas Instruments assumes no liability for applications assistance or customer product design. Customers are  
responsible for their products and applications using Texas Instruments components. To minimize the risks  
associated with customer products and applications, customers should provide adequate design and operating  
safeguards.  
Texas Instruments does not warrant or represent that any license, either express or implied, is granted under any TI  
patent right, copyright, mask work right, or other Texas Instruments intellectual property right relating to any  
combination, machine, or process in which Texas Instruments products or services are used. Information published  
by TI regarding third-party products or services does not constitute a license from Texas Instruments to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third  
party under the patents or other intellectual property of the third party, or a license from Texas Instruments under the  
patents or other intellectual property of Texas Instruments.  
Reproduction of information in Texas Instruments data books or data sheets is permissible only if reproduction is  
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. Texas Instruments is not responsible  
or liable for such altered documentation.  
Resale of Texas Instruments products or services with statements different from or beyond the parameters stated by  
Texas Instruments for that product or service voids all express and any implied warranties for the associated Texas  
Instruments product or service and is an unfair and deceptive business practice. Texas Instruments is not responsible  
or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Amplifiers  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
Audio  
www.ti.com/audio  
Data Converters  
DSP  
Interface  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
power.ti.com  
microcontroller.ti.com  
Optical Networking  
Security  
Telephony  
Video and Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2004, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
2
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table of Contents  
1
Hardware IC Characteristics..................................................................................................................8  
1.1  
Feature List................................................................................................................................... 8  
1394 Features .........................................................................................................................8  
DTLA Encryption Support for MPEG2-DVB, DSS, DV, and Audio (TSB43CA43A and  
1.1.1  
1.1.2  
TSB43CA42 Only)...................................................................................................................8  
High Speed Data Interface (HSDI)..........................................................................................9  
External CPU Interface............................................................................................................9  
Internal ARM7..........................................................................................................................9  
Data Buffers.............................................................................................................................9  
Hardware Packet Formatting for the Following Standards .....................................................9  
Additional Features .................................................................................................................9  
Application Diagram.................................................................................................................... 10  
Block Diagram............................................................................................................................. 11  
TSB43Cx43A Block Diagram ................................................................................................11  
TSB43CA42 Block Diagram..................................................................................................12  
Pin Out........................................................................................................................................ 13  
TSB43CA43A/TSB43CB43A Plastic Quad Flat Pack (PQFP)..............................................13  
TSB43CA43A/TSB43CB43A Micro-Star Ball Grid Array (µ*BGA)........................................14  
TSB43CA42 Plastic Quad Flat Pack (PQFP)........................................................................15  
TSB43CA42 Micro-Star Ball Grid Array (µ*BGA)..................................................................16  
Pin Description............................................................................................................................ 17  
Memory Map............................................................................................................................... 26  
DTCP Encryption – Hardware Implementation (TSB43CA43A and TSB43CA42 Only)............ 27  
Program Memory ........................................................................................................................ 27  
Overview/Description ............................................................................................................27  
External CPU (Parallel Mode) ...............................................................................................27  
External CPU Interface............................................................................................................... 27  
Overview/Description ............................................................................................................27  
Endian Setting (Parallel and Memory Accesses)..................................................................29  
Ex-CPU Access.....................................................................................................................30  
Ex-CPU Timing......................................................................................................................33  
LEB Encryption......................................................................................................................52  
Integrated CPU ........................................................................................................................... 53  
1.1.3  
1.1.4  
1.1.5  
1.1.6  
1.1.7  
1.1.8  
1.2  
1.3  
1.3.1  
1.3.2  
1.4  
1.4.1  
1.4.2  
1.4.3  
1.4.4  
1.5  
1.6  
1.7  
1.8  
1.8.1  
1.8.2  
1.9  
1.9.1  
1.9.2  
1.9.3  
1.9.4  
1.9.5  
1.10  
1.10.1 Description/Overview ............................................................................................................53  
1.10.2 Interaction With External CPU...............................................................................................53  
1.10.3 External Interrupts.................................................................................................................53  
1.10.4 Timer .....................................................................................................................................54  
1.11  
High Speed Data Interface ......................................................................................................... 54  
1.11.1 Overview/Description ............................................................................................................54  
1.11.2 Frame Sync Detection Circuit................................................................................................56  
1.11.3 HSDI Pass-Through Function ...............................................................................................56  
1.11.4 HSDI Maximum Clock Rates and Throughput ......................................................................57  
1.11.5 HSDI Mode Settings..............................................................................................................57  
1.11.6 HSDI Transmit Modes...........................................................................................................59  
1.11.7 HSDI Receive Modes............................................................................................................62  
1.11.8 Audio Interface on HSDI........................................................................................................66  
1.12  
UART Interface ........................................................................................................................... 70  
1.12.1 UART Registers.....................................................................................................................70  
1.12.2 UART Baud Rate...................................................................................................................71  
1.13  
1.14  
JTAG – Boundary Scan and ARM.............................................................................................. 72  
Integrated 3-Port PHY ................................................................................................................ 72  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
3
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.14.1 3-Port PHY ............................................................................................................................72  
1.14.2 PHY Registers.......................................................................................................................72  
1.14.3 Port Status Page Register.....................................................................................................75  
1.14.4 Vendor Identification Page Register......................................................................................77  
1.14.5 PHY Application Information .................................................................................................77  
1.14.6 PHY Reference Documents ..................................................................................................79  
1.15  
Power Management.................................................................................................................... 79  
1.15.1 PU to A (Power-Up State to Active State).............................................................................81  
1.15.2 A to LP1 (Active State to Low Power 1 State).......................................................................81  
1.15.3 LP1 to A (Low Power 1 State to Active State).......................................................................81  
1.15.4 A to LP2 (Active State to Low Power 2 State).......................................................................81  
1.15.5 LP2 to A (Low Power 2 State to Active State).......................................................................82  
1.15.6 A to LP4 (Low Power 3 State to Active State).......................................................................82  
1.15.7 LP4 to A (Low Power 3 State to Active State).......................................................................82  
1.16  
16.5K Byte Memory - FIFO......................................................................................................... 83  
1.16.1 Overview/Description ............................................................................................................83  
1.16.2 Isochronous FIFOs 0 and 1...................................................................................................83  
1.16.3 Asynchronous/Asynchronous Stream FIFOs........................................................................84  
1.16.4 Broadcast Receive FIFO.......................................................................................................85  
1.16.5 FIFO Priority ..........................................................................................................................85  
1.16.6 FIFO Monitoring.....................................................................................................................85  
1.17  
GPIO Configurations................................................................................................................... 86  
1.17.1 GPIO Setup ...........................................................................................................................86  
1.18  
IEEE 1394a-2000 Requirements................................................................................................ 86  
1.18.1 Features ................................................................................................................................86  
1.18.2 Cycle Master..........................................................................................................................87  
Appendix A: Configuration Registers...................................................................................................88  
2
2.1  
Configuration Registers .............................................................................................................. 88  
Description Notes........................................................................................................................ 88  
CFR Address Ranges (Offset from CFR Base Address)............................................................ 88  
Register Access.......................................................................................................................... 89  
2.2  
2.3  
2.4  
3
4
General Information .............................................................................................................................90  
3.1  
Package Size.............................................................................................................................. 90  
Operating Voltage....................................................................................................................... 90  
Operating Temperature .............................................................................................................. 90  
3.2  
3.3  
Absolute Maximum Ratings Over Operating Temperature Ranges..................................................90  
4.1  
Recommended Operating Conditions (Analog IEEE 1394 I/F) .................................................. 91  
Electrical Characteristics Over Recommended Operating Conditions  
4.2  
4.3  
(Unless Otherwise Noted)........................................................................................................... 92  
Electrical Characteristics Over Recommended Ranges of Operating Conditions  
(Unless Otherwise Noted)........................................................................................................... 92  
Device....................................................................................................................................92  
Driver.....................................................................................................................................92  
Receiver ................................................................................................................................93  
Thermal Characteristics.............................................................................................................. 93  
Switching Characteristics for PHY Port Interface ....................................................................... 93  
Operating, Timing, and Switching Characteristics of XI ............................................................. 93  
4.3.1  
4.3.2  
4.3.3  
4.4  
4.5  
4.6  
5
6
7
Reset Power States .............................................................................................................................94  
Configuration Register Map.................................................................................................................94  
Mechanical Data ..................................................................................................................................95  
7.1  
PQFP Package Information........................................................................................................ 95  
µ*BGA Package Dimensions...................................................................................................... 96  
ZGW Package Dimensions......................................................................................................... 97  
7.2  
7.3  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
4
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
List Of Figures  
Figure 1. TSB43Cx43 Typical Application ..................................................................................................10  
Figure 2. TSB43Cx43 System Block Diagram............................................................................................11  
Figure 3. TSB43CA42 System Block Diagram ...........................................................................................12  
Figure 4. TSB43CA43A Plastic QFP Pin Out .............................................................................................13  
Figure 5. TSB43CA43A µ*BGA Pin Out .....................................................................................................14  
Figure 6. TSB43CA42 Plastic QFP Pin Out................................................................................................15  
Figure 7. TSB43CA42 µ*BGA Pin Out........................................................................................................16  
Figure 8. TSB43Cx43 Memory Map ...........................................................................................................26  
Figure 9. Ex-CPU Access ...........................................................................................................................30  
Figure 10. I/O Type-0 68K + Wait Read .....................................................................................................33  
Figure 11. I/O Type-0 68K + Wait Write......................................................................................................35  
Figure 12. I/O Type-1 SH3 Read ................................................................................................................37  
Figure 13. I/O Type-1 SH3 Write ................................................................................................................39  
Figure 14. I/O Type-2 M16C SRAM-Like + Wait Read...............................................................................41  
Figure 15. I/O Type-2 M16C SRAM-Like + Wait Write ...............................................................................43  
Figure 16. I/O Type-3 MPC850 Read .........................................................................................................45  
Figure 17. I/O Type-3 MPC850 Write .........................................................................................................47  
Figure 18. Memory Type.............................................................................................................................49  
Figure 19. Memory Write.............................................................................................................................51  
Figure 20. Watchdog Timer Waveform.......................................................................................................54  
Figure 21. Example for Data Pass-Through Function ................................................................................57  
Figure 22. MPEG2 Serial Burst I/F (TX Mode 1) ........................................................................................59  
Figure 23. MPEG2 Serial Video Burst I/F With Frame Sync Detect Circuit (TX Mode 2)...........................60  
Figure 24. MPEG2 Serial Video Burst I/F Clock Active Only When Data Is Valid (TX Mode 3).................60  
Figure 25. MPEG2 Serial Video Burst I/F With Data Valid (TX Mode 4)....................................................60  
Figure 26. MPEG2 Parallel Burst Video I/F (TX Mode 5) ...........................................................................61  
Figure 27. MEPG2 Parallel Video Burst I/F With Frame Sync Detect Circuit (TX Mode 6)........................61  
Figure 28. MPEG2 Parallel Video Burst I/F With Data Valid (TX Mode 7) .................................................61  
Figure 29. MPEG2 I/F (TX Mode 8)............................................................................................................62  
Figure 30. DV I/F (TX Mode 9)....................................................................................................................62  
Figure 31. MPEG2 Serial Burst Video I/F (RX Mode 1)..............................................................................63  
Figure 32. MPEG2 Parallel Burst Video I/F (RX Mode 2)...........................................................................63  
Figure 33. MPEG2 Parallel Burst Video I/F (RX Mode 3)...........................................................................63  
Figure 34. DV Parallel Burst Video I/F (RX Mode 4) ..................................................................................64  
Figure 35. Transmit HSDI AC Timing .........................................................................................................64  
Figure 36. Receive HSDI AC Timing ..........................................................................................................65  
Figure 37. Example 1 Sampling Frequency (fs): 192 kHz, Master Clock Frequency: 256fs......................68  
Figure 38. Example 2 Sample Frequency (fs): 48 kHz, Master Clock Frequency: 768fs...........................68  
Figure 39. AC Timing Characteristic on Receiving.....................................................................................69  
Figure 40. AC Timing Characteristic on Transmitting.................................................................................69  
Figure 41. TPBP and TPBN Connection.....................................................................................................77  
Figure 42. TPAP, TPAN, and TPBIAS Connection.....................................................................................78  
Figure 43. R0 and R1 Connection ..............................................................................................................78  
Figure 44. FILTER0 and FILTER1 Connection...........................................................................................78  
Figure 45. TPB, TPA, and TPBIAS Connection for Terminated Port (Port is not used).............................79  
Figure 46. Isochronous FIFOs ....................................................................................................................84  
Figure 47. Asynchronous/ Asynchronous Stream FIFOs ...........................................................................84  
Figure 48. Broadcast Receive FIFO ...........................................................................................................85  
Figure 49. Test Load Diagram ....................................................................................................................93  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
5
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
List Of Tables  
Table 1. External CPU MCIF Pin Assignment Modes ................................................................................28  
Table 2. Ex-CPU I/F Signals .......................................................................................................................29  
Table 3. Ex-CPU Access Limitation............................................................................................................32  
Table 4. I/O Type-0 68K + Wait Read MCIF AC-Timing Parameters.........................................................34  
Table 5. I/O Type-0 68K + Wait Write MCIF AC Timing Parameters .........................................................36  
Table 6. I/O Type-1 SH3 Critical Timing (Read) .........................................................................................38  
Table 7. I/O Type-1 SH3 AC Timing (Write) ...............................................................................................40  
Table 8. I/O Type-2 M16C SRAM-Like + Wait AC Timing Parameters (Read)..........................................42  
Table 9. I/O Type-2 M16C SRAM-Like + Wait AC Timing Parameters (Write) ..........................................44  
Table 10. I/O Type-3 MPC850 Read AC Timing Parameters.....................................................................46  
Table 11. I/O Type-3 MPC850 Write AC Timing Parameters.....................................................................48  
Table 12. Memory Type Read AC Timing Parameters...............................................................................50  
Table 13. Memory Type Write AC Timing Parameters...............................................................................52  
Table 14. Ex-CPU Encryption First Quadlet ...............................................................................................52  
Table 15. Ex-CPU Encryption Reference ...................................................................................................53  
Table 16. HSDI Signals...............................................................................................................................55  
Table 17. Application Counter Values.........................................................................................................56  
Table 18. HSDI Pass-Through Function.....................................................................................................57  
Table 19. HSDI Maximum Clock Rates and Throughput............................................................................57  
Table 20. General HSDI Mode Settings......................................................................................................58  
Table 21. HSDI Video Modes .....................................................................................................................59  
Table 22. AC Timing Parameters for Serial I/F (Modes 1 and 4)................................................................64  
Table 23. AC Timing Parameters for Serial I/F (Modes 2 and 3)................................................................64  
Table 24. AC Timing Parameters for Parallel I/F (Modes 5, 6, and 7)........................................................65  
Table 25. AC Timing Parameters for Parallel I/F (Modes 8 and 9).............................................................65  
Table 26. AC Timing Parameters for Serial I/F (Mode 1) ...........................................................................65  
Table 27. AC Timing Parameters for Parallel I/F (Mode 2).........................................................................65  
Table 28. AC Timing Parameters for Parallel I/F (Modes 3 and 4).............................................................66  
Table 29. HSDI0 DVD Audio Signals..........................................................................................................66  
Table 30. HSDI1 DVD-Audio Signals..........................................................................................................66  
Table 31. AC Timing Parameters................................................................................................................68  
Table 32. AC Timing Parameters................................................................................................................69  
Table 33. AC Timing Parameters................................................................................................................70  
Table 34. UART CFR Address Offsets .......................................................................................................70  
Table 35. UART Registers ..........................................................................................................................71  
Table 36. PHY Access Register..................................................................................................................72  
Table 37. Base Register Configuration.......................................................................................................73  
Table 38. Base Register Field Descriptions................................................................................................73  
Table 39. Page 0 (Port Status) Register Configuration ..............................................................................76  
Table 40. Page 0 (Port Status) Register Field Descriptions .......................................................................76  
Table 41. Page 1 (Vendor ID) Register Configuration................................................................................77  
Table 42. Page 1 (Vendor ID) Register Field Descriptions.........................................................................77  
Table 43. Power State Summary................................................................................................................79  
Table 44. I/O Pin and CFR Descriptions for Controlling Power Management States.................................82  
Table 45. FIFO Monitoring Bits...................................................................................................................85  
Table 46. Summary of GPIO Use ...............................................................................................................86  
Table 47. CFR Address Ranges.................................................................................................................88  
Table 48. Pin State During Power On Reset, Just After Power On Reset and DISABLE_IFn=L...............94  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
6
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
References  
The following sources of information were used in the generation of this document:  
‰
‰
‰
‰
‰
IEEE Standard for a High Performance Serial Bus, IEEE Standard 1394-1995  
IEEE 1394a-2000 Serial Bus Supplement  
Digital Interface for consumer audio/video equipment, IEC Document 61883  
Home Digital Network Interface Specification, Revision 1.1  
5C Digital Transmission Content Protection Specification  
Acronyms  
The acronyms used in this document are defined below.  
5C  
Five Company (Intel, Sony, Matsushita, Hitachi, Toshiba)  
CFR  
DSS  
DV  
Configuration Register  
Direct Satellite System  
Digital Video  
DVB  
Digital Video Broadcasting  
DVD  
HSDI  
IEC  
Digital Versatile Disc  
High Speed Data Interface  
International Electrotechnical Commission  
Institute of Electronics and Electrical Engineers  
Internet Protocol  
IEEE  
IP  
MPEG  
Motion Pictures Experts Group  
Device Ordering Information  
Ordering Number  
TSB43CA43APGF  
TSB43CB43APGF  
TSB43CA43AGGW  
TSB43CB43AIGGW  
TSB43CA43AZGW  
TSB43CA42PGF  
Name  
Package  
iceM 5C  
PQFP 176  
iceM non-5C  
PQFP 176  
µ *BGA 176  
µ *BGA 176  
µ *BGA 176  
PQFP 176  
µ *BGA 176  
µ *BGA 176  
iceM 5C  
iceM non-5C, I temperature  
iceM 5C  
iceM 5C (2 Port)  
iceM 5C (2 Port)  
iceM 5C (2 Port)  
TSB43CA42GGW  
TSB43CA42ZGW  
The ZGW package is similar to the GGW package with the added benefits of lead-free balls and the use  
of environmentally-friendly (green) mold compound.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
7
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1
Hardware IC Characteristics  
iceLynx-Micro Overview  
The iceLynx-Micro (consumer electronics link with integrated microcontroller and physical layer (PHY)) is  
a high performance 1394 link-layer device designed as a total solution for digitally interfacing advanced  
audio/video consumer electronics applications. The device is offered in both  
a
DTCP  
encryption/decryption version (TSB43CA43A and TSB43CA42) and a non-DTCP encryption/decryption  
version (TSB43CB43).  
In addition to supporting transmit and receive of MPEG2 and DSS formatted transport streams with  
encryption and decryption, the iceLynx-Micro supports the IEC 61883-6 and audio music protocol  
standards for audio format and packetizing and asynchronous and asynchronous stream (as defined by  
1394).  
The device also features an embedded ARM7TDMI microprocessor core with access to 256K bytes of  
internal program memory. The ARM7 is embedded to process 1394 specific transactions, thus  
significantly reducing the processing power required by the host CPU and the development time required  
by the user. The ARM7 is accessed from the 16/1-bit host CPU interface, from a UART communication  
port, or from a JTAG debug port.  
The iceLynx-Micro integrated 3-port PHY allows the user enhanced flexibility as two additional devices  
can be utilized in a system application. The PHY’s speeds are capable of running at 100 Mbps,  
200 Mbps, or 400 Mbps. The PHY follows all requirements as stated in the IEEE 1394-1995 and IEEE  
1394a-2000 standards.  
The TSB43CA43A and TSB43CA42 version of iceLynx-Micro incorporates two M6 baseline ciphers (one  
per HSDI port) per the 5C specification to support transmit and receive of MPEG2 formatted transport  
streams with encryption and decryption. The TSB43CB43 version of iceLynx-Micro is identical to the  
TSB43CA43A without implementation of the encryption/decryption features. The TSB43CB43 device  
allows customers that do not require the encryption/decryption features to incorporate iceLynx-Micro  
without becoming DTLA licensees. Both devices support the IEC 61883-6 and audio music protocol  
standards for audio format and packetizing.  
1.1 Feature List  
1.1.1 1394 Features  
‰
‰
‰
‰
Integrated 400 Mbps 3-port PHY  
Compliant with IEEE 1394-1995 and IEEE 1394a-2000 standards  
Supports bus manager functions and automatic 1394 self-ID verification.  
Separate Async Ack FIFO decreases the ack-tracking burden on in-CPU and ex-CPU  
1.1.2 DTLA Encryption Support for MPEG2-DVB, DSS, DV, and Audio (TSB43CA43A and  
TSB43CA42 Only)  
‰
Two M6 baseline ciphers (one per HSDI port)  
Content key generation from exchange key  
‰
AKE acceleration features in hardware  
Random Number Generator  
Secure Hash Algorithm, Revision 1 (SHA-1)  
‰
Other AKE acceleration features  
Elliptical curve digital signature algorithm (EC-DCA) both signature and verification  
Elliptical curve Diffie-Hellman (EC-DH), first phase value and shared secret calculation  
160-bit math functions  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
8
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.1.3 High Speed Data Interface (HSDI)  
Two configurable high speed data interfaces support the following audio and video modes:  
‰
‰
‰
‰
‰
‰
MPEG2-DVB interface  
MPEG2-DSS interface  
DV codec interface  
IEC60958 interface  
Audio DAC interface  
SACD interface  
1.1.4 External CPU Interface  
‰
‰
‰
16-bit parallel asynchronous I/O-type  
16-bit parallel synchronous I/O-type  
16-bit parallel synchronous memory type  
1.1.5 Internal ARM7  
‰
‰
‰
‰
‰
50-MHz operating frequency  
32-bit and thumb (16-bit) mode support  
UART included for communication  
256K bytes of program memory included on chip  
ARM JTAG included for software debug  
1.1.6 Data Buffers  
‰
‰
Large 16.5K byte total FIFO  
Programmable data/space available indicators for buffer flow control  
1.1.7 Hardware Packet Formatting for the Following Standards  
‰
‰
‰
‰
‰
‰
DVB MPEG2 transport stream (IEC61883-4)  
DSS MPEG2 transport stream per standard  
DV Stream (IEC 61883-2) SD-DV  
Audio over 1394 (IEC 61883-6)  
Audio Music Protocol (version 1.0 and enhancements)  
Asynchronous and asynchronous stream (as defined by IEEE 1394)  
1.1.8 Additional Features  
‰
‰
‰
‰
‰
‰
PID filtering for transmit function (up to 16 separate PIDs per HSDI)  
Packet insertion – two insertion buffers per HSDI  
11 general-purpose inputs/outputs (GPIOs)  
Interrupt driven to minimize CPU polling.  
Single 3.3-V supply  
JTAG interface to support post-assembly scan of device I/O – boundary scan  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
9
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.2 Application Diagram  
Cable  
Broadcast  
OR  
Digital TV  
Digital Set Top Box /  
HDTV Receiver /  
Satellite Receiver  
Decrypt  
Encrypt  
MPEG2  
TSB43Cx43  
MPEG2  
Demux  
TSB43Cx43  
Decoder  
E
n
c
r
e
n
c
r
Copy Protected 1394 =  
d
e
c
r
e
d
e
c
r
n
c
r
y
p
t
y
p
t
y
p
t
TSB43Cx43  
TSB43Cx43  
TSB43Cx43  
y
p
t
y
p
t
AV Receiver  
DVD  
D-VHS/PVR  
Figure 1. TSB43Cx43 Typical Application  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
10  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.3 Block Diagram  
1.3.1 TSB43Cx43A Block Diagram  
8
MPEG2 DVB  
ISO  
OR  
8
HSDI 0  
HSDI 0  
CFRs  
MPEG2 DSS  
FIFO  
4KB  
OR  
8
M6  
ISO  
DIGITAL VIDEO (DV)  
CIPHER  
PORT  
OR  
PCM-AUDIO  
OR  
1394a-2000  
1394a-2000  
1394  
BUS  
S400  
H / W  
AKE  
IEC60958 (S/PDIF)  
LINK LAYER  
CORE  
3-PORT  
PHY CORE  
8
8
8
MPEG2 DVB  
M6  
OR  
ISO  
HSDI 1  
FIFO  
CIPHER  
MPEG2 DSS  
HSDI 1  
PACKETIZER  
OR  
DIGITAL VIDEO (DV)  
OR  
ISO  
4KB  
PORT  
SUPER AUDIO CD  
OR  
BCAST  
AUDIO  
RX  
ASYNC  
TX 0 FIFO RX 0 FIFO TX 1 FIFO RX 1 FIFO  
2KB 2KB 2KB 2KB  
ASYNC  
ASYNC  
ASYNC  
IEC60958 (S/PDIF)  
OR  
RX  
FIFO  
512 B  
SYT PLL  
PCM-AUDIO  
CONFIGURATION REGISTERS (CFRs)  
L
E
B
256KB RAM  
UART  
TIMER 0  
TIMER 1  
MONITOR  
16  
PROGRAM  
MEMORY  
DATA  
EXT.  
MCU  
I/F  
AND  
10  
20  
ADDRESS  
CONTROL  
COMM  
MEMORY  
1KB  
1KB  
WDOG /  
TIMER 2  
SHARED RAM  
11  
ARM7TDMI  
RISC  
GP I/O  
CFRs  
JTAG  
PORT  
ARM  
CORE  
DEBUGGER  
† LEB is an acronym for local encryption block (Note: only included in the TSB43CA43)  
Figure 2. TSB43Cx43 System Block Diagram  
Note: The M6 Cipher is only included in the TSB43CA43.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
11  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.3.2 TSB43CA42 Block Diagram  
8
MPEG2 DVB  
ISO  
OR  
8
HSDI 0  
HSDI 0  
CFRs  
MPEG2 DSS  
FIFO  
4KB  
OR  
8
M6  
ISO  
DIGITAL VIDEO (DV)  
CIPHER  
PORT  
OR  
PCM-AUDIO  
OR  
1394a-2000  
S400  
1394  
BUS  
1394a-2000  
LINK LAYER  
CORE  
H / W  
AKE  
IEC60958 (S/PDIF)  
2-PORT  
PHY CORE  
8
8
8
MPEG2 DVB  
M6  
OR  
ISO  
HSDI 1  
FIFO  
CIPHER  
MPEG2 DSS  
HSDI 1  
PACKETIZER  
OR  
DIGITAL VIDEO (DV)  
OR  
ISO  
4KB  
PORT  
SUPER AUDIO CD  
OR  
BCAST  
AUDIO  
RX  
ASYNC  
TX 0 FIFO RX 0 FIFO TX 1 FIFO RX 1 FIFO  
2KB 2KB 2KB 2KB  
ASYNC  
ASYNC  
ASYNC  
IEC60958 (S/PDIF)  
OR  
RX  
FIFO  
512 B  
SYT PLL  
PCM-AUDIO  
CONFIGURATION REGISTERS (CFRs)  
L
E
B
256KB RAM  
UART  
TIMER 0  
TIMER 1  
MONITOR  
16  
PROGRAM  
MEMORY  
DATA  
EXT.  
MCU  
I/F  
AND  
10  
20  
ADDRESS  
CONTROL  
COMM  
MEMORY  
1KB  
1KB  
WDOG /  
TIMER 2  
SHARED RAM  
11  
ARM7TDMI  
RISC  
GP I/O  
CFRs  
JTAG  
PORT  
ARM  
CORE  
DEBUGGER  
† LEB is an acronym for local encryption block (Note: only included in the TSB43CA42)  
Figure 3. TSB43CA42 System Block Diagram  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
12  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.4 Pin Out  
1.4.1 TSB43CA43A/TSB43CB43A Plastic Quad Flat Pack (PQFP)  
3.3v  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
Vss  
2
MCIF_ENDIAN  
TEST_MODE0  
3
Vss  
Vdd  
TEST_MODE1  
4
Vdd  
5
MCIF_ADDR10  
MCIF_ADDR9  
MCIF_ADDR8  
MCIF_ADDR7  
MCIF_ADDR6  
MCIF_ADDR5  
MCIF_ADDR4  
MCIF_ADDR3  
MCIF_ADDR2  
MCIF_ADDR1  
MCIF_DATA15  
MCIF_DATA14  
Vss  
VCO_CLK  
6
REF_SYT  
7
DIV_VCO  
8
PLL_TEST  
9
MLPCM_BCLK  
10  
MLPCM_LRCLK  
11  
MLPCM_D0  
12  
MLPCM_D1  
13  
MLPCM_D2  
14  
MLPCM_A  
15  
GPIO2  
16  
GPIO3  
17  
TSB43CA43  
GPIO4  
18  
Vdd  
GPIO5  
19  
REG_OUT1  
MCIF_DATA13  
MCIF_DATA12  
MCIF_DATA11  
MCIF_DATA10  
MCIF_DATA9  
MCIF_DATA8  
MCIF_DATA7  
MCIF_DATA6  
MCIF_DATA5  
MCIF_DATA4  
MCIF_DATA3  
MCIF_DATA2  
Vss  
MSPCTL  
20  
Vdd  
(iceLynx-Micro)  
21  
Vss  
22  
CPS  
23  
AVdd  
24  
AGND  
25  
TPB0_N  
26  
TPB0_P  
27  
AGND  
INTEGRATED  
28  
AVdd  
29  
TPA0_N  
30  
TPA0_P  
31  
LLC / PHY  
TPBIAS0  
32  
AVdd  
33  
Vdd  
TPB1_N  
34  
MCIF_DATA1  
MCIF_DATA0  
MCIF_BUSCLKz  
MCIF_WEz  
TPB1_P  
Plastic QFP  
35  
98  
AGND  
36  
97  
TPA1_N  
37  
96  
TPA1_P  
38  
MCIF_OEz  
95  
TPBIAS1  
39  
MCIF_ACKz  
MCIF_WAITz  
MCIF_STRBz  
MCIF_R_nWz  
MCIF_CS_MEMz  
MCIF_CS_IOz  
MCIF_INTz  
94  
TPB2_N  
40  
93  
TPB2_P  
41  
92  
AVdd  
42  
91  
TPA2_N  
43  
90  
TPA2_P  
44  
89  
TPBIAS2  
Figure 4. TSB43CA43A Plastic QFP Pin Out  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
13  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.4.2 TSB43CA43A/TSB43CB43A Micro-Star Ball Grid Array (µ*BGA)  
3.3v  
A2  
R1  
Vss  
A3  
TPA2_N  
P17  
P16  
P15  
P11  
P10  
P9  
HSDI1_60958_OUT  
A4  
MCIF_WAITz  
MCIF_STRBz  
MCIF_R_nWz  
Vss  
HSDI1_AUDIO_ERR  
A5  
HSDI1_D7  
A6  
HSDI1_D4  
A7  
Vdd  
A8  
GPIO8  
HSDI1_DVALIDz  
A9  
GPIO1  
P8  
HSDI1_CLKz  
A10  
HPS  
P7  
HSDI0_D4  
A11  
TEST_MODE2  
AVdd  
P3  
HSDI0_D3  
A12  
P2  
HSDI0_D1  
A13  
TPB2_P  
P1  
HSDI0_SYNCz  
A14  
TPB2_N  
N17  
N16  
N15  
N3  
HSDI0_CLKz  
A15  
MCIF_WEz  
MCIF_OEz  
MCIF_ACKz  
TPBIAS1  
MCIF_MODE2  
A16  
MCIF_MODE0  
B1  
Vss  
B3  
N2  
TSB43CA43  
Vdd  
B4  
TPA1_P  
N1  
HSDI1_AUDIO_MUTE  
B5  
TPA1_N  
M17  
M16  
M15  
M3  
M2  
M1  
L17  
L16  
L15  
L14  
L4  
HSDI1_AMCLK_IN  
B6  
MCIF_DATA1  
MCIF_DATA0  
MCIF_BUSCLKz  
AGND  
HSDI1_D5  
(iceLynx-Micro)  
B7  
Vss  
B8  
HSDI1_D0  
B9  
HSDI1_SYNCz  
B10  
TPB1_P  
HSDI0_D7  
B11  
TPB1_N  
HSDI0_D2  
B12  
MCIF_DATA3  
MCIF_DATA2  
Vss  
HSDI0_D0  
B13  
HSDI0_AVz  
INTEGRATED  
B14  
HSDI0_AMCLK_IN  
B15  
Vdd  
MCIF_MODE1  
B17  
AVdd  
L3  
MCIF_ENDIAN  
TPBIAS0  
C1  
L2  
LLC / PHY  
TEST_MODE1  
C2  
TPA0_P  
L1  
TEST_MODE0  
C4  
TPA0_N  
K17  
K16  
K15  
K14  
K4  
HSDI1_60958_IN  
C5  
MCIF_DATA4  
MCIF_DATA7  
MCIF_DATA6  
MCIF_DATA5  
AGND  
HSDI1_AMCLK_OUT  
µ*BGA  
C6  
HSDI1_D6  
C7  
HSDI1_D2  
C8  
REG_OUT2  
C9  
K3  
HSDI1_AVz  
C10  
AVdd  
K2  
HSDI0_D6  
TPB0_P  
C11  
K1  
Vss  
TPB0_N  
C12  
J17  
J16  
J15  
J14  
HSDI0_DVALIDz  
C13  
MCIF_DATA8  
MCIF_DATA11  
MCIF_DATA10  
MCIF_DATA9  
HSDI0_ENz  
C14  
HSDI0_60958_IN  
C16  
Vss  
Figure 5. TSB43CA43A µ*BGA Pin Out  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
14  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.4.3 TSB43CA42 Plastic Quad Flat Pack (PQFP)  
3.3v  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
Vss  
2
MCIF_ENDIAN  
TEST_MODE0  
3
Vss  
Vdd  
TEST_MODE1  
4
Vdd  
5
MCIF_ADDR10  
MCIF_ADDR9  
MCIF_ADDR8  
MCIF_ADDR7  
MCIF_ADDR6  
MCIF_ADDR5  
MCIF_ADDR4  
MCIF_ADDR3  
MCIF_ADDR2  
MCIF_ADDR1  
MCIF_DATA15  
MCIF_DATA14  
Vss  
VCO_CLK  
6
REF_SYT  
7
DIV_VCO  
8
PLL_TEST  
9
MLPCM_BCLK  
10  
MLPCM_LRCLK  
11  
MLPCM_D0  
12  
MLPCM_D1  
13  
MLPCM_D2  
14  
MLPCM_A  
15  
GPIO2  
16  
GPIO3  
17  
TSB43CA42  
GPIO4  
GPIO5  
MSPCTL  
Vdd  
Vdd  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
REG_OUT1  
MCIF_DATA13  
MCIF_DATA12  
MCIF_DATA11  
MCIF_DATA10  
MCIF_DATA9  
MCIF_DATA8  
MCIF_DATA7  
MCIF_DATA6  
MCIF_DATA5  
MCIF_DATA4  
MCIF_DATA3  
MCIF_DATA2  
Vss  
(iceLynx-Micro)  
Vss  
CPS  
AVdd  
AGND  
TPB0_N  
TPB0_P  
AGND  
AVdd  
INTEGRATED  
LLC / PHY  
TPA0_N  
TPA0_P  
TPBIAS0  
AVdd  
Vdd  
TPB1_N  
TPB1_P  
AGND  
TPA1_N  
TPA1_P  
TPBIAS1  
N/C  
MCIF_DATA1  
MCIF_DATA0  
MCIF_BUSCLKz  
MCIF_WEz  
Plastic QFP  
98  
97  
96  
MCIF_OEz  
95  
MCIF_ACKz  
MCIF_WAITz  
MCIF_STRBz  
MCIF_R_nWz  
MCIF_CS_MEMz  
MCIF_CS_IOz  
MCIF_INTz  
94  
93  
N/C  
92  
AVdd  
91  
N/C  
90  
N/C  
89  
N/C  
Figure 6. TSB43CA42 Plastic QFP Pin Out  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
15  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.4.4 TSB43CA42 Micro-Star Ball Grid Array (µ*BGA)  
3.3v  
A2  
R1  
Vss  
A3  
N/C  
MCIF_WAITz  
MCIF_STRBz  
MCIF_R_nWz  
Vss  
P17  
P16  
P15  
P11  
P10  
P9  
HSDI1_60958_OUT  
A4  
HSDI1_AUDIO_ERR  
A5  
HSDI1_D7  
A6  
HSDI1_D4  
A7  
Vdd  
A8  
GPIO8  
HSDI1_DVALIDz  
A9  
GPIO1  
P8  
HSDI1_CLKz  
A10  
HPS  
P7  
HSDI0_D4  
A11  
TEST_MODE2  
AVdd  
P3  
HSDI0_D3  
A12  
P2  
HSDI0_D1  
A13  
N/C  
P1  
HSDI0_SYNCz  
A14  
N/C  
N17  
N16  
N15  
N3  
HSDI0_CLKz  
A15  
MCIF_WEz  
MCIF_OEz  
MCIF_ACKz  
TPBIAS1  
MCIF_MODE2  
A16  
MCIF_MODE0  
B1  
Vss  
B3  
N2  
TSB43CA42  
Vdd  
B4  
TPA1_P  
N1  
HSDI1_AUDIO_MUTE  
B5  
TPA1_N  
M17  
M16  
M15  
M3  
M2  
M1  
L17  
L16  
L15  
L14  
L4  
HSDI1_AMCLK_IN  
B6  
MCIF_DATA1  
MCIF_DATA0  
MCIF_BUSCLKz  
AGND  
HSDI1_D5  
(iceLynx-Micro)  
B7  
Vss  
B8  
HSDI1_D0  
B9  
HSDI1_SYNCz  
B10  
TPB1_P  
HSDI0_D7  
B11  
TPB1_N  
HSDI0_D2  
B12  
MCIF_DATA3  
MCIF_DATA2  
Vss  
HSDI0_D0  
B13  
HSDI0_AVz  
INTEGRATED  
B14  
HSDI0_AMCLK_IN  
B15  
Vdd  
MCIF_MODE1  
B17  
AVdd  
L3  
MCIF_ENDIAN  
TPBIAS0  
C1  
L2  
LLC / PHY  
TEST_MODE1  
C2  
TPA0_P  
L1  
TEST_MODE0  
C4  
TPA0_N  
K17  
K16  
K15  
K14  
K4  
HSDI1_60958_IN  
C5  
MCIF_DATA4  
MCIF_DATA7  
MCIF_DATA6  
MCIF_DATA5  
AGND  
HSDI1_AMCLK_OUT  
µ*BGA  
C6  
HSDI1_D6  
C7  
HSDI1_D2  
C8  
REG_OUT2  
C9  
K3  
HSDI1_AVz  
C10  
AVdd  
K2  
HSDI0_D6  
TPB0_P  
C11  
K1  
Vss  
TPB0_N  
C12  
J17  
J16  
J15  
J14  
HSDI0_DVALIDz  
C13  
MCIF_DATA8  
MCIF_DATA11  
MCIF_DATA10  
MCIF_DATA9  
HSDI0_ENz  
C14  
HSDI0_60958_IN  
C16  
Vss  
Figure 7. TSB43CA42 µ*BGA Pin Out  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Copyright 2004, Texas Instruments Incorporated  
Texas Instruments standard warranty. Production processing  
TEXAS  
does not necessarily include testing of all parameters.  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
16  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.5 Pin Description  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
Miscellanous Pins  
Interface disable. When asserted, the interfaces are put into a high-Z  
state. Interfaces include: ex-CPU, HSDI, GPIO, and WTCH_DG_TMRn.  
Host power status. This indicates the power status of the external system  
to iceLynx-Micro. A rising edge indicates the system CPU has been turned  
ON. (The internal ARM must wake up.) A falling edge indicates the system  
CPU has been turned OFF. (The internal ARM decides if power down is  
necessary.)  
DISABLE_IFn  
T8  
64  
62  
I
I
HPS  
P8  
Output to system to indicate iceLynx-Micro is ready to go into a low power  
LOW_PWR_RDY  
WTCH_DG_TMRn  
R8  
63  
88  
O
O
state. The ARM and WTCH_DG_TMRn control this pin.  
Watch dog timer (for the ARM). iceLynx-Micro hardware asserts this pin  
whenever ARM software has not updated the Timer2 register within the  
allowed time period.  
U16  
RESET_ARMn  
RESETn  
U7  
T7  
60  
59  
I
I
ARM reset. This signal resets the internal ARM processor.  
Device reset. This signal resets all logic. This includes the PHY, link core,  
memory, the ARM, and random logic.  
Power and Ground Pins  
A2,  
1, 21,  
55,  
B1,  
B7,  
76,  
C11,  
C16,  
G17,  
J1,  
102,  
117,  
131,  
146,  
162,  
176  
VSS  
Digital ground  
L15,  
P11,  
T6  
24,  
27,  
35,  
45,  
J2, K4,  
M3,  
AGND  
Analog ground  
PLL ground  
U2  
PLL_GND  
R6  
54  
A7,  
4, 20,  
56,  
B3,  
C17,  
D3,  
75,  
101,  
116,  
130,  
145,  
161,  
175  
D11,  
H2,  
VDD  
Digital power supply. Must be set to 3.3-V nominal.  
H15,  
L14,  
R11,  
U6  
23,  
J3, K3, 28,  
AVDD  
L4,  
32,  
Analog power supply. Must be set to 3.3-V nominal.  
PLL power supply. Must be set to 3.3-V nominal.  
P3, R4 41,  
48  
PLL_VDD  
R5  
51  
Regulator Pins  
Internal regulator enable. The iceLynx-Micro core voltage is 1.8 V. Internal  
regulators are used to regulate the 3.3-V VDD inputs to 1.8 V. This pin  
enables the regulators.  
REG_ENn  
U11  
73  
I
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
17  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
1.8-V regulator output. This pin must be connected to ground using a  
REG_OUT0  
REG_OUT1  
REG_OUT2  
T11  
74  
O
O
O
0.1-µF capacitor.  
1.8-V regulator output. This pin must be connected to ground using a  
0.1-µF capacitor.  
1.8-V regulator output. This pin must be connected to ground using a  
0.1-µF capacitor.  
H14  
C8  
115  
160  
External CPU Interface Pins  
MCIF acknowledge pin. Default active low. iceLynx-Micro asserts this  
signal if it has completed the MCIF request. This signal is driven when  
chip select (CS) is asserted. This signal is used for the following modes:  
MCIF_ACKz  
N15  
95  
I/O  
ƒ
68000 + wait I/O access  
I/O Type-3 MPC850  
ƒ
MCIF address 1 pin. This data pin is the least significant bit of the MCIF  
address bus.  
MCIF_ADDR1  
G14  
120  
I
MCIF_ADDR0 is internally grounded. Only 16-bit addressing is allowed.  
MCIF_ADDR1 must be connected to the Address1 signal of the system  
CPU.  
MCIF_ADDR2  
MCIF_ADDR3  
MCIF_ADDR4  
MCIF_ADDR5  
MCIF_ADDR6  
MCIF_ADDR7  
MCIF_ADDR8  
MCIF_ADDR9  
F17  
F16  
F15  
E17  
E16  
E15  
D17  
D16  
121  
122  
123  
124  
125  
126  
127  
128  
I
I
I
I
I
I
I
I
MCIF address 2 pin  
MCIF address 3 pin  
MCIF address 4 pin  
MCIF address 5 pin  
MCIF address 6 pin  
MCIF address 7 pin  
MCIF address 8 pin  
MCIF address 9 pin  
MCIF address 10 pin. This data pin is the most significant bit of the MCIF  
MCIF_ADDR10  
D15  
129  
I
address bus.  
MCIF bus clock. This pin is only used for the MCIF synchronous mode. I/O  
Type-3 MPC850 and the memory access.  
MCIF_BUSCLKz  
M15  
98  
I
This signal must be pulled high if not used.  
MCIF chip select for all I/O MCIF modes.  
MCIF chip select for the memory MCIF mode.  
MCIF_CS_IOz  
MCIF_CS_MEMz  
R16  
R17  
90  
91  
I
I
MCIF data 0 pin. This data pin is the least significant bit of the MCIF  
MCIF_DATA0  
M16  
99  
I/O  
data bus.  
MCIF_DATA1  
MCIF_DATA2  
MCIF_DATA3  
MCIF_DATA4  
MCIF_DATA5  
MCIF_DATA6  
MCIF_DATA7  
MCIF_DATA8  
MCIF_DATA9  
MCIF_DATA10  
MCIF_DATA11  
MCIF_DATA12  
MCIF_DATA13  
MCIF_DATA14  
M17  
L16  
L17  
K17  
K14  
K15  
K16  
J17  
J14  
J15  
J16  
H17  
H16  
G16  
100  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
118  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MCIF data 1 pin  
MCIF data 2 pin  
MCIF data 3 pin  
MCIF data 4 pin  
MCIF data 5 pin  
MCIF data 6 pin  
MCIF data 7 pin  
MCIF data 8 pin  
MCIF data 9 pin  
MCIF data 10 pin  
MCIF data 11 pin  
MCIF data 12 pin  
MCIF data 13 pin  
MCIF data 14 pin  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
18  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
MCIF data 15 pin. This data pin is the most significant bit of the MCIF  
data bus.  
MCIF endian pin. This sets the endianness for accesses between the  
external CPU and the internal iceLynx-Micro memory. This pin sets  
endianness for all MCIF modes. When set to 0, data is read/written to the  
ex-CPU exactly as it is stored in iceLynx-Micro memory. (Big endian)  
MCIF_DATA15  
MCIF_ENDIAN  
MCIF_INTz  
G15  
119  
132  
89  
I/O  
B17  
I
When set to 1, data is swapped on half-word and byte boundaries before it  
is read/written to the ex-CPU. (Little endian)  
MCIF Interrupt. This signal is push-pull (always asserted). It does not  
require a pullup resistor.  
T17  
O
MCIF_MODE0  
MCIF_MODE1  
MCIF_MODE2  
A16  
B15  
A15  
133  
134  
135  
I
I
I
MCIF mode 0. Used to select MCIF mode.  
MCIF mode 1. Used to select MCIF mode.  
MCIF mode 2. Used to select MCIF mode.  
MCIF output enable. Default active low. This input pin indicates if the  
system CPU wants to perform a MCIF read access. This signal is used for  
the following modes:  
ƒ
ƒ
ƒ
SH-3 I/O access  
M16C/62 I/O access  
Memory access  
MCIF_OEz  
N16  
96  
I
This signal must be pulled high if not used.  
MCIF read/write pin. Default value for a read is 1. Default value for a write  
MCIF_R_nWz  
MCIF_STRBz  
P15  
P16  
92  
93  
I
I
is 0.  
MCIF strobe pin. Default active low. This pin is used (along with  
MCIF_CS_IOz) to validate the MCIF access. This signal is used for the  
following modes:  
ƒ
68000 + wait I/O access  
MPC850 I/O access  
ƒ
When not used, this pin must be pulled high.  
MCIF wait pin. Default active high. iceLynx-Micro asserts this signal if it is  
not ready to service an MCIF request. When not asserted, this signal is in  
a high-Z state. This signal is used for the following modes:  
MCIF_WAITz  
MCIF_WEz  
P17  
N17  
94  
97  
O
ƒ
ƒ
ƒ
68000 + wait I/O access  
SH-3 I/O access  
M16C/62 I/O access  
MCIF Write Enable. Default active low. This input pin indicates if the  
system CPU wants to perform a MCIF write access. This signal is used for  
the following modes:  
SH-3 I/O access  
M16C/62 I/O access  
Memory access  
I
This signal must be pulled high if not used.  
Universal Asynchronous Receiver Transmitter Pins  
UART receive port. Data from the system is input to the UART buffer  
UART_RxD  
UART_TxD  
U15  
R14  
86  
85  
I
using this pin.  
UART transmit port. Data from the UART buffer is output to the system  
using this pin.  
O
Joint Test Action Group (JTAG) and ARM Pins  
JTAG clock pin. Both the boundary scan and ARM JTAG uses this input  
for the JTAG clock.  
JTAG test data input pin  
JTAG_TCK  
JTAG_TDI  
U13  
T12  
80  
78  
I
I
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
19  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
R12  
QFP  
JTAG_TDO  
JTAG_TMS  
79  
77  
O
I
JTAG test data output pin  
JTAG test mode selector pin  
U12  
JTAG reset pin. Both the boundary scan and ARM JTAG uses this input  
for the JTAG clock.  
Note 1: TSB43Cx43A/TSB43CA42 must have JTAG_TRSTn=0 for correct  
JTAG_TRSTn  
T13  
81  
I
ARM interrupt operation.  
Note 2: JTAG_TRST must be asserted once after power-up for correct  
operation of the iceLynx-Micro.  
ARM_TDI  
ARM_TDO  
ARM_TMS  
U14  
T14  
R13  
83  
84  
82  
I
O
I
ARM JTAG test data input pin  
ARM JTAG test data output pin  
ARM JTAG test mode selector pin  
General-Purpose Input/Out Pins (GPIO)  
GPIO0. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
U9  
65  
66  
15  
16  
17  
18  
69  
70  
71  
72  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO1. Can be programmed as general-purpose input, general-purpose  
P9  
output, or specific function. Power-up default is input.  
GPIO2. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
G2  
GPIO3. Can be programmed as general-purpose input, general-purpose  
G1  
output, or specific function. Power-up default is input.  
GPIO 4. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
H1  
GPIO 5. Can be programmed as general-purpose input, general-purpose  
H4  
output, or specific function. Power-up default is input.  
GPIO6. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
U10  
T10  
P10  
R10  
T15  
GPIO7. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
GPIO8. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
GPIO9. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
GPIO10. Can be programmed as general-purpose input, general-purpose  
output, or specific function. Power-up default is input.  
GPIO10  
Physical Layer Pins  
TPA0_N  
TPA1_N  
TPA2_N  
TPA0_P  
TPA1_P  
TPA2_P  
29,  
36,  
42,  
30,  
37,  
43  
L1,  
N1,  
Twisted pair A differential signal terminals. For an unused port, TPAN and  
TPAP signals are left open (i.e., TSB43CA42 for Port 2).  
R1,  
I/O  
L2,  
N2, R2  
TPB0_N  
TPB1_N  
TPB2_N  
TPB0_P  
TPB1_P  
TPB2_P  
K1,  
M1,  
P1,  
K2,  
M2,  
P2  
25,  
33,  
39,  
26,  
34,  
40  
Twisted pair B differential signal terminals. For an unused port, TPBN and  
TPBP signals are left open (i.e., TSB43CA42 for Port 2).  
I/O  
I/O  
Twisted pair bias output. These signals provide the 1.86-V nominal bias  
voltage needed for proper operation of the twisted pair driver and  
receivers for signaling an active connection to a remote node.  
TPBIAS0  
TPBIAS1  
TPBIAS2  
31,  
38,  
44  
L3,  
N3, T1  
For an unused port, TPBIAS is left unconnected (i.e., TSB43CA42 for  
Port 2).  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
20  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
Current setting resistors. These pins are connected to external resistors to  
set the internal operating currents and cable driver output currents. A  
resistance of 6.34 kΩ ± 1% is required to meet the IEEE 1394-1995 output  
voltage limits.  
R1  
46,  
47  
T3, U3  
-
R0  
PLL filter terminals. These terminals are connected to an external  
capacitor to form a lag-lead filter required for stable operation of the  
internal frequency-multiplier PLL, which is using the crystal oscillator. A  
0.1-µF ±10% capacitor is the only external component required to  
complete this filter.  
FILTER0  
FILTER1  
49,  
50  
T4, U4  
I/O  
Crystal oscillator inputs. These terminals connect to a 24.576-MHz parallel  
resonant fundamental mode crystal. The optimum values for the external  
shunt capacitors are dependent on the crystal used.  
Cable power status. This input to iceLynx-Micro detects if cable power is  
present. This pin must be connected to the cable power through 390-kΩ  
resistor.  
XI  
52,  
53  
T5, U5  
J4  
-
I
X0  
CPS  
22  
Maximum speed of PHY. When this signal is high; S100 and S200  
MSPCTL  
LINKON  
H3  
U8  
19  
61  
I
operation. When this signal is low; S100, S200, and S400 operation.  
Link-on output. This signal is asserted whenever LPS is low and a link-on  
packet is received from the 1394 bus.  
O
High Speed Data Interface (HSDI) Port 0 Pins  
HSDI0_60958_IN  
C14  
136  
I
I
60958 data input  
Audio master clock input. This clock is used to decode the bi-phase  
encoding of 60958 data.  
HSDI0_AMCLK_IN  
B14  
137  
This pin is also used to input the 1.5 x BCLK for flow control mode.  
HSDI port 0 available. Programmable. Default active low.  
For receive from 1394, this signal indicates if a 1394 packet is available in  
the receive buffer for reading. The HSDI_AV signal for MPEG2 data also  
depends on time stamp based release.  
HSDI0_AVz  
B13  
140  
O
For transmit to 1394, this signal indicates buffer level in HSDI TX modes 8  
and 9 by programming a CFR. If the buffer level is above a programmed  
level, HSDI_AV will be asserted.  
HSDI port 0 clock. Programmable. Default rising edge sample. This clock  
is used to operate the HSDI port 0 logic. In parallel mode the maximum  
clock is 27 MHz. in serial mode, the maximum clock is 70 MHz.  
This signal is output to HSDI1_CLKz in pass-through mode.  
This signal is used as HSDI0_MLPCM_BCLK for DVD-audio transmit.  
HSDI0_CLKz  
HSDI0_D0  
A14  
B12  
138  
143  
I
HSDI port 0 data 0 pin. Data 0 is the least significant bit on the HSDI data  
bus.  
In serial mode, only HSDI0_D0 is used.  
I/O  
This signal is output to HSDI1_D0 in pass-through mode.  
This signal is used as HSDI0_MLPCM_D0 for DVD-audio transmit.  
HSDI port 0 Data 1 pin  
HSDI0_D1  
HSDI0_D2  
HSDI0_D3  
A12  
B11  
A11  
144  
147  
148  
I/O  
I/O  
I/O  
This signal is output to HSDI1_D1 in pass-through mode.  
This signal is used as HSDI0_MLPCM_D1 for DVD-audio transmit.  
HSDI port 0 Data 2 pin  
This signal is output to HSDI1_D2 in pass-through mode.  
This signal is used as HSDI0_MLPCM_D2 for DVD-audio transmit.  
HSDI port 0 Data 3 pin  
This signal is output to HSDI1_D3 in pass-through mode.  
This signal is used as HSDI0_MLPCM_A for DVD-audio transmit.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
21  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
A10  
D10  
QFP  
HSDI port 0 data 4 pin  
HSDI0_D4  
HSDI0_D5  
HSDI0_D6  
149  
150  
151  
I/O  
I/O  
I/O  
This signal is output to HSDI1_D4 in pass-through mode.  
HSDI port 0 data 5 pin  
This signal is output to HSDI1_D5 in pass-through mode.  
HSDI port 0 data 6 pin  
This signal is output to HSDI1_D6 in pass-through mode.  
HSDI port 0 data 7 pin. Data 0 is the most significant bit on the HSDI data  
C10  
B10  
bus.  
HSDI0_D7  
152  
I/O  
This signal is output to HSDI1_D7 in pass-through mode.  
HSDI port 0 data valid pin. Programmable. Default active high. This pin  
indicates if data on the HSDI data bus valid for reading or writing.  
For transmit to 1394, this signal is provided by the system with the data.  
For receive from 1394, iceLynx-Micro provides this signal with the data.  
HSDI0_DVALIDz  
C12  
142  
I/O  
For HSDI DV modes, this signal is used as HSDI0_FrameSync indicating  
DV frame boundary.  
This signal is output to HSDI1_DVALIDz in pass-through mode  
If not used in transmit mode, this signal is pulled low.  
HSDI port 0 enable. Programmable. Default active low. Input by the  
system to enable the HSDI for both transmit to and receive from 1394.  
If not used, this signal is pulled enabled (low or high depending on the  
polarity set). The application can use HSDI_DVALID or HSDI_SYNC to  
validate the HSDI data.  
HSDI0_ENz  
C13  
A13  
139  
141  
I
This signal is used as HSDI0_MLPCM_LRCLK for DVD-audio transmit.  
HSDI port 0 sync signal. Programmable. Default active high. This signal  
indicates the start of packet.  
For transmit to 1394, this signal is provided by the system with the data.  
For receive from 1394, iceLynx-Micro provides this signal with the data.  
This signal is output to HSDI1_SYNCz in pass-through mode.  
HSDI0_SYNCz  
I/O  
If not used in transmit mode, this signal is pulled low or high depending on  
the polarity.  
High Speed Data Interface (HSDI) Port 1 Pins  
Audio master clock input. This clock is used to decode the bi-phase  
encoding of 60958 data.  
HSDI1_AMCLK_IN  
B5  
169  
I
This pin also inputs the 1.5 x BCK for flow control mode.  
MLPCM interface, HSDI1 audio port, and HSDI1 video port share  
IsoPathBuffer 1. Only one interface can access the buffer at a time.  
Audio master clock output. This clock is derived from the VCO_CLK input.  
60958 data output from iceLynx-Micro is bi-phase encoded using this  
clock.  
HSDI1_AMCLK_OUT  
HSDI1_AUDIO_ERR  
C5  
A4  
170  
171  
O
O
Audio error signal. iceLynx-Micro asserts this signal whenever an audio  
error condition occurs. (Receive from 1394 only.)  
Audio mute status. iceLynx-Micro asserts this signal whenever an audio  
mute condition has occurred, and hardware has muted the HSDI1 audio  
interface. (Receive from 1394 only.)  
60958 data input  
60958 data output  
HSDI1_AUDIO_MUTE  
HSDI1_60958_IN  
B4  
C4  
172  
173  
O
I
HSDI1_60958_OUT  
A3  
174  
O
This signal is also used as FLWCTRL_DVALID in flow control data valid  
mode.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
22  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
HSDI port 1 available. Programmable. Default active low.  
For receive from 1394, this signal indicates if a 1394 packet is available in  
the receive buffer for reading. The HSDI_AV signal for MPEG2 data also  
depends on time stamp based release.  
HSDI1_AVz  
C9  
155  
O
For transmit to 1394, this signal indicates the buffer level in HSDI TX  
modes 8 and 9 by programming a CFR.  
This pin indicates buffer level in transmit mode by programming a CFR. If  
the buffer level is above a programmed level, HSDI_AV is asserted.  
HSDI port 1 clock. Programmable. Default rising edge sample. This clock  
is used to operate the HSDI port 1 logic. In parallel mode, the maximum  
clock is 27 MHz. In serial mode, the maximum clock is 70 MHz.  
HSDI1_CLKz  
HSDI1_D0  
A9  
153  
158  
I/O  
I/O  
This signal is used as HSDI1_SACD_BCLK for SACD transmit and  
receive.  
MLPCM interface, HSDI1 audio port, and HSDI1 video port share  
IsoPathBuffer 1. Only one interface can access the buffer at a time.  
HSDI port 1 data 0 pin. Data 0 is the least significant bit on the HSDI data  
bus. In serial mode, only HSDI0_D0 is used.  
B8  
This signal is used as HSDI1_SACD_D0 for SACD transmit and receive.  
HSDI port 1 data 1 pin  
HSDI1_D1  
HSDI1_D2  
HSDI1_D3  
HSDI1_D4  
HSDI1_D5  
D8  
C7  
D7  
A6  
B6  
159  
163  
164  
165  
166  
I/O  
I/O  
I/O  
I/O  
I/O  
This signal is used as HSDI1_SACD_D1 for SACD transmit and receive.  
HSDI port 1 data 2 pin  
This signal is used as HSDI1_SACD_D2 for SACD transmit and receive.  
HSDI port 1 data 3 pin  
This signal is used as HSDI1_SACD_D3 for SACD transmit and receive.  
HSDI port 1 data 4 pin  
This signal is used as HSDI1_SACD_D4 for SACD transmit and receive.  
HSDI port 1 data 5 pin  
This signal is used as HSDI1_SACD_D5 for SACD transmit and receive.  
HSDI port 1 data 6 pin  
This signal is used as HSDI1_SACD_A for SACD transmit and receive.  
HSDI1_D6  
HSDI1_D7  
C6  
A5  
167  
168  
I/O  
I/O  
HSDI port 1 data 7 pin. Data 0 is the most significant bit on the HSDI  
data bus.  
HSDI port 1 data valid pin. Programmable. Default active high. This pin  
indicates if data on the HSDI data bus valid for reading or writing.  
For transmit to 1394, this signal is provided by the system with the data.  
For receive from 1394, iceLynx-Micro provides this signal with the data.  
HSDI1_DVALIDz  
HSDI1_ENz  
A8  
D9  
157  
154  
I/O  
For HSDI DV modes, this signal is used as HSDI0_FrameSync indicating  
DV frame boundary.  
If not used in transmit mode, this signal is pulled low.  
HSDI port 1 enable. Programmable. Default active low. Input by the  
system to enable the HSDI for both transmit to and receive from 1394.  
I
If not used, this signal is pulled enabled (low or high depending on the  
polarity set). The application can use HSDI_DVALID or HSDI_SYNC to  
validate the HSDI data.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
23  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
HSDI port 1 sync signal. Programmable. Default active high. This signal  
indicates the start of a packet.  
For transmit to 1394, this signal is provided by the system with the data.  
For receive from 1394, iceLynx-Micro provides this signal with the data.  
HSDI1_SYNCz  
B9  
156  
I/O  
If not used in transmit mode, this signal is pulled low or high depending on  
the polarity.  
This signal is used as HSDI1_SACD_FRAME for SACD transmit and  
receive.  
DVD-Audio Interface Pins  
Audio MLPCM interface ancillary data. Ancillary data is input/output using  
this pin. For DVD-Audio, MLPCM_LRCLK determines if ancillary left or  
ancillary right data is present.  
This signal also functions as FLWCTL_A in flow control mode.  
Audio MLPCM interface bit clock. Multiple functions:  
MLPCM_A  
G3  
14  
9
I/O  
I/O  
ƒ
ƒ
ƒ
DVD audio BCK (I)  
DVD audio BCK (O)  
Flow control BCK (I/O)  
MLPCM_BCLK  
E1  
MLPCM interface, HSDI1 audio port, and HSDI1 video port share  
IsoPathBuffer 1. Only one interface can access the buffer at a time.  
Audio MLPCM interface D0. Contains channel 1 and channel 2  
information. MLPCM_LRCLK determines which channel is present.  
This signal also functions as FLWCTL_D0 in flow control mode.  
MLPCM_D0  
MLPCM_D1  
MLPCM_D2  
F2  
F1  
G4  
11  
12  
13  
I/O  
I/O  
I/O  
Audio MLPCM interface D1. Contains channel 3 and channel 4  
information. MLPCM_LRCLK determines which channel is present.  
This signal also functions as FLWCTL_D0 in flow control mode.  
Audio MLPCM interface D2. Contains channel 5 and channel 6  
information. MLPCM_LRCLK determines which channel is present.  
This signal also functions as FLWCTL_D0 in flow control mode  
Audio MLPCM interface left-right clock. Multiple functions:  
ƒ
ƒ
ƒ
DVD audio LRCLK (I)  
DVD audio LRCLK (O)  
Flow control LRCLK (I/O)  
MLPCM_LRCLK  
F3  
10  
I/O  
Audio Phase Lock Loops Pins  
Output for external phase detector. This signal is the divided VCO_CLK. It  
used by the external phase detector to compare with the REF_SYT signal.  
The divide ratios are setup in CFR.  
DIV_VCO  
PLL_TEST  
REF_SYT  
E3  
E2  
D1  
7
8
6
O
O
O
PLL test. This signal is used for internal Texas Instruments testing and  
must be unconnected for normal operation.  
Output for external phase detector. This signal represents the SYT match  
for received audio or DV packets. The phase detector uses it as input to  
detect differences between the SYT match and the VCO clock.  
Input from VCO. This signal generates internal audio and DV clocks for  
receive clock recovery.  
Audio frequency: 33.868 MHz or 36.864 MHz.  
DV frequency: 30.72 MHz, 27 MHz  
VCO_CLK  
D2  
5
I
Test Mode Pins  
Test mode. Used for internal Texas Instruments testing. Must be pulled  
low for normal operation.  
TEST_MODE0  
C2  
C1  
2
3
I/O  
I/O  
Test mode. Used for internal Texas Instruments testing. Must be pulled  
TEST_MODE1  
low for normal operation.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
24  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Terminal  
Number  
Terminal Name  
I/O  
Description  
BGA  
QFP  
Test mode. Used for internal Texas Instruments testing. Must be pulled  
low for normal operation.  
TEST_MODE2  
TEST_MODE3  
P7  
57  
58  
I/O  
I/O  
Test mode. Used for internal Texas Instruments testing. Must be pulled  
R7  
R9  
low for normal operation.  
Factory test pin. Must tie to low for normal operation.  
Recommend connection to ground through a 1-kresistor.  
Factory test pin. Must tie to low for normal operation.  
Recommend connection to ground through a 1-kresistor.  
TEST4  
TEST5  
67  
68  
I/O  
I/O  
T9  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
25  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.6 Memory Map  
Figure 8 shows the memory map for iceLynx-Micro.  
‰
The program memory (256K bytes) includes the communication memory for transactions between the  
internal and external CPU. The boundaries of the communication memory are programmable. (Refer  
to the register address)  
‰
‰
Two 1024-byte RAMs are included for ex-CPU memory access functions.  
The configuration registers start at offset 0x 0010 0000.  
Note: The program memory is divided into physical blocks. (For example, four blocks of 64K each.) Each  
memory block is accessed by the ARM or ex-CPU independently. The ARM could access program  
memory in block 1 at the same time as the ex-CPU accesses comm memory in block 4. Because of this,  
software must program the comm memory pointers into the highest memory block (the last 64K of  
block 4). Noncritical program code can also be loaded into this block.  
0000 0000  
Exception Vectors  
0000 001C  
Programmable Write  
256 x 1024 Byte  
Base Address (Comm  
Program Memory  
Memory)  
Programmable Read  
Base Address (Comm  
0004 0000  
Memory)  
2 x 1024 byte RAM  
Memory Access  
0004 0800  
Reserved  
0010 0000  
Configuration Registers  
0010 0800  
Reserved  
FFFF FFFF  
Figure 8. TSB43Cx43 Memory Map  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
26  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.7 DTCP Encryption – Hardware Implementation (TSB43CA43A and TSB43CA42 Only)  
The TSB43CA43A and TSB43CA42 version of iceLynx-Micro is fully compliant with the DTCP method of  
digital content protection. iceLynx-Micro supports the baseline M6 cipher, content key creation, and key  
updates in iceLynx-Micro hardware. iceLynx-Micro has the capability to encrypt or decrypt MPEG2-DVB,  
DSS, DV, or audio. The authentication and key exchange (AKE) is also implemented in hardware.  
Customers requiring the DTCP version of iceLynx-Micro must have signed an NDA with Texas  
Instruments and be a current DTLA licensee. Information on the DTCP implementation within the  
TSB43CA43A and TSB43CA42 devices are found in the following document provided by Texas  
Instruments:  
Note: Recipients must have signed Texas Instruments NDA and be a current DTLA licensee to receive  
this document.  
1.8 Program Memory  
1.8.1 Overview/Description  
The iceLynx-Micro provides 256K bytes of internal program RAM. The program memory is loaded by the  
external CPU interface. The external CPU cannot read the program memory.  
Anytime the RESET_ARMn pin is asserted (transitions from high to low), the cipher and AKE registers are  
cleared.  
1.8.2 External CPU (Parallel Mode)  
Steps for loading program memory:  
1) ARM is placed in reset (using RESET_ARMn pin) and ex-CPU initiates write to the program  
memory CFR (Sys.IntMemLoad at 0x5C).If the ARM is only put into reset, there is no change in  
the program memory.  
2) The program must contain a 2-quadlet header. The 2-quadlet header specifies if the program is  
LEB encrypted. See Section 1.9.5 for more information on LEB.  
3) The program is loaded into program memory through the Sys.IntMemLoad CFR. The program is  
placed in memory starting at address 0x 0000 0000. The ex-CPU indicates the end of program  
load by deasserting the RESET_ARMn signal. When the RESET_ARMn signal is deasserted, the  
iceLynx-Micro hardware pads the rest of program memory with zeros.  
4) The ARM is executing code as soon as RESET_ARMn signal is deasserted and all 256K bytes of  
program memory are loaded.  
1.9 External CPU Interface  
1.9.1 Overview/Description  
The ex-CPU accesses iceLynx-Micro configuration registers and FIFOs using 32-bit addressing. The  
quadlet-aligned address is provided for the first 16-bit access. The iceLynx-Micro internally increments the  
address for the second 16-bit access. All 32 bits of a register or FIFO must be read using back-to-back  
transactions. An access to address N must be followed by address N+2.  
A 16-bit processor can be used with iceLynx-Micro. However, the processor must access the entire  
quadlet address (all 32 bits) in order. For example, for a register address N, the ex-CPU must first access  
register address N and then address N+2. It cannot access address N+2 first. If the ex-CPU accesses the  
32-bit address incorrectly, the ExCPUInt.ExCPUErr interrupt occurs.  
The Ex-CPU can access to iceLynx-Micro by I/O- or memory-type methods. The iceLynx-Micro supports  
four memory types of processor interfaces: Type-1, Type-2, I/O Type-1 SH3, and I/O Type-2 M16C. The  
ex-CPU I/Fs and access types are categorized as follows:  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
27  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1. Asynchronous I/O-type  
Bus clock is not provided.  
ƒ
ƒ
ƒ
I/O Type-0 68K + wait  
I/O Type-1 SH3 SRAM-like + wait  
I/O Type-2 M16C SRAM-like + wait  
2. Synchronous I/O-type  
Bus clock is provided.  
ƒ
I/O Type-3 MPC850  
3. Memory-type  
Access to single port RAM. Timing matches for I/O type except bus clock are provided and a special  
memory chip select signal is used.  
ƒ
ƒ
ƒ
ƒ
Type-1 memory access  
Type-2 memory access  
SH3-type memory access  
M16C/62 memory access  
Users can select the ex-CPU by setting the external pin MCIF_MODE[2:0]. Table 1 shows the pin  
assignments.  
Table 1. External CPU MCIF Pin Assignment Modes  
External MCU Interface Method  
MCIF_MODE[2:0]  
I/O Type  
Memory Type  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
I/O Type-0: 68K+ wait  
I/O Type-1: SH3 + wait  
I/O Type-2: M16C + wait  
I/O Type-3: MPC850  
Memory access available  
I/O types reserved  
Memory access invalid  
External MCU access type (I/O or memory) is dependent on the chip select signal used, MCIF_CS_IOz  
or MCIF_CS_MEMz, respectively.  
With regard to the above four types of processors, Table 2 shows the relation between the signals of the  
iceLynx-Micro and those of the ex-CPU.  
Note: ARM must be in reset to load program memory.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
28  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 2. Ex-CPU I/F Signals  
External Interface Method  
Signal Name  
Port Type  
Type-0 (68K)  
Type-1 (SH3)  
Type-2 (M16C) Type-3 (MPC850)  
I/O Type  
MCIF_CS_IOz  
MCIF_RW  
MCIF_STRBz  
MCIF_ACKz  
MCIF_WAITz  
MCIF_OEz  
I
I
I
CSn  
R_nW  
STRBz  
NA  
WAITz  
----  
CSn  
----  
----  
CSn  
----  
----  
CSn  
R_nW  
TSn  
TAn  
----  
----  
----  
BUSCLKz  
O (3S)  
O (3S)  
----  
----  
WAITz  
RDn  
WRn  
----  
WAITz  
RDn  
WRn  
----  
I
I
I
MCIF_WEz  
----  
----  
MCIF_BUSCLKz  
Memory Type  
MCIF_CS_MEMz  
MCIF_OEz  
MCIF_WEz  
MCIF_BUSCLKz  
I
I
I
I
CSn  
RDn  
WRn  
BUSCLKz  
1.9.2 Endian Setting (Parallel and Memory Accesses)  
The iceLynx-Micro registers in the CFR map are structured as (byte 0, byte 1, byte 2, and byte 3). The  
iceLynx-Micro has an endian pin (MCIF_ENDIAN) that controls the byte order between the ex-CPU  
interface and internal iceLynx-Micro memory (including CFRs, FIFOs, and RAM for memory access). The  
status of the MCIF_ENDIAN pin is shown at ExCPUCfg.Endian CFR.  
Note: In I/O mode, the MCIF_ENDIAN pin is asserted or deasserted for individual 32-bit accesses.  
MCIF_A[1] = 0, Data = ABCD  
MCIF_A[1] = 1, Data = EF01  
If MCIF_ENDIAN is set to 0, the data written to the FIFO is ABCD EF01.  
If MCIF_ENDIAN is set to 1, the data written to the FIFO is EF01 ABCD.  
1.9.2.1 Parallel Mode and Memory Access  
ƒ
In I/O mode, the ex-CPU has access to program memory, comm memory, and CFRs through  
registers. The ex-CPU only has write access to the program memory. It can only perform writes  
while the ARM is in reset.  
ƒ
In memory mode, the ex-CPU directly accesses the two 1024-byte single port RAMs. The two  
RAMs are used individually (1024 bytes each) and are randomly accessed by the ARM (32-bit)  
and ex-CPU (16-bit). The MCIF_ADDR signals indicate where the ex-CPU is accessing. The  
MCIF_ADDR range to address the single port RAMs is 0x000 through 0x7FF. The ex-CPU has  
priority access to the RAM. The software must assure there are no collisions. (Use GPInts)  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
29  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.3 Ex-CPU Access  
Async Tx 0,1  
ASYNC TX FIFO  
2048 byte  
CFR  
CFR  
Program Memory  
256K bytes  
Async Rx 0,1  
ASYNC RX FIFO  
2048 byte  
Comm  
Write  
Base  
Addr  
Ex-CPU Write Area  
Comm  
Read  
ARM  
Base  
Addr  
Ex-CPU Read Area  
1024 byte RAM  
1024 byte RAM  
CFR  
I/O Type  
Access  
Ex-CPU  
Memory Access  
Figure 9. Ex-CPU Access  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
30  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
The communication area is part of the 256K-byte memory. This area is used for data communication  
between Ex-CPU and ARM. CFR CommWrBase and CommRdBase define the top address of the area.  
The communication area consists of an ex-CPU write area and ex-CPU read area.  
Write  
Ex-CPU Write Area  
Read  
Host  
ARM  
Read  
Ex-CPU Read Area  
Write  
Upon the chip reset, CommWrBase and CommRdBase are 0x 0000 FFFF. When set to this default value,  
the ex-CPU is not allowed to access the communication memory.  
The ARM manages the communication area between the ex-CPU and ARM. General interrupts share the  
access time for the areas. The ARM has full random access of the communication memory area. The  
parallel ex-CPU can access the communication memory through the CommData CFR.  
The ARM can know how much data was read or written into the communication area by reading the  
Sys.CommStat.RdCnt and Sys.CommStat.WrCnt bits in CFR. The ARM can also reset the internal  
address counters using Sys.CommStat.RdCnt and Sys.CommStat.WrCnt bits in CFR.  
Note: Only the ARM can set the Comm (read/write) base addresses.  
1.9.3.1  
Ex-CPU and ARM Communication Sequence in Parallel Ex-CPU I/F Mode  
The Ex-CPU and ARM use GPInts (general-purpose interrupts) for communication. Any reference to  
interrupt in the following sections refers to the GPInts. GPInts are available in the Sys.InCPUCommInt  
and Sys.ExCPUCommInt CFRs.  
1.9.3.1.1 Ex-CPU Read  
ƒ
ƒ
ARM sends an interrupt to ex-CPU as READ ENABLE.  
Ex-CPU sends an interrupt to ARM as READ REQUEST. ARM invokes a timer to watch access  
timeout and can't access read communication area memory ex-CPU access end.  
Ex-CPU reads data from communication area.  
ƒ
ƒ
Ex-CPU sends an interrupt to ARM as READ ACCESS END. ARM stops the timer. ARM sends  
an interrupt to Ex-CPU as READ DISABLE" Sys.*  
ƒ
CPUInt.GPInt bits and the associated Sys.*CPUCommInt CFRs are used for this communication.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
31  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.3.1.2 Ex-CPU Write  
ƒ
ƒ
ARM sends an interrupt to ex-CPU as WRITE ENABLE.  
Ex-CPU sends an interrupt to ARM as WRITE REQUEST. ARM invokes a timer to watch access  
timeout and can't access write communication memory until ex-CPU access end.  
Ex-CPU writes data into communication area.  
ƒ
ƒ
ƒ
ƒ
Ex-CPU sends an interrupt to ARM as WRITE ACCESS END. ARM stops the timer.  
ARM sends an interrupt toeEx-CPU as WRITE DISABLE.  
Sys.*CPUInt.GPInt bits and the associated Sys.*CPUCommInt CFRs are used for this  
communication.  
1.9.3.1.3 Ex-CPU Access Limitation  
Table 3. Ex-CPU Access Limitation  
Addr  
018h  
018h  
018h  
048h  
04Ch  
05Ch  
Bit  
16  
8
N/A  
15:0  
15:0  
31:0  
Bit Name  
InCPUCfg.DbgRegUnlock  
InCPUCfg.DebugEn  
RSVD  
CommWrBase.Addr  
CommRdBase.Addr  
IntMemLoad.IntMemLoad  
Read Access  
Write Access  
Condition  
Yes  
Yes  
N/A  
No  
No  
Yes  
No  
N/A  
No  
No  
Conditional  
Conditional  
Write access only while ARM_RESET =  
LOW in normal operation mode:  
IntMemDiag.ProtectDis = 0.  
Read and write access in diagnostic mode:  
IntMemDiag.ProtectDis = 1  
060h  
060h  
03Ch  
25  
24  
31:0  
31:0  
31:0  
N/A  
IntMemDiag.EncryptDis  
IntMemDiag.ProtectDis  
InCPUComIntEn.*  
InCPUInt.*  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
No  
No  
No  
No  
No  
N/A  
024h  
028h, 02Ch  
InCPUIntEn.*  
1FAh -1FCh,  
RSVD  
324h – 32Ch  
200h - 204h,  
330h – 334h  
N/A  
N/A  
N/A  
RSVD  
RSVD  
RSVD  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
208h - 20Ch,  
338h – 33Ch  
630h – 774h  
Note: The BOLD coded CFRs are reserved (RSVD).  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
does not necessarily include testing of all parameters.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
32  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.4 Ex-CPU Timing  
1.9.4.1 I/O Type-0 68K + Wait  
0x0 †  
MCIF_MODE  
MCIF_ENDIAN  
MCIF_CS_MEMz  
MCIF_CS_IOz  
I
I
I
I
Tsu4  
Th4  
Tsu3  
Th3  
Tw1  
Th5  
Tw2  
§
Th5  
MCIF_STRBz  
MCIF_R_nWz  
I
I
I
Tsu2  
Th2  
Tsu2  
Th2  
Tsu1  
Th1  
Tsu1  
ADDR N or N+2  
Th1  
#
#
MCIF_ADDR[10:1]  
ADDR N or N+2  
Tv2  
Tdis2  
Tdis2  
Tv2  
Tv1  
DATA n+2  
Ten2  
Tv1  
DATA n  
Ten2  
Td2||  
MCIF_DATA[15:0]  
MCIF_ACKz  
IO  
O
Td1||  
Ten1  
Tdis1  
Td3  
Ten1  
Td3  
Tdis1  
MCIF_WAITz  
O
NOTES: A. The timing diagram assumes MCIF signals used their default polarities. The MCIF_WAITz defaults  
to the active high polarity in the MCIF I/O Type-0 68K mode.  
B. MCIF_OEz, MCIF_WEz and MCIF_BUSCLKz are "Don't Care" for the MCIF I/O Type-0 68K mode.  
C. Single 16-bit read accesses will not result in an error or an interrupt.  
D. For a read access to occur both MCIF_CS_IOz and MCIF_STRBz must be asserted.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§ The MCIF_STRBz is not required to deassert between accesses.  
¶ MCIF_R_nWz may change between accesses.  
#
CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
|| The MCIF_ACKz / MCIF_WAITz assert delays Td1 and Td2 are measured from the MCIF_CS_IOz or  
MCIF_STRBz assert, whichever occurs last in the access.  
Figure 10. I/O Type-0 68K + Wait Read  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
33  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 4. I/O Type-0 68K + Wait Read MCIF AC-Timing Parameters  
Description  
Min  
0
0
0
0
Max  
Units  
ns  
ns  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Th1  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
Setup time, MCIF_R_nWz before MCIF_CS_IOz asserted  
Setup time, MCIF_CS_MEMz deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_ENDIAN before MCIF_CS_IOz asserted  
Hold time, MCIF_ADDR valid after MCIF_ACKz asserted  
Hold time, MCIF_R_nWz after MCIF_ACKz asserted  
0
0
ns  
ns  
Th2  
Th3  
Th4  
Hold time, MCIF_CS_MEMz deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_ENDIAN after MCIF_CS_IOz deasserted  
0
0
ns  
ns  
Th5  
Hold time, MCIF_CS_IOz or MCIF_STRBz after MCIF_ACKz asserted /  
0
ns  
MCIF_WAITz deasserted  
Td1  
Td2  
Delay time, read access, MCIF_ACKz asserted / MCIF_WAITz deasserted  
after MCIF_STRBz asserted  
260  
260  
15  
ns  
ns  
Delay time, read access, MCIF_ACKz asserted / MCIF_WAITz deasserted  
after MCIF_CS_IOz asserted  
Td3  
Tv1  
Delay time, MCIF_WAITz asserted after MCIF_CS_IOz asserted  
ns  
ns  
Valid time, MCIF_DATA before MCIF_ACKz asserted / MCIF_WAITz  
0
0
deasserted  
Tv2  
Valid time, MCIF_DATA after MCIF_CS_IOz or MCIF_STRBz deasserted  
Enable time, MCIF_CS_IOz asserted to MCIF_ACKz / MCIF_WAITz driven  
Enable time, MCIF_CS_IOz and MCIF_STRBz asserted to MCIF_DATA driven  
ns  
ns  
ns  
ns  
Ten1  
Ten2  
Tdis1  
15  
15  
15  
Disable time, MCIF_ACKz / MCIF_WAITz high impedance from MCIF_CS_IOz  
deasserted  
Tdis2  
Disable time, MCIF_DATA high impedance from MCIF_CS_IOz or  
MCIF_STRBz deasserted  
15  
ns  
Tw1  
Tw2  
Access width, MCIF_CS_IOz deasserted to MCIF_CS_IOz asserted  
Access width, MCIF_STRBz deasserted to MCIF_STRBz asserted  
25  
0
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
34  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
0x0 †  
MCIF_MODE  
MCIF_ENDIAN  
MCIF_CS_MEMz  
MCIF_CS_IOz  
I
I
I
I
Tsu5  
Th5  
Tsu4  
Th4  
Tw1  
Th6  
Tw2  
§
Th6  
I
MCIF_STRBz  
MCIF_R_nWz  
Tsu2  
Th2  
Tsu2  
Th2  
I
Tsu1  
Th1  
Tsu1  
Th1  
#
#
I
MCIF_ADDR[10:1]  
MCIF_DATA[15:0]  
MCIF_ACKz  
ADDR N or N+2  
Tsu3  
ADDR N or N+2  
Tsu3  
Th3  
Th3  
IO  
O
DATA n  
DATA n+2  
Ten1  
Td1 ||  
Tdis1  
Tdis1  
Td2 ||  
Tdis1  
Tdis1  
Td3  
Ten1  
Td3  
O
MCIF_WAITz  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities. The MCIF_WAITz defaults  
to the active high polarity in the MCIF I/O Type-0 68K mode.  
B. MCIF_OEz, MCIF_WEz and MCIF_BUSCLK are "Don't Care" for the MCIF I/O Type-0 68K mode.  
C. Single 16-bit write accesses are not allowed, resulting in the ExCPUErr interrupt bit being set.  
D. For a write access to occur both MCIF_CS_IOz and MCIF_STRBz must be asserted.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet write cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§ MCIF_STRBz is not required to deassert between accesses.  
¶ MCIF_R_nWz may change between accesses.  
#
CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
|| The MCIF_ACKz / MCIF_WAITz assert delays Td1 and Td2 are measured from the MCIF_CS_IOz or  
MCIF_STRBz assert, whichever occurs last in the access.  
Figure 11. I/O Type-0 68K + Wait Write  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
35  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 5. I/O Type-0 68K + Wait Write MCIF AC Timing Parameters  
Description  
Min  
0
0
-40  
0
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Tsu5  
Th1  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
Setup time, MCIF_R_nWz before MCIF_CS_IOz asserted  
Setup time, MCIF_DATA valid before MCIF_CS_IOz asserted  
Setup time, MCIF_CS_MEMz deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_ENDIAN before MCIF_CS_IOz asserted  
Hold time, MCIF_ADDR valid after MCIF_CS_IOz asserted  
Hold time, MCIF_R_nWz after MCIF_CS_IOz asserted  
0
0
Th2  
Th3  
Hold time, MCIF_DATA valid after MCIF_ACKz asserted / MCIF_WAITz  
0
ns  
deasserted  
Th4  
Th5  
Th6  
Hold time, MCIF_CS_MEMz deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_ENDIAN after MCIF_CS_IOz deasserted  
0
0
0
ns  
ns  
ns  
Hold time, MCIF_CS_IOz or MCIF_STRBz after MCIF_ACKz asserted /  
MCIF_WAITz deasserted  
Td1  
Td2  
Delay time, first write access, MCIF_ACKz asserted / MCIF_WAITz deasserted  
after MCIF_CS_IOz / MCIF_STRBz asserted  
140  
100  
ns  
ns  
Delay time, second write access, MCIF_ACKz asserted / MCIF_WAITz  
deasserted after MCIF_CS_IOz / MCIF_STRBz asserted  
Td3  
Ten1  
Tdis1  
Delay time, MCIF_WAITz asserted after MCIF_CS_IOz asserted  
Enable time, MCIF_CS_IOz asserted to MCIF_ACKz / MCIF_WAITz driven  
15  
15  
15  
ns  
ns  
ns  
Disable time, MCIF_ACKz / MCIF_WAITz high impedance from MCIF_CS_IOz  
deasserted  
Tw1  
Tw2  
Tsu1  
Access width, MCIF_CS_IOz deasserted to MCIF_CS_IOz asserted  
Access width, MCIF_STRBz deasserted to MCIF_STRBz asserted  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
25  
0
0
ns  
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
36  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.4.2 I/O Type-1 SH3 SRAM-Like + Wait  
This I/O interface type supports SH3(HD6417709A) bus state controller specification.  
0x1 †  
I
I
I
I
MCIF_MODE  
MCIF_ENDIAN  
MCIF_CS_MEMz  
MCIF_CS_IOz  
Tsu5  
Th5  
Tsu4  
Th4  
Tw1  
Th2  
Tw2  
§
Tsu2  
Th2  
Tsu2  
I
I
I
RDn (MCIF_OEz)  
WRn (MCIF_WEz)  
MCIF_ADDR[10:1]  
Tsu3  
Th3  
Tsu1  
Th1  
Tsu1  
ADDR N or N+2  
Th1  
ADDR N or N+2  
Ten2  
Tv2 #  
Tdis2  
Tdis2  
Tv1  
Ten2  
Tv2 #  
Tdis1  
IO MCIF_DATA[15:0]  
DATA n  
DATA n+2  
Td1  
Td1  
Ten1  
Ten1  
Tdis1  
O
(RDY) MCIF_WAITz  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities. The RDY (MCIF_WAITz)  
defaults to the active low polarity in the MCIF I/O Type-1 SH3 mode.  
B. The MCIF_STRBz, MCIF_R_nWz and MCIF_BUSCLKz inputs are "Don't Care" and the MCIF_ACKz  
output is not used in the MCIF I/O Type-1 SH3 mode.  
C. Single 16-bit read accesses will not result in an error or an interrupt.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§
For a read access to occur, both MCIF_CS_IOz and RDn (MCIF_OEz) must be asserted. The  
RDn (MCIF_OEz) is not required to deassert between accesses.  
¶ CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
#
Valid time Tv2 is from RDn (MCIF_OEz) or MCIF_CS_IOz, whichever deasserts first in the access.  
Figure 12. I/O Type-1 SH3 Read  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
37  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 6. I/O Type-1 SH3 Critical Timing (Read)  
Description  
Min  
0
-40  
0
0
0
Max  
Units  
ns  
ns  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Tsu5  
Th1  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
Setup time, RDn (MCIF_OEz) asserted before MCIF_CS_IOz asserted  
Setup time, WRn (MCIF_WEz) deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_CS_MEMz deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_ENDIAN before MCIF_CS_IOz asserted  
ns  
Hold time, MCIF_ADDR valid after RDY (MCIF_WAITz) asserted  
0
ns  
Th2  
Hold time, RDn (MCIF_OEz) or MCIF_CS_IOz asserted after RDY  
0
ns  
(MCIF_WAITz) asserted  
Th3  
Th4  
Th5  
Td1  
Hold time, WRn (MCIF_WEz) deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_CS_MEMz deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_ENDIAN after MCIF_CS_IOz deasserted  
0
0
0
ns  
ns  
ns  
ns  
Delay time, read access, RDY (MCIF_WAITz) asserted after MCIF_CS_IOz  
260  
asserted  
Tv1  
Tv2  
Ten1  
Ten2  
Valid time, MCIF_DATA before RDY (MCIF_WAITz) asserted  
Valid time, MCIF_DATA after MCIF_CS_IOz or RDn (MCIF_OEz) deasserted  
Enable time, MCIF_CS_IOz asserted to RDY (MCIF_WAITz) driven  
0
0
ns  
ns  
ns  
ns  
15  
15  
Enable time, MCIF_CS_IOz and RDn (MCIF_OEz) asserted to MCIF_DATA  
driven  
Tdis1  
Tdis2  
Disable time, RDY (MCIF_WAITz) high impedance after MCIF_CS_IOz  
deasserted  
15  
15  
ns  
ns  
Disable time, MCIF_DATA high impedance after MCIF_CS_IOz or RDn  
(MCIF_OEz) deasserted  
Tw1  
Tw2  
Access width, MCIF_CS_IOz deasserted to MCIF_CS_IOz asserted  
Access width, RDn (MCIF_OEz) deasserted to RDn (MCIF_OEz) asserted  
25  
0
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
38  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
0x1 †  
MCIF_MODE  
MCIF_ENDIAN  
MCIF_CS_MEMz  
MCIF_CS_IOz  
I
I
I
I
I
Tsu6  
Th6  
Tsu5  
Th5  
Tw1  
Th2  
Tsu4  
Th4  
RDn (MCIF_OEz)  
Th2  
Tsu2  
Tsu2  
Tw2  
§
I
I
WRn (MCIF_WEz)  
MCIF_ADDR[10:1]  
MCIF_DATA[15:0]  
Tsu1  
Th1  
Tsu1  
ADDR N or N+2  
Th1  
ADDR N or N+2  
Tsu3  
Th3  
Tsu3  
Th3  
IO  
DATA n  
DATA n+2  
Td1  
Td2  
Ten1  
Ten1  
Tdis1  
Tdis1  
O
RDY (MCIF_WAITz)  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities. The RDY (MCIF_WAITz)  
defaults to the active low polarity in the MCIF I/O Type-1 SH3 mode.  
B. The MCIF_STRBz, MCIF_R_nWz and MCIF_BUSCLKz inputs are "Don't Care" and the MCIF_ACKz  
output is not used in the MCIF I/O Type-1 SH3 mode.  
C. Single 16-bit write accesses are not allowed, resulting in the ExCPUErr interrupt bit being set.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§
For a write access to occur, both MCIF_CS_IOz and MCIF_WEz must be asserted. The WRn  
(MCIF_WEz) is not required to deassert between accesses.  
CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
Figure 13. I/O Type-1 SH3 Write  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
39  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 7. I/O Type-1 SH3 AC Timing (Write)  
Description  
Min  
0
-40  
-40  
0
Max  
Units  
ns  
ns  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Tsu5  
Tsu6  
Th1  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
Setup time, WRn (MCIF_WEz) asserted before MCIF_CS_IOz asserted  
Setup time, MCIF_DATA valid before MCIF_CS_IOz asserted  
Setup time, RDn (MCIF_OEz) deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_CS_MEMz deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_ENDIAN before MCIF_CS_IOz asserted  
0
0
ns  
ns  
Hold time, MCIF_ADDR valid after RDY (MCIF_WAITz) asserted  
0
ns  
Th2  
Hold time, WRn (MCIF_WEz) or MCIF_CS_IOz asserted after RDY  
0
ns  
(MCIF_WAITz) asserted  
Th3  
Th4  
Th5  
Th6  
Td1  
Hold time, MCIF_DATA valid after RDY (MCIF_WAITz) asserted  
Hold time, RDn (MCIF_OEz) deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_CS_MEMz deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_ENDIAN after MCIF_CS_IOz deasserted  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
Delay time, first write access, RDY (MCIF_WAITz) asserted after  
120  
120  
MCIF_CS_IOz asserted  
Td2  
Delay time, second write access, RDY (MCIF_WAITz) asserted after  
MCIF_CS_IOz asserted  
ns  
Ten1  
Tdis1  
Enable time, MCIF_CS_IOz asserted to RDY (MCIF_WAITz) driven  
15  
15  
ns  
ns  
Disable time, RDY (MCIF_WAITz) high impedance after MCIF_CS_IOz  
deasserted  
Tw1  
Tw2  
Access width, MCIF_CS_IOz deasserted to MCIF_CS_IOz asserted  
Access width, WRn (MCIF_WEz) deasserted to WRn (MCIF_WEz) asserted  
25  
0
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
40  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.4.3 I/O Type-2 M16C SRAM-Like + Wait  
This type supports the M16C/62-compatible interface timing.  
I
I
I
I
MCIF_MODE  
MCIF_ENDIAN  
MCIF_CS_MEMz  
MCIF_CS_IOz  
0x2 †  
Tsu5  
Th5  
Tsu4  
Th4  
Tw1  
Th2  
Tw2  
Tsu2  
Th2  
Tsu2  
I
I
I
RDn (MCIF_OEz)  
WRn (MCIF_WEz)  
MCIF_ADDR[10:1]  
§
Tsu3  
Th3  
Tsu1  
Th1  
Tsu1  
Th1  
ADDR N or N+2  
Ten2  
ADDR N or N+2  
Ten2  
Tdis2  
Tv2 #  
Tdis2  
Tv1  
DATA n  
Tv1  
DATA n+2  
Tv2 #  
Tdis1  
IO MCIF_DATA[15:0]  
Td1  
Td1  
Tdis1  
Ten1  
Ten1  
(RDY) MCIF_WAITz  
O
NOTES: A. The timing diagram assumes MCIF signals used their default polarities. The RDY (MCIF_WAITz)  
defaults to the active low polarity in the MCIF I/O Type-2 M16C mode.  
B. The MCIF_STRBz, MCIF_R_nWz and MCIF_BUSCLKz inputs are "Don't Care" and the MCIF_ACKz  
output is not used in the MCIF I/O Type-2 M16C mode.  
C. Single 16-bit read accesses will not result in an error or an interrupt.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§
For a read access to occur, both MCIF_CS_IOz and RDz (MCIF_OEz) must be asserted. The  
RDn (MCIF_OEz) is not required to deassert between accesses.  
CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
#
Valid time Tv2 is from RDn (MCIF_OEz) or MCIF_CS_IOz, whichever deasserts first in the access.  
Figure 14. I/O Type-2 M16C SRAM-Like + Wait Read  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
41  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 8. I/O Type-2 M16C SRAM-Like + Wait AC Timing Parameters (Read)  
Description  
Min  
0
-40  
0
0
0
Max  
Units  
ns  
ns  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Tsu5  
Th1  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
Setup time, RDn (MCIF_OEz) asserted before MCIF_CS_IOz asserted  
Setup time, WRn (MCIF_WEz) deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_CS_MEMz deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_ENDIAN before MCIF_CS_IOz asserted  
Hold time, MCIF_ADDR valid after RDY (MCIF_WAITz) asserted  
ns  
ns  
0
Th2  
Hold time, RDn (MCIF_OEz) or MCIF_CS_IOz asserted after RDY  
0
ns  
(MCIF_WAITz) asserted  
Th3  
Th4  
Th5  
Td1  
Hold time, WRn (MCIF_WEz) deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_CS_MEMz deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_ENDIAN after MCIF_CS_IOz deasserted  
0
0
0
ns  
ns  
ns  
ns  
Delay time, read access, RDY (MCIF_WAITz) asserted after MCIF_CS_IOz  
210  
340  
asserted  
Tv1  
Tv2  
Ten1  
Ten2  
Valid time, MCIF_DATA before RDY (MCIF_WAITz) asserted  
Valid time, MCIF_DATA after MCIF_CS_IOz or RDn (MCIF_OEz) deasserted  
Enable time, MCIF_CS_IOz asserted to RDY (MCIF_WAITz) driven  
30  
0
ns  
ns  
ns  
ns  
15  
15  
Enable time, MCIF_CS_IOz and RDn (MCIF_OEz) asserted to MCIF_DATA  
driven  
Tdis1  
Tdis2  
Disable time, RDY (MCIF_WAITz) high impedance after MCIF_CS_IOz  
deasserted  
15  
15  
ns  
ns  
Disable time, MCIF_DATA high impedance after MCIF_CS_IOz or RDn  
(MCIF_OEz) deasserted  
Tw1  
Tw2  
Access width, MCIF_CS_IOz deasserted to MCIF_CS_IOz asserted  
Access width, RDn (MCIF_OEz) deasserted to RDn (MCIF_OEz) asserted  
25  
0
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
42  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
0x2 †  
MCIF_MODE  
MCIF_ENDIAN  
MCIF_CS_MEMz  
MCIF_CS_IOz  
I
I
I
I
I
Tsu6  
Th6  
Tsu5  
Th5  
Tw1  
Th2  
Tsu4  
Th4  
RDn (MCIF_OEz)  
Th2  
Tsu2  
Tw2  
§
Tsu2  
WRn (MCIF_WEz)  
MCIF_ADDR[10:1]  
MCIF_DATA[15:0]  
I
I
Tsu1  
Th1  
Tsu1  
Th1  
ADDR N or N+2  
ADDR N or N+2  
Tsu3  
Tsu3  
Th3  
Th3  
IO  
DATA n  
DATA n+2  
Td1  
Ten1  
Tdis1  
Td2  
Ten1  
Tdis1  
RDY (MCIF_WAITz)  
O
NOTES: A. The timing diagram assumes MCIF signals used their default polarities. The RDY (MCIF_WAITz)  
defaults to the active low polarity in the MCIF I/O Type-2 M16C mode.  
B. The MCIF_STRBz, MCIF_R_nWz and MCIF_BUSCLK inputs are "Don't Care" and the MCIF_ACKz  
output is not used in the MCIF I/O Type-2 M16C mode.  
C. Single 16-bit write accesses are not allowed, resulting in the ExCPUErr interrupt bit being set.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§
For a write access to occur, both MCIF_CS_IOz and WRn (MCIF_WEz) must be asserted. The  
WRn (MCIF_WEz) is not required to deassert between accesses.  
CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
Figure 15. I/O Type-2 M16C SRAM-Like + Wait Write  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
43  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 9. I/O Type-2 M16C SRAM-Like + Wait AC Timing Parameters (Write)  
Description  
Min  
0
-40  
-40  
0
0
0
0
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Tsu5  
Tsu6  
Th1  
Setup time, MCIF_ADDR valid before MCIF_CS_IOz asserted  
Setup time, WRn (MCIF_WEz) asserted before MCIF_CS_IOz asserted  
Setup time, MCIF_DATA valid before MCIF_CS_IOz asserted  
Setup time, RDn (MCIF_OEz) deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_CS_MEMz deasserted before MCIF_CS_IOz asserted  
Setup time, MCIF_ENDIAN before MCIF_CS_IOz asserted  
Hold time, MCIF_ADDR valid after RDY (MCIF_WAITz) asserted  
Th2  
Hold time, WRn (MCIF_WEz) or MCIF_CS_IOz asserted after RDY  
0
ns  
(MCIF_WAITz) asserted  
Th3  
Th4  
Th5  
Th6  
Td1  
Hold time, MCIF_DATA valid after RDY (MCIF_WAITz) asserted  
Hold time, RDn (MCIF_OEz) deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_CS_MEMz deasserted after MCIF_CS_IOz deasserted  
Hold time, MCIF_ENDIAN after MCIF_CS_IOz deasserted  
0
0
0
0
80  
ns  
ns  
ns  
ns  
ns  
Delay time, first write access, RDY (MCIF_WAITz) asserted after  
340  
340  
MCIF_CS_IOz asserted  
Td2  
Delay time, second write access, RDY (MCIF_WAITz) asserted after  
MCIF_CS_IOz asserted  
80  
ns  
Ten1  
Tdis1  
Enable time, MCIF_CS_IOz asserted to RDY (MCIF_WAITz) driven  
15  
15  
ns  
ns  
Disable time, RDY (MCIF_WAITz) high impedance after MCIF_CS_IOz  
deasserted  
Tw1  
Tw2  
Access width, MCIF_CS_IOz deasserted to MCIF_CS_IOz asserted  
Access width, WRn (MCIF_WEz) deasserted to WRn (MCIF_WEz) asserted  
25  
0
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
44  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.4.4 I/O Type-3 MPC850  
Supports Motorola MPC850 external bus.  
Td1  
Td1  
R_nW = Read  
Read Data n  
Read Data n+2  
TAn Assert N+2  
TSn Detect N  
TAn N Asserted  
CSn Detect  
TSn Detect N+2  
Tc  
CSn_Detect  
Tc  
Tc  
Tc  
Tc  
Tc  
Tc  
Tc  
I
I
MCIF_BUSCLK  
MCIF_MODE  
0x3 †  
Tsu6  
Th6  
MCIF_ENDIAN  
I
I
Tsu5  
Th5  
MCIF_CS_MEMz  
Th4  
§
Tsu4  
Tsu4  
I
I
I
I
MCIF_CS_IOz  
MCIF_ADDR[10:1]  
MCIF_R_nWz  
Th1  
Th1  
Tsu1  
Tsu1  
ADDR N or N+2  
ADDR N or N+2  
Th2  
Th2  
Tsu2  
Tsu2  
#
Th3  
Th3  
Tsu3  
Tsu3  
TSn (MCIF_STRBz)  
#
Tv2  
Tv1  
Tv1  
Ten2  
Tv2  
Tdis2  
IO MCIF_DATA[15:0]  
DATA n  
DATA n+2  
Tdis1  
Tv4  
Tv3  
Tv4  
Tv3  
Ten1  
O
TAn (MCIF_ACKz)  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities.  
B. MCIF_OEz, MCIF_WEz and MCIF_WAITz are "Don't Care" for the MCIF I/O Type-3 MPC850 mode.  
C. Single 16-bit read accesses will not result in an error or an interrupt.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§ MCIF_CS_IOz may deassert after TAn (MCIF_ACKz) is detected as long as Th5 is met. In  
synchronous designs it may be better to allow at least one clock period delay between TAn  
(MCIF_ACKz) detect and the next MCIF_CS_IOz access cycle.  
¶ CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
# MCIF_R_nWz and TSn (MCIF_STRBz) may remain valid / asserted or become invalid /deasserted  
during the access.  
Figure 16. I/O Type-3 MPC850 Read  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
45  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 10. I/O Type-3 MPC850 Read AC Timing Parameters  
Description  
Min  
24  
2
Max  
Units  
ns  
ns  
Tc  
Tsu1  
Cycle time, MCIF_BUSCLKz  
Setup time, MCIF_ADDR valid before MCIF_BUSCLKz rising edge [TSn  
(MCIF_STRBz) assert cycle]  
Tsu2  
Setup time, MCIF_R_nWz before MCIF_BUSCLKz rising edge [TSn  
(MCIF_STRBz) assert cycle]  
16  
ns  
Tsu3  
Tsu4  
Tsu5  
Setup time, TSn (MCIF_STRBz) asserted before MCIF_BUSCLKz rising edge  
Setup time, MCIF_CS_IOz asserted before MCIF_BUSCLKz rising edge  
15  
4
4
ns  
ns  
ns  
Setup time, MCIF_CS_MEMz deasserted before MCIF_BUSCLKz rising edge  
(MCIF_CS_IOz assert cycle)  
Tsu6  
Th1  
Th2  
Setup time, MCIF_ENDIAN before MCIF_BUSCLKz rising edge (MCIF_CS_IOz  
assert cycle)  
4
14  
2
ns  
ns  
ns  
Hold time, MCIF_ADDR valid after MCIF_BUSCLKz rising edge [TSn  
(MCIF_ACKz) assert cycle]  
Hold time, MCIF_R_nWz after MCIF_BUSCLKz rising edge [TSn (MCIF_ACKz)  
assert cycle]  
Th3  
Th4  
Hold time, TSn (MCIF_STRBz) asserted after MCIF_BUSCLKz rising edge  
2
14  
ns  
ns  
Hold time, MCIF_CS_IOz asserted after MCIF_BUSCLKz rising edge [TAn  
(MCIF_ACKz) assert cycle]  
Th5  
Th6  
Td1  
Tv1  
Tv2  
Hold time, MCIF_CS_MEMz deasserted after MCIF_BUSCLKz rising edge  
[MCIF_CS_IOz deassert cycle]  
0
0
ns  
ns  
ns  
ns  
ns  
Hold time, MCIF_ENDIAN after MCIF_BUSCLKz rising edge [MCIF_CS_IOz  
deassert cycle]  
Delay time, read access, TSn (MCIF_STRBz) assert cycle to TAn (MCIF_ACKz)  
assert cycle  
150  
Valid time, MCIF_DATA before MCIF_BUSCLKz rising edge [TAn (MCIF_ACKz)  
10  
2
asserted cycle]  
Valid time, MCIF_DATA after MCIF_BUSCLKz rising edge [TAn (MCIF_ACKz)  
asserted cycle]  
Tv3  
Tv4  
Ten1  
Ten2  
Valid time, TAn (MCIF_ACKz) asserted before MCIF_BUSCLKz rising edge  
Valid time, TAn (MCIF_ACKz) asserted after MCIF_BUSCLKz rising edge  
Enable time, MCIF_CS_IOz asserted to TAn (MCIF_ACKz) driven  
11  
0
ns  
ns  
ns  
ns  
15  
15  
Enable time, MCIF_BUSCLKz rising edge to MCIF_DATA driven [TSn  
(MCIF_ACKz) assert cycle]  
Tdis1 Disable time, TAn (MCIF_ACKz) high impedance after MCIF_CS_IOz  
deasserted  
Tdis2 Disable time, MCIF_DATA high impedance after MCIF_CS_IOz deasserted  
15  
15  
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
46  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Td1  
Td1  
R_nW_=_Write  
R_nW = Write  
Write Data n  
TSn Detect N  
Write Data n + 2  
TSn Detect N+2  
TAn Assert N+2  
CSn Detect  
Tc  
TAn Assert N  
Tc  
CSn_Detect  
Tc  
Tc  
Tc  
Tc  
Tc  
Tc  
I
I
MCIF_BUSCLK  
MCIF_MODE  
0x3 †  
Tsu7  
Th7  
MCIF_ENDIAN  
I
I
Tsu6  
Tsu4  
Th6  
MCIF_CS_MEMz  
Th4  
§
Tsu4  
I
I
I
I
MCIF_CS_IOz  
MCIF_ADDR[10:1]  
MCIF_R_nWz  
Th1  
Th1  
Tsu1  
Tsu1  
ADDR N or N+2  
ADDR N or N+2  
Th2  
Th2  
Tsu2  
Tsu2  
#
Th3  
Th3  
Tsu3  
Tsu3  
TSn (MCIF_STRBz)  
#
Th5  
Th5  
Tsu5  
Tsu5  
IO MCIF_DATA[15:0]  
DATA n  
DATA n+2  
Tdis1  
Tv2  
Tv1  
Tv2  
Tv1  
Ten1  
O
TAn (MCIF_ACKz)  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities.  
B. MCIF_OEz, MCIF_WEz and MCIF_WAITz are "Don't Care" for the MCIF I/O Type-3 MPC850 mode.  
C. Single 16-bit write accesses are not allowed, resulting in the ExCPUErr interrupt bit being set.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during a quadlet access cycle.  
‡ MCIF_ENDIAN may change during device operation. It should not change during a quadlet access  
or data corruption may result.  
§ MCIF_CS_IOz may deassert after TAn (MCIF_ACKz) is detected as long as Th5 is met. In  
synchronous designs it may be better to allow at least one clock period delay between TAn  
(MCIF_ACKz) detect and the next MCIF_CS_IOz access cycle.  
¶ CFR accesses must be quadlet aligned. The MCIF_ADDR[1] bit is immaterial and the MCIF_ADDR  
may be of value "N" or "N+2" when considered as a byte address ( ADDR[10:0] ). MCIF_ADDR[0] is  
internally grounded. MCIF_ADDR[1] is used in the Memory MCIF mode.  
#
MCIF_R_nWz and TSn (MCIF_STRBz) may remain valid / asserted or become invalid /deasserted  
during the access.  
Figure 17. I/O Type-3 MPC850 Write  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
47  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 11. I/O Type-3 MPC850 Write AC Timing Parameters  
Description  
Min  
Max  
Units  
Tsu1  
Tsu2  
Setup time, MCIF_ADDR valid before MCIF_BUSCLKz rising edge [TSn  
2
ns  
(MCIF_STRBz) assert cycle]  
Setup time, MCIF_R_nWz before MCIF_BUSCLKz rising edge [TSn  
(MCIF_STRBz) assert cycle]  
16  
ns  
Tsu3  
Tsu4  
Tsu5  
Setup time, TSn (MCIF_STRBz) asserted before MCIF_BUSCLKz rising edge  
Setup time, MCIF_CS_IOz asserted before MCIF_BUSCLKz rising edge  
15  
4
16  
ns  
ns  
ns  
Setup time, MCIF_DATA valid before MCIF_BUSCLKz rising edge [TSn  
(MCIF_ACKz) assert cycle]  
Tsu6  
Tsu7  
Th1  
Setup time, MCIF_CS_MEMz deasserted before MCIF_BUSCLKz rising edge  
(MCIF_CS_IOz assert cycle)  
4
4
ns  
ns  
ns  
Setup time, MCIF_ENDIAN before MCIF_BUSCLKz rising edge (MCIF_CS_IOz  
assert cycle)  
Hold time, MCIF_ADDR valid after MCIF_BUSCLKz rising edge [TSn  
(MCIF_ACKz) assert cycle]  
14  
Th2  
Th3  
Th4  
Hold time, TSn (MCIF_STRBz) asserted after MCIF_BUSCLKz rising edge  
Hold time, TAn (MCIF_ACKz) asserted after MCIF_BUSCLKz rising edge  
2
0
14  
ns  
ns  
ns  
Hold time, MCIF_CS_IOz asserted after MCIF_BUSCLKz rising edge [TAn  
(MCIF_ACKz) assert cycle]  
Th5  
Th6  
Th7  
Td1  
Hold time, MCIF_DATA valid after MCIF_BUSCLKz rising edge [TSn  
(MCIF_ACKz) assert cycle]  
2
0
0
ns  
ns  
ns  
ns  
Hold time, MCIF_CS_MEMz deasserted after MCIF_BUSCLKz rising edge  
[MCIF_CS_IOz deassert cycle]  
Delay time, read access, TSn (MCIF_STRBz) assert cycle to TAn (MCIF_ACKz)  
assert cycle  
Delay time, read access, TSn (MCIF_STRBz) assert cycle to TAn (MCIF_ACKz)  
130  
assert cycle  
Tv1  
Tv2  
Ten1  
Valid time, TAn (MCIF_ACKz) asserted before MCIF_BUSCLKz rising edge  
Valid time, TAn (MCIF_ACKz) asserted after MCIF_BUSCLKz rising edge  
11  
2
ns  
ns  
ns  
Enable time, MCIF_BUSCLKz rising edge to TAn (MCIF_ACKz) driven  
15  
15  
(MCIF_CS_IOz assert cycle)  
Tdis1  
Disable time, TAn (MCIF_ACKz) high impedance after MCIF_BUSCLKz rising  
edge (MCIF_CS_IOz deassert cycle)  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
48  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.9.4.5 Memory Type  
All ex-CPU modes (Type-0 (68K) and Type-2 (M16C/62)) use the same timing for memory access. The  
ex-CPU provides the bus clock (MCIF_BUSCLKz) in all modes.  
MCIF_MODE  
MCIF_BUSCLK  
MCIF_ENDIAN  
MCIF_CS_IOz  
I
I
I
I
0x0 - 0x3 †  
Tc  
Tc  
Tc  
Tc  
Tc  
Tsu6  
Tsu5  
Th6  
Th5  
Tw1  
§
Tsu3  
Th3  
Tsu3  
Th3  
MCIF_CS_MEMz  
I
Tw2  
Tsu2  
Th2  
Tsu2  
Th2  
RDn (MCIF_OEz)  
WRn (MCIF_WEz)  
I
I
§
Tsu4  
Th4  
Th1  
Tsu1  
ADDR N  
Th1  
Tsu1  
ADDR M+1  
MCIF_ADDR[10:1]  
MCIF_DATA[15:0]  
I
ADDR M  
Ten1  
Tv1  
Tv3  
Tdis1  
Tv1  
DATA n  
Tdis1  
Tv3  
Tv1  
DATA m+1  
Ten1  
Tv2 #  
Tv2  
IO  
DATA m  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities.  
B. The MCIF_STRBz and MCIF_R_nWz inputs are "Don't Care". The MCIF_ACKz and  
MCIF_WAITz outputs are not used in the MCIF Memory Access mode.  
C. Single 16-bit read accesses will not result in an error or an interrupt.  
D. MCIF Memory Mode read access latency is two clock cycles.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during an MCIF Memory Access cycle. Memory accesses may only occur if  
MCIF_MODE is valid (0x0 through 0x3).  
‡ MCIF_ENDIAN may change during device operation. It should not change during an access or data  
corruption may result.  
§
For a read access to occur, both MCIF_CS_MEMz and RDn (MCIF_OEz) must be asserted. The  
MCIF_CS_MEMz and RDn (MCIF_OEz) are not required to deassert between accesses.  
¶ Memory accesses are not required to be quadlet aligned. The MCIF_ADDR[1] bit is used along with  
the MCIF_ENDIAN to determine which 16-bit word is read. Addressing should be considered as byte  
addressing ( ADDR[10:0] ) with MCIF_ADDR[0] internally grounded.  
#
Valid time Tv2 is from MCIF_CS_MEMz or RDn (MCIF_OEz), whichever deasserts first in the access.  
Figure 18. Memory Type  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
49  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 12. Memory Type Read AC Timing Parameters  
Description  
Min  
8.33  
8
Max  
142.86  
Units  
ns  
ns  
Tc  
Tsu1  
Cycle time, MCIF_BUSCLKz [Assume 20-pF loading]  
Setup time, MCIF_ADDR valid before MCIF_BUSCLKz rising edge  
(MCIF_CS_MEMz assert cycle)  
Tsu2  
Setup time, RDn (MCIF_OEz) asserted before MCIF_BUSCLKz rising edge  
(MCIF_CS_MEMz assert cycle)  
8
ns  
Tsu3  
Tsu4  
Setup time, MCIF_CS_MEMz asserted before MCIF_BUSCLKz rising edge  
8
8
ns  
ns  
Setup time, WRn (MCIF_WEz) deasserted before MCIF_BUSCLKz rising edge  
(MCIF_CS_MEMz assert cycle)  
Tsu5  
Tsu6  
Th1  
Th2  
Th3  
Th4  
Th5  
Setup time, MCIF_CS_IOz deasserted before MCIF_BUSCLKz rising edge  
(MCIF_CS_MEMz assert cycle)  
8
8
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, MCIF_ENDIAN before MCIF_BUSCLKz rising edge  
(MCIF_CS_MEMz assert cycle)  
Hold time, MCIF_ADDR valid after MCIF_BUSCLKz rising edge  
(MCIF_CS_MEMz assert cycle)  
Hold time, RDn (MCIF_OEz) asserted after MCIF_BUSCLKz rising edge (data  
read cycle)  
Hold time, MCIF_CS_MEMz asserted after MCIF_BUSCLKz rising edge (data  
read cycle)  
Hold time, WRn (MCIF_WEz) deasserted after MCIF_BUSCLKz rising edge  
(data read cycle)  
Hold time, MCIF_CS_IOz deasserted after MCIF_BUSCLKz rising edge (data  
read cycle)  
Th6  
Tv1  
Tv2  
Tv3  
Ten1  
Hold time, MCIF_ENDIAN after MCIF_BUSCLKz rising edge (data read cycle)  
Valid time, MCIF_DATA before MCIF_BUSCLKz rising edge (data read cycle)  
Valid time, MCIF_DATA after MCIF_CS_MEMz or RDn (MCIF_OEz) deasserted  
Valid time, MCIF_DATA after MCIF_BUSCLKz rising edge (data read cycle)  
0
8
8
2
ns  
ns  
ns  
ns  
ns  
Enable time, MCIF_CS_MEMz and RDn (MCIF_OEz) asserted to MCIF_DATA  
15  
15  
driven  
Tdis1  
Tw1  
Tw2  
Disable time, MCIF_DATA high impedance after MCIF_CS_MEMz deasserted  
Access width, MCIF_CS_MEMz deasserted to MCIF_CS_MEMz asserted  
Access width, RDn (MCIF_OEz) deasserted to RDn (MCIF_OEz) asserted  
ns  
ns  
ns  
0
0
Note: Measurements are based on a 20-pF loading.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
does not necessarily include testing of all parameters.  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
50  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
I
I
I
I
MCIF_MODE  
MCIF_BUSCLK  
MCIF_ENDIAN  
MCIF_CS_IOz  
0x0 - 0x3 †  
Tc  
Tc  
Tc  
Tsu7  
Th7  
Tsu6  
Th6  
Tw1  
§
Tsu5  
Th5  
Tsu5  
Th5  
I
I
MCIF_CS_MEMz  
RDn (MCIF_OEz)  
Tsu4  
Th4  
Tsu2  
Tsu2  
Th1  
Th2  
Tw2  
§
Th2  
WRn (MCIF_WEz)  
MCIF_ADDR[10:1]  
I
I
Th1  
Th1  
Tsu1  
ADDR M+1  
Tsu1  
ADDR N  
Tsu1  
ADDR M  
ADDR P  
DATA p  
Th3  
Th3  
Th3  
Tsu3  
DATA m+1  
Tsu3  
DATA n  
Tsu3  
IO MCIF_DATA[15:0]  
DATA m  
NOTES: A. The timing diagram assumes MCIF signals used their default polarities.  
B. The MCIF_STRBz and MCIF_R_nWz inputs are "Don't Care". The MCIF_ACKz and  
MCIF_WAITz outputs are not used in the MCIF Memory Access mode.  
C. Single 16-bit write accesses are allowed and will not result in an error or an interrupt.  
D. MCIF Memory Mode write access latency is zero clock cycles.  
MCIF_MODE may be changed during device operation but is not recommended. MCIF_MODE  
should not change during an MCIF Memory Access cycle. Memory accesses may only occur if  
MCIF_MODE is valid (0x0 through 0x3).  
‡ MCIF_ENDIAN may change during device operation. It should not change during an access or data  
corruption may result.  
§
For a write access to occur, both MCIF_CS_MEMz and WRn (MCIF_WEz) must be asserted. The  
MCIF_CS_MEMz and WRn (MCIF_WEz) are not required to deassert between accesses.  
¶ Memory accesses are not required to be quadlet aligned. The MCIF_ADDR[1] bit is used along with  
the MCIF_ENDIAN to determine which 16-bit word is written. Addressing should be considered as byte  
addressing ( ADDR[10:0] ) with MCIF_ADDR[0] internally grounded.  
Figure 19. Memory Write  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
51  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 13. Memory Type Write AC Timing Parameters  
Description  
Min  
8
8
Max  
Units  
ns  
ns  
Tsu1  
Tsu2  
Tsu3  
Tsu4  
Setup time, MCIF_ADDR valid before MCIF_BUSCLKz rising edge  
Setup time, WRn (MCIF_WEz) asserted before MCIF_BUSCLKz rising edge  
Setup time, MCIF_DATA valid before MCIF_BUSCLKz rising edge  
8
ns  
Setup time, RDn (MCIF_OEz) deasserted before MCIF_BUSCLKz rising edge  
8
ns  
(data write cycle)  
Tsu5  
Tsu6  
Setup time, MCIF_CS_MEMz asserted before MCIF_BUSCLKz rising edge  
8
8
ns  
ns  
Setup time, MCIF_CS_IOz deasserted before MCIF_BUSCLKz rising edge  
(data write cycle)  
Tsu7  
Setup time, MCIF_ENDIAN before MCIF_BUSCLKz rising edge (data write  
cycle)  
8
ns  
Th1  
Th2  
Th3  
Th4  
Hold time, MCIF_ADDR valid after MCIF_BUSCLKz rising edge  
Hold time, WRn (MCIF_WEz) asserted after MCIF_BUSCLKz rising edge  
Hold time, MCIF_DATA valid after MCIF_BUSCLKz rising edge  
0
0
0
0
ns  
ns  
ns  
ns  
Hold time, RDn (MCIF_OEz) deasserted after MCIF_BUSCLKz rising edge  
(data write cycle)  
Th5  
Th6  
Hold time, MCIF_CS_MEMz asserted after MCIF_BUSCLKz rising edge (data  
write cycle)  
0
0
ns  
ns  
Hold time, MCIF_CS_IOz deasserted after MCIF_BUSCLKz rising edge (data  
write cycle)  
Th7  
Tw1  
Tw2  
Hold time, MCIF_ENDIAN after MCIF_BUSCLKz rising edge (data write cycle)  
Access width, MCIF_CS_MEMz deasserted to MCIF_CS_MEMz asserted  
Access width, WRn (MCIF_WEz) deasserted to WRn (MCIF_WEz) asserted  
0
0
0
ns  
ns  
ns  
Note: Measurements are based on a 20-pF loading.  
1.9.5 LEB Encryption  
The external CPU interface contains an option for encryption. The encryption protects DTLA key transfer  
over the external CPU interface. The parallel external CPU mode uses this method.  
1) The external CPU starts the program load to the iceLynx-Micro. The code is loaded starting at  
address 0h. The first two quadlets have encryption information. The other quadlets are the encrypted  
download program (up to 256K bytes). The program code must always contain these two header  
quadlets, even if the data is not encrypted. The C bits indicate if data must be decrypted.  
The first two quadlets have the following format:  
Table 14. Ex-CPU Encryption First Quadlet  
31 29  
C
28 24  
Key No  
23  
0
Key Seed  
Key Seed  
2) The iceLynx-Micro uses the values in the first quadlet to determine how to decrypt the data.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
52  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 15. Ex-CPU Encryption Reference  
Field  
Description  
Purpose  
Indicates encryption mode. Values from 000 to 111 are valid.  
If value is 111, the hardware stops LEB decryption. The program is  
C
Three bit encryption indicator  
Key Number (see Note 1)  
loaded to program memory without being decrypted.  
If value is any other than 111, the hardware performs LEB decryption  
on the data loaded into program memory.  
Used to indicate which 56-bit key the iceLynx-Micro uses for LEB  
decryption. The keys are available in a Device Key ROM table. There  
are 32 separate 56-bit entries.  
Each key corresponds to a specific Key No.  
Key No  
Single LEB  
Key No  
0
1
2
31  
AAAA AAAA AAAA AA  
BBBB BBBB BBBB BB  
CCCC CCCC CCCC CC  
6666 6666 6666 66  
Key  
Seed value provided by  
ex-CPU  
This 56-bit number is used as an input to the Single LEB decryption  
Seed  
hardware.  
Note 1: Contact Texas Instruments for actual key numbers and key data.  
3) LEB decryption hardware  
An XOR operation is performed on the Key Seed provided by the ex-CPU and the Device Key (selected  
from the Device Key ROM table by Key No). If the C values are any value except 111, the hardware  
decrypts the program code.  
The maximum throughput for the program load using LEB is 20 Mbytes per second.  
1.10 Integrated CPU  
1.10.1 Description/Overview  
The iceLynx-Micro has an integrated ARM7TDMI processor. The operating frequency is 50 MHz. The  
processor is intended to handle all 1394 transactions as well as DTCP related software. It operates in  
16-bit mode in addition to 32-bit mode.  
Access to CFRs requires three clock cycles for reads and writes. All other internal memory locations are  
accessed in a single cycle.  
1.10.2 Interaction With External CPU  
Only one CPU (internal or external) can access memory locations at one time. This includes configuration  
registers and FIFOs. The integrated CPU has access to program memory and communication memory in  
byte mode, 16-bit mode, or 32-bit mode. The external CPU has priority over the internal CPU. While the  
ex-CPU performs a memory access (2x1024-byte RAMs), the ARM can use the internal bus freely.  
1.10.3 External Interrupts  
The GPIO pins are configured as IRQ and/or FIQ interrupts used to signal interrupts for the ARM. GPIO  
pins can also be configured as other types of interrupts as specified in GPIOIntCfg CFR. General-purpose  
interrupts can also be used for communication between the internal and external processors. These  
interrupts are available in InCPUComInt and ExCPUComInt CFRs.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
53  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.10.4 Timer  
The iceLynx-Micro has three general timers. One of these timers, Timer2, is configured as the watchdog  
timer. The WTCH_DG_TMRn (watchdog timer output) port detects any internal ARM software failure. If  
the watchdog timer expires, hardware sets WTCH_DG_TMRn = low, Low_Pwr_Rdy = low.  
The value for CFR and output are as follows:  
‰
‰
‰
‰
‰
‰
‰
Low_Pwr_Rdy = low (hardware sets)  
WTCH_DG_TMRn = low (hardware sets)  
HPS = high (external application sets)  
LPS = high  
RESET_ARMn = low (external application sets)  
PHYNoticeEn = high or low  
The following describes the WTCH_DG_TMRn behavior whenever PinCfg.WtchDgTmrN is set to 0.  
The WTCH_DG_TMRn pin reflects the value of Timer2.Enable.  
(b)  
(c)  
(d)  
WTCH_DG_TMRZ  
(a)  
Figure 20. Watchdog Timer Waveform  
At phase (a), the iceLynx-Micro is in the power-up stage. The ARM has not been programmed and is not  
operating. Sys.Timer2.Enable bit is 0, and the WTCH_DG_TMRn pin is asserted (low).  
At phase (b), the iceLynx-Micro is in the active stage. The ARM is executing code and has set  
Sys.Timer2.Enable = 1. The ARM clears the Timer2 counter by periodically writing a 1 to  
Sys.Timer2.Enable bit to keep Sys.Timer2.Counter from equaling Sys.Timer2.Period. The  
WTCH_DG_TMRn pin reflects the status of Sys.Timer2.Enable and is deasserted (high).  
At phase (c), the iceLynx-Micro is still in the active stage. However, the ARM has failed to clear the  
Timer2 counter in time. Sys.Timer2.Counter = Sys.Timer2.Period. At this point, iceLynx-Micro hardware  
clears Sys.Timer2.Enable. The WTCH_DG_TMRn pin is asserted (low). If Sys.Timer2.RstInCPU == 1,  
the ARM gets a reset. The Sys.*CPUInt.Timer2 interrupt indicates what happened to the ARM after it  
comes out of reset.  
The system decides to perform a device reset and reload program code according to system conditions.  
At phase (d), the ARM (or Ex-CPU) has set Sys.Timer2.Enable == 1. The WTCH_DG_TMRn signal is  
deasserted (goes high).  
Note: WTCH_DG_TMRn function is independent of Sys.InCPUCfg.Reset function. If the ARM is placed  
in reset by setting Sys.InCPUCfg.Reset = 1, WTCH_DG_TMRn is still active as long as  
Sys.Timer2.Enable = 1.  
1.11 High Speed Data Interface  
1.11.1 Overview/Description  
The high speed data interface (HSDI) is used for transmitting and receiving high-speed video data. The  
HSDI is connected to the isochronous buffers. HSDI0 is connected to ISO FIFO 0 and HSDI1 is  
connected to ISO FIFO 1. The HSDI ports can be configured as transmit or receive. A single port cannot  
transmit and receive at the same time. The buffer direction, HSDI mode, and stream type are all set by  
CFR. See Table 16 for a description of the HSDI signals.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
54  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 16. HSDI Signals  
Signal  
Polarity  
Tx  
Rx  
Description  
Direction Direction  
HSDI*_CLK  
Programmable  
Defaults to  
Input  
Input  
All activity on HSDI uses this clock.  
The clock must be always provided by an external  
codec in read and write mode except for TX  
mode 3. In TX mode 3, the clock is only available  
during data transmit.  
rising edge  
HSDI*_EN  
Programmable  
Defaults to  
active low  
Input  
Input  
Input  
Enables the HSDI interface. This signal must be  
enabled all the time by tying it low or high for  
modes that do not provide an enable signal.  
HSDI*_SYNC  
(See Note1)  
Programmable  
Output  
HSDI*_SYNC indicates the start of the packet.  
The rising edge (or falling edge, depending on  
polarity setting) of this signal indicates first byte of  
data. An internal packet counternote2 keeps track  
of the packet end. For TX operations of all data  
types, the packet counter must be programmed by  
software in HSDI*Cfg.TxDatBlkSz. On TX  
operation, the width of the HSDI*_SYNC pulse  
can vary. On RX operation, HSDI*_SYNC is an  
output from iceLynx-Micro. It is the width of one  
HSDI*_CLK cycle.  
Defaults to  
active high  
For DVB TX, if the application chooses to use the  
modes that do not provide the HSDI*_Sync signal,  
the frame sync detection circuitry must be enabled  
by setting HSDI*Cfg.FrmSyncDetEn = 1.  
HSDI*_AV  
Programmable  
Defaults to  
active low  
Output  
for HSDI  
TX  
Output  
Indicates data is available in FIFO for reading. For  
MPEG2 RX, data is available once SPH=cycle  
timer (timestamp). For DV, data is available once  
the entire 480-byte cell has been received into the  
FIFO.  
For HSDI TX modes 8 and 9, it indicates the  
number of quadlets in the TX ISO buffer is over  
the programmed limit. The limit is programmed at  
CFR.  
modes 8  
and 9  
(DV)  
HSDI*_Data  
Input  
Input  
Output  
Output  
Byte wide data bus. HSDI*_D7 is MSB.  
For serial mode, only HSDI*_D0 is used.  
For transmit, this signal is input and indicates data  
is valid and is written to TX ISO buffer. For  
receive, this signal is output and indicates data is  
valid on HSDI.  
HSDI*_DVALID Programmable  
HSDI*_FrameS  
ync  
Defaults to  
active high  
On RX operation, this signal is not deasserted for  
back to back packets.  
In DV I/F mode (HSDI TX mode 9, RX mode 4),  
HSDI*_DVALID is used as HSDI*_FrameSync.  
Notes:  
1) HSDI*SYNC  
Data on HSDI is ignored until the HSDI*_SYNC signal is detected. In frame sync detection mode,  
data is ignored until the SyncLock event occurs.  
The SyncLock event is signaled by an interrupt in CFR-Iso*CPUInt.SyncLock when the  
HSDI*_Sync signal is activated as programmed in CFR–or in frame sync detection mode when  
the MPEG2-DVB synchronization byte 0x47 are detected 188 bytes apart.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
55  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
The Iso*TxCfg.SyncLock status bit is also asserted. The Iso*TxCfg.SyncLock status bit stays  
asserted until a Sync violation event occurs. If a sync violation occurs (such as a synchronization  
byte occurs too soon or too late), the Iso*InCPUInt.SyncUnlock interrupt occurs and the current  
packet is flushed.  
2) Packet Counter  
Once the HSDI*_SYNC edge or SyncLock event is detected, the counter starts. The packet is  
written into the FIFO once the counter value is reached. Data on the HSDI is ignored until the  
next HSDI*_SYNC or SyncLock event when the frame sync detection circuitry is enabled. If  
another HSDI*_SYNC occurs before the end of the counter, the packet is aborted. More details  
on the frame sync detection circuit provided in Section 1.12.2. Table 17 shows the counter values  
to be programmed for the applications shown below:  
Table 17. Application Counter Values  
Application  
MPEG2-DVB  
MPEG2-DSS-130  
MPEG2-DSS-140  
DV-SD  
Counter Value  
188 bytes  
130 bytes  
140 bytes  
480 bytes  
1.11.2 Frame Sync Detection Circuit  
The iceLynx-Micro supports the frame sync detection feature for MPEG2-DVB applications that do not  
provide a sync signal (=byte start) to the HSDI. It is enabled in CFR using HSDI*Cfg.FrmSyncDetEn. The  
frame detection circuit looks for the MPEG2-DVB transport stream synchronization byte, (0x47). The  
iceLynx-Micro detects synchronization bytes that are 188 bytes apart and signal a SyncLock event. The  
number of sync bytes detected for a lock condition is programmable in HSDICfg.SyncLockDetNum (the  
range is 2-7).  
For example, if HSDICfg.SyncLockDetNum is set to 2, the iceLynx-Micro searches for two  
synchronization bytes 188 bytes apart. The second synchronization byte must be marked as start of  
packet and assert the Iso*CPUInt.SyncLock Interrupt. The first packet is confirmed into the TX FIFO when  
the second synchronization byte is detected. Otherwise, the first packet is flushed from the FIFO. After  
the last byte is input to HSDI (188th byte), the iceLynx-Micro does not capture any packet data until the  
next MPEG2 transport stream synchronization byte.  
Note: The frame sync detection circuit can only be used for MPEG2-DVB (188-byte) data.  
1.11.3 HSDI Pass-Through Function  
This function is enable/disabled by a CFR setting (HSDI*Cfg.PassThru). Both the HSDI0 and HSDI1 ports  
support the data pass-through function in accordance with the following conditions:  
ƒ
ƒ
The MPEG2-TS data for HSDI TX modes 1-7.  
The pass through direction is input to HSDI0 and output HSDI1.  
1.In this case, HSDI*Cfg.PassThru and Iso*Cfg.Enable must both be set. The DVD MPEG2-TS  
data is transmitted to 1394 as well as passed through to HSDI1. The audio interface, which uses  
ISO PATH1 (data buffer 1), can also be used at the same time.  
2. The direction is only HSDI0->HSDI1 available.  
3. When the data pass through function is enabled, the signals shown in Table 18 are handled.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
56  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 18. HSDI Pass-Through Function  
HSDI0 -> HSDI1  
Signal Name of HSDI0  
Data CLK  
SYNC  
Data valid  
I/O  
Direction  
Signal Name of HSDI1  
Data CLK  
SYNC  
I/O  
O
O
I
I
I
->  
->  
->  
Data Valid  
O
IEEE 1394 Serial Bus  
Internal Circuit  
MUX  
CFR  
HSDI_0  
HSDI_1  
TransPort  
FrontEnd  
LSI  
BackEnd  
LSI  
Decrypt  
Demux  
Data  
I
->  
Data  
O
Figure 21. Example for Data Pass-Through Function  
1.11.4 HSDI Maximum Clock Rates and Throughput  
See Table 19 for the maximum clock rates and throughput on the HSDI interface.  
Table 19. HSDI Maximum Clock Rates and Throughput  
HSDI Format  
Serial  
Maximum Clock Rate  
70 MHz  
Maximum Throughput  
8.75 Mbytes/sec  
Parallel  
27 MHz  
27 Mbytes/sec  
1.11.5 HSDI Mode Settings  
The HSDI modes, for both transmit and receive, are set by CFR bits (HSDI*Cfg.Mode) as shown below.  
See Table 20 for general mode settings.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
57  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 20. General HSDI Mode Settings  
Mode Setting At  
HSDI*Cfg.Mode  
Description  
Video Modes  
0000b  
Serial video burst I/F (MPEG2, DSS)  
0001b  
Serial video burst I/F (MPEG2, DSS) clock active only when data is valid  
0010b  
0011b  
Parallel fideo burst I/F (MPEG2, DSS)  
MPEG2 I/F mode  
0100b  
DV I/F mode  
Audio Modes  
0101b  
60958 interface  
For HSDI0, uses HSDI0_AMCLK_IN and HSDI0_60958_IN signals. For transmit only.  
For HSDI1, uses HSDI1_AMCLK_IN and HSDI1_60958_IN for transmit. Uses  
HSDI1_AMCLK_OUT and HSDI1_60958_OUT for receive.  
0110b  
0111b  
60958 data with MLPCM Interface  
For HSDI0, uses DVD-Audio-In pins muxed on HSDI0 interface (D0 only). For transmit  
only.  
For HSDI1, uses DVD-Audio I/F for receive only, defined as:  
MLPCM_BCLK  
MLPCM_LRCLK  
MLPCM_D0  
MLPCM I/F  
For HSDI0, uses DVD-Audio-In pins muxed on HSDI0 interface. For transmit only.  
For HSDI1, uses DVD-Audio I/F for transmit and receive defined as:  
MLPCM_BCLK  
MLPCM_LRCLK  
MLPCM_D0-D2  
MLPCM_A  
1000b  
SACD I/F  
For HSDI0, there is no SACD I/F.  
For HSDI1, uses SACD-IN and SACD-OUT signal multiplexed on HSDI1 signals.  
For flow control mode, uses DVD-Audio I/F signals.  
Other bits also determine the HSDI operations. Table 21 summarizes all HSDI video modes available in  
the iceLynx-micro.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
58  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 21. HSDI Video Modes  
Corresponding  
Transmit Modes  
(see Timing  
Corresponding  
Receive Modes  
(see Timing  
HSDI*Cf  
HSDI*.FrmSyn  
g.Mode  
HSDI*.Valid  
En Setting  
Description  
cDetEn Setting  
Setting  
Diagrams in  
Diagrams in  
Section 1.12.6)  
Section 1.12.7)  
0000  
0000  
0
1
0
0
TX mode 1  
None  
Serial video burst I/F  
(MPEG2, DSS)  
Serial video burst I/F  
(MPEG2, DSS) with frame  
sync detect circuit  
TX mode 2  
None  
0000  
0001  
0
1
1
0
TX mode 4  
TX mode 3  
RX mode 1  
--none**--  
Serial video burst I/F  
(MPEG2, DSS) with data  
valid signal  
Serial video burst I/F  
(MPEG2-DVB) clock active  
only when data is valid  
0010  
0010  
0
1
0
1
TX mode 5  
TX mode 6  
None  
None  
Parallel video burst I/F  
(MPEG2, DSS)  
Parallel video burst I/F  
(MPEG2-DVB) with frame  
sync detect circuit  
0010  
0
1
0
TX mode 7  
RX mode 2  
Parallel video burst I/F  
(MPEG2, DSS) with data  
valid signal  
MPEG2 I/F mode  
DV I/F mode  
0011  
0100  
0
0
TX mode 8  
TX mode 9  
RX mode 3  
RX mode 4  
NA  
(see Note 1)  
Note 1: DV I/F mode (TX mode 9, RX mode 4).  
1.11.6 HSDI Transmit Modes  
The following MPEG2-TS and DV write function timing diagrams are with the polarity of data CLK, sync,  
data valid, HSDI*_FrameSync, enable, and available signals at their default setting.  
1.11.6.1 TX Mode 1: Serial Burst I/F (MPEG2)  
HSDI*_CLK(i)  
HSDI*_SYNC(i)  
HSDI*_D0(i)  
Packet N  
Packet N+1  
Notes:  
1. HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
2. HSDI*_DVALID is a don’t care for this mode. It is pulled low.  
Figure 22. MPEG2 Serial Burst I/F (TX Mode 1)  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
59  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.11.6.2 TX Mode 2: Serial Video Burst I/F (MPEG2) With Frame Sync Detect Circuit  
HSDI*_CLK(i)  
HSDI*_D0(i)  
Packet N  
Packet N+1  
Packet N+2  
Notes:  
1. HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
2. HSDI*_DVALID is a don’t care for this mode. It is pulled low.  
Figure 23. MPEG2 Serial Video Burst I/F With Frame Sync Detect Circuit (TX Mode 2)  
1.11.6.3 TX Mode 3: Serial Video Burst I/F (MPEG2) Clock Active Only When Data Is Valid  
HSDI*_CLK(i)  
Min 240ns between pkts  
HSDI*_D0(i)  
Packet N  
Packet N+1  
Notes:  
1. HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low) and stay active  
at all times. HSDI*_EN must not be toggled.  
2. HSDI*_DVAILD is a don’t care for this mode. It is pulled low.  
3. Frame sync detect circuit is used.  
Figure 24. MPEG2 Serial Video Burst I/F Clock Active Only When Data Is Valid (TX Mode 3)  
1.11.6.4 TX Mode 4: Serial Video Burst I/F (MPEG2) With Data Valid  
HSDI*_CLK(i)  
HSDI*_SYNC(i)  
HSDI*_DVALID(i)  
HSDI*_D0(i)  
Pkt N  
Pkt N  
Pkt N+1  
Note: HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
Figure 25. MPEG2 Serial Video Burst I/F With Data Valid (TX Mode 4)  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
60  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.11.6.5 TX Mode 5: Parallel Burst Video I/F (MPEG2)  
HSDI*_CLK(i)  
HSDI*_SYNC(i)  
HSDI*_D[7:0](i)  
Packet N  
Packet N+1  
Notes:  
1. HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
2. HSDI*_DVALID is a don’t care for this mode. It is pulled low.  
Figure 26. MPEG2 Parallel Burst Video I/F (TX Mode 5)  
1.11.6.6 TX Mode 6: Parallel Video Burst I/F (MPEG2) With Frame Sync Detect Circuit  
HSDI*_CLK(i)  
HSDI*_DVALID(i)  
HSDI*_D[7:0](i)  
Pkt N  
Pkt N  
Pkt N+1  
Note: HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
Figure 27. MEPG2 Parallel Video Burst I/F With Frame Sync Detect Circuit (TX Mode 6)  
1.11.6.7 TX Mode 7: Parallel Video Burst I/F (MPEG2) With Data Valid  
HSDI*_CLK(i)  
HSDI*_SYNC(i)  
HSDI*_DVALID(i)  
HSDI*_D[7:0](i)  
Pkt N  
Pkt N  
Pkt N+1  
Note: HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
Figure 28. MPEG2 Parallel Video Burst I/F With Data Valid (TX Mode 7)  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
61  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.11.6.8 TX Mode 8: MPEG2 I/F Mode  
HSDI*_CLK(i)  
HSDI*_EN(i)  
HSDI*_SYNC(i)  
HSDI*_D[7:0](i)  
Pkt N  
Hold  
Pkt N  
Pkt N+1  
HSDI*_AV(o)  
Note:  
1. HSDI*_DVALID is a don’t care for this mode. It is pulled low.  
2. HSDI*_AV is an output in this mode. It indicates if the number of quadlets in the ISO transmit  
buffer is over a programmed limit. The watermark control must be programmed for the  
watermark high. If Iso*WtrMrk.HSDIAvailEn is set to 1, the limit is programmed in  
Iso*WtrMrk.Level0. The watermark must be programmed less than BUFFER SIZE – (packet  
length + packet header).  
Figure 29. MPEG2 I/F (TX Mode 8)  
1.11.6.9 TX Mode 9: DV I/F Mode  
HSDI*_CLK(i)  
HSDI*_EN(i)  
HSDI*_SYNC(i)  
HSDI*_D[7:0](i)  
HSDI*_AV(o)  
Pkt N  
Hold  
Pkt N  
Pkt N+1  
HSDI*_FrameSync(i)  
Notes:  
1. The HSDI*_FrameSync signal and SYT circuit are independent of the HSDI*Data [7:0].  
2. HSDI*_FrameSync is multiplexed with HSDI*_DVALID. HSDI*_AV is an output in this mode. It  
indicates if the number of quadlets in the transmit buffer is over a programmed limit. The  
watermark control must be programmed for the watermark high. If Iso*WtrMrk.HSDIAvailEn is  
set to 1, the limit is programmed in Iso*WtrMrk.Level0. The watermark must be programmed  
less than BUFFER SIZE – (packet length + packet header).  
Figure 30. DV I/F (TX Mode 9)  
1.11.7 HSDI Receive Modes  
The following MPEG2-TS and DV read function timing diagrams are with the polarity of data CLK, sync,  
data valid, HSDI*_FrameSync, enable, and available signals are default setting.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
62  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.11.7.1 RX Mode 1: Serial Burst Video I/F (MPEG2)  
HSDI*_CLK(i)  
HSDI*_SYNC(o)  
HSDI*_DVALID(o)  
HSDI*_D0(o)  
Packet N  
Packet N+1  
Note: HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
Figure 31. MPEG2 Serial Burst Video I/F (RX Mode 1)  
1.11.7.2 RX Mode 2: Parallel Burst Video I/F (MPEG2)  
HSDI*_CLK(i)  
HSDI*_SYNC(o)  
HSDI*_DVALID(o)  
HSDI*_D[7:0](o)  
Packet N  
Packet N+1  
Note: HSDI*_EN must be pulled low for this mode (HSDI*_EN defaults to active low).  
Figure 32. MPEG2 Parallel Burst Video I/F (RX Mode 2)  
1.11.7.3 RX Mode 3: Parallel Burst Video I/F (MPEG2) Mode  
HSDI*_CLK(i)  
HSDI*_EN(i)  
HSDI*_AV(o)  
HSDI*_SYNC(o)  
HSDI*_D[7:0](o)  
Hold  
Pkt N  
Pkt N+1  
Hold  
Pkt N+1  
Figure 33. MPEG2 Parallel Burst Video I/F (RX Mode 3)  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
63  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.11.7.4 RX Mode 4: Parallel Burst Video I/F (DV) Mode  
HSDI*_CLK(i)  
HSDI*_EN(i)  
HSDI*_AV(o)  
HSDI*_SYNC(o)  
HSDI*_D[7:0](o)  
Hold  
Pkt N  
Pkt N+1  
Hold  
Pkt N+  
HSDI*_FrameSync(o)  
Notes:  
1. The HSDI*_FrameSync signal and the SYT circuit are independent of the HSDI*_D [7:0].  
2. HSDI*_FrameSync is multiplexed with HSDI*_DVALID.  
Figure 34. DV Parallel Burst Video I/F (RX Mode 4)  
1.11.7.5 HSDI A/C Timing  
1.11.7.5.1 Transmit HSDI AC Timing  
T1  
HSDI*_CLK  
T3  
T2  
Input Signals*  
T4  
HSDI*_AV  
Figure 35. Transmit HSDI AC Timing  
Input signals include the following: HSDI*_SYNC, HSDI*_DVALID, HSDI*_D [7:0], HSDI*_EN, and  
HSDI*_FrameSync.  
Table 22. AC Timing Parameters for Serial I/F (Modes 1 and 4)  
Description  
Data CLK period  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Min  
14.3  
2.2  
0
Max Units  
T1  
T2  
T3  
ns  
ns  
ns  
Table 23. AC Timing Parameters for Serial I/F (Modes 2 and 3)  
Description  
Data CLK period  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Min  
12.5  
2.2  
0
Max Units  
T1  
T2  
T3  
ns  
ns  
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
64  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 24. AC Timing Parameters for Parallel I/F (Modes 5, 6, and 7)  
Description  
T1 Data CLK period  
T2 Signals setup to rising edge of data CLK  
T3 Signals hold to rising edge of data CLK  
Min  
37  
11  
0
Max Units  
ns  
ns  
ns  
Table 25. AC Timing Parameters for Parallel I/F (Modes 8 and 9)  
Description  
Data CLK period  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Signals delay from rising edge of data CLK  
Min  
37  
15  
0
Max Units  
T1  
T2  
T3  
T4  
ns  
ns  
ns  
7
ns  
Note: Measurements based on a 20-pF loading.  
1.11.7.5.2 Receive HSDI AC Timing  
T3  
T2  
T1  
HSDI*_CLK  
Output Signals*  
HSDI*_EN  
T6  
T4  
T5  
Figure 36. Receive HSDI AC Timing  
Output signals include the following: HSDI*_SYNC, HSDI*_DVALID, HSDI*_D[7:0], HSDI*_AV, and  
HSDI*_FrameSync.  
Table 26. AC Timing Parameters for Serial I/F (Mode 1)  
Description  
Data CLK period  
CLK low width  
Min  
14.3  
4
4
2.2  
0
Max Units  
T1  
T2  
T3  
T4  
T5  
T6  
ns  
ns  
ns  
ns  
ns  
CLK high width  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Signals delay from rising edge of data CLK  
7
ns  
Table 27. AC Timing Parameters for Parallel I/F (Mode 2)  
Description  
Data CLK period  
CLK low width  
Min  
37  
14  
14  
2.4  
0
Max Units  
T1  
T2  
T3  
T4  
T5  
T6  
ns  
ns  
ns  
ns  
ns  
CLK high width  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Signals delay from rising edge of data CLK  
7
ns  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
65  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 28. AC Timing Parameters for Parallel I/F (Modes 3 and 4)  
Description  
Data CLK period  
CLK low width  
Min  
37  
15  
0
2.4  
0
Max Units  
T1  
T2  
T3  
T4  
T5  
T6  
ns  
ns  
ns  
ns  
ns  
CLK high width  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Signals delay from rising edge of data CLK  
2.4  
25  
ns  
Note: Measurements are based on a 20-pF loading.  
1.11.8 Audio Interface on HSDI  
1.11.8.1 HSDI0  
On HSDI0, only DVD-Audio (MBLA) transmit and 60958 transmit are supported. DVD-Audio (MBLA) and  
60958 data cannot be transmitted at the same time. Both interfaces share the same data buffer. The  
hardware selects the interface based on Iso*Cfg.DataType. For DVD-Audio transmit, the DVD-Audio  
signals are muxed onto the HSDI pins as follows:  
Table 29. HSDI0 DVD Audio Signals  
DVD-Audio Signal  
Muxed HSDI Pin  
HSDI0_CLKz  
HSDI0_ENz  
HSDI0_D0  
BCLK  
LRCLK  
D0  
D1  
HSDI0_D1  
D2  
HSDI0_D2  
Ancillary  
HSDI0_D3  
For 60958 data, the HSDI0_AMCLK_IN and HSDI0_60958_IN pins are used.  
1.11.8.2 HSDI1  
On HSDI1, 60958, SACD, and DVD-Audio (MBLA) are all supported for transmit or receive. The DVD-  
Audio (MBLA) has dedicated pins, which are not muxed with HSDI pins. However, the DVD-Audio  
(MBLA) pins and HSDI pins cannot be used at the same time. They access the same data buffer. The  
hardware selects the interface based on Iso*Cfg.DataType. DVD-Audio (MBLA) dedicated pins are also  
used for DVD-Audio (MBLA) flow control mode. HSDI1 signal descriptions are given in Table 30.  
Table 30. HSDI1 DVD-Audio Signals  
Audio Signal  
SACD  
MCLK  
FRAME  
D0  
Direction  
Hardware Pin  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
HSDI1_CLKz  
HSDI1_SYNCz  
HSDI1_D0  
HSDI1_D1  
HSDI1_D2  
HSDI1_D3  
HSDI1_D4  
D1  
D2  
D3  
D4  
PRODUCTION DATA information is current as of public  
Copyright 2004, Texas Instruments Incorporated  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
66  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Audio Signal  
Direction  
Tx/Rx  
Hardware Pin  
HSDI1_D5  
D5  
D6  
Tx/Rx  
HSDI1_D6  
60958  
CLK  
DATA  
CLK  
DATA  
Tx  
Tx  
Rx  
Rx  
HSDI1_AMCLK_IN  
HSDI1_60958_IN  
HSDI1_AMCLK_OUT  
HSDI1_60958_OUT  
DVD-AUDIO (MBLA)  
BCLK  
LRCLK  
D0  
D1  
D2  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
Tx/Rx  
MLPCM_BCLK  
MLPCM_LRCLK  
MLPCM_D0  
MLPCM_D1  
MLPCM_D2  
MLPCM_A  
Ancillary  
1.11.8.3 IEC60958 I/F AC Timing Characteristic  
1.11.8.3.1 AC Timing Characteristic on Receiving  
The CeLynx_Micro must follow sections 5.3.4.2 and 5.3.4.3 of EIAJ (Electronic Industries Association of  
Japan) CP-1201 Digital Audio Interface standard.  
Extracts from EIAJ CP-1201  
[5.3.4.2 rise and fall time rates]  
Rise and fall time rates are specified by the following equations.  
100×T r  
( )  
rise _ time _ rate =  
fall _ time _ rate =  
(%)  
(%)  
T
(
l
)
+ T  
100×T  
+ T  
(
(
h
)
)
f
T
(
l
)
h
( )  
Rise and fall time rates must be less than the following ranges.  
When the data bit is 1: 0% ~ 20%.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Copyright 2004, Texas Instruments Incorporated  
Texas Instruments standard warranty. Production processing  
TEXAS  
does not necessarily include testing of all parameters.  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
67  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
When the data bit is 0 continuously for two times: 0% ~ 10%  
T(h)  
T(l)  
90%  
50%  
10%  
T(r)  
T(f)  
[5.3.4.3 duty cycle rate]  
Duty cycle rate are specified by following equation.  
100×T h  
( )  
( ) ( )  
T l + T h  
duty _ cycle _ rate =  
(%)  
Duty cycle rate must be less than following ranges.  
When the data bit is logically 1: 40% ~ 60%  
When the data bit is logically 0 continuously for 2 times: 45% ~ 55%  
1.11.8.3.2 AC Timing Characteristic on Transmitting  
T1  
HSDI*_AMCLK_IN  
T2  
T3  
HSDI*_60958_IN  
Figure 37. Example 1 Sampling Frequency (fs): 192 kHz, Master Clock Frequency: 256fs  
T1  
HSDI*_AMCLK_IN  
T2  
T3  
HSDI*_60958_IN  
Figure 38. Example 2 Sample Frequency (fs): 48 kHz, Master Clock Frequency: 768fs  
Table 31. AC Timing Parameters  
Symbol  
T1  
Description  
Data CLK period  
Signals setup to rising edge of data CLK  
Signals hold to rising edge of data CLK  
Min  
27  
5
Max Units  
ns  
ns  
ns  
T2  
T3  
5
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
68  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.11.8.3.3 MLPCM I/F AC Timing Characteristic  
T2  
T3  
T1  
BCLK*  
T4  
Data**  
T5  
LRCLK***  
Notes:  
ƒ
ƒ
ƒ
*
BCLK includes the following: MLPCM_BCLK and FLWCTL_BCLK.  
** Data includes the following: MLPCM_D[2:0], MLPCM_A, FLWCTL_D[2:0], and FLWCTL_A.  
*** LRCLK includes the following: MLPCM_LRCLK and FLWCTL_LRCLK.  
Figure 39. AC Timing Characteristic on Receiving  
Table 32. AC Timing Parameters  
Description  
Data CLK period  
CLK low width  
CLK high width  
Signals delay to data CLK  
Signals delay to data CLK  
Min  
50  
20  
Max Units  
T1  
T2  
T3  
T4  
T5  
ns  
ns  
ns  
20  
10  
10  
ns  
ns  
T2  
T1  
T3  
T5  
BCLK*  
Data**  
T4  
T6  
t7  
LRCLK***  
Notes:  
ƒ
*
BCLK includes the following: HSDI0_MLPCM_BCLK and MLPCM_BCLK.  
ƒ
** Data includes the following: HSDI0_MLPCM_D[2:0], HSDI0_MLPCM_A, MLPCM_D[2:0], and  
MLPCM_A.  
ƒ
*** LRCLK includes the following: HSDI0_MLPCM_LRCLK and MLPCM_LRCLK.  
Figure 40. AC Timing Characteristic on Transmitting  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
69  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 33. AC Timing Parameters  
Description  
Data CLK period  
CLK low width  
Min  
75  
35  
35  
8
Max Units  
T1  
T2  
T3  
T4  
T5  
T6r  
T7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK high width  
Signals setup to data CLK  
Signals hold to data CLK  
Signals setup to data CLK  
Signals hold to data CLK  
8
8
8
1.12 UART Interface  
The iceLynx-Micro includes one UART port that is memory mapped and fully accessible from the internal  
CPU. The output of the UART requires level shifting for RS-232 compliance. This UART  
transmits/receives one start bit, 7 or 8 data bits, optional parity, and 1 or 2 stop bits.  
The UART errors are indicated in the iceLynx-Micro interrupts shown in Table 34.  
1.12.1 UART Registers  
Software uses the iceLynx-Micro UART CFR (0x070) to access UART registers. The UART CFR contains  
address offset, data, and read/write control bits. The UART address offsets are described in Table 34.  
Table 34. UART CFR Address Offsets  
DLAB  
0
A2  
0
A1  
0
A0  
0
Name  
Register  
RBR/THR Receiver buffer register (read) or transmitter holding register (write)  
0
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
1
1
0
0
1
0
1
0
1
IER  
IIR  
Interrupt enable register  
Interrupt ID register (read only)  
FIFO control register (write)  
Link control register  
Modem control register  
Link status register  
Modem status register  
Scratch register  
Divisor latch (LSB)  
X
X
X
X
X
X
X
1
FCR  
LCR  
MCR  
LSR  
MSR  
SCR  
DLL  
DLH  
0
0
0
0
0
1
1
Divisor latch (MSB)  
Note: Only A2-A0 address bits are implemented in the UART register. The DLAB bit is set in the LCR register. If  
DLAB is set to 0, reads/writes to addresses 000b and 001b access the RBR/THR and IER registers. If DLAB is set  
to 1, reads/writes to addresses 000b and 001b access the DLL and DLH registers.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
70  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 35. UART Registers  
Register  
Address  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
RBR  
000  
Data bit 0  
Data bit 1  
Data bit 2  
Data bit 3  
Data bit 4  
Data bit 5  
Data bit 6  
Data bit 7  
(RX only)  
DLAB=0  
THR  
000  
Data bit 0  
Data bit 1  
Data bit 2  
Data bit 3  
Data bit 4  
0
Data bit 5  
0
Data bit 6  
0
Data bit 7  
0
(TX only)  
DLAB=0  
IER  
001  
Enable  
receiver  
data  
Enable  
Enable  
receiver  
line status  
Int  
Enable  
DLAB=0  
transmitter  
holding  
Modem  
status Int  
available  
int  
register  
empty Int  
IIR  
010  
010  
0 if int  
Int ID bit 1  
Int ID bit 2  
Int ID bit 3  
0
0
FIFOs  
FIFOs  
(read only)  
pending  
enabled  
enabled  
FCR  
(write  
only)  
FIFO  
RX FIFO  
reset  
TX FIFO  
reset  
DMA  
RSVD  
RSVD  
Receiver  
trigger  
(LSB)  
Receiver  
enable  
mode  
select  
trigger  
(MSB)  
LCR  
011  
Word  
Word length Number of  
Parity  
Even  
parity  
select  
Stick  
Break  
Divisor  
length  
select bit 1  
stop bits  
enable  
parity  
control  
latch  
select bit 0  
access bit  
(DLAB)  
MCR  
LSR  
100  
101  
110  
111  
Data  
Request to  
send  
OUT1  
OUT2  
Loop  
Autoflow  
control  
enable  
RSVD  
RSVD  
terminal  
ready  
Data  
Overrun  
error  
Parity  
error  
Framing  
error  
Break int  
Transmitte Transmitte Error in  
ready  
r holding  
r empty  
RCVR  
register  
FIFO  
MSR  
Data clear  
to send  
Delta set  
ready  
Trailing  
Delta  
Clear to  
send  
Data set  
ready  
Ring  
Carrier  
detect  
edge ring  
indicator  
carrier  
detect  
indicator  
SCR  
DLL  
Bit 0  
Bit 0  
Bit 1  
Bit 1  
Bit 2  
Bit 2  
Bit 3  
Bit 3  
Bit 4  
Bit 4  
Bit 5  
Bit 5  
Bit 6  
Bit 6  
Bit 7  
Bit 7  
000  
DLAB=1  
DLH  
001  
Bit 8  
Bit 9  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
Bit 14  
Bit 15  
DLAB=1  
1.12.2 UART Baud Rate  
Example: To set the UART baud speed, Equation 1 must be used to determine the divisor value. The  
divisor value is written into the UART registers to set the baud rate.  
Baud rate = 50 MHz/ (16 x divisor value)  
Equation 1  
Write 0x0000 43X1 to UART0 register. This tells the iceLynx-Micro to write a value of X1 to the UART  
address offset 3 (LCR register). The value X1 sets the DLAB bit to 1.  
Write 0x0000 40XX to UART0 register. This tells the iceLynx-Micro to write a value of XX to the UART  
DLL register. This is the divisor latch LSB.  
Write 0x0000 41XX to UART0 register. This tells the iceLynx-Micro to write a value of XX to the UART  
DLH register. This is the divisor latch MSB.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
71  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.13 JTAG – Boundary Scan and ARM  
The iceLynx-Micro implements IEEE 1149.1 JTAG for boundary scan (iceLynx-Micro and ARM core) and  
ARM debug. Control signals include:  
‰
‰
‰
‰
‰
‰
‰
‰
JTAG_TMS – Test mode select for JTAG boundary scan  
JTAG_TDI – Test data input for JTAG boundary scan  
JTAG_TDO - Test data output for JTAG boundary scan  
ARM_JTAG_TMS – Test mode select for ARM  
ARM_JTAG_TDI – Test data input for ARM  
ARM_JTAG_TDO – Test data output for ARM  
JTAG_TCK – Test clock - Common pin for boundary scan and ARM  
JTAG_TRSTn – Test reset (active low) common pin for boundary scan and ARM.  
A JTAG boundary scan is always available.  
To disable JTAG, the JTAG_TRSTn signal must be held high.  
The JTAG_TCK can operate up to 10.358 MHz; the frequency used by the TI-ARM JTAG emulation tools.  
The ARM JTAG can only be enabled by the ARM. A small program must be loaded into program memory  
that enables the ARM JTAG (InCPUCfg.DebugEn).  
1.14 Integrated 3-Port PHY  
1.14.1 3-Port PHY  
The iceLynx-Micro contains an integrated 3-port PHY. The PHY operates at 100 Mbps, 200 Mbps, or  
400 Mbps and meets the requirements as stated in the IEEE 1394-1995 and IEEE 1394a-2000  
standards. For applications that only need two PHY ports, the TPB± signals are terminated to ground on  
the board, or the PHY port is disabled through a CFR. When this occurs, the PHY still reports itself as a  
3-port node in self-ID packets.  
The PHY core contains a CFR bit that controls the BIAS function. This bias function can either operate  
using the IEEE 1394-1995 method of bias or the IEEE 1394a-2000 method of bias. The IEEE 1394-1995  
method always asserts a continuous bias. The IEEE 1394a-2000 method asserts bias for 980 ms.  
The PHY can be set to operate at S100 and S200 nodes only. If the MSPCTL hardware pin is asserted to  
a high state, the maximum transaction speed is S200. Also PHY maximum node speed is recognized as  
S200. If MSPCTL is zero (i.e., pulled to ground), the PHY supports S100, S200, and S400.  
The PHY registers are accessed through the PhyAccess configuration register as described in Table 36.  
Table 36. PHY Access Register  
31  
30  
29 28  
27 24  
23 16  
15 12  
11  
8
7
0
RdReg WrReg  
RSVD  
PhyRegAddr  
PhyRegWrData RSVD PhyRegAddrRcvd  
PhyRegDatRcvd  
1.14.2 PHY Registers  
In the iceLynx-Micro are 16 accessible internal PHY registers. They are accessed using the PHY access  
register. The address offset specifies the location. The configuration of the registers at addresses 0  
through 7 (the base registers) is fixed, while the configuration of the registers at addresses 8 through Fh  
(the paged registers) is dependent upon which one of eight pages, numbered 0 through 7, is currently  
selected. The selected page is set in base register 7.  
The configuration of the base registers is shown in Table 37 and the corresponding field descriptions are  
given in Table 38. The base register field definitions are unaffected by the selected page number.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
72  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
A reserved register or register field (marked as Reserved or Rsvd in the register configuration tables  
below) is read as 0, but is subject to future usage. All registers in pages 2 through 6 are reserved.  
Table 37. Base Register Configuration  
Bit Position  
Address  
0
1
2
3
4
5
6
7
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Physical ID  
R
CPS  
RHB  
IBR  
Extended (‘b111)  
PHY_Speed (‘b010)  
C
Gap_Count  
Rsvd  
Rsvd  
Num_Ports (‘b0011)  
Delay (‘b0000)  
Pwr_Class  
LCtrl  
WDIE  
Jitter (‘b000)  
CPSI  
ISBR  
CTOI  
STOI  
PEI  
EAA  
EMC  
Reserved  
Rsvd  
Page_Select  
Port_Select  
Table 38. Base Register Field Descriptions  
FIELD  
SIZE  
TYPE  
DESCRIPTION  
Physical ID  
6
Rd  
This field contains the physical address ID of this node determined during self-ID. The  
physical-ID is invalid after a bus-reset until self-ID has completed as indicated by an  
unsolicited register-0 status transfer.  
R
1
1
Rd  
Rd  
Root. This bit indicates that this node is the root node. The R bit is reset to 0 by bus-  
reset, and is set to 1 during tree-ID if this node becomes root.  
CPS  
Cable-power-status. This bit indicates the state of the CPS input pin. The CPS pin is  
normally pulled to serial bus cable power through a 400-kresistor. A 0 in this bit  
indicates that the cable power voltage has dropped below its threshold for guaranteed  
reliable operation.  
RHB  
IBR  
1
1
Rd/Wr  
Rd/Wr  
Root-holdoff bit. This bit instructs the PHY to attempt to become root after the next bus-  
reset. The RHB bit is reset to 0 by hardware reset and is unaffected by bus-reset.  
Initiate bus-reset. This bit instructs the PHY to initiate a long (166 µs) bus reset at the  
next opportunity. Any receive or transmit operation in progress when this bit is set  
completes before the bus reset is initiated. The IBR bit is reset to 0 by hardware reset or  
bus reset.  
Gap_Count  
6
Rd/Wr  
Arbitration gap count. This value sets the subaction (fair) gap, arb-reset gap, and arb-  
delay times. The gap count is set either by a write to this register or by reception or  
transmission of a PHY_CONFIG packet. The gap count is set to 3Fh by hardware reset  
or after two consecutive bus-resets without an intervening write to the gap count register  
(either by a write to the PHY register or by a PHY_CONFIG packet).  
Extended  
Num_Ports  
PHY_Speed  
Delay  
3
4
3
4
Rd  
Rd  
Rd  
Rd  
Extended register definition. For iceLynx-Micro this field is ‘b111, indicating that the  
extended register set is implemented.  
Number of ports. This field indicates the number of ports implemented in the PHY. For  
iceLynx-Micro this field is three.  
PHY speed capability. For iceLynx-Micro PHY this field is ‘b010, indicating S400 speed  
capability. The setting of this field also depends on the MSPCTL setting.  
PHY repeater data delay. This field indicates the worst-case repeater data delay of the  
PHY, expressed as 144+(delay*20) ns. This field is 0 (default.)  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
73  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
FIELD  
LCtrl  
SIZE  
1
TYPE  
Rd/Wr  
DESCRIPTION  
Link-active status control. This bit controls the active status of the LLC as indicated  
during self-ID. The logical AND of this bit and the LPS active status is replicated in the L  
field (bit 9) of the self-ID packet. The LLC is considered active only if both the LPS input  
is active and the LCtrl bit is set.  
The LCtrl bit provides software controllable means to indicate the LLC active status in  
lieu of using the LPS input.  
The LCtrl bit is set to 1 by hardware reset and is unaffected by bus reset.  
Note: The state of the PHY-LLC interface is controlled solely by the LPS input,  
regardless of the state of the LCtrl bit. If the PHY-LLC interface is operational as  
determined by the LPS input being active, then received packets and status information  
continues to be presented on the interface, and any requests indicated on the LREQ  
input is processed, even if the LCtrl bit is cleared to 0.  
C
1
Rd/Wr  
Contender status. This bit indicates that this node is a contender for the bus or  
isochronous resource manager. This bit is replicated in the c field (bit 20) of the self-ID  
packet. This bit is set to the state specified by the C/LKON input pin upon hardware reset  
and is unaffected by bus reset.  
Jitter  
3
3
Rd  
PHY repeater jitter. This field indicates the worst-case difference between the fastest and  
slowest repeater data delay, expressed as (JITTER+1)*20 ns. For iceLynx-Micro this field  
is 0.  
Pwr_Class  
Rd/Wr  
Node power class. This field indicates this node’s power consumption and source  
characteristics, and is replicated in the pwr field (bits 21–23) of the self-ID packet. This  
field is set to 000 default value at hardware reset and is unaffected by bus-reset.  
Software can program this field to change the power class. Software must perform a bus  
reset after setting this field.  
WDIE  
ISBR  
1
1
Rd/Wr  
Rd/Wr  
Watchdog interrupt enable. This bit, if set to 1, enables the port event interrupt (PEI) bit to  
be set whenever resume operations begin on any port. This bit also enables the C/LKON  
output signal to be activated whenever the LLC is inactive and any of the CTOI, CPSI, or  
STOI interrupt bits is set. This bit is reset to 0 by hardware reset and is unaffected by bus  
reset.  
Initiate short arbitrated bus-reset. This bit, if set to 1, instructs the PHY to initiate a short  
(1.30 µs) arbitrated bus-reset at the next opportunity. This bit is reset to 0 by bus reset.  
Note: Legacy IEEE Std 1394-1995 compliant PHYs may not be capable of performing  
short bus-resets. Therefore, initiation of a short bus-reset in a network that contains such  
a legacy device results in a long bus reset being performed.  
CTOI  
1
Rd/Wr  
Configuration time-out interrupt. This bit is set to 1 when the arbitration controller times  
out during tree-ID start, and indicates that the bus is configured in a loop. This bit is reset  
to 0 by hardware reset or by writing a 1 to this register bit.  
If the CTOI and RPIE bits are both set and the LLC is or becomes inactive, the PHY  
activates the C/LKON output to notify the LLC to service the interrupt.  
Note: If the network is configured in a loop, only those nodes that are part of the loop  
generate a configuration time-out interrupt. All other nodes instead, time-out waiting for  
the tree-ID and/or self-ID process to complete and then generate a state time-out  
interrupt and bus reset.  
CPSI  
STOI  
1
1
Rd/Wr  
Rd/Wr  
Cable power status interrupt. This bit is set to 1 whenever the CPS input transitions from  
high to low indicating that cable power is too low for reliable operation. This bit is reset to  
1 by a hardware reset. It is cleared by writing a 1 to this register bit.  
If the CPSI and RPIE bits are both set and the LLC is or becomes inactive, the PHY  
activates the C/LKON output to notify the LLC to service the interrupt.  
State time-out interrupt. This bit indicates that a state time-out has occurred (which also  
causes a bus reset to occur). This bit is reset to 0 by hardware reset or by writing a 1 to  
this register bit.  
If the STOI and RPIE bits are both set and the LLC is or becomes inactive, the PHY  
activates the C/LKON output to notify the LLC to service the interrupt.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
74  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
FIELD  
SIZE  
TYPE  
DESCRIPTION  
PEI  
1
Rd/Wr  
Port event interrupt. This bit is set to 1 upon a change in the bias (unless disabled),  
connected, disabled, or fault bits for any port for which the port interrupt enable (PIE) bit  
is set. Additionally, if the resuming port interrupt enable (RPIE) bit is set, the PEI bit is set  
to 1 at the start of resume operations on any port. This bit is reset to 0 by hardware reset,  
or by writing a 1 to this register bit.  
If the PEI bit is set (regardless of the state of the RPEI bit) and the LLC is or becomes  
inactive, the PHY activates the C/LKON output to notify the LLC to service the interrupt.  
EAA  
1
1
Rd/Wr  
Rd/Wr  
Enable accelerated arbitration. This bit enables the PHY to perform the various  
arbitration acceleration enhancements defined in 1394a-2000 (ACK-accelerated  
arbitration, asynchronous fly-by concatenation, and isochronous fly-by concatenation).  
This bit is reset to 0 by hardware reset and is unaffected by bus reset.  
Note: The EAA bit must be set only if the attached LLC is IEEE 1394a-2000 compliant. If  
the LLC is not IEEE 1394a-2000 compliant, use of the arbitration acceleration  
enhancements interferes with isochronous traffic by excessively delaying the  
transmission of cycle-start packets.  
Enable multi-speed concatenated packets. This bit enables the PHY to transmit  
concatenated packets of differing speeds in accordance with the protocols defined in  
IEEE 1394a-2000. This bit is reset to 0 by a hardware reset and is unaffected by bus-  
reset.  
EMC  
Note: The use of multi-speed concatenation is completely compatible with networks  
containing legacy IEEE Std 1394-1995 PHYs. However, use of multi-speed  
concatenation requires that the attached LLC be 1394a-2000 compliant.  
Page_Select  
Port_Select  
3
4
Rd/Wr  
Rd/Wr  
Page-select. This field selects the register page to use when accessing register  
addresses 8 through 15. This field is reset to 0 by a hardware reset and is unaffected by  
bus-reset.  
Port-select. This field selects the port when accessing per-port status or control (e.g.,  
when one of the port status/control registers is accessed in page 0). Ports are numbered  
starting at 0. This field is reset to 0 by a hardware reset and is unaffected by bus-reset.  
1.14.3 Port Status Page Register  
The port status page provides access to configuration and status information for each of the ports. The  
port is selected by writing 0 to the Page_Select field and the desired port number to the Port_Select field  
in base register 7. The configuration of the port status page registers is shown in Table 39 and  
corresponding field descriptions given in Table 40. If the selected port is unimplemented, all registers in  
the Port Status page are read as 0.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
75  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Table 39. Page 0 (Port Status) Register Configuration  
Bit Position  
Address  
0
1
2
3
4
5
6
7
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Astat  
Peer_Speed  
Bstat  
Ch  
Fault  
Con  
Bias  
Reserved  
Dis  
PIE  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Table 40. Page 0 (Port Status) Register Field Descriptions  
FIELD  
AStat  
SIZE  
2
TYPE  
Rd  
DESCRIPTION  
TPA line state. This field indicates the TPA line state of the selected port, encoded as follows:  
Code  
Line State  
11  
Z
01  
1
0
10  
00  
invalid  
Bstat  
Ch  
2
1
Rd  
Rd  
TPB line state. This field indicates the TPB line state of the selected port. This field has the  
same encoding as the ASTAT field.  
Child/parent status. A 1 indicates that the selected port is a child port. A 0 indicates that the  
selected port is the parent port. A disconnected, disabled, or suspended port is reported as a  
child port. The Ch bit is invalid after a bus reset until tree-ID has completed.  
Con  
1
Rd  
Debounced port connection status. This bit indicates that the selected port is connected. The  
connection must be stable for the debounce time of approximately 341 ms for the Con bit to  
be set to 1. The Con bit is reset to 0 by hardware reset and is unaffected by bus reset.  
Note: The Con bit indicates that the port is physically connected to a peer PHY, but the port is  
not necessarily active.  
Bias  
Dis  
1
1
3
Rd  
Rd/Wr  
Rd  
Debounced incoming cable bias status. A 1 indicates that the selected port is detecting  
incoming cable bias. The incoming cable bias must be stable for the debounce time of 52 µs  
for the Bias bit to be set to 1.  
Port disabled control. If 1, the selected port is disabled. The Dis bit is reset to 0 by hardware  
reset (all ports are enabled for normal operation following hardware reset). The Dis bit is not  
affected by bus reset.  
Peer_S  
peed  
Port peer speed. This field indicates the highest speed capability of the peer PHY connected  
to the selected port, encoded as follows:  
Code  
000  
Peer Speed  
S100  
001  
S200  
010  
S400  
011–111  
invalid  
The Peer_Speed field is invalid after a bus-reset until self-ID has completed.  
Note: Peer speed codes higher than ‘b010 (S400) are defined in 1394a-2000. However,  
iceLynx-Micro is only capable of detecting peer speeds up to S400.  
PIE  
1
1
Rd/Wr  
Rd/Wr  
Port event interrupt enable. When set to 1, a port event on the selected port sets the port  
event interrupt (PEI) bit and notify the link. This bit is reset to 0 by hardware reset and is  
unaffected by bus reset.  
Fault. This bit indicates that a resume-fault or suspend-fault has occurred on the selected port  
and that the port is in the suspended state. A resume-fault occurs when a resuming port fails  
to detect incoming cable bias from its attached peer. A suspend-fault occurs when a  
suspending port continues to detect incoming cable bias from its attached peer. Writing 1 to  
this bit clears the Fault bit to 0. This bit is reset to 0 by hardware reset and is unaffected by  
bus reset.  
Fault  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
76  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.14.4 Vendor Identification Page Register  
The vendor identification page identifies the vendor/manufacturer and compliance level. The page is  
selected by writing 1 to the Page_Select field in base register 7. The configuration of the vendor  
identification page is shown in Table 41 and the corresponding field descriptions given in Table 42.  
Table 41. Page 1 (Vendor ID) Register Configuration  
Bit Position  
Address  
1000  
1001  
0
1
2
3
4
5
6
7
Compliance  
Reserved  
1010  
1011  
Vendor_ID[0]  
Vendor_ID[1]  
1100  
1101  
1110  
1111  
Vendor_ID[2]  
Product_ID[0]  
Product_ID[1]  
Product_ID[2]  
Table 42. Page 1 (Vendor ID) Register Field Descriptions  
FIELD  
Compliance  
Vendor_ID  
SIZE  
8
24  
TYPE  
Rd  
Rd  
DESCRIPTION  
Compliance level. For iceLynx-Micro, this field is controlled by a link register bit.  
Manufacturer’s organizationally unique identifier (OUI). For iceLynx-Micro, this field is  
08_00_28h (Texas Instruments) (the MSB is at register address ‘b1010).  
Product_ID  
24  
Rd  
Product identifier. For iceLynx-Micro, this field is 41_44_99h (the MSB is at register address  
‘b1101).  
1.14.5 PHY Application Information  
The PHY pins must be connected as shown in the following figures. XI and XO pins must be connected to  
a crystal as described by Texas Instruments application note SLLA051.  
TPBP  
1394 Connector  
TPBN  
56  
56 Ω  
5 kΩ  
220 pF  
Figure 41. TPBP and TPBN Connection  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
77  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1 uF  
TPBIAS  
56  
56 Ω  
TPAP  
TPAN  
1394 Connector  
Figure 42. TPAP, TPAN, and TPBIAS Connection  
R0  
.3k
FILTER0  
FILTER1  
0.1 uF  
+/- 10%  
Figure 43. R0 and R1 Connection  
Figure 44. FILTER0 and FILTER1 Connection  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
78  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
TP  
Figure 45. TPB, TPA, and TPBIAS Connection for Terminated Port (Port is not used)  
1.14.6 PHY Reference Documents  
Visit the Texas Instruments website to obtain the following reference documents:  
Literature Number  
SLLA117  
Title  
IEEE 1394 EMI Board Design and Layout Guidelines  
SLLA051  
Selection and Specification of Crystals for Texas Instruments IEEE 1394 Physical Layers  
1.15 Power Management  
The iceLynx-Micro operates from a single 3.3-V power supply. When REG_ENn is asserted, three internal  
regulators operate the 1.8-V core. When the internal regulator is not supplied, the application must  
externally supply the core voltage. The PHY also automatically conforms to IEEE1394a-2000 power  
states according to bus activity. Table 43 summarizes all the power modes that the iceLynx-Mirco  
supports.  
Table 43. Power State Summary  
Max Power  
Max Power  
w/External  
Power State  
InCPUCfg.Reset  
PhyCfg.LPS  
PHY Ports  
Active  
w/Internal Regulator  
Enabled (mW)  
Regulator  
Enabled (mW)  
531  
Active - Full  
0
1
0
1
0
695  
473  
125  
31  
power Link,  
ARM, and PHY  
are active  
Low power 1 -  
ARM Active  
0
1
1
Disabled or  
suspended by  
software  
223  
102  
4
Link and PHY  
are low power  
Low power 2 -  
Link and PHY  
only ARM in low  
power  
Active  
Low power 3 -  
PHY only – PHY  
low power Link  
and ARM are  
low power  
Disabled or  
suspended by  
software  
Note: All other configurations are not valid for normal operation.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Copyright 2004, Texas Instruments Incorporated  
Texas Instruments standard warranty. Production processing  
TEXAS  
does not necessarily include testing of all parameters.  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
79  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Low Power(LP)  
Power-Up(PU)  
Active(A)  
States  
State  
State  
A to LP1  
LP1 to A  
Low Power1  
ARM active  
PHY in low power  
Link off  
A to LP2  
LP2 to A  
Low Power2  
Link, PHY active  
ARM off  
Power-Up  
Active  
PU to A  
PHY in Repeater Mode.  
All register values at  
default  
PHY Active  
ARM Active  
Link Active  
A to LP3  
LP3 to A  
Low Power3  
PHY in low power  
ARM, Link off  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
80  
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.15.1 PU to A (Power-Up State to Active State)  
At the power-up state, all registers are at the default value. Following are the power-up status of registers  
and signals related to power control.  
Register/Pin Name  
InCPUCfg.Reset  
Power-up Status  
0 (ARM is held in reset using RESET_ARMn pin)  
InCPUCfg.ClkEn  
InCPUCfg.PhyNoticeEn  
PhyCfg.LPS  
1
0
0 (PHY is in repeater mode)  
WTCH_DG_TMRn  
HPS  
Low  
High  
1. The external system holds the ARM in reset using RESET_ARMn pin.  
2. The external CPU loads the ARM program code. Once it has completed loading the code, it  
deasserts RESET_ARMn.  
3. The ARM sets PhyCfg.LPS to 1. Now the PHY, link, and ARM are fully functional.  
1.15.2 A to LP1 (Active State to Low Power 1 State)  
In the active state, the link, ARM, and PHY are fully operational. In the low power state 1, the link is off.  
The PHY ports are suspended or disabled. The ARM may choose to put the iceLynx-Micro into a low  
power state based on the HPS pin. A falling edge of the HPS pin indicates the external system is ready  
for the iceLynx-Micro to go into low power mode.  
The ARM sets the following bits to move to LP1 state.  
1. Suspend or disable PHY ports. S/W can disable a PHY port by setting the Dis bit in PHY register  
b1000. S/W can suspend a PHY port by sending an IEEE 1394a-2000 remote command packet to its  
own node.  
2. PhyCfg.LPS = 0 (PHY can go into low power mode according to IEEE 1394a-2000)  
1.15.3 LP1 to A (Low Power 1 State to Active State)  
1. On the detection of the following events, ARM must enable the link and PHY to the active state.  
Rising edge of HPS input pin.  
InCPUCfg.PhyNoticeEn = 1 and LinkOn or PHY_INT occurs.  
2. ARM must set PhyCfg.LPS = 1. If any of the ports were disabled, software must reenable the PHY  
ports by setting the Dis bit in PHY register b1000 to make the PHY active. The software must issue a  
bus reset once PhyCfg.LPS is set to 1.  
1.15.4 A to LP2 (Active State to Low Power 2 State)  
In the active state, the Link, ARM, and PHY are fully operational. In the low power state 2, the ARM is off  
and the link and PHY are fully operational. The system may choose to put the iceLynx-Micro into the low  
power state 2 when the internal ARM is not used.  
The ex-CPU sets the following bits to move to LP2 state:  
1. Set InCPUCfg.Reset = 1 and InCPUCfg.ClkEn = 0 at the same time.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
81  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.15.5 LP2 to A (Low Power 2 State to Active State)  
1. The iceLynx-Micro hardware sets InCPUCfg.Reset = 0 and InCPUClkEn = 1 for either of the following  
conditions:  
Rising edge of HPS input pin.  
InCPUCfg.PhyNoticeEn=1 and LinkOn or PHY_INT occurs.  
1.15.6 A to LP4 (Low Power 3 State to Active State)  
In the active state, the link, ARM, and PHY are fully operational. In the low power state 4, the ARM and  
link are off. The PHY ports are suspended or disabled. The ARM may choose to put iceLynx-Micro into a  
low power state based on the HPS pin. A falling edge indicates the external system is ready for iceLynx-  
Micro to go into low power mode.  
The ARM sets the following bits to move to LP4 state:  
1. Suspend or disable PHY ports. S/W can disable a PHY port by setting the Dis bit in PHY register  
0b1000. S/W can suspend a PHY port by sending an IEEE 1394a-2000 remote command packet to  
its own node.  
2. PhyCfg.LPS = 0 {PHY can go into low power mode according to IEEE 1394a-2000}  
3. Set InCPUCfg.Reset = 1 and InCPUClkEn = 0 at the same time.  
1.15.7 LP4 to A (Low Power 3 State to Active State)  
1. The iceLynx-Micro hardware sets InCPUCfg.Reset = 0 and InCPUClkEn = 1 for either of the following  
conditions:  
Rising edge of HPS input pin  
InCPUCfg.PhyNoticeEn=1 and LinkOn or PHY_INT occurs  
Once the ARM and link are active, the ARM must set PhyCfg.LPS = 1. If any of the ports were disabled,  
software must reenable the PHY ports by setting the Dis bit in PHY register b1000 to make the PHY  
active. The software must issue a bus reset once PhyCfg.LPS is set to 1.  
The input/output pins and CFRs that control each power management state are defined in Table 44.  
Table 44. I/O Pin and CFR Descriptions for Controlling Power Management States  
Signal Name  
Location  
Direction  
Description  
LOW_PWR_RDY  
Pin and CFR  
Output  
This signal is output to the system to indicate iceLynx-Micro can  
go into a low power state. The ARM controls this output signal  
using CFR. The signal also depends on the watchdog timer output  
signal. If the watchdog timer is asserted, this signal is asserted.  
InCPUCfg.LowPwrRdy  
WTCH_DG_TMRn  
Pin  
Output  
Input  
Indicates watchdog timer status. Hardware asserts this when the  
ARM software is not functioning correctly.  
HPS  
Pin and CFR  
Host power status (ex-CPU power status). This signal indicates  
the ex-CPU’s power status. A rising edge indicates the ex-CPU  
has been turned ON. The internal ARM must wake up. The  
internal ARM decides if it must wake up the rest of iceLynx-Micro.  
ExCPUCfg.HPS  
InCPUInt.HPSHi  
InCPUInt.HPSLo  
A falling edge indicates the ex-CPU has shut down. ARM can  
decide how to react.  
Interrupts are available for both the rising and falling edge of this  
signal.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
82  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
Signal Name  
PhyCfgLPS  
Location  
CFR  
Direction  
Description  
This bit is set in CFR to indicate low power status to the PHY. The  
ARM must set this when it wants to put the link into lower power  
mode. The ARM must clear this bit to bring the link out of low  
power mode.  
Note: Software must wait at least 2 ms before setting PhyCtrl.LPS  
after iceLynx-Micro power up. This ensures the internal clocks are  
stable.  
InCPUCfg.PhyNoticeEn  
CFR  
This bit enables PHY events. These PHY events signal a wake up  
event to the ARM while the ARM is powered down. The PHY  
events include LinkOn and PHY_INT.  
RESET_ARMn  
Pin and CFR  
Input  
This pin and CFR bit put ARM into reset.  
InCPUCfg.Reset  
ARM cannot be put into reset by setting InCPUCfg.Reset = 1 if  
InCPUCfg.ResetDis is set to 1. See the description for  
InCPUCfg.ResetDis. InCPUCfg.ResetDis bit must be cleared  
before the ARM is put into reset. The RESET_ARMn pin does not  
have these qualifying conditions. When RESET_ARMn = low, the  
ARM is put into reset regardless of InCPUCfg.ResetDis bit status.  
LINKON PhyCfg.LinkOn  
DISABLE_IFn  
Pin and CFR  
Pin  
Output  
Input  
This signal is asserted whenever LPS is low and a LinkOn packet  
is received.  
It is cleared whenever LPS is detected or the PHY register LCtrl bit  
is set to zero. PhyCfg.LinkOn gives the current status of the  
LINKON signal.  
Interface disable. When this pin is asserted by the system, all  
interfaces on iceLynx-Micro are in high-Z state. This includes Ex-  
CPU I/F, HSDI I/F, GPIO, and WTCH_DG_TMRn. This function  
does not include LOW_PWR_RDY.  
This function is active low. The interface is disabled if  
DISABLE_IFn=0.  
InCPUCfg.ResetDis  
CFR  
This bit is set by hardware any time one of the following bits  
transitions from 0 to 1.  
PhyCfg.LinkOn  
LinkInt.PhyInt  
InCPUInt.HPSHi  
Note: The WTCH_DG_TMRn is configured for output on the Timer2 interrupt.  
1.16 16.5K Byte Memory - FIFO  
1.16.1 Overview/Description  
The iceLynx-Micro has 16.5K byte FIFO. The FIFO sizes are set and not programmable.  
1.16.2 Isochronous FIFOs 0 and 1  
These FIFOs are connected to the HSDI0 and HSDI1 ports, respectively. They are both 4K bytes in size.  
These FIFOs are designed to handle MPEG2, DSS, DV, or audio data. These data types cannot be  
interleaved. The buffer must be dedicated to one data type and a single direction. It can be  
reprogrammed to handle different data types. Both of these buffers can be configured for either transmit  
or receive. The buffer is only accessible using the HSDI. See Figure 46 for a block diagram of the  
isochronous FIFO architecture.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
83  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
ISO FIFO 0  
HSDI0  
Packetizer  
4K  
ISO FIFO 1  
Packetizer  
HSDI1  
4K  
Figure 46. Isochronous FIFOs  
1.16.3 Asynchronous/Asynchronous Stream FIFOs  
These FIFOs are connected to the external and internal CPU interfaces. The transmit FIFOs are 2048  
bytes each and the receive FIFOs are 2048 bytes each. Either FIFO can be configured for asynchronous  
stream or asynchronous packets. See Figure 47 for a block diagram of the asynchronous FIFO  
architecture.  
Asynchronous or  
Asynchrnous Stream  
Transmit FIFO 0  
2K  
External  
or Internal  
Host  
Packetizer/ Transmitter  
Packetizer/ Transmitter  
Asynchronous or  
Asynchronous Stream  
Transmit FIFO 1  
2K  
External  
or Internal  
Host  
Asynchronous or  
Asynchrnous Stream  
Receive FIFO 0  
2K  
External  
or Internal  
Host  
Packetizer/ Receiver  
Packetizer/ Receiver  
Asynchronous or  
Asynchronous Stream  
Receive FIFO 1  
2K  
External  
or Internal  
Host  
Figure 47. Asynchronous/ Asynchronous Stream FIFOs  
Note: The iceLynx-Micro has the ability to insert headers for asynchronous stream transmit. This feature must be  
used for asynchronous stream TX only. For any type of packet other than asynchronous stream, do not enable this  
feature.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
84  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.16.4 Broadcast Receive FIFO  
This FIFO is designed to receive all broadcast packets, such as self-IDs, broadcast asynchronous  
packets, and PHY packets. The broadcast receive FIFO is 512 bytes in size to accommodate self-Ids for  
a 63-node network. This FIFO is accessed separately for software convenience. It is only accessible by  
the external or internal CPU. This FIFO is only for receive operations. All transmit operations must take  
place using an asynchronous transmit FIFO. See Figure 48 for a block diagram of the broadcast FIFO  
architecture.  
Broadcast Receive  
FIFO  
512 bytes  
External  
or Internal  
Host  
Packetizer/ Receiver  
Figure 48. Broadcast Receive FIFO  
1.16.5 FIFO Priority  
For two FIFOs that are the same data type, the lower number FIFO always has priority. For example, if  
the iceLynx-Micro were configured for two asynchronous transmit FIFOs, FIFO 0 and 1, FIFO 0 would  
have priority over FIFO 1.  
1.16.6 FIFO Monitoring  
The FIFO size is monitored by several interrupts and status bits. An example of these monitoring bits is  
included in Table 45.  
Table 45. FIFO Monitoring Bits  
Name  
Description  
Watermark High  
The watermark control (Iso*WtrMrk.Control*) needs to be set to 1. The watermark level is  
(Iso*CPUInt.WtrMrk*,  
Iso*BufStat.WtrMrk*)  
programmed at Iso*WtrMrk.Level*.  
When the level in the FIFO is above the programmed value at Iso*WtrMrk.Level*, the Watermark  
High is activated.  
Watermark Low  
The watermark control (Iso*WtrMrk.Control*) needs to be set to 0. The watermark level is  
(Iso*CPUInt.WtrMrk*,  
Iso*BufStat.WtrMrk*)  
programmed at Iso*WtrMrk.Level*.  
When the level in the FIFO is below the programmed value at Iso*WtrMrk.Level*, the watermark  
low is activated.  
Cell Available  
A full 1394 packet (or individual cell: 188 bytes for DVB, 480 bytes for DV, 130 or 140 bytes for  
(Iso*CPUInt.CellAvail,  
Iso*BufStat.CellAvail)  
DSS) is available in the FIFO. This is valid for transmit or receive.  
Quadlets Available  
This value reflects the number of quadlets currently in FIFO. This is valid for transmit or receive.  
(Iso*BufStat.QuadAvail)  
Notes: The FIFO watermark levels are only checked on packet boundaries. If the buffer is not a multiple of (packet  
_length+ header length) and the watermark level is programmed between BUFFER SIZE and (BUFFER SIZE – 1  
Packet Length – Header Length), watermark level indicators (Iso*CPUInt.WtrMrk*, Iso*BufStat.WtrMrk*) are not  
activated.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
85  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.17 GPIO Configurations  
GPIOs can be configured to achieve the following:  
‰
‰
‰
‰
DSS TX – DSS SCC (system clock count) input and DSS error flag  
Watermark level indicator in FIFOs  
Flow control  
GPIO interrupts. There are four possible GPIO interrupts. These are configured as ARM FIQ or  
IRQs.  
Note: GPIO interrupts are synchronously detected. The interrupt must be held at the level for at least one  
50-MHz clock cycle (for both level sensitive and edge sensitive interrupts).  
Example:  
The FIQ and IRQ GPIOs are programmed in CFR.  
For example, the FIQ interrupt is input using GPIO9.  
1. The GPIOCfg.GPIO9Sel is set to “general purpose input.”  
2. The GPIOIntCfg.GPIOInt*Sel bits (or GPIOIntCfg.GPIOIntYSel bits) are set to reference  
GPIO 9.  
3. The edge detection is set in GPIOIntCfg.GPIOInt*Det bit.  
4. After this setup is complete, the InCPUInt.GPIO* (or InCPUInt.GPIOY) bit indicates when the  
programmed edge occurs on FIQ GPIO. This must be enabled in IntCPUHiIntEn.GPIO*. The  
GPIOData.GPIO9 indicates the GPIO9 status.  
Table 46. Summary of GPIO Use  
GPIO Function  
DSS SCC input  
Programmable GPIOs  
GPIO 2, GPIO 3 for HSDI 0  
DSS error flag  
GPIO 6, GPIO 7 for HSDI 1  
Wather Marks for Iso FIFOs  
GPIO 0, GPIO 1 for Iso data path 0  
GPIO 4, GPIO 5 for Iso data path 1  
Note: All GPIOs (i.e., GPIO 0 through GPIO 10) can be configured as general-purpose input/output.  
1.17.1 GPIO Setup  
The flow control writes to GPIOs through the software functions. The GPIO is set up as a general-purpose  
input or output. The values are read/written using the GPIOStat CFR for the appropriate GPIO.  
The watermark GPIOs are linked to the watermark status bits.  
1.18 IEEE 1394a-2000 Requirements  
1.18.1 Features  
The iceLynx-Micro is compliant to the IEEE 1394a-2000 standard. This requires the following features:  
‰
‰
‰
‰
‰
‰
‰
Arbitrated (short) bus reset  
Ack-accelerated arbitration  
Fly-by concatenation  
Multi-speed packet concatenation  
PHY ping packets  
Priority arbitration  
Port disable, suspend, and resume  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
86  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
1.18.2 Cycle Master  
The hardware automatically makes the node cycle master. This depends on the root status of the node. If  
LinkCfg.CycMasAuto = 1 and the node is root, the node becomes the cycle master after the next bus  
reset. The software must set LinkCfg.CycMasAuto = 1 at initialization phase immediately after device  
reset or power-up.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
87  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
2
Appendix A: Configuration Registers  
2.1 Configuration Registers  
The configuration registers are maintained in a separate document.  
2.2 Description Notes  
‰
‰
‰
‰
R – Bit location is read by software  
R0- Bit location is read by software and always returns 0 when read  
R1 - Bit location is read by software and always returns 1 when read  
R0W – Bit location is read by software and always returns 0 when read. Bit location can also be  
written by software.  
‰
RCS – Bit location is read. Writing a 1 to the bit clears the field. The bit is synchronously  
updated.  
‰
‰
‰
‰
RS – Bit location is read by software and is synchronously updated  
RW – Bit location is read and written by software  
RWS - Bit location is read and written by software. Bit is synchronously updated.  
RM – Read, write to 1 modify. The result of the write depends on which CPU (internal or  
external) performed the write. This function is used for CPU communication interrupts. For the  
external CPU interrupts, a write from the internal CPU sets the bit. A write from the external  
CPU clears the bit. For the internal CPU interrupts, a write from the internal CPU clears the bit.  
A write from the external CPU sets the bit.  
2.3 CFR Address Ranges (Offset from CFR Base Address)  
The CFR Base Address is offset 10 0000 hex.  
Table 47. CFR Address Ranges  
Name  
SYS  
LLC  
IsoDP0  
IsoDP1  
Aud0  
Starting Address Offset (hex)  
Ending Address Offset (hex)  
000  
0A0  
100  
230  
360  
3E0  
460  
4B0  
500  
550  
5A0  
5E0  
09F  
0FF  
22F  
35F  
3DF  
45F  
4AF  
4FF  
54F  
59F  
5DF  
62F  
Aud1  
AsyTx0  
AsyTx1  
AsyRx0  
AsyRx1  
BrdCstRx  
PLL  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
88  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
2.4 Register Access  
The IntCPUCfg.CFRLock bit is included to lock the ex-CPU from all DTCP related registers. When this bit  
is set to 1, the ex-CPU cannot access these registers.  
All register accesses by the external CPU are 32 bits. During reads, a snap shot value is used for both the  
lower and upper 16-bit accesses. This snap shot value is created during the first access to the register. It  
expires after a short amount of time.  
For the internal ARM, some registers have restricted accesses.  
‰
32-bit access only. These registers can only be accessed 32 bits at a time.  
ƒ
CycTmr  
ƒ
ƒ
AsyTx*AckBuffer  
Anc*Data  
‰
32-bit write access while the associated function is being used. 32-/16-/8-bit access during read  
accesses and when the associated function is not being used.  
ƒ
Iso*TmStmp  
Iso*CIP1  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Iso*FltrCIP1  
Iso*MskCIP1  
PLL*Cfg2  
PLL*Cfg3  
PLL*Cfg4  
PLL*Cfg5  
Aud*NoData  
‰
16-bit write access while the associated function is being used. 32-/16-/8-bit access during all read  
accesses and while the associated function is not being used  
ƒ
Timer0  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Timer1  
Timer2  
BusRstDat (read only register)  
Iso0BufStat  
HSDI0Cfg  
Iso*WtrMrk  
Iso*Hdr  
Iso*FltrIsoHdr  
Iso*MskIsoHdr  
Iso*DVTmgCtl  
Iso*DVTmgCfg  
Anc*Data  
Anc*Def  
Anc*Data1  
Anc*Data2  
Anc*NoData  
AsyRx*WtrMrk  
AsyTx*WtrMrk  
AsyTx*StrmHdr  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
89  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
3
General Information  
3.1 Package Size  
The iceLynx-Micro includes two package pinout options: 176-pin MicroStar BGA and 176-pin QFP.  
3.2 Operating Voltage  
Min Voltage  
Nominal Voltage  
Max Voltage  
3 V  
3.3 V  
3.6 V  
Note: I/Os are not 5-V tolerant.  
3.3 Operating Temperature  
MIN  
-20  
-40  
NOM  
MAX  
Unit  
°C  
°C  
Commercial  
Industrial  
70  
85  
Operating ambient temperature  
4
Absolute Maximum Ratings Over Operating Temperature Ranges†  
Supply voltage range: ........... AVDD  
VDD  
- 0.3 V to 4 V  
- 0.3 V to 4 V  
PLL_VDD  
- 0.3 V to 4 V  
Input clamp current, IIK (VI < 0 or VI > VDD) (see Note 1)  
Output clamp current, IOK (VO < 0 or VO > VDD) (see Note 2)  
Electrostatic discharge (see Note 3)  
Continuous total power dissipation  
Operating free-air temperature, TA (Commercial)  
(Industrial)  
± 20 mA  
± 20 mA  
HBM: 2 kV  
See Dissipation Rating Table  
-20°C to 70°C  
-40°C to 85°C  
-65°C to 150°C  
260°C  
Storage temperature range, Tstg  
Lead temperature 1,6 mm (1/16 inch) from cage for 10 seconds  
Stresses beyond those listed under the absolute maximum ratings causes’ permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended  
operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods affects device reliability.  
NOTES: 1. Applies to external input and bidirectional buffers.  
2. Applies to external output and bidirectional buffers.  
3. HBM is human body model, MM is machine model.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
ABOVE TA = 25°C  
13.8 mW/ OC  
TA = 25°C  
POWER RATING  
1.1 W  
TA = 70°C  
POWER RATING  
0.5 W  
TA = 85°C  
PACKAGE  
POWER RATING  
0.3 W  
µ*BGA 176 #  
µ*BGA 176 *  
TQFP 176 #  
TQFP 176 *  
0.8 W  
10.4 mW/OC  
0.4 W  
-
-
-
1.8 W  
1.3 W  
22.6 mW/ OC  
0.8 W  
0.6 W  
16.5 mW/ OC  
Notes: 1) *: Standard JEDEC Low-K board  
2) #: Standard JEDEC High-K board  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
90  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
4.1 Recommended Operating Conditions (Analog IEEE 1394 I/F)  
TEST  
PARAMETER  
CONDITION  
MIN NOM  
MAX UNIT  
Analog voltage, AVdd  
Supply voltage, Vdd  
PLL supply voltage, PLL_Vdd  
Output voltage, VO  
3
3
2.7  
0
3.3  
3.3  
3
3.6  
3.6  
3.6  
VDD  
VDD  
V
V
V
V
V
LVCMOS terminals  
LVCMOS terminals  
High-level input voltage, VIH  
2
LVCMOS terminals  
Low-level input voltage, VIL  
0
0.8  
V
Output current, IO  
TPBIAS outputs  
Cable inputs, during data  
reception  
-5.6  
118  
1.3  
260  
mA  
Differential input voltage, VID  
mV  
Cable inputs, during arbitration  
168  
265  
TPB cable inputs, source power  
0.9706  
2.515  
node  
Common-mode input  
voltage, VIC  
V
TPB cable inputs, nonsource  
power node  
0.4706  
2.015  
176-PQFP high-K JEDEC board  
RθJA =44.3°C /W, TA = 70°C, PD  
= 0.6 W  
176-PQFP low-K JEDEC board  
RθJA = 60.8°C /W, TA = 70°C, PD  
= 0.6 W  
176-u*BGA high-K JEDEC board  
RθJA = 72.5°C /W, TA = 70°C, PD  
= 0.6 W  
176-u*BGA low-K JEDEC board  
RθJA = 96.7°C /W, TA = 70°C, PD  
= 0.6 W  
96.6  
107  
113  
128  
128  
Maximum junction  
temperature, TJ  
°C  
176-u*BGA high-K JEDEC board  
RθJA =72.5°C /W, TA = 85°C, PD  
= 0.6 W  
Power-up reset time, tpu  
Power-up reset time, tpu  
RESETn input  
RESET_ARMn input  
2
ms  
ms  
ns  
TPA, TPB cable inputs, S100  
±1.08  
±0.5  
operation  
TPA, TPB cable inputs, S200  
operation  
ns  
ns  
ns  
ns  
ns  
Receive input jitter  
Receive input skew  
TPA, TPB cable inputs, S400  
±0.315  
±0.8  
operation  
Between TPA and TPB cable  
inputs, S100 operation  
Between TPA and TPB cable  
±0.55  
±0.5  
inputs, S200 operation  
Between TPA and TPB cable  
inputs, S400 operation  
§
Applies to external inputs and bidirectional buffers without hysteresis.  
Applies to external output buffers.  
For a node that does not source power; see Section 4.2.2.2 in IEEE Std 1394a–2000.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
91  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
4.2 Electrical Characteristics Over Recommended Operating Conditions (Unless Otherwise  
Noted)  
TEST  
PARAMETER  
High-level output voltage  
OPERATION  
MIN  
MAX UNIT  
CONDITIONS  
VOH  
VOL  
IOZ  
IOH = -2 mA  
2.4  
V
Low-level output voltage  
3-state output high impedance  
IOL = 6 mA  
VO = VDD or GND  
VI = GND  
VI = GND  
VI = Vdd  
0.5  
±20  
±20  
V
µA  
Output pins  
Input pins  
I/O pins†  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
IIL  
Low-level input current  
High-level input current  
µA  
µA  
±20  
±20  
IIH  
For I/O terminals, input leakage (IIL and IIH) includes IOZ of the disabled output.  
4.3 Electrical Characteristics Over Recommended Ranges of Operating Conditions (Unless  
Otherwise Noted)  
4.3.1 Device  
PARAMETER  
TEST CONDITIONS  
See Note 4  
MIN  
TYP  
MAX UNIT  
Idd  
Supply current (internal voltage regulator  
180  
mA  
enabled, REG_ENn = L)  
400-kresistor†  
At rated IO current  
VI = 1.5 V  
4.7  
1.665  
-90  
7.5  
V
VTH  
VO  
Power status threshold, CPS input†  
TPBIAS output voltage  
2.015  
V
-20  
-20  
IIRST  
Pullup current (RESETn input)  
µA  
-90  
VI = 0 V  
Measured at cable power side of resistor.  
NOTES: 4. Conditions:  
VDD = 3.3 V  
HSDI0: MPEG TS Tx (mode-7)  
HSDI1: Audio Rx (IEC60958, 44.1 kHz)  
Three Ports Connected  
Cipher not enabled  
ARM: Application PGM running  
4.3.2 Driver  
PARAMETER  
Differential output voltage  
Driver difference current, TPA+, TPA-, TPB+,  
and TPB-  
TEST CONDITIONS  
MIN  
172  
MAX UNIT  
VOD  
IDIFF  
265  
mV  
mA  
56 , see Figure 49  
Drivers enabled, speed signaling off  
-1.05‡  
1.05‡  
ISP200 Common-mode speed signaling current,  
TPB+, TPB-  
S200 speed signaling enabled  
S400 speed signaling enabled  
Drivers disabled, see Figure 49  
-4.84§  
-12.4§  
-2.53§  
-8.10§  
20  
mA  
mA  
mV  
ISP400 Common-mode speed signaling current,  
TPB+, TPB-  
VOFF  
Off-state differential voltage  
Limits defined as algebraic sum of TPA+ and TPA- driver currents. Limits also apply to TPB+ and TPB - algebraic sum of driver  
currents.  
§
Limits defined as absolute limit of each of TPB+ and TPB - driver currents.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Copyright 2004, Texas Instruments Incorporated  
Texas Instruments standard warranty. Production processing  
TEXAS  
does not necessarily include testing of all parameters.  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
92  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
TPAx+  
TPBx+  
56  
TPAx-  
TPBx-  
Figure 49. Test Load Diagram  
4.3.3 Receiver  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ZID  
ZIC  
Differential impedance  
Drivers disabled  
4
7
10  
4
kΩ  
pF  
Common-mode impedance  
Drivers disabled  
Drivers disabled  
20  
kΩ  
pF  
24  
30  
VTH–R  
Receiver input threshold voltage  
-30  
0.6  
89  
-168  
49  
mV  
V
VTH–CB  
Cable bias detect threshold, TPBx cable inputs  
Positive arbitration comparator threshold voltage  
Negative arbitration comparator threshold voltage  
Drivers disabled  
1
VTH  
VTH  
+
-
Drivers disabled  
168  
-89  
131  
mV  
mV  
mV  
Drivers disabled  
VTH-SP200 Speed signal threshold  
TPBIAS-TPA common-mode  
voltage, drivers disabled  
TPBIAS-TPA common-mode  
voltage, drivers disabled  
VTH-SP400 Speed signal threshold  
314  
396  
mV  
4.4 Thermal Characteristics  
PARAMETER  
176-µBGA RθJA, high-K board  
176-µBGA RθJA, low-K board  
TEST CONDITIONS  
MIN  
TYP  
TYP  
MAX UNIT  
63.93  
Board mounted, no air flow, JEDEC test board  
Board mounted, no air flow, JEDEC test board  
Board mounted, no air flow, JEDEC test board  
Board mounted, no air flow, JEDEC test board  
°C/W  
82.1  
°C/W  
44.3  
176-PQFP  
176-PQFP  
RθJA, high-K board  
RθJA, low-K board  
°C/W  
60.8  
°C/W  
4.5 Switching Characteristics for PHY Port Interface  
PARAMETER  
Jitter, transmit  
Skew, transmit  
TEST CONDITIONS  
Between TPA and TPB  
Between TPA and TPB  
10% to 90%, at 1394 connector  
90% to 10%, at 1394 connector  
MIN  
MAX UNIT  
±0.15  
±0.1  
1.2  
ns  
ns  
ns  
ns  
0.5  
0.5  
tr  
tf  
TP differential rise time, transmit  
TP differential fall time, transmit  
1.2  
4.6 Operating, Timing, and Switching Characteristics of XI  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
V
V
V
MHz  
ppm  
V/ns  
3
3.3  
3.6  
VDD  
VIH  
VIL  
PLL_VDD  
0.63 VDD  
High-level input voltage  
Low-level input voltage  
Input clock frequency  
Input clock frequency tolerance  
Input slew rate  
0.33 VDD  
24.576  
<100  
4
0.2  
40%  
60%  
Input clock duty cycle  
Note: When using an external clock, the input is supplied to XI, the XO terminal must be left unconnected, and the XI clock must be  
stable before the 2-ms device reset begins.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
93  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
5
Reset Power States  
Table 48. Pin State During Power On Reset, Just After Power On Reset and DISABLE_IFn=L  
RESETn=H and  
DISABLE_IFn=H  
Just After Power On  
RESETn=H and  
DISABLE_IFn=L  
DISABLE_IFn=L  
High Z  
0
RESETn=L and  
DISABLE_IFn=L During  
Power On  
Pin Name  
WTCH_DG_TMRn  
LOW_PWR_RDY  
MCIF_INTz  
High Z  
0
0
0
1
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
MCIF_CS_IOz=  
MCIF_CS_MEMz  
MCIF_ACKz  
MCIF_WAITz  
MCIF_DATA[15:0]  
HSDI*_D[0]  
HSDI*_D[7:1]  
HSDI*_EN  
HSDI*_SYNC  
HSDI*_DVALID  
HSDI*_AV  
HSDI*_AMCLK_OUT  
HSDI1_AUDIO_ERR  
HSDI1_AUDIO_MUTE  
MLPCM_LRCLK  
MLPCM_BCLK  
MLPCM_D{2:0]  
MLPCM_A  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
0
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
HSDI*_60958_OUT  
Note: All CFR values are the default value.  
6
Configuration Register Map  
See Appendix A for the configuration register map and descriptions.  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Copyright 2004, Texas Instruments Incorporated  
Texas Instruments standard warranty. Production processing  
TEXAS  
does not necessarily include testing of all parameters.  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
94  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
7
Mechanical Data  
7.1 PQFP Package Information  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
95  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
7.2 µ*BGA Package Dimensions  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
96  
 
TSB43Cx43A/  
TI iceLynx-Micro™ IEEE 1394a-2000  
TSB43CA42  
Consumer Electronics Solution  
TEXAS INSTRUMENTS  
SLLS546F – March 2004 – Revised September 2004  
7.3 ZGW Package Dimensions  
PRODUCTION DATA information is current as of public  
date. Products conform to specifications per the terms of  
Texas Instruments standard warranty. Production processing  
does not necessarily include testing of all parameters.  
Copyright 2004, Texas Instruments Incorporated  
TEXAS  
INSTRUMENTS  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MARCH 12, 2004  
97  
 

相关型号:

TSB43CA42GGW

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CA42PGF

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CA42ZGW

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CA43A

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CA43AGGW

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CA43APGF

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CA43AZGW

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CB43A

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CB43AIGGW

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CB43APGF

TI iceLynx-Micro⑩ IEEE 1394a-2000 Consumer Electronics Solution
TI

TSB43CB43APGFG4

iceLynx Micro with Streaming Audio 176-LQFP -20 to 70
TI

TSB43DA42

IEEE 1394a-2000 CONSUMER ELECTRONICS SOLUTION
TI