TUSB2E22 [TI]

USB 2.0-eUSB2 双路中继器;
TUSB2E22
型号: TUSB2E22
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB 2.0-eUSB2 双路中继器

中继器
文件: 总26页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
TUSB2E22 eUSB2-USB 2.0 Dual Repeater  
1 Features  
3 Description  
TUSB2E22 enables implementation of USB 2.0  
compliance port on newer processors using lower  
voltage processes.  
1
Compliance to USB 2.0 and eUSB2 (rev 1.1)  
Support for Low-speed (LS), Full-speed (FS),  
High-speed (HS)  
TUSB2E22 is a USB-Compliant eUSB2-USB 2.0  
repeater supporting both device and host modes.  
Dual repeater with 2:2 crossbar Mux  
Host and device mode (DRD) support  
TUSB2E22 supports USB Low-speed (LS) and Full-  
speed (FS) signals and High-speed (HS) signals.  
4 eUSB2 compensation settings to meet different  
system requirements  
TUSB2E22 is designed to interface with eUSB2  
eDSPr or eUSPr operating at 1.2 V single-ended  
signaling.  
eUSB2 LS/FS signaling meets 1.2 V option of the  
eUSB2 interface  
TUSB2E22 has 4 levels of compensation settings via  
EQ0 and EQ1 pins. These settings could be used to  
optimize compensation for different eUSB2 channel  
loss profiles.  
2 Applications  
Notebooks and desktops  
Cell phones  
Tablets  
(1)  
Device Information  
Wearables  
PART NUMBER PACKAGE  
BODY SIZE (NOM)  
Portable electronics  
TUSB2E22 DSBGA (25) 2.0 mm x 2.0 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
4 Simplified Schematic  
CROSS  
Repeater  
Connector  
EQ0  
EQ1  
Port  
Protection  
(Optional)  
2x2  
CrossPoint  
Mux  
RESETB  
eUSB0  
eUSB2 t USB 2.0  
Repeater 0  
AP  
USBA  
USBB  
USBA  
USBB  
eUSB2 t USB 2.0  
Repeater 1  
eUSB1  
VDD3V3  
VDD1V8  
VSS  
TUSB2E22  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
Table of Contents  
10.1 Application Information.......................................... 13  
10.2 Typical Dual Port System Implementation............ 13  
10.3 Design Requirements............................................ 13  
10.4 Detailed Design Procedure ................................... 14  
10.5 Application Curve.................................................. 14  
11 Power Supply Recommendations ..................... 14  
11.1 Power Up Reset.................................................... 14  
12 Layout................................................................... 15  
12.1 Layout Guidelines ................................................. 15  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Simplified Schematic............................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Switching Characteristics.......................................... 9  
7.7 Timing Requirements.............................................. 10  
Parametric Measurement Information ............... 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 11  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 12  
12.2 Example Layout For Application With No Cross  
MUX Function. ......................................................... 16  
13 Device and Documentation Support ................. 17  
13.1 Related Links ........................................................ 17  
13.2 Receiving Notification of Documentation Updates 17  
13.3 Support Resources ............................................... 17  
13.4 Trademarks........................................................... 17  
13.5 Electrostatic Discharge Caution............................ 17  
13.6 Glossary................................................................ 17  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 17  
14.1 Package Option Addendum .................................. 18  
10 Applications and Implementation...................... 13  
5 Revision History  
DATE  
REVISION  
NOTE  
December 2019  
*
Initial public release  
2
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
 
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
6 Pin Configuration and Functions  
25-YCG (2.0 mm x 2.0 mm)  
Top View  
1
2
3
4
5
eDP0  
RSVD1  
RSVD2  
RSVD3  
VDD1V8  
VSS  
DPA  
A
B
C
D
E
eDN0  
VDD3V3  
CROSS  
VDD3V3  
EQ0  
VSS  
DNA  
VSS  
VDD1V8  
VSS  
eDN1  
VSS  
VDD1V8  
DNB  
eDP1  
EQ1  
RESETB  
DPB  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
Pin Functions  
PIN  
ASSOCIAT  
ED ESD  
SUPPLY  
RESET  
I/O  
DESCRIPTION  
STATE  
NAME  
NO.  
VDD3V3  
VDD1V8  
VSS  
B2, D2  
PWR  
PWR  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3.3V Supply Voltage  
1.8V Analog Supply Voltage  
GND  
C3, B4, D4  
C1, C4, B3, D3, C5  
Active Low Reset. Upon de-assertion of RESETB both repeaters will be enabled  
and be in eUSB2 default mode awaiting configuration from eDSPr or eUSPr.  
RESETB  
E4  
Digital Input N/A  
VDD1V8  
Indicates mux orientation. Used to specify orientation of internal Crossbar switch  
CROSS = Low: eUSB0 «–» USBA and eUSB1 «–» USBB  
CROSS = High: eUSB0 «–» USBB and eUSB1«–» USBA  
Sampled at de-assertion of RESETB  
CROSS  
C2  
Digital Input N/A  
VDD3V3  
RSVD1  
RSVD2  
A2  
A3  
Digital I/O Hi-Z  
Digital I/O Hi-Z  
VDD3V3  
VDD3V3  
Reserved pins connect 1 kΩ pull up to 1.8V  
Reserved pins connect 1 kΩ pull up to 1.8V  
Digital  
Hi-Z  
RSVD3  
EQ0  
A4  
E2  
VDD3V3  
Reserved pin leave it unconnected  
Output  
Digital I/O Hi-Z (input) VDD3V3  
Compensation Level 0: EQ1=low EQ0= low  
Compensation Level 1: EQ1=low EQ0=high  
Compensation Level 2: EQ1=high EQ0=low  
Compensation Level 3: EQ1=high EQ0=high  
Pins are sampled at RESETB de-assertion  
EQ1  
E3  
Digital I/O Hi-Z (input) VDD3V3  
eDP0  
eDN0  
eDN1  
eDP1  
DPA  
A1  
B1  
D1  
E1  
A5  
B5  
D5  
E5  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
Analog I/O Hi-Z  
VDD1V8  
VDD1V8  
VDD1V8  
VDD1V8  
VDD3V3  
VDD3V3  
VDD3V3  
VDD3V3  
eUSB2 port 0 D+ pin  
eUSB2 port 0 D- pin  
eUSB2 port 1 D- pin  
eUSB2 port 1 D+ pin  
USB port A D+ pin  
USB port A D- pin  
USB port B D- pin  
USB port B D+ pin  
DNA  
DNB  
DPB  
4
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage  
VDD3V3  
–0.3  
4.32  
V
range  
Analog Supply  
VDD1V8  
–0.3  
–0.3  
2.1  
6
V
V
voltage range  
DPA, DNA, DPB, DNB, 1000 total number of short events and  
Voltage range  
cummulative duration of 1000 hrs.  
Voltage range  
Voltage range  
eDP0, eDN0, eDP1, eDN1  
–0.3  
–0.3  
1.6  
2.1  
V
V
CROSS, RESETB, RSVD1, RSVD2, RSVD3, EQ1, EQ0  
Junction  
temperature  
TJ(max)  
Tstg  
125  
150  
°C  
°C  
Storage  
temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±1500  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
3.3  
MAX  
3.6  
UNIT  
V
VDD3V3  
VDD1V8  
TA  
Supply voltage (VDD3V3)  
Analog Supply voltage (VDD1V8)  
Operating free-air temperature  
Junction temperature  
1.62  
-20  
-20  
-20  
-20  
1.8  
1.98  
85  
V
°C  
°C  
°C  
°C  
TJ  
105  
105  
92  
TCASE  
TPCB  
Case temperature  
PCB temperature (1mm away from the device)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
7.4 Thermal Information  
TUSB2E22  
YCG (DSBGA)  
25 PINS  
73.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.4  
18.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
ΨJB  
18.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIGITAL INPUTS  
VIH  
VIL  
VIL  
VIH  
High level input voltage  
Low-level input voltage  
Low-level input voltage  
High level input voltage  
CROSS, EQ1, EQ0  
1.053  
V
CROSS, EQ1, EQ0  
RESETB  
0.693  
0.35  
V
V
V
RESETB  
0.75  
VIH = 1.98V, VDD3V3=3.0V or 0V,  
VDD1V8=1.62V or 0V  
CROSS, RESETB, EQ1, EQ0  
IIH  
High level input current  
Low level input current  
2
2
µA  
µA  
VIL = 0V, VDD3V3=3.0V or 0V,  
VDD1V8=1.62V or 0V  
IIL  
CROSS, RESETB, EQ1, EQ0  
USBA (DPA, DNA), USBB (DPB, DNB)  
Zinp_Dx Impedance to GND, no pull up/down  
RPUI  
RPUR  
RPD  
Vin=3.6V, VDD3V3=3.0V USB 2.0 Spec  
Section 7.1.6  
390  
0.92  
kΩ  
kΩ  
kΩ  
kΩ  
Bus Pull-up Resistor on Upstream Facing  
Port (idle)  
USB 2.0 Spec Section 7.1.5  
USB 2.0 Spec Section 7.1.5  
USB 2.0 Spec Section 7.1.5  
1.1  
2.2  
19  
1.475  
2.99  
24.6  
Bus Pull-up Resistor on Upstream Facing  
Port (receiving)  
1.525  
14.35  
Bus Pull-down Resistor on Downstream  
Facing Port  
USB 2.0 Spec Section 7.1.6.2, The  
output voltage in the high-speed idle  
state  
VHSTERM  
Termination voltage in highspeed  
–10  
10  
mV  
USB TERMINATION  
Driver Output Resistance (which also  
serves as high speed termination)  
USBA, USBB INPUT LEVELS LS/FS  
(VOH= 0 to 600mV) USB 2.0 Spec  
Section 7.1.1.1,  
ZHSTERM  
40.5  
45  
49.5  
Ω
USB 2.0 Spec Section 7.1.4 (measured  
at connector)  
VIH  
High (driven)  
2
V
USB 2.0 Spec Section 7.1.4 (HOST  
downstream port pull down resistor  
enabled and external device pull up 1.5K  
+/-5% to 3.0-3.6V).  
VIHZ  
High (floating)  
Low  
2.7  
3.6  
0.8  
V
V
VIL  
USB 2.0 Spec Section 7.1.4  
USBA, USBB OUTPUT LEVELS LS/FS  
USB 2.0 Spec Section 7.1.1, (measured  
at connector with RL of 1.425 kto 3.6  
V. )  
VOL  
Low  
0
0.3  
V
6
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
USB 2.0 Spec Section 7.1.1 (measured  
at connector with RL of 14.25 kto  
GND. )  
VOH  
High (Driven)  
2.8  
3.6  
44  
2
V
Ω
V
USB 2.0 Spec Section 7.1.1, Measured it  
during VOL or VOH  
ZFSTERM  
Driver Series Output Resistance  
Output Signal Crossover Voltage  
28  
Measured as in USB 2.0 Spec Section  
7.1.1 Figure 7-8; Excluding the first  
transition from the Idle state  
VCRS  
1.3  
USBA, USBB OUTPUT LEVELS HS  
USB 2.0 Spec Section 7.1.7.2, measured  
single ended peak voltage per USB 2.0  
test measurement spec, Test load is an  
ideal 45ohm to GND on DP and DN  
VHSOH  
High-speed data signaling high  
360  
440  
mV  
High-speed data signaling low, driver is  
off termination is on (measured single  
ended)  
USB 2.0 Spec Section 7.1.7.2,Test load  
is an ideal 45ohm to GND on DP and  
DN.  
VHSOL  
–10  
700  
10  
mV  
mV  
USB 2.0 Spec Section 7.1.7.2 , Test load  
is an ideal 45ohm to GND on DP and  
DN.  
VCHIRPJ  
Chirp J level (differential voltage)  
900  
1100  
USB 2.0 Spec Section 7.1.7.2 , Test load  
is an ideal 45ohm to GND on DP and  
DN.  
VCHIRPK  
Chirp K level (differential voltage)  
High-speed TX DC Common Mode  
-900  
-50  
-700  
200  
-500  
500  
mV  
mV  
U2_TXCM  
eUSB2 TERMINATION  
High speed transmit source termination  
impedance  
RSRC_HS  
ΔRSRC_HS  
RRCV_DIF  
eUSB2 Spec Section 7.1.1  
33  
40  
47  
4
Ω
Ω
Ω
High speed source impedance mismatch eUSB2 Spec Section 7.1.1  
High speed differential receiver  
eUSB2 Spec Section 7.1.2  
termination (repeater)  
74  
6
80  
8
86  
eUSB2 Spec Section 7.3, active during  
LS, FS and HS  
RPD  
Pull-down resistors on eDP/eDN  
10  
59  
kΩ  
eUSB2 Spec Section 7.2.1, Table 7-13  
TX output impedance to match spec  
version 1.10  
RSRC_LSFS  
Transmit output impedance  
28  
44  
Ω
eUSB0, eUSB1 FS/LS INPUT LEVELS  
VIL  
Single-ended input low  
Single-ended input high  
eUSB2 Spec Section 7.2.1, Table 7-13  
eUSB2 Spec Section 7.2.1, Table 7-13  
–0.1  
0.819  
43.2  
0.399  
1.386  
V
V
VIH  
VHYS  
Receive single-ended hysteresis voltage eUSB2 Spec Section 7.2.1, Table 7-13  
mV  
eUSB0, eUSB1 FS/LS OUTPUT LEVELS  
VOL  
VOH  
Single-ended output low  
Single-ended output high  
eUSB2 Spec Section 7.2.1, Table 7-13  
eUSB2 Spec Section 7.2.1, Table 7-13  
0.198  
1.32  
V
V
0.918  
280  
eUSB0, eUSB1 HS INPUT LEVELS  
VRX_CM Receive DC common mode range (low)  
VRX_CM  
eUSB2 Spec Section 7.1.2 (normative),  
low DC common mode RX must tolerate  
120  
mV  
mV  
eUSB2 Spec Section 7.1.2 (normative),  
high DC common mode RX must tolerate  
Receive DC common mode range (high)  
eUSB2 Spec Section 7.1.2 (informative),  
across the DC common mode range of  
120mV to 280mV. (RX capability tested  
with intentional TX Rise/Fall Time  
Receiver AC common mode (50MHz-  
480MHz)  
VCM_RX_AC  
–60  
15  
60  
50  
mV  
pF  
mismatch and prop delay mismatch)  
CRX_CM  
Receive center-tapped capacitance  
eUSB2 Spec Section 7.1.2 (informative)  
VRX_DIF_SEN Receive differential sensitivity, RX should eUSB2 Spec Section 7.1.2, VCM  
=
120 mVp-p  
be able to receive less than this value.  
120mV to 450mV  
S
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
eUSB0, eUSB1 HS OUTPUT LEVELS  
eUSB2 Spec Section 7.1.1, An ideal 80Ω  
Rx differential termination and center tap  
cap of 15pF, with maximum DC common  
mode range  
VETX_CM_AC Transmit CM AC (50MHz-480MHz)  
–30  
30  
mV  
Measured p2p, RL = 80 Ω, ideal 80Ω Rx  
differential termination load  
VEHSOD  
Transmit differential (terminated)  
Transmit DC common mode  
400  
mV  
mV  
VE_TX_CM  
eUSB2 Spec Section 7.1.1  
170  
230  
8
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
7.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DPA, DNA, DPB, DNB, FS Driver Switching Characteristics  
TFR  
TFF  
Rise Time (10% - 90%)  
Fall Time (10% - 90%)  
USB 2.0 Spec Figure 7-8; Figure 7-9  
USB 2.0 Spec Figure 7-8; Figure 7-9  
4
4
20  
20  
ns  
ns  
USB 2.0 Spec 7.1.2, Excluding the first  
transition from the Idle state  
TFRFM  
(TFR/TFM  
)
90  
111.1  
%
DPA, DNA, DPB , DNB, LS Driver Switching Characteristics  
TLR  
TLF  
Rise Time (10% - 90%)  
Fall Time (10% - 90%)  
USB 2.0 Spec Figure 7-8  
USB 2.0 Spec Figure 7-8  
75  
75  
300  
300  
ns  
ns  
eDP0, eDN0, eDP1, eDN1, HS Driver Switching Characteristics  
eUSB2 Spec Section 7.2.1,  
TEHSRF_  
MM  
Rise/fall mismatch = absolute delta of  
(rise – fall time) / (average of rise and fall  
time).  
Transmit rise/fall mismatch  
25  
%
eDP0, eDN0, eDP1, eDN1, LS/FS Driver Switching Characteristics  
TERF  
Rise/Fall Time (10% - 90%)  
eUSB2 Spec Section 7.2.1  
eUSB2 Spec Section 7.2.1  
2
6
ns  
%
TERF_MM Transmit rise/fall mismatch  
25  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
UNIT  
7.7 Timing Requirements  
MIN  
NOM  
MAX  
RESET TIMING  
t_VDD1V8_R  
AMP  
Ramp time for VDD1V8 to reach minimum 1.62V  
2
2
ms  
ms  
t_VDD3V3_R  
AMP  
Ramp time for VDD3V3 to reach minimum 3.0V  
t_su_CROSS Setup time for CROSS sampled at the de-assertion of RESETB  
0
3
ms  
ms  
us  
t_hd_CROSS Hold time for CROSS sampled at the de-assertion of RESETB  
t_aRESETB  
duration for RESETB to be asserted low to complete reset while powered  
Time for eUSB2 interface to be ready after RESETB is de-asserted or  
10  
t_RH_READY (VDD1V8 and VDD3V3) reach minimum recommended voltages, whichever  
is later  
3
ms  
8 Parametric Measurement Information  
eUSB2  
USB 2.0  
22.1  
15.8  
15.8 ꢀ  
86100  
Scope  
or  
81130A  
Pattern Generator  
or  
Repeater  
Test Channel  
BERT  
Test Channel  
BERT  
22.1 ꢀ  
50  
50  
40Ω  
45Ω  
USB 2.0 High speed test packets  
Vin * 0.76  
Vin scaled for impedance conversion  
Impedance  
conversion  
Impedance  
conversion  
eUSB2 TX Vpp * 0.56  
Vout scaled for impedance conversion  
Figure 1. USB 2.0 TX Output (Egress) Jitter, Eye Mask Test Setup  
eUSB2 USB 2.0  
22.1  
22.1  
15.8 ꢀ  
15.8 ꢀ  
81130A  
Pattern Generator  
or  
86100  
Scope  
or  
Repeater  
Test Channel  
Test Channel  
BERT  
BERT  
50  
50  
40Ω  
45Ω  
USB 2.0 High speed test packets  
Impedance  
conversion  
Impedance  
conversion  
Vin * 0.693  
Vin scaled for impedance conversion  
USB 2.0 TX Vpp * 0.68  
Vout scaled for impedance conversion  
Figure 2. eUSB2 TX Output (Ingress) Jitter, Eye Mask Test Setup  
10  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
9 Detailed Description  
9.1 Overview  
The TUSB2E22 is a dual eUSB2 to USB 2.0 repeater that resides between SoC with one or two eUSB2 port and  
an external connector that supports USB 2.0. Each repeater is independently configurable as either a host or  
device repeater (DRD repeater).  
The USB 2.0 ports A and B can be swapped by an internal crossbar switch by configuring CROSS pin at reset.  
CROSS pin is ignored after power up reset.  
9.2 Functional Block Diagram  
VDD3V3 VDD1V8  
Common Module  
Power System  
LDOs  
Clock & Reset  
Reference System  
Bandgap IREF  
Power System  
LDOs  
Internal  
Oscillator  
PoR  
eUSB2  
Phy  
USB2.0  
Phy  
USB/eUSB2 Translator &  
State Machine  
2x2  
CrossPoint  
Mux  
eDP0  
eDN0  
DPA  
DNA  
eUSB0  
USBA  
CROSS  
eUSB2  
Phy  
USB2.0  
Phy  
eDN1  
eDP1  
DNB  
DPB  
eUSB1  
USBB  
USB/eUSB2 Translator &  
State Machine  
RESETB  
EQ1  
EQ0  
GND  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
9.3 Feature Description  
9.3.1 USB 2.0  
TUSB2E22 supports two USB 2.0 ports. Each port supports Low Speed, Full Speed and High Speed operations.  
9.3.2 eUSB2  
TUSB2E22 supports ttwo eUSB2 ports with 1.2V single ended signaling. Each port support Low Speed, Full  
Speed and High Speed operations.  
9.3.3 Cross MUX  
TUSB2E22 supports a cross mux functionality that can map either of the two eUSB2 ports to the two USB 2.0  
ports providing design flexibility.  
9.4 Device Functional Modes  
9.4.1 Repeater Mode  
Upon de-assertion of RESETB and after t_RH_READY , TUSB2E22 will enable and enter default state and be ready  
to accept eUSB2 packets.  
Table 1. Number of Hubs Supported with Host and/or Peripheral Repeater  
Number of eUSB2  
Repeaters  
Number of Hubs  
Operating at HS  
Number of Hubs  
Operating at FS  
1
2
0
4
3
5
2
1
5
Number of hubs operating at FS is reduced due to  
Te_to_U_DJ1 and TRJR1  
Number of hubs operating at HS is reduced due to  
SOP truncation and EOP dribble  
.
non-eUSB2 system for reference  
9.4.2 Power Down Mode  
RESETB could be used as a power down pin when asserted low. Power down mode will put TUSB2E22 in  
lowest power mode.  
9.4.3 CROSS  
CROSS pin will control the orientation of the integrated cross bar mux.  
Upon de-assertion of RESETB followed by internally generated reset signal and 1ms delay, CROSS pin is  
sampled and latched.  
The system needs to make sure that CROSS meets t_su_CROSS and t_hd_CROSS with respect to power supply ramp  
and RESETB de-assertion per Power Supply Recommendations.  
Changes to the state of the CROSS input while RESETB is high will be ignored  
Table 2. eUSB2 to USB Mapping  
CROSS = 0  
CROSS = 1  
eUSB0 (eDP0, eDN0)  
eUSB1 (eDP1, eDN1)  
USBA (DPA, DNA)  
USBB (DPB, DNB)  
USBB (DPB, DNB)  
USBA (DPA, DNA)  
12  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
TUSB2E22 can be used in either HOST or Peripheral implementation. The mode is configured by the eUSB2  
SoC.  
10.2 Typical Dual Port System Implementation  
VDD18  
VDD12  
0.1uF+  
0.1uF+  
VDD18  
VDD33  
1k  
1k  
0.1uF+  
0.1uF+  
+ Decoupling capacitorsof  
0.1uF should be placed  
less than 2mm from the  
power supply balls.  
APU  
RSVD2  
RSVD1  
VDD1V8 VDD1V8  
RSVD1  
VDD3V3 VDD3V3  
RSVD2  
RSVD3  
Connector 1  
DP  
DN  
eDP0  
eDN0  
DPA  
DNA  
Repeater  
VBUS  
VBUS  
DN  
DP  
eDN1  
eDP1  
DNB  
DPB  
VSS  
EQ0  
EQ1  
RESETB  
CROSS  
Connector 2  
10k* 10k*  
GND  
*Pull Up and Pull Down  
Resistor Options  
CROSS  
10k*  
10k*  
RESETB  
Figure 3. Typical Dual Port System Implementation  
10.3 Design Requirements  
TUSB2E22 supports the 1.2V option of the eUSB2 specification. eUSB2 SoC must be compliant to the 1.2V  
option of the eUSB2 specification.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
10.4 Detailed Design Procedure  
TUSB2E22 has four loss compensation settings for high speed operation and proper setting should be selected  
to match the system loss profile to optimize jitter performance. USB 2.0 high speed eye diagram measurements  
could be used as a guide to confirm the loss compensation is optimum for a given system.  
10.5 Application Curve  
Figure 4. Typical USB 2.0 High Speed Eye Diagram  
11 Power Supply Recommendations  
11.1 Power Up Reset  
RESETB pin is active low reset pin and can also be used as a power down pin.  
TUSB2E22 does not have power supply sequence requirements between VDD3V3 and VDD1V8.  
Maximum VDD3V3 and VDD1V8 ramp time to reach minimum supply voltages should be 2ms.  
Internal power on reset circuit along with the external RESETB input pin ensures proper initialization when  
RESETB is de-asserted high prior to the power rails being valid. If RESETB de-assert high before the power  
supplies are stable, internal power on reset circuit will hold off internal reset until the supplies are stable.  
Upon de-assertion of RESETB followed by internally generated reset signal and 1ms delay, CROSS pin is  
sampled and latched.  
Upon de-assertion of RESETB and after t_RH_READY, TUSB2E22 will enable and enter default state and be ready  
to accept eUSB2 packets. Each repeater will either be in host repeater mode or device repeater mode depending  
on the receipt of either host mode enable or peripheral mode enable.  
14  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
12 Layout  
12.1 Layout Guidelines  
1. Place supply bypass capacitors as close to VDD1V8 and VDD3V3 pins as possible and avoid placing the  
bypass caps near the eDP/eDN and DP/DN traces.  
2. Route the high-speed USB signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points on twisted  
pair lines; through-hole pins are not recommended.  
3. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This  
reduces reflections on the signal traces by minimizing impedance discontinuities.  
4. Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators,  
mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
5. Avoid stubs on the high-speed USB signals due to signal reflections. If a stub is unavoidable, then the stub  
must be less than 200 mil  
6. Route all high-speed USB signal traces over continuous GND planes, with no interruptions.  
7. Avoid crossing over anti-etch, commonly found with plane splits.  
8. Due to high frequencies associated with the USB, a printed circuit board with at least four layers is  
recommended; two signal layers separated by a ground and power layer as shown in . Figure 5  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
Figure 5. Four-Layer Board Stack-Up  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
 
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
12.2 Example Layout For Application With No Cross MUX Function.  
VDD18  
VDD18  
1k  
1k  
Via to  
VDD33  
Plane  
Via to  
VDD18  
Plane  
Via to  
GND  
Plane  
VDD33  
VDD18  
GND  
eDP0  
RSVD1  
RSVD2  
GND
RSVD3  
DPA  
eDP0  
DPA  
DNA  
SoC  
USB 2.0  
eUSB2  
Port 0  
connector A  
eDN0  
VDD33  
VDD18
DNA  
eDN0  
0.1uF  
0.1uF  
VDD18  
GND  
GND  
CROSS  
VSS  
GND  
GND  
GND  
GND  
GND  
GND  
0.1uF  
0.1uF  
VDD18  
VDD33  
GND  
eDN1  
DNB  
eDN1  
eDP1  
DNB  
DPB  
SoC  
eUSB2  
Port 1  
USB 2.0  
connector B  
eDP1  
EQ0  
EQ1  
RESETB  
DPB  
*Pull Up and Pull Down  
Resistor Options  
VDD18  
VDD18  
10k*  
10k*  
10k*  
10k*  
Reset  
control  
from  
SoC  
GND  
GND  
Figure 6. Example Layout of Application With No Cross MUX Function  
16  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
13 Device and Documentation Support  
13.1 Related Links  
For related documentation see the following:  
USB 2.0 Board Design and Layout Guidelines  
High-Speed Layout Guidelines Application Report  
High-Speed Interface Layout Guidelines  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
E2E is a trademark of Texas Instruments.  
13.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
14.1 Package Option Addendum  
14.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
Status  
Pins  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
Device Marking(5)(6)  
2E  
TUSB2E22YCGR  
PREVIEW  
DSBGA  
YCG  
25  
3000  
Green  
SAC396  
MSL1, 250°C  
-20°C - 85°C  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
18  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
14.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TUSB2E22  
DSBGA  
YCG  
25  
3000  
180  
8.4  
2.17  
2.17  
0.6  
4
8
Q1  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
YCG 25  
SPQ  
Length (mm) Width (mm)  
182 182  
Height (mm)  
TUSB2E22  
DSBGA  
3000  
20  
20  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
PACKAGE OUTLINE  
YCG0025  
DSBGA - 0.5 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
D: Max = 2.02 mm, Min = 1.98 mm  
E: Max = 2.02 mm, Min = 1.98 mm  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.16  
0.10  
1.4 TYP  
SYMM  
E
D
C
1.4  
SYMM  
TYP  
B
A
0.35  
TYP  
1
2
4
3
5
0.225  
0.185  
25X  
0.015  
0.35 TYP  
C A B  
4224054/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
TUSB2E22  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YCG0025  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
3
25X ( 0.2)  
1
4
5
2
A
(0.35) TYP  
B
C
SYMM  
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
( 0.2)  
METAL  
EXPOSED  
METAL  
(
0.2)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224054/A 11/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
22  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
TUSB2E22  
www.ti.com  
SNLS648A FEBRUARY 2019REVISED DECEMBER 2019  
EXAMPLE STENCIL DESIGN  
YCG0025  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
(R0.05) TYP  
25X ( 0.21)  
1
4
5
2
3
A
(0.35) TYP  
B
C
SYMM  
METAL  
TYP  
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 40X  
4224054/A 11/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB2E22YCGR  
TUSB2E22YCGT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YCG  
YCG  
25  
25  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-20 to 85  
-20 to 85  
T2E2  
T2E2  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Aug-2021  
Addendum-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TUSB2E22YCGR

USB 2.0-eUSB2 双路中继器 | YCG | 25 | -20 to 85
TI

TUSB2E22YCGT

USB 2.0-eUSB2 双路中继器 | YCG | 25 | -20 to 85
TI

TUSB319-Q1

汽车类 USB Type-C DFP 端口控制器
TI

TUSB319IDRFRQ1

汽车类 USB Type-C DFP 端口控制器 | DRF | 8 | -40 to 85
TI

TUSB320

USB Type-C 配置通道逻辑和端口控制
TI

TUSB3200

USB Streaming Controller STC
TI

TUSB3200A

USB STREAMING CONTROLLER (STC)
TI

TUSB3200AC97

USB Streaming Controller STC
TI

TUSB3200ACPAH

USB Streaming Controller STC
TI

TUSB3200ACPAHG4

USB Streaming Controller 52-TQFP 0 to 70
TI

TUSB3200ACPAHR

USB Streaming Controller STC
TI

TUSB3200ACPAHRG4

USB Streaming Controller STC
TI