TUSB1042I [TI]

10Gbps USB Type-C 2:1 线性转接驱动器开关;
TUSB1042I
型号: TUSB1042I
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10Gbps USB Type-C 2:1 线性转接驱动器开关

开关 驱动 驱动器
文件: 总39页 (文件大小:1406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
TUSB1042I USB Type-C™ 10Gbps 2:1 线性转接驱动器开关  
1 特性  
3 说明  
1
USB Type-C™2:1 转接驱动器开关  
TUSB1042I 是一款是支持 USB 3.1,数据速率高达  
10Gbps 的转接驱动开关。TUSB1042I 提供有多个接  
收线性均衡级别,用于补偿由于线缆或电路板走线损耗  
产生的码间串扰 (ISI)。该器件由 3.3V 单电源供电运  
行,支持工业级温度范围。  
速度高达 10Gbps USB 3.1 1 /2 代  
超低功耗架构  
具有高达 14dB 均衡功能的线性转接驱动器  
自动 LFPS 去加重控制,满足 USB 3.1 认证要求  
可通过 GPIO I2C 进行配置  
器件信息(1)  
基于 USB Type-C Intel 专有 DCI 功能,可实现  
不开箱调试  
器件型号  
TUSB1042I  
封装  
WQFN (40)  
封装尺寸(标称值)  
4.00mm x 6.00mm  
支持热插拔  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
工业温度范围:-40ºC 85ºC  
4mm x 6mm0.4mm 间距 WQFN 封装  
2 应用  
平板电脑  
笔记本电脑  
台式机  
扩展坞  
简化电路原理图  
TUSB1042I 眼图  
TUSB1042I  
TUSB1042I  
TX2  
TX1  
SSTX  
SSRX  
USB Host  
RX2  
RX1  
FLIP CTL0  
PD Controller  
CC1  
CC2  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF15  
 
 
 
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 17  
8.5 Programming........................................................... 20  
8.6 Register Maps......................................................... 22  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Application ................................................. 24  
9.3 System Examples .................................................. 28  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Power Supply Characteristics ................................... 6  
6.6 DC Electrical Characteristics .................................... 6  
6.7 AC Electrical Characteristics..................................... 7  
6.8 DCI Specific Electrical Characteristics...................... 8  
6.9 Timing Requirements................................................ 8  
6.10 Switching Characteristics........................................ 8  
6.11 Typical Characteristics.......................................... 10  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 15  
9
10 Power Supply Recommendations ..................... 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 30  
12 器件和文档支持 ..................................................... 31  
12.1 相关链接................................................................ 31  
12.2 接收文档更新通知 ................................................. 31  
12.3 社区资源................................................................ 31  
12.4 ....................................................................... 31  
12.5 静电放电警告......................................................... 31  
12.6 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 31  
7
8
4 修订历史记录  
Changes from Revision C (August 2018) to Revision D  
Page  
Added following to pin 11 description: If I2C_EN = “F”, then this pin must be set to “F” or “0”. ........................................... 4  
Changes from Revision B (April 2018) to Revision C  
Page  
Added Note 1 To pins 29 and 32 in the Pin Functions table.................................................................................................. 3  
Changes from Revision A (October 2017) to Revision B  
Page  
Changed the appearance of the pinout image in the Pin Configuration and Function section.............................................. 3  
Changed the USB3.1 Control/Status Registers reset value From: 00000000 To: 00000100.............................................. 23  
Changed the Reset value of bit 3:2 From: 00 To: 01 in 12 ............................................................................................ 23  
Changes from Original (August 2017) to Revision A  
Page  
Changed the Human-body model (HBM) value From: ±6000 To: ±5000 in the ESD Ratings............................................... 5  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
5 Pin Configuration and Functions  
RNQ Package  
40-Pin (WQFN)  
Top View  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
TEST2  
SSEQ1  
2
3
RSVD12  
RSVD11  
RSVD10  
RSVD9  
SSRXn  
SSRXp  
VCC  
4
5
6
7
8
Thermal  
Pad  
TEST1  
SSTXn  
SSTXp  
CTL0/SDA  
FLIP/SCL  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
RX1n  
RX1p  
TX1n  
NO.  
31  
30  
34  
33  
37  
36  
40  
39  
8
Diff I/O  
Diff I/O  
Diff O  
Diff O  
Diff O  
Diff O  
Diff I/O  
Diff I/O  
Diff I  
Differential negative input for USB3.1 Downstream Facing port.  
Differential positive input for USB3.1 Downstream Facing port.  
Differential negative output for USB3.1 downstream facing port.  
Differential positive output for USB 3.1 downstream facing port.  
Differential positive output for USB 3.1 downstream facing port.  
Differential negative output for USB 3.1 downstream facing port.  
Differential positive input for USB3.1 Downstream Facing port.  
Differential negative input for USB3.1 Downstream Facing port.  
Differential positive input for USB3.1 upstream facing port.  
Differential negative input for USB3.1 upstream facing port.  
Differential positive output for USB3.1 upstream facing port.  
Differential negative output for USB3.1 upstream facing port.  
TX1p  
TX2p  
TX2n  
RX2p  
RX2n  
SSTXp  
SSTXn  
SSRXp  
SSRXn  
7
Diff I  
5
Diff O  
Diff O  
4
This pin along with EQ0 sets the USB receiver equalizer gain for downstream facing RX1 and RX2  
when USB used.  
EQ1  
35  
38  
4 Level I  
4 Level I  
This pin along with EQ1 sets the USB receiver equalizer gain for downstream facing RX1 and RX2  
when USB used.  
EQ0  
I/O  
(PD)  
DCI_DAT  
DCI_CLK  
29(1)  
32(1)  
When I2C_EN ! = 0, this pin functions as DCI data output Leave open if not used.  
When I2C_EN ! = 0, this pin functions as DCI clock output Leave open if not used.  
I/O  
(PD)  
(1) Not a fail-safe I/O. Actively driving pin high while VCC is removed results in leakage voltage on VCC pins.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
I2C Programming Mode or GPIO Programming Select. I2C is only disabled when this pin is ‘0".  
0 = GPIO mode (I2C disabled)  
R = TI Test Mode (I2C enabled at 3.3 V)  
F = I2C enabled at 1.8 V  
1 = I2C enabled at 3.3 V.  
I2C_EN  
17  
4 Level I  
When I2C_EN is not ‘0’, this pin will set the TUSB1042I I2C address.  
A1  
14  
3
4 Level I  
4 Level I  
SSEQ1  
Along with SSEQ0, sets the USB receiver equalizer gain for upstream facing SSTXP/N.  
Along with SSEQ1, sets the USB receiver equalizer gain for upstream facing SSTXP/N. When  
I2C_EN is not ‘0’, this pin will also set the TUSB1042I I2C address. If I2C_EN = “F”, then this pin  
must be set to “F” or “0”.  
SSEQ0/A0  
11  
4 Level I  
When I2C_EN=’0’ this is Flip control pin, otherwise this pin is I2C clock. . When used for I2C clock  
pullup to I2C master's VCC I2C supply.  
FLIP/SCL  
21  
22  
2 Level I  
2 Level I  
When I2C_EN=’0’ this is a USB3.1 Switch control pin, otherwise this pin is I2C data. When used for  
I2C data pullup to I2C master's VCC I2C supply.  
CTL0/SDA  
9, 10, 12,  
13, 15, 16,  
18, 19, 24,  
25, 26, 27  
RSVD1 - 12  
TEST1  
RSVD  
Reserved. Leave open.  
2 Level I  
(Failsafe)  
(PD)  
23  
Test pin. Pull down to GND.  
TEST2  
2
4 Level I  
Test pin. Leave open.  
3.3-V Power Supply  
Ground  
VCC  
1, 6, 20, 28  
P
Thermal Pad  
G
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage Range(2), VCC  
–0.3  
4
V
Differential voltage between positive and  
negative inputs  
±2.5  
V
Voltage Range at any input or output pin  
Voltage at differential inputs  
CMOS Inputs  
–0.5  
–0.5  
VCC + 0.5  
VCC + 0.5  
125  
V
V
Maximum junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±5000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
UNIT  
V
Main power supply  
3
3.3  
VCC  
Supply Ramp Requirement  
100  
3.6  
ms  
V
V(12C)  
V(PSN)  
TA  
Supply that external resistors are pulled up to on SDA and SCL  
Supply Noise on VCC pins  
1.7  
-40  
100  
85  
mV  
°C  
Operating free-air temperature  
TUSB1042I  
6.4 Thermal Information  
TUSB1042I  
THERMAL METRIC(1)  
RNQ (WQFN)  
UNIT  
40 PINS  
37.6  
20.7  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.4  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
 
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
6.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN2 data transmission.  
EN, EQ cntrl pins = NC, k28.5 pattern at  
Average active power  
USB Only  
PCC(ACTIVE-USB)  
335  
mW  
10 Gbps, VID = 1000 mVPP  
CTL1 = L; CTL0 = H  
;
Link in U0 with GEN2 data transmission.  
EN, EQ cntrl pins = NC, k28.5 pattern at  
Average active power  
USB + 2 Lane DP  
PCC(ACTIVE-USB-DP1)  
634  
mW  
10 Gbps, VID = 1000 mVPP  
;
CTL1 = H; CTL0 = H  
Four active DP lanes operating at  
8.1Gbps;  
CTL1 = H; CTL0 = L;  
Average active power  
4 Lane DP Only  
PCC(ACTIVE--DP)  
660  
2.4  
mW  
mW  
No GEN1 device is connected to  
TXP/TXN;  
PCC(NC-USB)  
Average power with no connection  
CTL1 = L; CTL0 = H;  
Link in U2 or U3 USB Mode Only;  
CTL1 = L; CTL0 = H;  
PCC(U2U3)  
Average power in U2/U3  
Device Shutdown  
3
mW  
mW  
PCC(SHUTDOWN)  
CTL1 = L; CTL0 = L; I2C_EN = 0;  
0.85  
6.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-State CMOS Inputs(EQ[1:0], SSEQ[1:0], I2C_EN)  
IIH  
IIL  
High level input current  
Low level input current  
Threshold 0 / R  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
VCC = 3.3 V  
20  
80  
µA  
µA  
V
–160  
-40  
0.55  
1.65  
2.7  
35  
4-Level VTH  
Threshold R/ Float  
VCC = 3.3 V  
V
Threshold Float / 1  
VCC = 3.3 V  
V
RPU  
RPD  
Internal pull-up resistance  
Internal pull-down resistance  
kΩ  
kΩ  
95  
2-State CMOS Input (CTL0, TEST1, FLIP) TEST1, CTL0 and FLIP are Failsafe.  
VIH  
VIL  
High-level input voltage  
2
0
3.6  
0.8  
V
V
Low-level input voltage  
RPD  
Internal pull-down resistance for CTL1  
500  
150  
k  
Internal pull-down resistance for pin 29  
and pin 32  
R(ENPD)  
kΩ  
IIH  
IIL  
High-level input current  
Low-level input current  
VIN = 3.6 V  
–25  
–25  
25  
25  
µA  
µA  
VIN = GND, VCC = 3.6 V  
I2C Control Pins SCL, SDA  
VIH  
High-level input voltage  
I2C_EN = 0  
0.7 x V(I2C)  
3.6  
0.3 x V(I2C)  
0.4  
V
V
VIL  
Low-level input voltage  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
I2C_EN = 0  
0
0
VOL  
IOL  
I2C_EN = 0; IOL = 3 mA  
I2C_EN = 0; VOL = 0.4 V  
0.1 x V(I2C) < Input voltage < 3.3 V  
V
20  
mA  
µA  
pF  
pF  
pF  
II(I2C)  
CI(I2C)  
–10  
10  
10  
C(I2C_FM+_BUS) I2C bus capacitance for FM+ (1MHz)  
150  
150  
C(I2C_FM_BUS)  
R(EXT_I2C_FM+)  
I2C bus capacitance for FM (400kHz)  
External resistors on both SDA and SCL  
when operating at FM+ (1MHz)  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
910  
External resistors on both SDA and SCL  
when operating at FM (400kHz)  
R(EXT_I2C_FM)  
1500  
2200  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
6.7 AC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB Gen 2 Differential Receiver (RX1P/N, RX2P/N, SSTXP/N)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
Input differential peak-peak voltage  
V(RX-DIFF-PP)  
2000  
0
mVpp  
swing linear dynamic range  
Common-mode voltage bias in the  
receiver (DC)  
V(RX-DC-CM)  
V
Ω
Ω
Present after a GEN2 device is  
detected on TXP/TXN  
R(RX-DIFF-DC)  
R(RX-CM-DC)  
Differential input impedance (DC)  
72  
18  
120  
30  
Receiver DC common mode  
impedance  
Present after a GEN2 device is  
detected on TXP/TXN  
Present when no GEN2 device is  
detected on TXP/TXN. Measured over  
the range of 0-500mV with respect to  
GND.  
Common-mode input impedance with  
termination disabled (DC)  
Z(RX-HIGH-IMP-DC-POS)  
25  
kΩ  
Input differential peak-to-peak signal  
detect assert level  
At 10 Gbps, no input loss, PRBS7  
pattern  
V(SIGNAL-DET-DIFF-PP)  
V(RX-IDLE-DET-DIFF-PP)  
V(RX-LFPS-DET-DIFF-PP)  
80  
60  
mV  
mV  
mV  
Input differential peak-to-peak signal  
detect de-assert Level  
At 10 Gbps, no input loss, PRBS7  
pattern  
Low frequency periodic signaling  
(LFPS) detect threshold  
Below the minimum is squelched  
100  
300  
V(RX-CM-AC-P)  
C(RX)  
Peak RX AC common-mode voltage  
RX input capacitance to GND  
Measured at package pin  
At 5 GHz  
150  
1
mV  
pF  
dB  
dB  
dB  
0.5  
–19  
–10  
–10  
50 MHz – 1.25 GHz at 90 Ω  
5 GHz at 90 Ω  
RL(RX-DIFF)  
Differential return Loss  
RL(RX-CM)  
EQ(SS_TX)  
Common-mode return loss  
50 MHz – 5 GHz at 90 Ω  
Receiver equalization for upstream  
facing port  
SSEQ[1:0] at 5 GHz  
EQ[1:0] at 5 GHz  
11  
9
dB  
dB  
Receiver equalization for downstream  
facing ports  
EQ(SS_RX)  
USB Gen 2 Differential Transmitter (TX1P/N, TX2P/N, SSRXP/N)  
VTX(DIFF-PP)  
Transmitter dynamic differential voltage swing range.  
1600  
1.75  
mVPP  
mV  
VTX(RCV-DETECT)  
Amount of voltage change allowed during receiver detection  
600  
600  
Transmitter idle common-mode voltage change while in U2/U3 and not actively  
transmitting LFPS  
VTX(CM-IDLE-DELTA)  
VTX(DC-CM)  
–600  
mV  
V
Common-mode voltage bias in the transmitter (DC)  
Max mismatch from Txp + Txn for both  
Tx AC common-mode voltage active  
VTX(CM-AC-PP-ACTIVE)  
100  
10  
mVPP  
time and amplitude  
AC electrical idle differential peak-to-  
At package pins  
VTX(IDLE-DIFF-AC-PP)  
VTX(IDLE-DIFF-DC)  
0
0
mV  
mV  
mV  
peak output voltage  
DC electrical idle differential output  
voltage  
At package pins after low pass filter to  
remove AC component  
14  
VTX(CM-DC-ACTIVE-IDLE- Absolute DC common-mode voltage  
At package pin  
200  
between U1 and U0  
DELTA)  
RTX(DIFF)  
Differential impedance of the driver  
AC coupling capacitor  
75  
75  
120  
265  
Ω
CAC(COUPLING)  
nF  
Measured with respect to AC ground  
over  
0–500 mV  
Common-mode impedance of the  
driver  
RTX(CM)  
18  
30  
Ω
ITX(SHORT)  
TX short circuit current  
TX± shorted to GND  
67  
mA  
pF  
dB  
dB  
dB  
CTX(PARASITIC)  
TX input capacitance for return loss  
At package pins, at 5 GHz  
50 MHz – 1.25 GHz at 90 Ω  
5 GHz at 90 Ω  
1.25  
-15  
-13  
-13  
RLTX(DIFF)  
Differential return loss  
RLTX(CM)  
Common-mode return loss  
50 MHz – 5 GHz at 90 Ω  
AC Characteristics  
Differential crosstalk between TX and  
RX signal pairs  
Crosstalk  
C(P1dB-LF)  
at 5 GHz  
–30  
dB  
Low frequency 1-dB compression  
point  
at 100 MHz, 200 mVPP < VID  
< 2000 mVPP  
1300  
mVPP  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
AC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1000  
20  
MAX  
UNIT  
mVPP  
kHz  
High frequency 1-dB compression  
point  
at 5 GHz, 200 mVPP < VID  
< 2000 mVPP  
C(P1dB-HF)  
fLF  
Low frequency cutoff  
200 mVPP< VID < 2000 mVPP  
50  
200 mVPP < VID < 2000 mVPP, PRBS7,  
10 Gbps  
0.11  
UIpp  
TX output deterministic jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
0.05  
0.15  
0.08  
UIpp  
UIpp  
UIpp  
200 mVPP < VID < 2000 mVPP, PRBS7,  
10 Gbps  
TX output total jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
6.8 DCI Specific Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.45  
33  
UNIT  
DCI_CLK and DCI_DAT LVCMOS Outputs  
VOL  
Low-Level output voltage  
High-Level output voltage  
Output characteristic impedance  
DCI Clock period  
VCC = 3 V; IOL = 2 mA; CL = 10 pF  
VCC = 3 V; IOL = –2 mA;  
V
V
VOH  
2.4  
21  
RDCI  
tPERIOD  
25  
Ω
Measured at 50%  
6.67  
ns  
Rising edge of DCI clock to DCI  
data valid  
tVALID  
1
ns  
tDCI_RISE  
tDCI_FALL  
DCI output rise time  
DCI output fall time  
Measured at 20% to 80%.  
Measured at 80% to 20%  
350  
350  
ps  
ps  
6.9 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
USB Gen 1  
tIDLEEntry  
Delay from U0 to electrical idle  
U1 exist time: break in electrical idle to  
the transmission of LFPS  
See 11  
10  
6
ns  
ns  
tIDELExit_U1  
See 11  
tIDLEExit_U2U3  
tRXDET_INTVL  
tIDLEExit_DISC  
tExit_SHTDN  
tDIFF_DLY  
U2/U3 exit time: break in electrical idle to transmission of LFPS  
RX detect interval while in Disconnect  
Disconnect Exit Time  
10  
µs  
ms  
µs  
12  
10  
1
Shutdown Exit Time  
ms  
ps  
Differential Propagation Delay  
See 10  
300  
20%-80% of differential  
voltage measured 1.7 inch  
from the output pin  
tR, tF  
Output Rise/Fall time (see 12)  
35  
ps  
ps  
20%-80% of differential  
voltage measured 1.7 inch  
from the output pin  
tRF_MM  
Output Rise/Fall time mismatch  
2.6  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C (Refer to 9)  
fSCL  
tBUF  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Hold time after repeated START condition. After this period, the first  
clock pulse is generated  
tHDSTA  
0.26  
µs  
tLOW  
Low period of the I2C clock  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
μs  
ns  
ns  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Data setup time  
50  
Rise time of both SDA and SCL signals  
120  
120  
20 × (V(I2C)/5.5  
V)  
tF  
Fall time of both SDA and SCL signals  
ns  
tSUSTO  
Cb  
Setup time for STOP condition  
Capacitive load for each bus line  
0.26  
μs  
150  
pF  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
6.11 Typical Characteristics  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
-10  
-10  
-15  
-15  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Frequency (GHz)  
Frequency (GHz)  
D002  
D003  
1. USB RX EQ Settings Curves  
2. USB TX EQ Settings Curves  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Differential Input Voltage (V)  
Differential Input Voltage (V)  
D005  
D006  
3. USB TX Linearity Curves at 5 GHz  
4. USB RX Linearity Curves at 5 GHz  
5
0
RX1  
RX2  
TX1  
TX2  
SSRX  
-5  
-10  
-15  
-20  
-25  
-30  
0.01  
0.1  
1
10  
Frequency (GHz)  
D008  
6. Output Return Loss Performance  
5. Input Return Loss Performance  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
Typical Characteristics (接下页)  
Time (33.33 ps/Div)  
Time (16.67 ps/Div)  
7. USB 3.1 Gen1 Eye-Pattern Performance with 12-inch  
8. USB 3.1 Gen2 Eye-Pattern Performance with  
Input PCB Trace at 5 Gbps  
12-inch Input PCB Trace at 10 Gbps  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
70%  
SDA  
30%  
t
t
t
F
HDSTA  
R
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
S
P
P
S
t
t
SUSTO  
t
t
SUDAT  
HDDAT  
HDSTA  
t
SUSTA  
9. I2C Timing Diagram Definitions  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
10. Propagation Delay  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
11. Electrical Idle Mode Exit and Entry Delay  
80%  
20%  
t
r
t
f
12. Output Rise and Fall Times  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
Parameter Measurement Information (接下页)  
TDCI_CLK_PD  
TDCI_CLK_PD  
VIH_MIN  
RX1N  
or  
RX2N  
VIH_MAX  
VOH_MIN  
DCI_CLK  
VOL_MAX  
13. DCI Clock Propagation Delay  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TUSB1042I is a USB Type-C redriving switch supporting data rates up to 10 Gbps. This device utilizes 5th  
generation USB redriver technology.  
The TUSB1042I provides several levels of receive equalization to compensate for inter-symbol interference (ISI)  
due to cable and board trace loss when USB 3.1 Gen1/Gen2 signals travel across a PCB or cable. This device  
requires a 3.3-V power supply. It comes in the industrial temperature range.  
For a host or device application the TUSB1042I enables the system to pass both transmitter compliance and  
receiver jitter tolerance tests for USB 3.1 Gen1/Gen2. The re-driver recovers incoming data by applying  
equalization that compensates for channel loss, and drives out signals with a high differential voltage. Each  
channel has a receiver equalizer with selectable gain settings. The equalization should be set based on the  
amount of insertion loss before or after the TUSB1042I receivers. Independent equalization control for each  
channel can be set using EQ[1:0] and SSEQ[1:0] pins.  
The TUSB1042I advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB1042I. periodically performs receiver detection on the TX pairs. If it detects a USB 3.1 Gen1/Gen2 receiver,  
the RX termination is enabled, and the TUSB1042I is ready to re-drive.  
The device ultra-low-power architecture operates at a 3.3-V power supply and achieves enhanced performance.  
The automatic LFPS de-emphasis control further enables the system to be USB3.1 compliant.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
8.2 Functional Block Diagram  
EQ_SEL  
EQ  
SSRXp  
SSRXn  
Driver  
RX2p  
RX2n  
Driver  
SSEQ_SEL  
SSTXp  
TX2p  
TX2n  
EQ  
Driver  
SSTXn  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
RSVD8  
RSVD9  
RSVD10  
RSVD11  
RSVD12  
MUX  
TX1n  
TX1p  
Driver  
RX1n  
RX1p  
Driver  
EQ  
EQ_SEL  
SSEQ_SEL  
TEST2  
EQ_SEL  
A1  
SSEQ[1:0]/A0  
I2C_EN  
EQ[1:0]  
FSM, Control Logic and  
Registers  
FLIP/SCL  
I2C  
Slave  
CTL0/SDA  
TEST1  
DCI_CLK  
DCI_DAT  
VREG  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 USB 3.1  
The TUSB1042I supports USB 3.1 Gen1/Gen2 data rates up to 10 Gbps. The TUSB1042I supports all the USB  
defined power states (U0, U1, U2, and U3). Because the TUSB1042I is a linear redriver, it can’t decode USB3.1  
physical layer traffic. The TUSB1042I monitors the actual physical layer conditions like receiver termination,  
electrical idle, LFPS, and SuperSpeed signaling rate to determine the USB power state of the USB 3.1 interface.  
The TUSB1042I features an intelligent low frequency periodic signaling (LFPS) detector. The LFPS detector  
automatically senses the low frequency signals and disables receiver equalization functionality. When not  
receiving LFPS, the TUSB1042I will enable receiver equalization based on the EQ[1:0] and SSEQ[1:0] pins or  
values programmed into EQ1_SEL, EQ2_SEL, and SSEQ_SEL registers.  
8.3.2 4-level Inputs  
The TUSB1042I has (I2C_EN, EQ[1:0], and SSEQ[1:0]) 4-level inputs pins that are used to control the  
equalization gain and place TUSB1042I into different modes of operation. These 4-level inputs utilize a resistor  
divider to help set the 4 valid levels and provide a wider range of control settings. There is an internal 30 kpull-  
up and a 94 kpull-down. These resistors, together with the external resistor connection combine to achieve the  
desired voltage level.  
1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 K5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 K5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 K5%to VCC  
.
1
Option 2: Tie directly to VCC  
.
All four-level inputs are latched on rising edge of internal reset. After tcfg_hd, the internal  
pull-up and pull-down resistors will be isolated in order to save power.  
8.3.3 Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input or after the output of the TUSB1042I. The receiver overcomes these losses by  
attenuating the low frequency components of the signals with respect to the high frequency components. The  
proper gain setting should be selected to match the channel insertion loss. Two 4-level input pins enable up to 16  
possible equalization settings. USB3.1 upstream path and USB3.1 downstream path each have their own two 4-  
level inputs. The TUSB1042I also provides the flexibility of adjusting settings through I2C registers.  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
8.4 Device Functional Modes  
8.4.1 Device Configuration in GPIO Mode  
The TUSB1042I is in GPIO configuration when I2C_EN = “0”. The TUSB1042I supports USB 3.1 operation. The  
TEST1 pin needs to be pulled down to GND. CTL0 pins enables or disables USB 3.1 operation as detailed in 表  
2.  
After power-up (VCC from 0 V to 3.3 V), the TUSB1042I defaults to USB3.1 mode. The USB PD controller upon  
detecting no device attached to Type-C port or USB3.1 operation not required by attached device must take  
TUSB1042I out of USB3.1 mode by transitioning the CTL0 pin from L to H and back to L.  
2. GPIO Configuration Control  
CTL0 PIN  
FLIP PIN  
TUSB1042I CONFIGURATION  
Power Down  
L
L
L
H
L
Power Down  
H
H
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
H
3 Details the TUSB1042I’s mux routing. This table is valid for both I2C and GPIO configuration modes.  
3. INPUT to OUTPUT Mapping  
FROM  
INPUT PIN  
NA  
TO  
OUTPUT PIN  
NA  
CTL0 PIN  
FLIP PIN  
L
L
L
H
NA  
NA  
RX1P  
SSRXP  
SSRXN  
TX1P  
RX1N  
H
H
L
SSTXP  
SSTXN  
RX2P  
TX1N  
SSRXP  
SSRXN  
TX2P  
RX2N  
H
SSTXP  
SSTXN  
TX2P  
8.4.2 Device Configuration In I2C Mode  
The TUSB1042I is in I2C mode when I2C_EN is not equal to “0”. The same configurations defined in GPIO mode  
are also available in I2C mode. The TUSB1042I USB3.1 configuration is controlled based on 4.  
4. I2C Configuration Control  
REGISTERS  
TUSB1042I CONFIGURATION  
CTLSEL1  
CTLSEL0  
FLIPSEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Power Down  
Power Down  
USB 3.1 - No Flip  
USB 3.1 – With Flip  
Reserved  
Reserved  
Reserved  
Reserved  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
 
 
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
8.4.3 Linear EQ Configuration  
Each of the TUSB1042I receiver lanes has individual controls for receiver equalization. The receiver equalization  
gain value can be controlled either through I2C registers or through GPIOs. 5 details the gain value for each  
available combination when TUSB1042I is in GPIO mode. These same options are also available in I2C mode by  
updating registers EQ1_SEL, EQ2_SEL, and SSEQ_SEL.  
5. TUSB1042I Receiver Equalization GPIO Control  
USB3.1 DOWNSTREAM FACING PORTS  
USB 3.1 UPSTREAM FACING PORT  
Equalization Setting #  
EQ GAIN at 5 GHz  
EQ1 PIN LEVEL  
EQ0 PIN LEVEL  
SSEQ1 PIN LEVEL  
SSEQ0 PIN LEVEL  
EQ GAIN at 5 GHz (dB)  
(dB)  
-3.9  
-1.7  
-0.1  
1.4  
2.4  
3.5  
4.4  
5.2  
5.9  
6.6  
7.1  
7.6  
8.0  
8.5  
8.8  
9.2  
0
1
0
0
0
R
F
1
0
0
0
R
F
1
-1.8  
0.2  
1.7  
3.2  
4.2  
5.3  
6.1  
7.0  
7.7  
8.3  
8.8  
9.3  
9.7  
10.1  
10.4  
10.8  
2
0
0
3
0
0
4
R
R
R
R
F
F
F
F
1
0
R
R
R
R
F
F
F
F
1
0
5
R
F
1
R
F
1
6
7
8
0
0
9
R
F
1
R
F
1
10  
11  
12  
13  
14  
15  
0
0
1
R
F
1
1
R
F
1
1
1
1
1
8.4.4 USB3.1 Modes  
The TUSB1042I monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and  
SuperSpeed signaling rate to determine the state of the USB3.1 interface. Depending on the state of the USB  
3.1 interface, the TUSB1042I can be in one of four primary modes of operation when USB 3.1 is enabled (CTL0  
= H or CTLSEL0 = 1b1): Disconnect, U2/U3, U1, and U0.  
The Disconnect mode is the state in which TUSB1042I has not detected far-end termination on both upstream  
facing port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of each of  
the four modes. The TUSB1042I remains in this mode until far-end receiver termination has been detected on  
both UFP and DFP. The TUSB1042I immediately exits this mode and enter U0 once far-end termination is  
detected.  
Once in U0 mode, the TUSB1042I will redrive all traffic received on UFP and DFP. U0 is the highest power mode  
of all USB3.1 modes. The TUSB1042I remains in U0 mode until electrical idle occurs on both UFP and DFP.  
Upon detecting electrical idle, the TUSB1042I immediately transitions to U1.  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB1042I UFP  
and DFP receiver termination remains enabled. The UFP and DFP transmitter DC common mode is maintained.  
The power consumption in U1 is similar to power consumption of U0.  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB1042I  
periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either UFP or DFP, the TUSB1042I leaves the U2/U3 mode and transitions to the Disconnect mode. It also  
monitors for a valid LFPS. Upon detection of a valid LFPS, the TUSB1042I immediately transitions to the U0  
mode. In U2/U3 mode, the TUSB1042I receiver terminations remain enabled but the TX DC common mode  
voltage is not maintained.  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
8.4.5 Operation Timing – Power Up  
Tctl_db  
Mode of operation  
determined by value of  
FLIPSEL bit and CTLSEL[1:0]  
bits at offset 0x0A.  
USB3.1  
FLIP = 0  
TUSB1042I  
In I2C mode  
DISABLED  
If (CTL0 == 1'b1 & FLIP == 0) {  
USB3.1 no FLIP;  
} ELSEIF (CTL0 == 1'b1 & FLIP == 1) {  
USB3.1 with FLIP;  
} ELSEIF (CTL0 == 1'b0 & FLIP == 0) {  
USB3.1 disabled;  
TUSB1042I  
USB3.1  
FLIP = 0  
DISABLED  
In GPIO mode  
} ELSEIF (CTL0 == 1'b0 & FLIP == 1) {  
USB3.1 disabled;  
};  
CTL0, TEST1 pins  
FLIP pin  
VCC (min)  
VCC  
Td_pg  
Internal  
Power  
Good  
T Cfg_su  
TCfg_hd  
CFG pins  
14. Power-Up Timing  
6. Power-Up Timing(1)(2)  
PARAMETER  
MIN  
MAX  
UNIT  
µs  
td_pg  
VCC (minimum) to Internal Power Good asserted high  
CFG(1) pins setup(2)  
500  
tcfg_su  
250  
10  
µs  
tcfg_hd  
CFG(1) pins hold  
µs  
tCTL_DB  
tVCC_RAMP  
TEST1, CTL0 and FLIP pin debounce  
VCC supply ramp requirement  
16  
ms  
ms  
100  
(1) Following pins comprise CFG pins: I2C_EN, EQ[1:0], and SSEQ[1:0].  
(2) Recommend CFG pins are stable when VCC is at min.  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
8.5 Programming  
For further programmability, the TUSB1042I can be controlled using I2C. The SCL and SDA pins are used for I2C  
clock and I2C data respectively.  
7. TUSB1042I I2C Target Address  
A1  
SSEQ0/A0  
PIN LEVEL  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
PIN LEVEL  
0
0
0
R
F
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
The following procedure should be followed to write to TUSB1042I I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB1042I 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1042I acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB1042I) to be written, consisting of one byte of  
data, MSB-first.  
4. The TUSB1042I acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TUSB1042I acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TUSB1042I.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure should be followed to read the TUSB1042I I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TUSB1042I 7-bit  
address and a one-value “W/R” bit to indicate a read cycle.  
2. The TUSB1042I acknowledges the address cycle.  
3. The TUSB1042I transmit the contents of the memory registers MSB-first starting at register 00h or last read  
sub-address+1. If a write to the T I2C register occurred prior to the read, then the TUSB1042I shall start at  
the sub-address specified in the write.  
4. The TUSB1042I shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TUSB1042I transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure should be followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB1042I 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB1042I acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB1042I) to be written, consisting of one byte of  
data, MSB-first.  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
4. The TUSB1042I acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
If no sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation. If a I2C address write occurred prior to the read, then the reads start at the  
sub-address specified by the address write.  
8. Register Legend  
ACCESS TAG  
NAME  
Read  
MEANING  
R
W
S
The field may be read by software  
The field may be written by software  
Write  
Set  
The field may be set by a write of one. Writes of zeros to the field have no effect.  
The field may be cleared by a write of one. Write of zero to the field have no effect.  
Hardware may autonomously update this field.  
C
Clear  
U
Update  
No Access  
NA  
Not accessible or not applicable  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 General Register (address = 0x0A) [reset = 00000001]  
15. General Registers  
7
6
5
4
3
2
1
0
Reserved  
R
Reserved  
EQ_OVERRID  
E
Reserved  
FLIPSEL  
CTLSEL[1:0].  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. General Registers  
Bit  
7:6  
5
Field  
Type  
R
Reset  
00  
Description  
Reserved.  
Reserved.  
Reserved  
Reserved  
R
0
Setting of this field will allow software to use EQ settings from  
registers instead of value sample from pins.  
0 – EQ settings based on sampled state of the EQ pins  
(SSEQ[1:0], EQ[1:0], and DPEQ[1:0]).  
4
EQ_OVERRIDE  
R/W  
0
1 – EQ settings based on programmed value of each of the EQ  
registers  
3
2
Reserved  
FLIPSEL  
R
0
0
Reserved.  
R/W  
FLIPSEL. Refer to 4 for this field functionality.  
00 – Disabled. All RX and TX for USB3 are disabled.  
01 – USB3.1 enabled. (Default)  
10 – Reserved.  
1:0  
CTLSEL[1:0].  
R/W  
01  
11 – Reserved.  
8.6.2 USB3.1 Control/Status Registers (address = 0x20) [reset = 00000000]  
16. USB3.1 Control/Status Registers (0x20)  
7
6
5
4
3
2
1
0
EQ2_SEL  
R/W/U  
EQ1_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. USB3.1 Control/Status Registers (0x20)  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 9 dB of EQ for USB3.1 RX2 receiver.  
When EQ_OVERRIDE = 1’b0, this field reflects the sampled  
state of EQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software  
can change the EQ setting for USB3.1 RX2 receiver based on  
value written to this field.  
7:4  
EQ2_SEL  
R/W/U  
0000  
Field selects between 0 to 9 dB of EQ for USB3.1 RX1 receiver.  
When EQ_OVERRIDE = 1’b0, this field reflects the sampled  
state of EQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software  
can change the EQ setting for USB3.1 RX1 receiver based on  
value written to this field.  
3:0  
EQ1_SEL  
R/W/U  
0000  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
8.6.3 USB3.1 Control/Status Registers (address = 0x21) [reset = 00000000]  
17. USB3.1 Control/Status Registers (0x21)  
7
6
5
4
3
2
1
0
Reserved  
R
SSEQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. USB3.1 Control/Status Registers (0x21)  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Reserved  
R
0000  
Reserved  
Field selects between 0 to 11 dB of EQ for USB3.1 SSTXP/N  
receiver. When EQ_OVERRIDE = 1’b0, this field reflects the  
sampled state of SSEQ[1:0] pins. When EQ_OVERRIDE = 1’b1,  
software can change the EQ setting for USB3.1 SSTXP/N  
receiver based on value written to this field.  
3:0  
SSEQ_SEL  
R/W/U  
0000  
8.6.4 USB3.1 Control/Status Registers (address = 0x22) [reset = 00000100]  
18. USB3.1 Control/Status Registers (0x22)  
7
6
5
4
3
2
1
0
CM_ACTIVE  
LFPS_EQ  
U2U3_LFPS_D DISABLE_U2U  
DFP_RXDET_INTERVAL  
USB3_COMPLIANCE_CTRL  
EBOUNCE  
3_RXDET  
R/U  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. USB3.1 Control/Status Registers (0x22)  
Bit  
Field  
Type  
Reset  
Description  
0 –device not in USB 3.1 compliance mode. (Default)  
1 –device in USB 3.1 compliance mode  
7
CM_ACTIVE  
R/U  
0
Controls whether settings of EQ based on EQ1_SEL, EQ2_SEL  
and SSEQ_SEL applies to received LFPS signal.  
0 – EQ set to zero when receiving LFPS (default)  
1 – EQ set to EQ1_SEL, EQ2_SEL, and SSEQ_SEL when  
receiving LFPS.  
6
LFPS_EQ  
R/W  
0
0 – No debounce of LFPS before U2/U3 exit. (Default)  
1 – 200 µs debounce of LFPS before U2/U3 exit.  
5
4
U2U3_LFPS_DEBOUNCE  
DISABLE_U2U3_RXDET  
R/W  
R/W  
0
0
0 – Rx.Detect in U2/U3 enabled. (Default)  
1 – Rx.Detect in U2/U3 disabled.  
This field controls the Rx.Detect interval for the Downstream  
facing port (TX1P/N and TX2P/N).  
00 – 8 ms  
01 – 12 ms (default)  
10 – 48 ms  
3:2  
1:0  
DFP_RXDET_INTERVAL  
R/W  
R/W  
01  
00  
11 – 96 ms  
00 – FSM determined compliance mode. (Default)  
01 – Compliance Mode enabled in DFP direction (SSTX ->  
TX1/TX2)  
10 – Compliance Mode enabled in UFP direction (RX1/RX2 ->  
SSRX)  
USB3_COMPLIANCE_CTRL  
11 – Compliance Mode Disabled.  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TUSB1042I is a linear redriver switch designed specifically to compensate for intersymbol interference (ISI)  
jitter caused by signal attenuation through a passive medium like PCB traces and cables. Because the  
TUSB1042I has one upstream facing USB 3.1 Gen1/Gen2 input, and two downstream facing USB 3.1  
Gen1/Gen2 inputs, it can be optimized to correct ISI on all those three inputs through 16 different equalization  
choices. Placing the TUSB1042I between a USB3.1 Host and a USB3.1 Type-C receptacle can correct signal  
integrity issues resulting in a more robust system.  
9.2 Typical Application  
A
B
F
E
PCB Trace of Length XAB  
PCB Trace of Length XEF  
RX2P  
RX2N  
TX2P  
TX2N  
SSRXP  
SSRXN  
SSTXP  
USB3.1  
Host  
TUSB1042I  
SSTXN  
TX1N  
TX1P  
RX1N  
RX1P  
Copyright © 2017, Texas Instruments Incorporated  
19. TUSB1042I in a Host Application  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 13.  
13. Design Parameters  
PARAMETER  
A to B PCB trace length, XAB  
E to F PCB trace length, XEF  
PCB trace width  
VALUE  
12 inches  
2 inches  
4 mils  
AC-coupling capacitor (75 nF to 265 nF)  
VCC supply (3 V to 3.6 V)  
I2C Mode or GPIO Mode  
100 nF  
3.3 V  
I2C Mode. (I2C_EN pin != "0")  
3.3V I2C. Pull-up the I2C_EN pin to 3.3V with a 1K  
ohm resistor.  
1.8V or 3.3V I2C Interface  
9.2.2 Detailed Design Procedure  
A typical usage of the TUSB1042I device is shown in 20. The device can be controlled either through its GPIO  
pins or through its I2C interface. In the example shown below, a Type-C PD controller is used to configure the  
device through the I2C interface. When configured for I2C mode, pins 29 (DCI_DAT) and 32 (DCI_CLK) can be  
used for the DCI interface. In I2C mode, the equalization settings for each receiver can be independently  
controlled through I2C registers. For this reason, all of the equalization pins (EQ[1:0] and SSEQ[1:0]) can be left  
unconnected. If these pins are left unconnected, the TUSB1042I 7-bit I2C slave address will be 0x12 because  
both A1 and SSEQ0/A0 will be at pin level "F". If a different I2C slave address is desired, A1 and SSEQ0/A0 pins  
should be set to a level which produces the desired I2C slave address.  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
3.3V  
10mF  
100nF  
100nF  
100nF  
100nF  
USB 3.1 Host  
100nF  
SSRXP  
SSRXN  
SSRXP  
SSRXN  
SSTXP  
RX2P  
RX2N  
TX2P  
TX2N  
100nF  
USB Type-C  
Receptacle  
100nF  
100nF  
SSTXP  
A12  
GND  
RXP2  
RXN2  
VBUS  
SBU1  
DN1  
100nF  
100nF  
SSTXN  
SSTXN  
B1  
B2  
GND  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
22O  
To PCH DCI  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
TXP2  
TXN2  
DCI_CLK  
DCI_DAT  
»
»
Clock Input  
22O  
To PCH DCI  
DATA Input  
B3  
TEST2  
B4  
VBUS  
CC2  
B5  
B6  
DP2  
DN2  
DP1  
B7  
CC1  
B8  
SBU2  
VBUS  
RSVD8  
RSVD9  
VBUS  
100 nF  
100 nF  
TX1N  
B9  
TXN1  
TXP1  
TX1P  
RX1N  
RSVD10  
RSVD11  
B10  
B11  
B12  
RXN1  
RXP1  
GND  
RX1P  
3.3V  
RSVD12  
I2C_EN  
GND  
3.3V  
3.3V  
SSEQ0/A0  
SSEQ1  
A1  
VI2C  
R
R
FLIP/SCL  
CTL0/SDA  
TEST1  
3.3V  
3.3V  
3.3V  
Type-C  
PD  
Controller  
EQ0  
EQ1  
Copyright © 2017, Texas Instruments Incorporated  
20. Application Circuit  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
9.2.3 Application Curve  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
Length=12in, Width=6mil  
Length=16in, Width=6mil  
Length=20in, Width=6mil  
Length=24in, Width=6mil  
Length=4in, Width=4mil  
Length=8in, Width=10mil  
Length=8in, Width=6mil  
0
2
4
6
8
10  
12  
14  
16  
Frequency (GHz)  
D009  
21. Insertion Loss of FR4 PCB Traces  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
9.3 System Examples  
9.3.1 USB 3.1  
The TUSB1042I is in USB3.1 mode when the CTL0 pin is high.  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB1042I  
TUSB1042I  
SSRX  
SSTX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
RX1  
FLIP  
CTL0  
FLIP CTL0  
PD Controller  
CC1  
CC2  
CC1  
CC2  
PD Controller  
CTL0/FLIP=H/L  
CTL0/FLIP=H/L  
Copyright © 2017, Texas Instruments Incorporated  
22. USB3.1 – No Flip (CTL0 = H, FLIP = L)  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
System Examples (接下页)  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB1042I  
SSRX  
TUSB1042I  
SSTX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
RX1  
FLIP  
CTL0  
FLIP  
CTL0  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
CTL0/FLIP=H/H  
CTL0/FLIP=H/H  
Copyright © 2017, Texas Instruments Incorporated  
23. USB3.1 – With Flip (CTL0 = H, FLIP = H)  
10 Power Supply Recommendations  
The TUSB1042I is designed to operate with a 3.3-V power supply. Levels above those listed in the Absolute  
Maximum Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator  
can be used to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power  
supply integrity. A 0.1-µF capacitor should be used on each power pin.  
版权 © 2017–2019, Texas Instruments Incorporated  
29  
TUSB1042I  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
1. RXP/N and TXP/N pairs should be routed with controlled 90-Ω differential impedance (±15%).  
2. Keep away from other high speed signals.  
3. Intra-pair routing should be kept to within 2 mils.  
4. Length matching should be near the location of mismatch.  
5. Each pair should be separated at least by 3 times the signal trace width.  
6. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on  
EMI.  
7. Route all differential pairs on the same of layer.  
8. The number of vias should be kept to a minimum. It is recommended to keep the vias count to 2 or less.  
9. Keep traces on layers adjacent to ground plane.  
10. Do not route differential pairs over any plane split.  
11. Adding Test points will cause impedance discontinuity, and therefore, negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
11.2 Layout Example  
To USB Host  
AC Coupling  
capacitors  
DRX2  
DTX2  
GND  
DTX1  
DRX1  
24. Layout Example  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB1042I  
www.ti.com.cn  
ZHCSGH5D AUGUST 2017REVISED MAY 2019  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
14. 相关链接  
器件  
产品文件夹  
请单击此处  
样片与购买  
请单击此处  
技术文档  
工具与软件  
请单击此处  
支持和社区  
请单击此处  
TUSB1042I  
请单击此处  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB1042IRNQR  
TUSB1042IRNQT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RNQ  
RNQ  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
T1042  
T1042  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB1042IRNQR  
TUSB1042IRNQT  
WQFN  
WQFN  
RNQ  
RNQ  
40  
40  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.3  
4.3  
6.3  
6.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB1042IRNQR  
TUSB1042IRNQT  
WQFN  
WQFN  
RNQ  
RNQ  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB1042IRNQR

10Gbps USB Type-C 2:1 线性转接驱动器开关 | RNQ | 40 | -40 to 85
TI

TUSB1042IRNQT

10Gbps USB Type-C 2:1 线性转接驱动器开关 | RNQ | 40 | -40 to 85
TI

TUSB1044

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器
TI

TUSB1044IRNQR

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1044IRNQT

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB1044RNQR

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1044RNQT

USB TYPE-C™ 10Gbps 多协议双向线性转接驱动器 | RNQ | 40 | 0 to 70
TI

TUSB1046-DCI

USB Type-C DP 交替模式 10Gbps 线性转接驱动器交叉点开关
TI

TUSB1046-DCIRNQR

USB Type-C DP 交替模式 10Gbps 线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB1046-DCIRNQT

USB Type-C DP 交替模式 10Gbps 线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB1046A-DCI

USB Type-C™ DP 交替模式 10Gbps 拉电流侧线性转接驱动器交叉点开关
TI

TUSB1046A-DCIRNQR

USB Type-C™ DP 交替模式 10Gbps 拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI