TUSB501TDRFRQ1 [TI]

汽车类 USB 3.0 5Gbps 单通道转接驱动器 | DRF | 8 | -40 to 105;
TUSB501TDRFRQ1
型号: TUSB501TDRFRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 USB 3.0 5Gbps 单通道转接驱动器 | DRF | 8 | -40 to 105

驱动 光电二极管 接口集成电路 驱动器
文件: 总23页 (文件大小:1907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TUSB501-Q1  
ZHCSFA8 MAY 2016  
TUSB501-Q1 具有均衡功能的 USB 3.0 单通道转接驱动器  
1 特性  
上电后,TUSB501-Q1 会定期在 TX 对上执行接收器  
1
检测。如果检测到 SuperSpeed USB 接收器,则使能  
RX 端,TUSB501-Q1 准备转接驱动。  
符合汽车级 Q100 标准  
强大的低功耗架构(典型值):  
工作时的功耗为 126mW  
U2/U3 模式下为 20mW  
无连接时为 4mW  
接收器均衡器具有三个由引脚 EQ 控制的增益设  
置:3dB6dB 9dB。该增益应根据 TUSB501-Q1  
之前的损耗量进行设置。相似地,输出驱动器支持去加  
重和输出摆动配置(引脚 DE OS)。借助这些设  
置,可以将 TUSB501-Q1 灵活置于 SuperSpeed USB  
路径上,同时保持优异性能。  
自动低频率周期信号 (LFPS) 去加重 (DE) 控制  
出色的抖动与损耗补偿  
32 英寸的 FR4 4 毫英寸带状线  
长度 3m 30 美制电线标准 (AWG) 电缆  
与之前几代产品相比,TUSB501-Q1 特有 更低的功耗  
(所有链路状态下)、更强的 OS 选项、改进的接收  
器均衡设置以及智能 LFPS 控制器。该控制器可感测  
低频信号并自动禁用驱动器去加重功能,完全符合  
USB 3.0 标准。  
集成型终端  
小型 2mm × 2mm 四方扁平无引线 (QFN) 封装  
可选接收器均衡、发射器去加重和输出摆动  
支持热插拔  
静电放电 (ESD) 保护 ±5kV 人体放电模式 (HBM)  
1500V 带电器件模型 (CDM)  
TUSB501-Q1 采用小型 2mm x 2mm QFN 封装,可在  
–40°C 105°C 的工业级温度范围内运行。  
2 应用  
器件信息(1)  
手机  
器件型号  
封装  
封装尺寸(标称值)  
计算机  
扩展坞  
电视  
TUSB501-Q1  
WSON  
2.00mm x 2.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
通电的线缆  
背板  
简单应用  
TUSB501-Q1  
USB Host  
3 说明  
TUSB501-Q1 是第 3 3.3V USB 3.0 单通道转接驱  
动器。当 5Gbps 超高速 USB 信号在印刷电路板  
(PCB) 或电缆上传输时,其完整性会在通道损耗和码  
间串扰的影响下有所降低。TUSB501-Q1 可通过应用  
均衡功能来补偿通道损耗,从而恢复传入的数据,并使  
用较高的差分电压驱动信号。这样可扩展通道长度,并  
且使系统能够通过 USB3.0 标准。TUSB501-Q1 的高  
级状态机方便主机和设备有效查看其状态。  
TUSB501-Q1  
USB Connector  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSET3  
 
 
 
 
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
目录  
9.1 Overview ................................................................. 10  
9.2 Functional Block Diagram ....................................... 11  
9.3 Feature Description................................................. 11  
9.4 Device Functional Modes........................................ 12  
10 Application and Implementation........................ 13  
10.1 Application Information.......................................... 13  
10.2 Typical Application ............................................... 13  
11 Power Supply Recommendations ..................... 14  
12 Layout................................................................... 15  
12.1 Layout Guidelines ................................................. 15  
12.2 Layout Example .................................................... 16  
13 器件和文档支持 ..................................................... 17  
13.1 社区资源................................................................ 17  
13.2 ....................................................................... 17  
13.3 静电放电警告......................................................... 17  
13.4 Glossary................................................................ 17  
14 机械、封装和可订购信息....................................... 17  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions...................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Power Supply Characteristics.................................. 5  
7.6 DC Electrical Characteristics .................................... 5  
7.7 AC Electrical Characteristics..................................... 6  
7.8 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 8  
Detailed Description ............................................ 10  
8
9
4 修订历史记录  
日期  
修订版本  
注释  
2016 4 月  
*
最初发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
5 Device Comparison Table  
USB3.0 Re-drivers (5 Gbps)  
TUSB551  
FEATURE  
Package  
TUSB501-Q1  
SN65LVPE502A  
SN65LVPE512  
8 Pin WSON  
12 Pin X2QFN  
24 Pin VQFN  
24 Pin WQFN  
3 mm x 3 mm, 4 mm x 4  
mm  
Package Size  
2 mm x 2 mm  
1.6 mm x 1.6 mm  
3 mm x 3 mm  
Package Pitch  
Channels  
0.5 mm  
1
0.4 mm  
1
0.4 mm, 0.5 mm  
2
0.4 mm  
2
Active Power (Typical)  
U2/U3  
126 mW  
20 mW  
4 mW (NC)  
3, 6, 9  
< 130 mW  
< 22 mW  
< 8 mW (NC)  
3, 6, 9  
315 mW  
315 mW  
70 mW  
70 mW  
Low Power  
3.6 µW (Sleep)  
0, 7, 15  
3.6 µW (Sleep)  
0, 7, 15  
EQ Settings (dB)  
ESD Protection  
Power Supply  
5 kV HBM  
3.3 VDC  
2 kV HBM  
1.8 VDC  
5 kV HBM  
3.3 VDC  
5 kV HBM  
3.3 VDC  
6 Pin Configuration and Functions  
DRF Package  
8-Pin (WSON)  
(Top View)  
VCC  
RXP  
RXN  
OS  
1
8
7
6
5
DE  
2
3
4
TXP  
TXN  
EQ  
GND  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
RXP  
RXN  
TXN  
NO.  
2
Differential input pair for 5 Gbps SuperSpeed USB signals.  
3
Differential I/O  
6
Differential output pair for 5 Gbps SuperSpeed USB signals.  
TXP  
7
Sets the receiver equalizer gain. 3-state input with integrated pull-up and pull-  
down resistors.  
EQ  
DE  
OS  
5
Sets the output de-emphasis gain. 3-state input with integrated pull-up and pull-  
down resistors.  
CMOS Input  
Power  
8
4
Sets the output swing (differential voltage amplitude). 2-state input with an  
integrated pull-down resistor.  
VCC  
GND  
1
3.3-V power supply  
Reference ground  
Thermal Pad  
Copyright © 2016, Texas Instruments Incorporated  
3
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.5  
–0.5  
–0.5  
–65  
-40  
MAX  
UNIT  
V
(2)  
Supply voltage range  
VCC  
4
4
Differential I/O  
CMOS inputs  
V
Voltage range at any input or output  
terminal  
VCC + 0.5  
150  
V
Storage temperature, TSTG  
°C  
°C  
Maximum junction temperature, TJ  
125  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±5000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
UNIT  
V
VCC  
TA  
Main power supply  
3.3  
Operating free-air temperature  
AC coupling capacitor  
–40  
75  
105  
200  
°C  
CAC  
100  
nF  
7.4 Thermal Information  
TUSB501-Q1  
THERMAL METRIC(1)  
UNITS  
DRF (WSON)  
105.5  
47.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
70.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
10.0  
ψJB  
70.9  
RθJC(bottom)  
51.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
7.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX(2)  
UNIT  
Link in U0 with SuperSpeed USB  
data transmission, OS = Low  
38.1  
ICC-ACTIVE Average active current  
mA  
Link in U0 with SuperSpeed USB  
data transmission, OS = High  
43.8  
65  
Link has some activity, not in U0,  
OS = Low  
ICC-IDLE  
ICC-U2U3  
ICC-NC  
Average current in idle state  
Average current in U2/U3  
29.8  
6.1  
mA  
mA  
mA  
Link in U2 or U3  
No SuperSpeed USB device is  
connected to TXP, TXN  
Average current with no connection  
1.3  
OS = Low  
OS = High  
126  
145  
PD  
Power Dissipation in U0  
mW  
234  
(1) TYP values use VCC = 3.3 V, TA = 25°C.  
(2) MAX values use VCC = 3.6 V, TA = –40°C.  
7.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.6  
UNIT  
3-State CMOS Inputs (EQ, DE)  
VIH  
VIM  
VIL  
VF  
High-level input voltage  
Mid-level input voltage  
Low-level input voltage  
Floating voltage  
2.8  
V
V
VCC / 2  
V
VIN = High impedance  
VCC / 2  
190  
V
RPU  
RPD  
IIH  
Internal pull-up resistance  
Internal pull-down resistance  
High-level input current  
Low-level input current  
kΩ  
kΩ  
µA  
µA  
190  
VIN = 3.6 V  
36  
IIL  
VIN = GND, VCC = 3.6 V  
-36  
2
2-State CMOS Input (OS)  
VIH  
VIL  
VF  
High-level input voltage  
V
V
Low-level input voltage  
Floating voltage  
0.5  
26  
VIN = High impedance  
GND  
270  
V
RPD  
IIH  
Internal pull-down resistance  
High-level input current  
Low-level input current  
kΩ  
µA  
µA  
VIN = 3.6 V  
VIN = GND  
IIL  
-1  
Copyright © 2016, Texas Instruments Incorporated  
5
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
7.7 AC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential Receiver (RXP, RXN)  
Input differential voltage swing  
AC-coupled differential peak-to-peak  
signal  
VDIFF-pp  
VCM-RX  
ZRX-DIFF  
ZRX-CM  
100  
1200  
mVpp  
V
Common-mode voltage bias in the  
receiver (DC)  
3.3  
Present after a SuperSpeed USB  
device is detected on TXP/TXN  
Differential input impedance (DC)  
72  
18  
91  
120  
30  
Ω
Ω
Common-mode input impedance  
(DC)  
Present after a SuperSpeed USB  
device is detected on TXP, TXN  
22.8  
Present when no SuperSpeed USB  
device is detected on TXP, TXN.  
Measured over the range of 0-500  
mV with respect to GND.  
ZRX-HIGH-  
IMP-DC-POS  
Common-mode input impedance  
with termination disabled (DC)  
25  
35  
k  
VRX-LFPS-  
DET-DIFF-pp  
Low Frequency Periodic Signaling  
(LFPS) Detect Threshold  
Below the minimum is squelched  
100  
300  
mVpp  
Differential Transmitter (TXP, TXN)  
OS = Low, No load  
OS = High, No load  
930  
Transmitter differential voltage swing  
(transition-bit)  
VTX-DIFF-PP  
mVpp  
dB  
1300  
VTX-DE-  
RATIO  
CTX  
Transmitter de-emphasis  
DE = Floating, OS = Low  
At 2.5 GHz  
-3.5  
TX input capacitance to GND  
1.25  
93  
pF  
ZTX-DIFF  
ZTX-CM  
ITX-SC  
Differential impedance of the driver  
75  
125  
31.25  
60  
Ω
Common-mode impedance of the  
driver  
Measured with respect to AC ground  
over 0-500 mV  
18.75  
Ω
mA  
V
TX short circuit current  
TX ± shorted to GND  
Common-mode voltage bias in the  
transmitter (DC)  
VCM-TX  
1.2  
0
2.5  
AC common-mode voltage swing in  
active mode  
VCM-TX-AC  
Within U0 and within LFPS  
Tested with a high-pass filter  
100  
10  
mVpp  
mVpp  
mV  
VTX-IDLE-  
DIFF -AC-pp  
VTX-CM-  
Differential voltage swing during  
electrical idle  
Absolute delta of DC CM voltage  
during active and idle states  
Restrict the test condition to meet  
100 mV  
100  
12  
DeltaU1-U0  
VTX-idle-diff- DC electrical idle differential output  
voltage  
Voltage must be low pass filtered to  
remove any AC component  
0
mV  
DC  
Differential Transmitter (TXP, TXN)  
Output rise, fall time  
see Figure 6  
20%-80% of differential voltage  
measured 1 inch from the output pin  
tR, tF  
80  
ps  
ps  
20%-80% of differential voltage  
measured 1 inch from the output pin  
tRF-MM  
Output Rise, Fall time mismatch  
20  
De-emphasis = -3.5 dB propagation  
delay between 50% level at input  
and output  
tdiff-LH  
tdiff-HL  
,
Differential propagation delay  
see Figure 4  
290  
3.6  
ps  
ns  
tidleEntry  
tidleExit  
,
Idle entry and exit times  
see Figure 5  
6
Copyright © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
AC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Timing  
Apply 0 V to VCC, connect  
Time from power applied until RX  
termination  
SuperSpeed USB termination to  
TX±, apply 3.3 V to VCC, and  
measure when ZRX-DIFF is enabled.  
tREADY  
9
ms  
Jitter  
TJTX-EYE  
DJTX  
(1) (2)  
(3)  
Total jitter  
0.213  
0.197  
0.016  
UI  
EQ = Floating, OS = High,  
DE = High  
See Figure 3.  
(2)  
(3)  
Deterministic jitter  
UI  
(2) (4)  
(3)  
RJTX  
Random jitter  
UI  
(1) Includes RJ at 10-12  
.
(2) Measured at the ends of reference channel in Figure 3 with K28.5 pattern, VID = 1000 mVpp, 5 Gbps, -3.5 dB de-emphasis from source.  
(3) UI = 200 ps.  
(4) Rj calculated as 14.069 times the RMS random jitter for 10-12 BER.  
7.8 Typical Characteristics  
TA = 25°C  
TA = 25°C  
EQ = NC  
DE = HIGH  
OS = HIGH  
Figure 1. Input for Typical Output Measurement  
at TUSB501-Q1  
Figure 2. Typical Output Eye for Jitter Measurement Setup  
in Figure 3  
Copyright © 2016, Texas Instruments Incorporated  
7
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
8 Parameter Measurement Information  
Jitter  
Measurement  
A
TUSB501-Q1  
AWG  
Up to3m  
(30AWG)  
1"-6"  
24"  
4"  
Figure 3. Jitter Measurement Setup  
spacer  
IN  
Tdiff_HL  
Tdiff_LH  
OUT  
Figure 4. Propagation Delay  
IN+  
Vcm  
IN-  
VRX-LFPS-DET-DIFF-pp  
tidleExit  
tidleEntry  
OUT+  
Vcm  
OUT-  
Figure 5. Electrical Idle Mode Exit and Entry Delay  
spacer  
8
Copyright © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
Parameter Measurement Information (continued)  
80%  
20%  
tr  
t
f
Figure 6. Output Rise and Fall Times  
Copyright © 2016, Texas Instruments Incorporated  
9
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
When 5 Gbps SuperSpeed USB signals travel across a PCB or cable, signal integrity degrades due to loss and  
inter-symbol interference. The TUSB501-Q1 recovers incoming data by applying equalization that compensates  
for channel loss, and drives out signals with a high differential voltage. This extends the possible channel length,  
and enables systems to pass USB 3.0 compliance.  
The TUSB501-Q1 advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB501-Q1 periodically performs receiver detection on the TX pair. If it detects a SuperSpeed USB receiver,  
the RX termination is enabled, and the TUSB501-Q1 is ready to re-drive.  
The device aggressive Low-Power Architecture operates at a 3.3-V power supply and achieves enhanced  
performance, as lower as 3 mW with no connection and 126 mW in active state. The receiver equalizer has three  
gain settings that are controlled by terminal EQ: 3 dB, 6 dB, and 9 dB. The equalization should be set based on  
amount of insertion loss in the channel before the TUSB501-Q1. Likewise, the output driver supports  
configuration of De-Emphasis and Output Swing (terminals DE and OS). The automatic LFPS De-Emphasis  
control further enables the system to be USB3.0 compliant. The TUSB501-Q1 operates over the industrial  
temperature range of -40ºC to 85ºC in a small 2 x 2 mm WSON package.  
Table 1. Control Pin Effects (Typical Values)  
PIN  
DESCRIPTION  
LOGIC STATE  
Low  
GAIN  
3 dB  
6 dB  
9 dB  
EQ  
Equalization Amount  
Floating  
High  
OUTPUT DIFFERENTIAL VOLTAGE  
FOR THE TRANSITION BIT  
PIN  
DESCRIPTION  
LOGIC STATE  
Low  
930 mVpp  
Output Swing  
Amplitude  
OS  
High  
1300 mVpp  
(1)  
DE-EMPHASIS RATIO  
PIN  
DESCRIPTION  
LOGIC STATE  
FOR OS = LOW  
0 dB  
FOR OS = HIGH  
–2.6 dB  
Low  
Floating  
High  
De-Emphasis  
Amount  
DE  
–3.5 dB  
–5.9 dB  
–6.2 dB  
–8.3 dB  
(1) Typical values  
10  
Copyright © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
9.2 Functional Block Diagram  
EQ  
DE OS  
RX+  
TX+  
TX-  
Receiver/  
Equalizer  
Driver  
RX-  
3rd Generation  
State Machine  
LFPS  
Controller  
VCC  
GND  
/opyright © 2016, Çexas Lnstruments Lncorporated  
/opyright © 2016, Çexas Lnstruments Lncorporated  
9.3 Feature Description  
9.3.1 Receiver Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TUSB501-Q1. The receiver overcomes these losses by attenuating the low  
frequency components of the signals with respect to the high frequency components. The proper gain setting  
should be selected to match the channel insertion loss before the input of the TUSB501-Q1.  
9.3.2 De-Emphasis Control and Output Swing  
The differential driver output provides selectable de-emphasis and output swing control in order to achieve  
USB3.0 compliance. The TUSB501-Q1 offers a unique way to adjust output de-emphasis and transmitter swing  
based on the OS and DE terminals. The level of de-emphasis required in the system depends on the channel  
length after the output of the re-driver.  
Transition  
bit  
Transition  
bit  
Consecutive bits  
DE =0dB  
Consecutive bits  
415mV  
DE =-3.5dB  
DE =-6.2dB  
VTX-DIFF-PP  
0V  
DE =-6.2dB  
DE =-3.5dB  
DE =0dB  
-415mV  
0ps  
200ps  
400ps  
600ps  
800ps  
1000ps  
1200ps  
Figure 7. Transmitter Differential Voltage, OS = L  
Copyright © 2016, Texas Instruments Incorporated  
11  
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
Feature Description (continued)  
9.3.3 Automatic LFPS Detection  
The TUSB501-Q1 features an intelligent low frequency periodic signaling (LFPS) controller. The controller  
senses the low frequency signals and automatically disables the driver de-emphasis, for full USB3.0 compliance.  
9.3.4 Automatic Power Management  
The TUSB501-Q1 deploys RX detect, LFPS signal detection and signal monitoring to implement an automatic  
power management scheme to provide active, U2/U3 and disconnect modes. The automatic power management  
is driven by an advanced state machine, which is implemented to manage the device such that the re-driver  
operates smoothly in the links.  
9.4 Device Functional Modes  
9.4.1 Disconnect Mode  
The Disconnect mode is the lowest power state of the TUSB501-Q1. In this state, the TUSB501-Q1 periodically  
checks for far-end receiver termination on both TX. Upon detection of the far-end receiver’s termination on both  
ports, the TUSB501-Q1 will transition to U0 mode.  
9.4.2 U Modes  
9.4.2.1 U0 Mode  
The U0 mode is the highest power state of the TUSB501-Q1. Anytime super-speed traffic is being received,  
theTUSB501-Q1 remains in this mode.  
9.4.2.2 U2/U3 Mode  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB501-Q1  
periodically performs far-end receiver detection.  
12  
Copyright © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
One example of the TUSB501-Q1 used in a Host application on transmit and receive channels is shown in  
Figure 8. The re-driver is needed on the transmit path to pass transmitter compliance due to loss between the  
Host and connector. The re-driver uses the equalization to recover the insertion loss and re-drive the signal with  
boosted swing down the remaining channel, through the USB3.0 cable, and into the device PCB. Additionally,  
the TUSB501-Q1 is needed on the receive channel for the Host to pass receiver jitter tolerance. The re-driver  
recovers the loss from the Device PCB, connector, and USB 3.0 cable and re-drives the signal going into the  
Host receiver. The equalization, output swing, and de-emphasis settings are dependent upon the type of USB3.0  
signal path and end application.  
10.2 Typical Application  
U2  
VDD33  
VDD33  
U3B  
U4B  
VBUS  
4
5
8
4
5
8
OS  
OS  
EQ  
R11  
4.98K  
R12  
4.98K  
1
2
3
4
5
6
7
VBUS_PWR  
USB2_D_N  
USB2_D_P  
GND  
EQ  
DE1_PU  
DE2_PU  
DE  
DE  
USB2.0_D_N  
TUSB501-Q1  
TUSB501-Q1  
USB High Speed Line  
USB2.0_D_P  
VBUS  
VDD33  
U5  
1
2
3
5
4
VIN VOUT  
GND  
Device TX  
Host RX  
C5  
1.0uF  
C6  
C7  
10uF  
U3A  
1.0uF  
HOST_USB3.0_TX_N  
DEVICE_USB3.0_RX_N  
1
2
7
2
3
EN  
N/C  
TXP RXP  
USB3_RX_N  
USB3_RX_P  
GND_DRAIN  
USB3_TX_N  
USB3_TX_P  
SHIELD1  
C14 0.1uF  
LP5907  
6
TXN RXN  
HOST_USB3.0_TX_P  
DEVICE_USB3.0_RX_P  
1
2
U3C  
TUSB501-Q1  
C15 0.1uF  
VCC_TUSB501-Q1  
1
9
VCC  
Host TX  
Device RX  
C8  
0.1uF  
C9  
C10  
0.01uF  
1.0uF  
U4A  
GND_PAD  
HOST_USB3.0_RX_N  
HOST_USB3.0_RX_P  
DEVICE_USB3.0_TX_N  
8
3
2
6
7
1
2
TUSB501-Q1  
RXN TXN  
C1 0.1uF  
RXP TXP  
DEVICE_USB3.0_TX_P  
1
2
9
10  
11  
TUSB501-Q1  
C2 0.1uF  
U4C  
VCC  
VCC_TUSB501-Q1  
1
9
C11  
0.1uF  
C12  
C13  
SHIELD2  
0.01uF  
1.0uF  
GND_PAD  
TUSB501-Q1  
USB3_STANDARD_TYPE-A_RECEPTACLE  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8. Application Schematic  
10.2.1 Design Requirements  
For this design example, use the parameter shown in Table 2.  
Table 2. Design Parameters  
PARAMETER  
VCC  
VALUE  
3.3 V  
Supply nominal current  
Operating free-air temperature  
CAC AC coupling capacitor  
Pull-up resistors  
250 mA  
TA = 25°C  
100 nF  
4.98 kΩ  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Equalization (EQ) setting  
De-Emphasis (DE) setting  
Output Swing Amplitude (OS) setting  
The equalization should be set based on the insertion loss in the pre-channel (channel before the TUSB501-Q1  
device). The input voltage to the device is able to have a large range because of the receiver sensitivity and the  
available EQ settings. The EQ terminal can be pulled high through a resistor to VCC, low through a resistor to  
ground, or left floating. The application schematic above shows the implementation.  
The De-Emphasis setting should be set based on the length and characteristics of the post channel (channel  
after the TUSB501-Q1 device). Output de-emphasis can be tailored using the DE terminal. This terminal should  
be pulled high through a resistor to VCC, low through a resistor to ground, or left floating. Figure 8 shows the  
implementation. The output swing setting can also be configured based on the amplitude needed to pass the  
compliance test. This setting will also be based on the length of interconnect or cable the TUSB501-Q1 is driving.  
This terminal should be pulled low through a resistor to ground or left floating. Figure 8 shows the  
implementation.  
10.2.3 Application Curves  
DE = 0 dB  
EQ = 6 dB  
8 Input Trace  
DE = 0 dB  
EQ = 6 dB  
8 Input Trace  
Figure 9. Eye Diagram  
Figure 10. SigTest CP1 Eye Diagram  
11 Power Supply Recommendations  
This device is designed to operate with a 3.3-V supply. If using a higher voltage system power supply such as  
VBUS, a voltage regulator can be used to step down to 3.3 V. Decoupling capacitors may be used to reduce  
noise and improve power supply integrity.  
14  
Copyright © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
12 Layout  
12.1 Layout Guidelines  
The 100-nF capacitors on the TXP and SSTXN nets should be placed close to the USB connector (Type A,  
Type B, and so forth).  
The ESD and EMI protection devices (if used) should also be placed as close as possible to the USB  
connector.  
Place voltage regulators as far away as possible from the differential pairs.  
In general, the large bulk capacitors associated with each power rail should be placed as close as possible to  
the voltage regulators.  
It is recommended that small decoupling capacitors for the 1.8-V power rail be placed close to the TUSB501-  
Q1 as shown in Figure 11.  
The SuperSpeed differential pair traces for RXP/N and TXP/N must be designed with a characteristic  
impedance of 90 ±10%. The PCB stack-up and materials determines the width and spacing needed for a  
characteristic impedance of 90 .  
The SuperSpeed differential pair traces should be routed parallel to each other as much as possible. It is  
recommended the traces be symmetrical.  
In order to minimize cross talk, it is recommended to keep high speed signals away from each other. Each  
pair should be separated by at least 5 times the signal trace width. Separating with ground also helps  
minimize cross talk.  
Route all differential pairs on the same layer adjacent to a solid ground plane.  
Do not route differential pairs over any plane split.  
Adding test points will cause impedance discontinuity and will therefore negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes stub on the differential pair.  
Avoid 90 degree turns in traces. The use of bends in differential traces should be kept to a minimum. When  
bends are used, the number of left and right bends should be as equal as possible and the angle of the bend  
should be 135 degrees. This will minimize any length mismatch caused by the bends and therefore  
minimize the impact bends have on EMI.  
Match the etch lengths of the differential pair traces. There should be less than 5 mils difference between a  
SS differential pair signal and its complement. The USB 2.0 differential pairs should not exceed 50 mils  
relative trace length difference.  
The etch lengths of the differential pair groups do not need to match (that is, the length of the RXP/N pair to  
that of the TXP/N pair), but all trace lengths should be minimized.  
Minimize the use of vias in the differential pair paths as much as possible. If this is not practical, make sure  
that the same via type and placement are used for both signals in a pair. Any vias used should be placed as  
close as possible to the TUSB501-Q1 device.  
To ease routing, the polarity of the SS differential pairs can be swapped. This means that TXP can be routed  
to TXN or RXN can be routed to RXP.  
Do not place power fuses across the differential pair traces.  
Copyright © 2016, Texas Instruments Incorporated  
15  
TUSB501-Q1  
ZHCSFA8 MAY 2016  
www.ti.com.cn  
12.2 Layout Example  
Figure 11. Example Layout  
16  
版权 © 2016, Texas Instruments Incorporated  
TUSB501-Q1  
www.ti.com.cn  
ZHCSFA8 MAY 2016  
13 器件和文档支持  
13.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
17  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB501TDRFRQ1  
ACTIVE  
WSON  
DRF  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 105  
501Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB5052

USB to 2-Serial + 1-Parallel Controller With Configurable Optional Hub
TI

TUSB5052B

USB to 2-Serial + 1-Parallel Controller With Configurable Optional Hub
TI

TUSB5052PZ

UNIVERSAL SERIAL BUS CONTROLLER, PQFP100, TQFP-100
ROCHESTER

TUSB5052PZ

5-port Hub with Integrated Bridge to Two Serial Ports 100-LQFP
TI

TUSB5052PZT

暂无描述
TI

TUSB5152

USB to 2-Serial 1-Parallel Controller With Configurable Optional Hub
TI

TUSB5152PZ

5-Port Hub with Integrated Bridge to IEEE 1284 Port and Two Serial Ports 100-LQFP 0 to 70
TI

TUSB5152PZT

UNIVERSAL SERIAL BUS CONTROLLER, PQFP100, PLASTIC, MS-026, TQFP-100
TI

TUSB522P

第四代双通道 USB 3.0 转接驱动器
TI

TUSB522PIRGER

第四代双通道 USB 3.0 转接驱动器 | RGE | 24 | -40 to 85
TI

TUSB522PIRGET

第四代双通道 USB 3.0 转接驱动器 | RGE | 24 | -40 to 85
TI

TUSB522PRGER

第四代双通道 USB 3.0 转接驱动器 | RGE | 24 | 0 to 70
TI