TUSB321AIRWBR [TI]

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | -40 to 85;
TUSB321AIRWBR
型号: TUSB321AIRWBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | -40 to 85

接口集成电路
文件: 总21页 (文件大小:909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
TUSB321AI 支持 VCONN USB Type-C 配置通道逻辑和端口控制  
1 特性  
3 说明  
1
USB Type-C™ 规范 1.1  
TUSB321AI 器件可在 USB Type-C 端口上实现 Type-  
C 生态系统所需的配置通道 (CC) 逻辑。 TUSB321AI  
器件使用 CC 引脚来确定端口的连接状态和电缆方  
向,以及进行角色检测和 Type-C 电流模式控制。  
TUSB321AI 器件可配置为下行端口 (DFP)、上行端口  
(UFP) 或双角色端口 (DRP),因此成为任何应用的理  
想选择。  
向后兼容 USB Type-C 规范 1.0  
通过专用电流模式引脚支持高达 3A 的电流通告  
模式配置  
仅主机 - 下行端口 (DFP)(供电设备)  
仅设备 上行端口 (UFP)(受电设备)  
双角色端口 – DRP  
通道配置 (CC)  
根据 Type-C 规范,TUSB321AI 器件在配置为 DRP  
时,会交替配置为 DFP UFPCC 逻辑块通过监视  
CC1 CC2 引脚上的上拉或下拉电阻,以确定何时连  
接了 USB 端口、电缆的方向以及检测到的角色。 CC  
逻辑根据检测到的角色来确定 Type-C 电流模式为默  
认、中等还是高。 该逻辑通过实施 VBUS 检测来确定  
端口在 UFP DRP 模式下是否连接成功。  
USB 端口连接检测  
电缆方向检测  
角色检测  
Type-C 电流模式通告和检测(默认、中等和  
高)  
VBUS 检测  
针对有源电缆提供 VCONN 支持  
该器件能够在宽电源范围内工作,并且具有较低功耗。  
外部开关电缆检测与  
方向控制  
TUSB321AI 器件适用于工业级和商业级温度范围。  
电源电压:4.5V 5.5V  
低电流消耗  
器件信息(1)  
部件号  
TUSB321AI  
封装  
封装尺寸(标称值)  
工业温度范围:–40°C 85°C  
X2QFN (12)  
1.60mm x 1.60mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
主机、设备、双角色端口应用  
移动电话  
平板电脑和笔记本电脑  
USB 外设  
简化电路原理图  
示例应用  
VDD  
ID  
VCONN  
Power Rail  
VBUS  
Detection  
CC Logic  
for Mode  
Configuration  
and Detection  
VBUS_DET  
CC1  
CC2  
CURRENT_MODE  
VCONN_FAULT  
OUT1  
Controller  
DIR  
OUT2  
PORT  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSER2  
 
 
 
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application .................................................. 12  
8.3 Initialization Set Up ................................................ 14  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 14  
11 器件和文档支持 ..................................................... 15  
11.1 文档支持 ............................................................... 15  
11.2 社区资源................................................................ 15  
11.3 ....................................................................... 15  
11.4 静电放电警告......................................................... 15  
11.5 Glossary................................................................ 15  
12 机械、封装和可订购信息....................................... 15  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 10 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
5 Pin Configuration and Functions  
RWB Package  
12-Pin X2QFN  
Top View  
CC2 CC1  
2 1  
3
4
5
6
12  
11  
10  
9
CURRENT_MODE  
PORT  
VDD  
DIR  
VBUS_DET  
GND  
ID  
VCONN_FAULT  
7
8
OUT1 OUT2  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
CC1  
NO.  
1
I/O  
I/O  
Type-C configuration channel signal 1  
Type-C configuration channel signal 2  
CC2  
2
Advertise VBUS current. This 3-level input is used to control current advertisement in DFP  
mode or DRP mode connected as source. (See Table 2.)  
L - Default Current. Pull-down to GND or leave unconnected.  
M - Medium (1.5A) current. Pull-up to VDD with 500-kΩ resistor.  
H - High (3.0A) current. Pull-up to VDD with 10-kΩ resistor.  
CURRENT_MODE  
3
4
I
I
Tri-level input pin to indicate port mode. The state of this pin is sampled when VDD is active.  
H - DFP (Pull-up to VDD if DFP mode is desired)  
PORT  
NC - DRP (Leave unconnected if DRP mode is desired)  
L - UFP (Pull-down or tie to GND if UFP mode is desired)  
5- to 28-V VBUS input voltage. VBUS detection determines UFP attachment. One 900-kΩ  
external resistor required between system VBUS and VBUS_DET pin.  
VBUS_DET  
5
6
I
VCONN_FAULT  
O
Open-drain output and is asserted low for when VCONN over-current fault is detected.  
This pin is an open drain output for communicating Type-C current mode detect when the  
TUSB321AI device is in UFP mode. Default current mode detected (H); medium or high  
current mode detected (L). (See Table 2.)  
OUT1  
OUT2  
7
8
I/O  
I/O  
This pin is an open drain output for communicating Type-C current mode detect when the  
TUSB321AI device is in UFP mode: default or medium current mode detected (H); high  
current mode detected (L). (See Table 2.)  
Open drain output; asserted low when the CC pins detect device attachment when port is a  
source (DFP), or dual-role (DRP) acting as source (DFP).  
ID  
9
O
G
O
P
GND  
DIR  
VDD  
10  
11  
12  
Ground  
DIR of plug. This open drain output indicates the detected plug orientation: Type-C plug  
position 2 (H); Type-C plug position 1 (L).  
Positive supply voltage  
Copyright © 2015, Texas Instruments Incorporated  
3
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–65  
MAX  
6.0  
UNIT  
Supply voltage  
Control pins  
VDD  
V
CC1, CC2, PORT, CURRENT_MODE, ID, DIR, VCONN_FAULT  
VDD + 0.3  
VDD + 0.3  
4
OUT1, OUT2  
VBUS_DET  
V
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4
NOM  
MAX  
5.5  
28  
UNIT  
Supply voltage range,VDD  
System VBUS voltage  
V
V
V
5
DC Voltage range for VBUS_DET  
VBUS_DET  
0
4
ID, DIR, VCONN_FAULT, OUT1, OUT2,  
CURRENT_MODE, CC1, CC2, PORT  
DC Voltage range for control pins  
0
5.5  
V
Supply for active cable (With VDD at 5 V) VCONN  
Operating free air temperature, TA  
4.75  
–40  
5.5  
85  
V
25  
°C  
6.4 Thermal Information  
TUSB321AI  
RWB (X2QFN)  
12 PINS  
169.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
68.1  
83.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.2  
ψJB  
83.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and C Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Power Consumption  
Current consumption in unattached mode when port is  
I(UNATTACHED_UFP)  
unconnected and waiting for connection. (VDD = 5 V, PORT  
= L)  
70  
70  
µA  
µA  
Current consumption in active mode. (VDD = 5 V, PORT =  
L)  
I(ACTIVE_UFP)  
CC1 and CC2 Pins  
R(CC_D)  
Pulldown resistor when in UFP or DRP mode.  
Pulldown resistor when in dead-battery mode  
4.6  
4.1  
5.1  
5.1  
5.6  
6.1  
kΩ  
kΩ  
RCC_DB  
VDD = 0V.  
Voltage level range for detecting a DFP attach when  
configured as a UFP and DFP is advertising default current  
source capability.  
VUFP_CC_USB  
0.25  
0.70  
1.31  
1.51  
1.51  
2.46  
0.15  
0.35  
0.76  
0.61  
1.16  
2.04  
1.64  
1.64  
2.74  
0.25  
0.45  
0.84  
V
V
V
V
V
V
V
V
V
Voltage level range for detecting a DFP attach when  
configured as a UFP and DFP is advertising medium (1.5  
A) current source capability.  
VUFP_CC_MED  
Voltage level range for detecting a DFP attach when  
configured as a UFP and DFP is advertising high (3 A)  
current source capability.  
VUFP_CC_HIGH  
Voltage threshold for detecting a UFP attach when  
configured as a DFP and advertising default current source  
capability.  
VTH(DFP_CC_USB)  
VTH(DFP_CC_MED)  
VTH(DFP_CC_HIGH)  
VTH(AC_CC_USB)  
VTH(AC_CC_MED)  
VTH(AC_CC_HIGH)  
1.6  
1.6  
Voltage threshold for detecting a UFP attach when  
configured as a DFP and advertising medium current (1.5  
A) source capability.  
Voltage threshold for detecting a UFP attach when  
configured as a DFP and advertising high current (3.0 A)  
source capability.  
2.6  
Voltage threshold for detecting a active cable attach when  
configured as a DFP and advertising default current  
source.  
0.20  
0.40  
0.80  
Voltage threshold for detecting a active cable attach when  
configured as a DFP and advertising medium current (1.5  
A) source.  
Voltage threshold for detecting a active cable attach when  
configured as a DFP and advertising high current (3 A)  
source.  
Default mode pullup current source when operating in DFP  
or DRP mode.  
ICC(DEFAULT_P)  
ICC(MED_P)  
64  
166  
304  
80  
180  
330  
96  
194  
356  
µA  
µA  
µA  
Medium (1.5 A) mode pullup current source when  
operating in DFP or DRP mode.  
High (3 A) mode pullup current source when operating in  
DFP or DRP mode.(1)  
ICC(HIGH_P)  
Control Pins: PORT, CURRENT_MODE, VCONN_FAULT, DIR, ID, OUT1, OUT2  
Low-level control signal input voltage, (PORT,  
CURRENT_MODE)  
VIL  
0.4  
V
V
V
Mid-level control signal input voltage (PORT,  
CURRENT_MODE)  
VIM  
0.28 × VDD  
VDD - 0.3  
0.56 × VDD  
High-level control signal input voltage (PORT,  
CURRENT_MODE)  
VIH  
IIH  
High-level input current  
–20  
–10  
20  
10  
10  
µA  
µA  
µA  
kΩ  
MΩ  
kΩ  
IIL  
Low-level input current  
IID_LEAKAGE  
RPU  
Current leakage for ID pin.  
VDD = 0V; ID = 5V  
Internal pullup resistance (PORT)  
Internal pulldown resistance (PORT)  
Internal pulldown resistance for CURRENT_MODE pin  
588  
1.1  
RPD  
RPD(CUR)  
275  
Low-level signal output voltage (open-drain)  
(VCONN_FAULT, ID, OUT1, OUT2, DIR)  
VOL  
IOL = –1.6 mA  
0.4  
V
(1) VDD must be 3.5 V or greater to advertise 3 A current.  
Copyright © 2015, Texas Instruments Incorporated  
5
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
External pullup resistor on open drain IOs  
RP(ODext)  
200  
4.7  
kΩ  
kΩ  
kΩ  
(VCONN_FAULT, ID, OUT1, OUT2, DIR)  
RP(TLext)  
Tri-level input external pull-up resistor (PORT)  
External pull-up resistor on CURRENT_MODE pin to  
advertise 1.5-A current  
RP(cm_med)  
500  
External pull-up resistor on CURRENT_MODE pin to  
advertise 3.0-A current  
RP(cm_high)  
10  
kΩ  
VBUS_DET IO Pins (Connected to System VBUS signal through external resistor)  
VBUS(THR)  
R(VBUS)  
R(VBUS_PD)  
VCONN  
RON  
VBUS threshold range  
2.95  
891  
3.30  
900  
95  
3.80  
909  
V
External resistor between VBUS and VBUS_DET pin  
Internal pulldown resistance for VBUS_DET  
KΩ  
KΩ  
On resistance of the VCONN power FET  
Voltage tolerance on VCONN power FET  
Voltage to pass through VCONN power FET  
1.25  
5.5  
Ω
V
V
V(TOL)  
V(PASS)  
5.5  
VCONN current limit; VCONN is disconnected above this  
value  
I(VCONN)  
CBULK  
225  
10  
300  
375  
200  
mA  
µF  
Bulk capacitance on VCONN; placed on VDD supply  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
168  
2
MAX  
UNIT  
ms  
tCCCB_DEFAULT  
tVBUS_DB  
Power on default of CC1 and CC2 voltage debounce time  
Debounce of VBUS_DET pin after valid V(BUS_THR) (See Figure 1.)  
Power-on default of percentage of time DRP advertises DFP during a TDRP  
ms  
tDRP_DUTY_CYCLE  
30%  
The period TUSB321AI in DRP mode completes a DFP to UFP and back  
advertisement.  
tDRP  
50  
75  
100  
ms  
V
VBUS  
V
BUS_THR  
t
VBUS_DB  
0 V  
Time  
Figure 1. VBUS Detect and Debounce  
6
Copyright © 2015, Texas Instruments Incorporated  
 
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
7 Detailed Description  
7.1 Overview  
The USB Type-C ecosystem operates around a small form factor connector and cable that is flippable and  
reversible. Because of the nature of the connector, a scheme is needed to determine the connector orientation.  
Additional schemes are needed to determine when a USB port is attached and the acting role of the USB port  
(DFP, UFP, DRP), as well as to communicate Type-C current capabilities. These schemes are implemented over  
the CC pins according to the USB Type-C specifications. The TUSB321AI device provides Configuration Channel  
(CC) logic for determining USB port attach and detach, role detection, cable orientation, and Type-C current  
mode. The TUSB321AI device also contains several features such as VCONN sourcing, USB3.1 MUX direction  
control, mode configuration and low standby current which make this device ideal for source or sinks in USB2.0  
or USB3.1 applications.  
7.1.1 Cables, Adapters, and Direct Connect Devices  
Type-C Specification 1.1 defines several cables, plugs and receptacles to be used to attach ports. The  
TUSB321AI device supports all cables, receptacles, and plugs. The TUSB321AI device does not support e-  
marking.  
7.1.1.1 USB Type-C Receptacles and Plugs  
Below is list of Type-C receptacles and plugs supported by the TUSB321AI device:  
USB Type-C receptacle for USB2.0 and USB3.1 and full-featured platforms and devices  
USB full-featured Type-C plug  
USB2.0 Type-C plug  
7.1.1.2 USB Type-C Cables  
Below is a list of Type-C cables types supported by the TUSB321AI device:  
USB full-featured Type-C cable with USB3.1 full-featured plug  
USB2.0 Type-C cable with USB2.0 plug  
Captive cable with either a USB full-featured plug or USB2.0 plug  
7.1.1.3 Legacy Cables and Adapters  
The TUSB321AI device supports legacy cable adapters as defined by the Type-C Specification. The cable  
adapter must correspond to the mode configuration of the TUSB321AI device.  
TUSB321AI  
900 kW +1%  
56 kW +5%  
5.1 kW +10%  
Figure 2. Legacy Adapter Implementation Circuit  
7.1.1.4 Direct Connect Devices  
The TUSB321AI device supports the attaching and detaching of a direct-connect device.  
Copyright © 2015, Texas Instruments Incorporated  
7
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
7.2 Functional Block Diagram  
VDD  
DIR  
DIR_CTRL  
DIR  
Logic  
CTRL  
CURRENT_MODE  
PORT  
Tri-State  
Buffer  
CC1  
Connection  
Digital  
Controller  
and  
Cable  
Detection  
VBUS_ON  
CRTL_INT  
CRTL_ID  
CC2  
CRTL_ID  
CRTL_EN_N  
CRTL_EN_N  
VBUS_ON  
CTRL  
VBUS  
Detection  
Open Drain Output  
VBUS_DET  
900 kΩ ±1%  
OUT1 OUT2 ID  
VCONN_FAULT  
GND  
SYS_VBUS  
7.3 Feature Description  
7.3.1 Port Role Configuration  
The TUSB321AI device can be configured as a downstream facing port (DFP), upstream facing port (UFP), or  
dualrole port (DRP) using the tri-level PORT pin. The PORT pin should be pulled high to VDD using a pullup  
resistance, low to GND or left as floated on the PCB to achieve the desired mode. This flexibility allows the  
TUSB321AI device to be used in a variety of applications. The TUSB321AI device samples the PORT pin after  
reset and maintains the desired mode until the TUSB321AI device is reset again. Table 1 lists the supported  
features in each mode:  
8
Copyright © 2015, Texas Instruments Incorporated  
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
Feature Description (continued)  
Table 1. Supported Features for the TUSB321AI Device by Mode  
PORT PIN  
HIGH  
(DFP ONLY)  
LOW  
(UFP ONLY)  
NC  
(DRP)  
SUPPORTED  
FEATURES  
Port attach and  
detach  
Yes  
Yes  
Yes  
Cable orientation  
Current advertisement  
Current detection  
Active cable detection  
VCONN  
Yes  
Yes  
-
Yes  
-
Yes  
Yes (DFP)  
Yes (UFP)  
Yes (DFP)  
Yes (DFP)  
Yes  
Yes  
-
Yes  
Yes  
Yes  
-
-
Legacy cables  
Yes  
Yes  
VBUS detection  
Yes (UFP)  
7.3.1.1 Downstream Facing Port (DFP) - Source  
The TUSB321AI device can be configured as a DFP only by pulling the PORT pin high through a resistance to  
VDD. In DFP mode, the TUSB321AI device constantly presents Rps on both CC. In DFP mode, the TUSB321AI  
device advertises USB Type-C current based on the state of the CURRENT_MODE pin.  
When configured as a DFP, the TUSB321AI can operate with older USB Type-C 1.0 devices except for a USB  
Type-C 1.0 DRP device. The TUSB321AI can not operate with a USB Type-C 1.0 DRP device. This limitation is  
a result of backwards compatibility problem between USB Type-C 1.1 DFP and a USB Type-C 1.0 DRP.  
Please note that when TUSB321AI's VDD supply is not active, Rd will be presented on both CC pins. This will  
cause another DRP or DFP device to detect the TUSB321AI as a UFP. When VDD becomes active, the  
TUSB321AI will remove the Rd from CC pins and present Rp on both CC pins.  
7.3.1.2 Upstream Facing Port (UFP) - Sink  
The TUSB321AI device can be configured as a UFP only by pulling the PORT pin low to GND. In UFP mode, the  
TUSB321AI device constantly presents pulldown resistors (Rd) on both CC pins. The TUSB321AI device  
monitors the CC pins for the voltage level corresponding to the Type-C mode current advertisement by the  
connected DFP. The TUSB321AI device debounces the CC pins and wait for VBUS detection before successfully  
attaching. As a UFP, the TUSB321AI device detects and communicates the advertised current level of the DFP  
to the system through the OUT1 and OUT2 pins.  
7.3.1.3 Dual Role Port (DRP)  
The TUSB321AI device can be configured to operate as a DRP when the PORT pin is left floated on the PCB. In  
DRP mode, the TUSB321AI device toggles between operating as a DFP and a UFP. When functioning as a DFP  
in DRP mode, the TUSB321AI device complies with all operations as defined for a DFP according to the Type-C  
Specification. When presenting as a UFP in DRP mode, the TUSB321AI device operates as defined for a UFP  
according to the Type-C Specification.  
7.3.2 Type-C Current Mode  
The TUSB321AI device supports both advertising and detection of Type-C current. When TUSB321AI is a UFP  
or a DRP connected as a sink, the OUT1 and OUT2 pins are used to inform the system the detected USB Type-  
C current being broadcasted by the attached DFP. When TUSB321AI device is a DFP or a DRP connected as a  
source, the CURRENT_MODE pin is used to advertise the USB Type-C current. The current advertisement for  
the TUSB321AI device is 500 mA (for USB2.0) or 900 mA (for USB3.1) if CURRENT_MODE pin is left  
unconnected or pulled to GND. If a higher level of current is required, the CURRENT_MODE can be pulled up to  
VDD through a 500-kΩ resistor to advertise medium current at 1.5 A or pulled up to VDD through a 10-kΩ resistor  
to advertise high current at 3 A. Table 2 lists the Type-C current advertisements and detection.  
Copyright © 2015, Texas Instruments Incorporated  
9
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
Table 2. Type-C Current Advertisement and Detection  
UFP or DRP acting as UFP  
Current Detection  
DFP or DRP acting as DFP  
Current Advertisement  
TYPE-C CURRENT  
500 mA (USB2.0)  
900 mA (USB3.1)  
OUT1 = High  
OUT2 = High (unattached) or Low (attached)  
Default  
CURRENT_MODE = L  
CURRENT_MODE = M  
CURRENT_MODE = H  
OUT1 = Low  
OUT2 = High  
Medium - 1.5 A  
High - 3 A  
OUT1 = Low  
OUT2 = Low  
7.3.3 VBUS Detection  
The TUSB321AI device supports VBUS detection according to the Type-C Specification. VBUS detection is used to  
determine the attachment and detachment of a UFP. VBUS detection is also used to successfully resolve the role  
in DRP mode.  
The system VBUS voltage must be routed through a 900-kΩ resistor to the VBUS_DET pin on the TUSB321AI  
device if the PORT pin is configured as a DRP or a UFP. If the TUSB321AI device is configured as a DFP and  
only ever used in DFP mode, the VBUS_DET pin can be left unconnected.  
7.3.4 Cable Orientation and External MUX Control  
The TUSB321AI device has the ability to control an external/discrete MUX using the DIR pin. The TUSB321AI  
detects the cable orientation by monitoring the voltage on the CC pins. When a voltage level within the proper  
threshold is detected on CC1, the DIR pin is pulled low. When a voltage level within the proper threshold is  
detected on CC2, the DIR is pulled high. If the direction polarity of the external MUX is opposite of the  
TUSB321AI, the CC1/CC2 connection to USB Type-C receptacle can be reversed. The DIR pin is an open drain  
output.  
7.3.5 VCONN Support for Active Cables  
The TUSB321AI device supplies VCONN to active cables when configured in DFP mode or in DRP acting as a  
DFP mode. VCONN is provided only when the unconnected CC pin is terminated to a resistance, Ra, and after a  
UFP is detected and the Attached.SRC state is entered. When in DFP mode or in DRP acting as a DFP mode, a  
5-V source must be connected to the VDD pin of the TUSB321AI device after Attached.SRC. VCONN is supplied  
from VDD through a low resistance power FET out to the unconnected CC pin. VCONN is removed when a  
detach event is detected and the active cable is removed.  
7.4 Device Functional Modes  
The TUSB321AI device has three functional modes. Table 3 lists these modes:  
Table 3. USB Type-C States According to TUSB321AI Functional Modes  
MODES  
GENERAL BEHAVIOR  
PORT PIN  
STATES(1)  
Unattached.SNK  
UFP  
AttachWait.SNK  
USB port unattached. ID, PORT  
operational. CC pins configure  
according to PORT pin.  
Toggle Unattached.SNK Unattached.SRC  
AttachedWait.SRC or AttachedWait.SNK  
Unattached.SRC  
Unattached  
DRP  
DFP  
UFP  
DRP  
AttachWait.SRC  
Attached.SNK  
Attached.SNK  
USB port attached. All GPIOs  
operational.  
Active  
Attached.SRC  
DFP  
N/A  
Attached.SRC  
Dead Battery  
No operation. VDD not available  
Default device state to UFP/SINK with Rd  
(1) Required; not in sequential order.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
7.4.1 Unattached Mode  
Unattached mode is the primary mode of operation for the TUSB321AI device, because a USB port can be  
unattached for a lengthy period of time. In unattached mode, VDD is available, and all IOs are operational. After  
the TUSB321AI device is powered up, the part enters unattached mode until a successful attach has been  
determined. Initially, right after power up, the TUSB321AI device comes up as an Unattached.SNK. The  
TUSB321AI device checks the PORT pin and operates according to the mode configuration. The TUSB321AI  
device toggles between the UFP and the DFP if configured as a DRP. The PORT pin is only sampled at reset or  
power up.  
7.4.2 Active Mode  
Active mode is defined as the port being attached. In active mode, all GPIOs are operational. When in active  
mode, the TUSB321AI device communicates to the AP that the USB port is attached. This happens through the  
ID pin if TUSB321AI is configured as a DFP or DRP connect as source. If TUSB321AI is configured as a UFP or  
a DRP connected as a sink, the OUT1 and OUT2 pins are used. The TUSB321AI device exits active mode under  
the following conditions:  
Cable unplug  
VBUS removal if attached as a UFP  
7.4.3 Dead Battery Mode  
Dead battery mode is defined as VDD not active. In this mode, CC pins always default to pull-down resistors.  
Dead battery means:  
TUSB321AI in UFP with 5.1 kΩ ±20% pull-down resistors  
Copyright © 2015, Texas Instruments Incorporated  
11  
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TUSB321AI device is a Type-C configuration channel logic and port controller. The TUSB321AI device can  
detect when a Type-C device is attached, what type of device is attached, the orientation of the cable, and power  
capabilities (both detection and broadcast). The TUSB321AI device can be used in a source application (DFP) or  
in a sink application (UFP).  
8.2 Typical Application  
8.2.1 DFP Mode  
Figure 3 shows the TUSB321AI device configured as a DFP.  
USB3 Host and  
PMIC  
DM  
DP  
USB VBUS Switch  
System VBUS  
PS_EN  
VOUT  
VIN  
EN  
FAULT#  
PS_FAULT#  
VDD_5V  
VCC_3.3V  
DM  
DP  
150uF  
100uF  
100nF  
VBUS  
900K  
A12  
B1  
B2  
200K  
10K  
200K  
4.7K  
RXP2  
RXN2  
TXP2  
TXN2  
VBUS_DET  
A11  
A10  
A9  
B3  
B4  
B5  
PORT  
CURRENT_MODE  
CC1  
A8  
CC2  
CC1  
A7  
B6  
B7  
B8  
TUSB321AI  
CC2  
ID  
ID  
A6  
A5  
VCONN_FAULT#  
FAULT#  
A4  
A3  
A2  
A1  
B9  
TXN1  
TXP1  
RXN1  
RXP1  
B10  
B11  
B12  
VCC_3.3V  
VCC_3.3V  
10K  
100nF  
SEL  
TXP2  
TXN2  
B0P  
B0N  
RXP2  
RXN2  
100nF  
B1P  
B1N  
A0P  
A0N  
SSTXP  
SSTXN  
100nF  
TXN1  
TXP1  
A1P  
A1N  
SSRXP  
SSRXN  
C0P  
C0N  
RXN1  
RXP1  
100nF  
C1P  
C1N  
OEN  
Figure 3. DFP Mode Schematic  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
Typical Application (continued)  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 4:  
Table 4. Design Requirements for DFP Mode  
DESIGN PARAMETER  
VALUE  
5 V  
VDD (4.5 V to 5.5 V)  
DFP  
Type-C port type (UFP, DFP, or DRP)  
PORT pin is pulled up  
Advertised Type-C Current (Default, 1.5 A, 3 A)  
VCONN Support  
3 A  
Yes  
8.2.1.2 Detailed Design Procedure  
The TUSB321AI device supports a VDD in the range of 4.5 to 5.5 V. In this particular case, VDD is set to 5 V. A  
100-nF capacitor is placed near VDD. Also, a 100 µF is used to meet the USB Type-C bulk capacitance  
requirement of 10 µF to 220 µF.  
The TUSB321AI current advertisement is determined by the state of the CURRENT_MODE pin. In this particular  
example, 3 A advertisement is desired so the CURRENT_MODE pin is pulled high to VDD through 10-kΩ resistor.  
The DIR pin is used to control the MUX for connecting the USB3 SS signals to the appropriate pins on the USB  
Type-C receptacle. In this particular case, a HD3SS3212 is used as the MUX. In order to minimize crossing in  
routing the USB 3.1 SS signals to the USB Type C connector, the connection of CC1 and CC2 to the  
TUSB321AI is swapped.  
The Type-C port mode is determined by the state of the PORT pin. When the PORT pin is pulled high, the  
TUSB321AI device is in DFP mode.  
The VBUS_DET pin must be connected through a 900-kΩ resistor to VBUS on the Type-C that is connected. This  
large resistor is required to protect the TUSB321AI device from large VBUS voltage that is possible in present day  
systems. This resistor along with internal pulldown keeps the voltage observed by the TUSB321AI device in the  
recommended range.  
The USB3.1 specification requires the bulk capacitance on VBUS based on UFP or DFP. When operating the  
TUSB321AI device in a DFP mode, a bulk capacitance of at least 120 µF is required. In this particular case, a  
150-µF capacitor was chosen.  
8.2.1.3 Application Curve  
Figure 4. Application Curve for DFP Mode  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TUSB321AI  
ZHCSEB5 OCTOBER 2015  
www.ti.com.cn  
8.3 Initialization Set Up  
The general power-up sequence for the TUSB321AI device is as follows:  
1. System is powered off (device has no VDD). The TUSB321AI device is configured internally in UFP mode  
with Rds on CC pins.  
2. VDD ramps – POR circuit.  
3. The TUSB321AI device enters unattached mode and determines the voltage level from the PORT pin. This  
determines the mode in which the TUSB321AI device operates (DFP, UFP, DRP).  
4. The TUSB321AI device monitors the CC pins as a DFP and VBUS for attach as a UFP.  
5. The TUSB321AI device enters active mode when attach has been successfully detected.  
9 Power Supply Recommendations  
The TUSB321AI device has a wide power supply range from 4.5 to 5.5 V. The TUSB321AI device can be run off  
of a system power such as a battery.  
10 Layout  
10.1 Layout Guidelines  
1. An extra trace (or stub) is created when connecting between more than two points. A trace connecting pin A6  
to pin B6 will create a stub because the trace also has to go to the USB Host. Ensure that:  
A stub created by short on pin A6 (DP) and pin B6 (DP) at Type-C receptacle does not exceed 3.5 mm.  
A stub created by short on pin A7 (DM) and pin B7 (DM) at Type-C receptacle does not exceed 3.5 mm.  
2. A 100-nF capacitor should be placed as close as possible to the TUSB321AI VDD pin.  
10.2 Layout Example  
Figure 5. TUSB321AI Layout  
14  
版权 © 2015, Texas Instruments Incorporated  
TUSB321AI  
www.ti.com.cn  
ZHCSEB5 OCTOBER 2015  
11 器件和文档支持  
11.1 文档支持  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
15  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB321AIRWBR  
ACTIVE  
X2QFN  
RWB  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
7A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RWB0012A  
X2QFN - 0.4 mm max height  
SCALE 6.500  
PLASTIC QUAD FLATPACK - NO LEAD  
1.65  
1.55  
B
A
PIN 1 INDEX AREA  
1.65  
1.55  
C
0.4 MAX  
SEATING PLANE  
0.05 C  
2X 1.2  
SYMM  
(0.13)  
TYP  
0.05  
0.00  
6X 0.4  
3
6
2
1
7
8
SYMM  
2X  
0.4  
0.4  
8X  
0.2  
12  
9
0.25  
0.15  
12X  
0.6  
4X  
0.4  
0.07  
0.05  
C B A  
C
4221631/B 07/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWB0012A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.3)  
6X (0.4)  
9
12  
4X (0.7)  
2X (0.4)  
1
8
SYMM  
(1.5)  
7
2
8X (0.5)  
3
6
SYMM  
(R0.05) TYP  
12X (0.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221631/B 07/2017  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWB0012A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.3)  
6X (0.4)  
12  
9
4X (0.67)  
2X (0.4)  
1
2
8
SYMM  
(1.5)  
7
8X  
METAL  
8X (0.5)  
3
6
(R0.05) TYP  
SYMM  
12X (0.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PADS 1,2,7 & 8  
96% PRINTED SOLDER COVERAGE BY AREA  
SCALE:50X  
4221631/B 07/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB321RWBR

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB322I

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB322IRWBR

支持 VCONN 的 USB Type-C 配置通道逻辑和端口控制 | RWB | 12 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410

USB TO SERIAL PORT CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410-Q1

USB To Serial Port Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IRHB

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IRHBG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IRHBR

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IRHBRG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IRHBT

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IVF

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB3410IVFG4

500mA, Low Quiescent Current, Ultra-Low Noise, High PSRR Low Dropout Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI