TUSB542 [TI]

5Gbps USB 3.1 1 代 Type-C 2:1 多路复用器和线性转接驱动器;
TUSB542
型号: TUSB542
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5Gbps USB 3.1 1 代 Type-C 2:1 多路复用器和线性转接驱动器

驱动 复用器 驱动器
文件: 总30页 (文件大小:3134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
TUSB542 USB Type-C 5Gbps 转接驱动器 2:1 MUX  
1 特性  
3 说明  
1
可为 USB Type-C™ 端口提供 USB 3.1 Gen-1  
TUSB542 是一款具有 USB Type-C™ 连接器的双通道  
5Gbps 超高速 (SS) 2:1 多路复用器  
支持 USB Type-C 电缆和连接器规范  
超低功耗架构  
USB 3.1 Gen1 (5Gbps)(也称为 USB-C)转接驱动器  
支持系统。  
该器件具有信号调节功能,并且能够为 USB Type-C™  
可换向连接器转换 USB SS 信号。可以使用外部配置  
通道逻辑控制器通过 SEL 引脚来控制 TUSB542,以  
便正确复用信号。  
工作电流 100mA  
U2/U3 1.3mA  
未连接时的电流为 300μA  
高达 9dB 的可选择均衡、去加重功能和高达 6dB  
的输出摆幅  
TUSB542 包含接收器均衡和发送器去加重功能,用以  
保持发送和接收数据路径上的信号完整性。接收器均衡  
包含多种增益设置,用以克服插入损耗和码间串扰造成  
的通道性能退化。为了补偿下行传输线路损耗,输出驱  
动器还支持去加重配置。此外,自动 LFPS 去加重控  
制有助于实现完全兼容性。  
集成型终端  
接收检测功能  
通过监视信号进行电源管理  
无主机/器件侧要求 支持 USB-C DFPUFP 或  
DRP 端口  
单电源电压 1.8V ±10%  
TUSB542 采用超低功耗架构,在由 1.8V 电源供电运  
行时功耗较低。该转接驱动器支持低功耗模式,可进一  
步降低空闲状态下的功耗。  
工业温度范围:–40°C 85°C  
2 应用  
USB Type-C™ 转接驱动器采用小型超薄封装,适用于  
许多便携式 应用。  
USB 3.1 Gen 1 SS 应用  
电话  
器件信息(1)  
平板电脑、平板手机和笔记本电脑  
扩展坞  
器件型号  
TUSB542  
封装  
封装尺寸(标称值)  
X2QFN (18)  
2.00mm x 2.40mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
中的 TX_AP RX_AP 引脚  
示例应用  
简化原理图  
Type-C  
Connector  
RX_AP  
RX_CON_1  
TX_CON_1  
RX_CON_2  
TX_CON_2  
TUSB542  
TX_AP  
SEL  
Host  
Processor  
(USB Device)  
CC1  
CC2  
CC/PD  
Controller  
Copyright © 2016, Texas Instruments Incorporate  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSER3  
 
 
 
 
 
 
 
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Applications, USB Type-C Port SS MUX ... 16  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics, Power Supply Currents.... 6  
6.6 Electrical Characteristics, DC ................................... 6  
6.7 Electrical Characteristics, Dynamic........................... 7  
6.8 Electrical Characteristics, AC.................................... 7  
6.9 Timing Requirements................................................ 8  
6.10 Switching Characteristics........................................ 8  
6.11 Typical Characteristics............................................ 9  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 文档支持 ............................................................... 23  
11.2 接收文档更新通知 ................................................. 23  
11.3 社区资源................................................................ 23  
11.4 ....................................................................... 23  
11.5 静电放电警告......................................................... 23  
11.6 Glossary................................................................ 23  
12 机械、封装和可订购信息....................................... 23  
7
4 修订历史记录  
Changes from Revision D (March 2017) to Revision E  
Page  
特性 中的可选择均衡、去加重功能和输出摆幅更改为高达 9dB 的可选择均衡、去加重功能和高达 6dB 的输出摆幅” ... 1  
删除了特性 中的自动 LFPS 去加重控制,符合 USB 3.1 标准” ............................................................................................. 1  
特性 中的可支持 USB DFPUFP DRP 端口更改为支持 USB-C DFPUFP DRP 端口” ..................................... 1  
将应用部分的“USB Type-C SS 应用更改为“USB 3.1 Gen 1 SS 应用”.................................................................................. 1  
更改了简化原理................................................................................................................................................................... 1  
Changed the first five paragraghs of the Overview section.................................................................................................. 12  
Changed Figure 15 .............................................................................................................................................................. 16  
Changed the Design Requirements and the Detailed Design Procedure section of Typical Applications, USB Type-C  
Port SS MUX section............................................................................................................................................................ 17  
Changed the Design Requirements and the Detailed Design Procedure section of Typical Application: Switching  
USB SS Host or Device Ports .............................................................................................................................................. 20  
Changes from Revision C (August 2016) to Revision D  
Page  
Added a MIN value of –65 to the Storage temperature in the Absolute Maximum Ratings table.......................................... 5  
Changes from Revision B (January 2016) to Revision C  
Page  
Changed Pin 15 To: TX_AP+ and Pin 14 To: TX_AP- in the RWQ Package image............................................................. 4  
Changes from Revision A (January 2016) to Revision B  
Page  
Changed the RX_AP+ (pin 18) and RX_AP- (pin 17) I/O Type and Description to Diff output ............................................. 4  
Changed the TX_AP+ (pin 15) and RX_AP- (pin 14) I/O Type and Description to Diff input ............................................... 4  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
Changes from Original (December 2015) to Revision A  
Page  
已更改简化电路原理图............................................................................................................................................................ 1  
Changed the RX_AP+, RX_AP- and TX_AP+, TX_PA- pins in the RWQ Package image ................................................... 4  
Changed pin RX_AP+ number From: 15 To: 18 .................................................................................................................... 4  
Changed pin RX_AP- number From: 14 To: 17 ..................................................................................................................... 4  
Changed pin TX_AP+ number From: 18 To: 15..................................................................................................................... 4  
Changed pin TX_AP- number From: 17 To: 14 ..................................................................................................................... 4  
Changed Table 1 ................................................................................................................................................................. 12  
Changed Figure 13 .............................................................................................................................................................. 12  
Changed the Functional Block Diagram .............................................................................................................................. 13  
Changed location of pins SSTXP, SSTXN and SSRXP, SSRXN in Figure 16 ................................................................... 18  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
5 Pin Configuration and Functions  
RWQ Package  
18 Pins (X2QFN)  
Top View  
18  
17  
16  
GND  
7
15  
14  
1
2
3
4
13  
CNFG_A1  
RX_CON_1+  
RX_CON_1–  
CNFG_B1  
CNFG_A2  
TX_CON_2+  
12  
11  
10  
TX_CON_2–  
CNFG_B2  
5
6
8
9
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VDD18  
GND  
NO.  
5
P
1.8 V Power Supply  
Reference Ground Thermal Pad. Must connect to GND on the board.  
PAD  
G
2:1 SS MUX control. See Table 1 for signal path settings.210KΩ internal pullup resistor.  
H: AP SS signals are connected to Type-C position 1 signals.  
L: AP SS signals are connected to Type-C position 2 signals  
SEL  
16  
1
Input  
Tri-level configuration input pin A1 (for Ch 1): sets channel 1 (AP to redriver) EQ, DE and OS  
Tri-level Input configurations. Pin has integrated pull-up and pull-down resistors of 105 kΩ. Refer to Table 2  
CNFG_A1  
CNFG_B1  
CNFG_A2  
CNFG_B2  
for configuration settings.  
Tri-level configuration input pin B1 (for Ch 1): sets channel 1 (AP to redriver) EQ, DE and OS  
Tri-level Input configurations. Pin has integrated pull-up and pull-down resistors of 105 kΩ. Refer to Table 2  
for configuration settings.  
4
Tri-level configuration input pin A2 (for Ch 2): sets channel 2 (redriver to device) EQ, DE and  
Tri-level Input OS configurations. Pin has integrated pull-up and pull-down resistors of 10 5 kΩ. Refer to  
Table 2 for configuration settings.  
13  
10  
Tri-level configuration input pin B2 (for Ch 2): sets channel 2 (redriver to device) EQ, DE and  
Tri-level Input OS configurations. Pin has integrated pull-up and pull-down resistors of 105 kΩ. Refer to  
Table 2 for configuration settings.  
RX_AP+  
18  
17  
15  
14  
2
Diff output  
Diff output  
Diff input  
Diff input  
Diff input  
Diff input  
Diff output  
Diff output  
Diff input  
Differential output to Application Processor (AP), 5 Gbps SS positive signal  
Differential output to AP, 5 Gbps SS negative signal  
RX_AP-  
TX_AP+  
Differential input from AP, 5 Gbps SS positive signal  
TX_AP-  
Differential input from AP, 5 Gbps SS negative signal  
Rx_Con_1+  
Rx_Con_1-  
Tx_Con_1+  
Tx_Con_1-  
Rx_Con_2-  
Differential input from Type-C Connector, Position 1, SS positive signal  
Differential input from Type-C Connector, Position 1, SS negative signal  
Differential output to Type-C Connector, Position 1, SS positive signal  
Differential output to Type-C Connector, Position 1, SS negative signal  
Differential input from Type-C Connector, Position 2, SS negative signal  
3
6
7
8
4
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
9
Rx_Con_2+  
Tx_Con_2+  
Tx_Con_2-  
Diff input  
Diff output  
Diff output  
Differential input from Type-C Connector, Position 2, SS positive signal  
Differential output to Type-C Connector, Position 2, SS positive signal  
Differential output to Type-C Connector, Position 2, SS negative signal  
12  
11  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
65  
MAX  
2.3  
UNIT  
V
Supply voltage range, VCC  
Differential I/O  
Voltage range at any input or output terminal  
CMOS Inputs  
1.5  
V
2.3  
V
Junction temperature, TJ  
Storage temperature, Tstg  
150  
105  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.62  
–40  
75  
NOM  
MAX  
1.98  
85  
UNIT  
V
VCC  
Main power supply  
1.8  
TA  
Operating free-air temperature  
°C  
C(AC)  
AC coupling capacitor required for TX pins  
AC coupling capacitor required for TX pins  
VCC supply ramp requirement  
200  
100  
40  
nF  
V(PSN)  
mV  
ms  
kΩ  
t(VCC_RAMP)  
R(pullup-down)  
0.2  
Pull-up/down resistor to control CNF pins  
2.2  
6.4 Thermal Information  
TUSB542  
THERMAL METRIC(1)  
X2QFN (RWQ)  
UNIT  
18 PINS  
83.4  
52  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
49.1  
0.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
49.1  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
6.5 Electrical Characteristics, Power Supply Currents  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
100  
1.3  
MAX  
UNIT  
mA  
ICC(ACTIVE Average active current; link in U0 with SuperSpeed data transmission; OS = 0.9 V; DE  
130  
)
= 0 dB  
ICC(U2/U3) Average current in U2/U3  
Average current with no connection  
mA  
ICC(NC)  
0.3  
mA  
No SuperSpeed device is connected to TXP/TXN  
6.6 Electrical Characteristics, DC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRI-STATE CMOS INPUTS (CNFG_A1, CNFG_B1, CNFG_A2 and CNFG_B2)  
VIH  
VIM  
VIL  
High-level input voltage  
Mid-level input voltage  
Mid-level input voltage  
Floating voltage  
VCC x 0.75  
V
V
VCC / 2  
VCC x 0.25  
V
VF  
VIN = High impedance  
VCC / 2  
105  
V
R(PU)  
R(PD)  
IIH  
Internal pull-up resistance  
Internal pull-down resistance  
High-level input current  
Low-level input current  
kΩ  
kΩ  
µA  
µA  
105  
VIN = 1.98 V  
VIN = GND  
26  
1
IIL  
–26  
–1  
External leakage current (from  
application board + Application  
Processor pin high impedance)  
tolerance  
Ilkg  
VIN = GND or VIN = 1.98 V  
µA  
CMOS INPUT – SEL  
VIH  
VIL  
IIH  
High-level input voltage  
VCC x 0.7  
V
V
Mid-level input voltage  
High-level input current  
Low-level input current  
VCC x 0.3  
5
VIN = 1.98 V  
VIN = GND  
µA  
µA  
IIL  
–16  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
6.7 Electrical Characteristics, Dynamic  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential Receiver  
V(RX-DC-CM)  
RX DC common mode voltage  
0
2
V
Measured at connector. Present when  
SuperSpeed USB device detected on TX  
pins.  
Receiver DC common mode  
impedance  
R(RX-CM-DC)  
18  
30  
Ω
Measured at connector. Present when  
R(RX-DIFF-DC)  
Receiver DC differential impedance SuperSpeed USB device detected on TX  
pins.  
72  
120  
Ω
Measured at connector. Present when no  
DC input CM input impedance when  
Z(RX-HIGH-IMP-DC-POS)  
SuperSpeed USB device detected on TX  
termination is disabled.  
25  
KΩ  
pins or while VCC is ramping.  
LFPS Detect threshold. Below min is Measured at connector. Below min is  
V(RX-LFPS-DET-DIFF-P-P)  
0.1  
0.3  
V
noise.  
squelched.  
V(RX-CM-AC-P)  
Peak RX AC common mode voltage Measured at package pin.  
Rx Input capacitance for return loss At package pin to AC GND.  
150  
1.1  
mV  
pF  
C(RX-PARASITIC)  
Differential Transmitter  
OS Low, 0 dB DE  
0.9  
1.1  
V
V
Differential peak-to-peak TX voltage  
swing  
V(TX-DIFF-PP)  
OS High, 0 dB DE  
V(TX-DIFF- PP-LFPS)  
LFPS differential voltage swing  
Transmitter de-emphasis  
OS Low, High  
Low  
0.8  
1.2  
V
0
3.5  
6
dB  
dB  
dB  
V(TX-DE- RATIO)  
Mid  
High  
The amount of voltage change  
allowed during Receiver Detection.  
V(TX-RCV-DETECT)  
0.6  
2
V
V
The instantaneous allowed DC common-  
mode voltage at connector side of AC  
coupling capacitor.  
V(TX-DC-CM)  
TX DC common mode voltage  
0
AC Electrical Idle differential peak-  
to-peak output voltage  
V(TX-IDLE-DIFF-AC-PP)  
V(TX-IDLE-DIFF_DC)  
At package pin.  
0
0
10  
10  
mV  
nV  
V
DC Electrical Idle differential output  
voltage  
At package pin. After low pass filter to  
remove AC component.  
V(TX-CM-DC-ACTIVE-IDLE-  
Absolute DC common mode voltage  
between U1 and U0.  
At package pin.  
0.2  
DELTA)  
I(TX-SHORT)  
R(TX-DC)  
TX short-circuit current limit  
60  
30  
mA  
Ω
TX DC common mode impedance  
TX DC differential impedance  
At package pins  
18  
72  
R(TX-DIFF-DC)  
C(TX-PARASTIC)  
T(jitter)  
120  
1.25  
Ω
TX input capacitance for return loss At package pins to AC GND  
Total Residual Jitter (peak to peak)  
pF  
ps  
12  
6.8 Electrical Characteristics, AC  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–45  
MAX  
UNIT  
Differential Cross talk between TX and  
RX Signal Pairs  
Xtalk  
at 2.5 Ghz, TX to RX  
dB  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
6.9 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
tIDLEEntry  
Delay from U0 to electrical idle.  
See Figure 2  
See Figure 2  
6
ns  
U1 exit time: break in electrical idle to the  
transmission of LFPS  
tIDLEExit_U1  
6
1
ns  
µs  
µs  
U2/U3 exit time: break in electrical idle to  
transmission of LFPS  
From the time when the far end  
terminations detected for both ports  
tIDLEExit_U2U3  
tIDLEExit_DISC  
U2/U3 exit time: break in electrical idle to  
transmission of LFPS  
From the time when the far end  
terminations detected for both ports  
2
tDIFF-DLY  
Differential propagation delay.  
See Figure 1  
225  
ps  
tPWRUPACTIVE  
Time when VCC reach 80% to device active  
30  
ms  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
20% to 80% of differential output. At  
device pins.  
tTX-RISE-FALL  
tRF-MISMATCH  
Transmitter rise/fall time (see Figure 3)  
80  
ps  
20% to 80% of differential output. At  
device pins  
Transmitter rise/fall mismatch  
2.3  
ps  
IN  
tDIFF_DLY  
tDIFF_DLY  
OUT  
Figure 1. Propagation Delay Timing  
VEID_TH  
IN+  
Vcm  
INœ  
tidleExit  
tidleEntry  
OUT+  
Vcm  
OUTœ  
Figure 2. Electrical Idle Mode Exit and Entry Delay Timing  
80%  
20%  
tr  
tf  
Figure 3. Output Rise and Fall Times  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
6.11 Typical Characteristics  
6.11.1 1-Inch Pre Channel  
880 mV  
5 Gbps  
Figure 4. Input Signal: 1-Inch Input Trace  
Figure 5. Output Signal: 12-Inches Output Trace  
Figure 6. Output Signal: 16-Inches Output Trace  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
6.11.2 24-Inch Pre Channel  
880 mV  
5 Gbps  
Figure 7. Input Signal: 24-Inch Input Trace  
Figure 9. Output Signal: 24-Inches Output Trace  
Figure 8. Output Signal: 12-Inches Output Trace  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
6.11.3 32-Inch Pre Channel  
880 mV  
5 Gbps  
Figure 10. Input Signal: 32-Inch Input Trace  
Figure 12. Output Signal: 24-Inches Output Trace  
Figure 11. Output Signal: 12-Inches Output Trace  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
TUSB542 is an active re-driver for USB 3.1 Gen1 applications; it supports Type-C applications, as well as  
switching between two Hosts and one device (or vice versa). The device is a dual channel USB 3.1 Gen1 (5  
Gbps) re-driver supporting systems with USB Type-C connectors. The TUSB542 can be controlled through the  
SEL, ideal to be controlled using an external Configuration Channel Logic or Power Delivery Controller to  
properly mux the signals in Type-C applications.  
When 5 Gbps Super Speed USB signals travel across a PCB or cable, signal integrity degrades due to loss and  
inter-symbol interference. The TUSB542 recovers incoming data by applying equalization that compensates for  
channel loss, and drives out signals with a high differential voltage. This extends the possible channel length,  
and enables systems to pass USB 3.1 compliance.  
The TUSB542 advanced state machine makes it transparent to hosts and devices. After power up, the TUSB542  
periodically performs receiver detection on the TX pair. If it detects a SS USB receiver, the RX termination is  
enabled, and the TUSB542 is ready to re-drive.  
The TUSB542 operates over the industrial temperature range of –40ºC to 85ºC in the 2 mm x 2.4 mm X2QFN  
package. The device ultra-low power architecture operates at a 1.8-V power supply. The automatic LFPS  
DeEmphasis control further enables the system to be USB 3.0 compliant. An advanced state machine inside the  
device monitors the USB SS traffic to perform enhanced power management to operate in no-connect, U2, U3  
and active modes.  
The USB Type-C connector is designed to allow insertion either upside-up or downside-up. The TUSB542  
supports this feature by routing the AP signals to one of two output channels. The SEL input control defines the  
way that the AP side signals is routed on the re-driver device side. Table 1 lists the active MUX configurations  
based on the SEL input.  
Table 1. USB SS MUX Control  
SEL  
H
Tx_Con_1  
TX_AP  
GND  
Rx_Con_1  
Tx_Con_2  
GND  
Rx_Con_2  
(1)  
RX_AP  
GND  
(1)  
L
GND  
TX_AP  
RX_AP  
(1) Terminated through 50 K (minimum) resistors  
The TUSB542 has flexible configurations to optimize the device using GPIO control pins. Figure 13 shows a  
typical signal chain for mobile applications. Channel 1 is between Application Processor (AP) and TUSB542,  
Channel 2 is between the TUSB542 redriver and the downstream device. The CNFG_A1 and CNFG_B1 pins  
provide signal integrity configuration settings for channel 1, while CNFG_A2 and CNFG_B2 pins control the  
operation of Channel 2. as depicted in Table 2.  
Main Board  
Flexible Cable + Sub-Board  
EQ_AP  
DE_CON  
OS_CON  
Ch. 1  
TUSB542  
Ch. 2  
EQ_CON  
DE_AP  
OS_AP  
Figure 13. Typical Channels  
The receiver (RX) of the device provides the flexibility of 0, 3, 6 and 9 dB of equalization, while the transmitter  
(TX) provides the options of 0, 3.5 or 6 dB De-Emphasis. The transmitter also supports output swing settings of  
900 mV and 1.1 V.  
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
Table 2. Device Signal Conditioning Configuration Settings for TUSB542  
Ch1 (AP-Redriver)  
Ch2 (Redriver-Conn)  
CNFG_A2 CNFG_B2  
DE_AP (dB)  
OS_AP (V)  
EQ_AP (dB)  
DE_Conn (dB)  
OS_Conn (V)  
EQ_Conn (dB)  
CNFG_A1  
CNFG_B1  
Low  
3.5  
3.5  
0
1.1  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
3
3
3
3
0
0
0
0
6
Low  
Float  
High  
Low  
6
3.5  
3.5  
6
1.1  
1.1  
0.9  
0.9  
1.1  
0.9  
1.1  
0.9  
1.1  
0
0
0
0
6
6
6
6
9
Low  
Float  
High  
Low  
Float  
High  
Low  
0
Float  
High  
Float  
High  
3.5  
.35  
0
Float  
High  
Low  
3.5  
3.5  
6
Low  
Float  
High  
0
Float  
High  
6
6
6
7.2 Functional Block Diagram  
VDD18  
TUSB542  
RX Det  
TX  
TX_CON_2  
DE_CON  
OS_CON  
TX_AP  
EQ  
LOS  
LOS  
EQ_AP  
EQ  
RX_CON_2  
SEL_TX  
EQ_CON  
RX Det  
TX  
TX_CON_1  
RX_CON_1  
RX_AP  
TX  
DE_CON  
OS_CON  
LOS  
RX Det  
DE_AP  
OS_AP  
EQ  
SEL_RX  
EQ_CON  
EQ_AP  
EQ_CON  
DE_AP  
CNFG_[Ax and Bx]  
Configuration  
Controller  
DE_CON  
OS_AP  
Advanced  
State Machine  
LFPS  
Controller  
OS_CON  
SEL  
SEL_TX  
SEL_RX  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
 
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Receiver Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TUSB542 receiver. The receiver overcomes these losses by providing gain to  
the high frequency components of the signals with respect to the low frequency components. The proper gain  
setting should be selected to match the channel insertion loss before the receiver input of the TUSB542.  
7.3.2 De-Emphasis Control and Output Swing  
The output differential drivers of the TUSB542 provide selectable De-Emphasis and output swing in order to  
achieve USB3.1 compliance, these options are configurable by means of 3-state control pins, and its available  
settings are listed on the Table 2. The level of de-emphasis required in the system depends on the channel  
length after the output of the re-driver. Figure 14 shows transmit bits with De-Emphasis.  
Transition Bit  
Consecutive Bits  
Transition Bit  
Consecutive Bits  
DE = 0 dB  
0.5 V  
DE =  
DE =  
œ
œ
3.5 dB  
6 dB  
VTX-DIFF-PP  
0 V  
DE =  
DE =  
œ
œ
6 dB  
3.5 dB  
DE = 0 dB  
œ 0.5 V  
0ps  
200ps  
400ps  
600ps  
800ps  
1000ps  
1200ps  
Figure 14. Transmitter Differential Voltage in Presence of De-Emphasis  
7.3.3 Automatic LFPS Detection  
The TUSB542 features an intelligent low frequency periodic signaling (LFPS) controller. The controller senses  
the low frequency signals and automatically disables the driver de-emphasis, for full USB3.1 compliance.  
7.3.4 Automatic Power Management  
The TUSB542 deploys RX detect, LFPS signal detection and signal monitoring to implement an automatic power  
management scheme to provide active, U2/U3 and disconnect modes. The automatic power management is  
driven by an advanced state machine, which is implemented to manage the device such that the re-driver  
operates smoothly in the links.  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
7.4 Device Functional Modes  
7.4.1 Disconnect Mode  
The Disconnect mode is the lowest power state of the TUSB542. In this state, the TUSB542 periodically checks  
for far-end receiver termination on both TX. Upon detection of the far-end receiver’s termination on both ports,  
the TUSB542 will transition to U0 mode.  
7.4.2 U Modes  
7.4.2.1 U0 Mode  
The U0 mode is the highest power state of the TUSB542. Anytime super-speed traffic is being received, the  
TUSB542 remains in this mode.  
7.4.2.2 U2/U3 Mode  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB542  
periodically performs far-end receiver detection.  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
TUSB542 is a USB 3.1 G1 5 Gbps super speed 1:2 or 2:1 redriver de-multiplexer/multiplexer for RX and TX  
differential pairs. The device is host/device side agnostic and can be used for host or device switching.  
8.2 Typical Applications, USB Type-C Port SS MUX  
TUSB542 is optimized for USB Type-C port. The device provide multiplexing to select appropriate super speed  
RX and TX signal pairs resulting from Type-C plug orientation flipping. A companion USB PD or CC controller  
provides the MUX selection. The device can be used part of UFP, DFP or DRP Type-C port. Figure 15 illustrates  
typical Type-C applications.  
Type-C  
Connector  
RX_AP  
TX_AP  
RX_CON_1  
TX_CON_1  
RX_CON_2  
TX_CON_2  
TUSB542  
SEL  
Host  
Processor  
(USB Device)  
CC1  
CC2  
CC/PD  
Controller  
Copyright © 2016, Texas Instruments Incorporate  
Figure 15. USB Type-C Host (Device) Application  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
Typical Applications, USB Type-C Port SS MUX (continued)  
8.2.1 Design Requirements  
For this design example, use the parameters shown in Table 3.  
The configured value depends on the physical channel (PCB layout) Equalization 0, 3, 6, 9 dB (5 Gbps) The  
configured value depends on the physical channel (PCB layout) De-Emphasis 0, –3.5, –6 dB The configured  
value depends on the physical channel (PCB layout) Differential impedance 72 - 120 Ω.  
Table 3. Design Parameters  
PARAMETER  
VALUE  
COMMENT  
VDD18  
1.8 V  
75-200nF range allowed.  
TUSB542 biases both input and output common mode  
voltage, hence ac-coupling caps as required on both  
sides.  
AC Coupling Capacitors for SS signals  
100 nF  
Note: TX pairs need to be biased at the connector.  
Pull-up/down resistor to control CNF pins  
Input voltage range  
4.7 kΩ  
100 mV to 1200 mV  
900 mV to 1100 mV  
Output voltage range  
8.2.2 Detailed Design Procedure  
Figure 16 shows an example implementation of a USB Type-C DRP port using TUSB542. Texas Instruments  
TUSB322 is shown here as channel configuration (CC) controller. Note connections for CNFG pins of TUSB542  
is example only. The connection of the CNFG pins is application dependent; refer to theTable 2, where the user  
can find the available settings.  
It is recommended to run an overall system signal integrity analysis, in order to estimate the channel loss and  
configure the re-driver. It is also recommended to have pull-up and pull-down option on the configuration pins for  
debug and testing purposes.  
The signal integrity analysis must determine the following:  
Equalization (EQ) setting  
De-Emphasis (DE) setting  
Output Swing Amplitude (OS) setting  
The equalization must be set based on the insertion loss in the pre-channel (channel before the TUSB542  
device). The input voltage to the device is able to have a large range because of the receiver sensitivity and the  
available EQ settings.  
The De-emphasis setting must be set based on the length and characteristics of the post channel (channel after  
the TUSB542 device).  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
 
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
SCL  
SDA  
USB VBUS Switch  
(Optional BC 1.2 Support for Legacy)  
DM_OUT  
DP_OUT  
DM  
DP  
DM_IN  
DP_IN  
VOUT  
System VBUS  
VIN  
EN  
PS_EN  
PS_FAULT#  
VBUS  
FAULT#  
I2C I/O  
1.8V or 3.3V  
VDD_5V  
DM  
DP  
VCONN  
Bulk Cap  
150µF  
100nF  
100µF  
VBUS  
A12  
B1  
900kO  
RXP2  
RXN2  
TXP 2  
TXN 2  
VBUS _DET  
A11  
A10  
A9  
B2  
B3  
B4  
B5  
B6  
4.7kO 4.7kO  
200kO  
200kO  
PORT  
INT_N/OUT3  
CC1  
CC2  
INT#  
A8  
CC2  
CC1  
USB3  
A7  
TUSB322  
ID  
ID  
SCL  
SDA  
and  
A6  
B7  
A5  
A4  
A3  
A2  
B8  
B9  
PMIC  
SCL / OUT2  
SDA / OUT1  
TXN1  
TXP1  
RXN1  
RXP1  
B10  
B11  
A1  
B12  
VDD18  
Note  
Connection Flip  
for CC1 and CC2  
VDD18  
47kO  
100nF  
SEL  
TXP2  
TXN2  
TX_CON_2+  
TX_CON_2–  
100nF  
RXP2  
RXN2  
100nF  
RX_CON_2+  
RX_CON_2–  
RX_AP+  
RX_AP–  
SSRXP  
SSRXN  
100nF  
100nF  
100nF  
TXN1  
TXP1  
TX_AP+  
TX_AP–  
SSTXP  
SSTXN  
TX_CON_1+  
TX_CON_1–  
100nF  
RXN1  
RXP1  
VDD18  
4.7kO  
100nF  
RX_CON_1+  
RX_CON_1–  
CNFG_A1  
CNFG_B1  
CNFG_A2  
CNFG_B2  
4.7kO  
Copyright © 2016, Texas Instruments Incorporated  
Figure 16. USB-C DRP Implementation Using TUSB542 and TUSB322/TUSB321  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
8.2.3 Application Curves  
1-ft SMA-SMP Cable  
1-ft SMP-SMA Cable  
TUSB542  
MP1800 BERT 5Gbps  
880mVpp PRBS7  
Intput PCB Trace  
Output PCB Trace  
DCAX35GHz BWPTB  
1-ft SMP-SMP Cable  
1-ft SMP-SMP Cable  
Figure 17. Measurement Setup  
Figure 19. Output Signal: 12 Inch Output Trace  
(Eye Diagram at the DCAX)  
Figure 18. Input Signal: 12 Inch Input Trace  
(Eye Diagram at the Re-driver input)  
Figure 20. Input Signal: 24 Inch Input Trace  
(Eye Diagram at the Re-driver input)  
Figure 21. Output Signal: 24 Inch Output Trace  
(Eye Diagram at the DCAX)  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
 
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
8.2.4 Typical Application: Switching USB SS Host or Device Ports  
TUSB542, being USB SS mux/demux, can be used for host or device switching. Figure 22 illustrates how the  
device can be used:  
RX_CON_1  
USB Host 1  
TX_CON_1  
(Device 1)  
RX_AP  
TX_AP  
USB  
Device  
(Host)  
TUSB542  
RX_CON_2  
TX_CON_2  
USB Host 2  
(Device 2)  
SEL  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. Muxing Two Host (Device) Port  
8.2.4.1 Design Requirements  
For this design example, use the design parameters shown in Table 4.  
The configured value depends on the physical channel (PCB layout) Equalization 0, 3, 6, 9 dB (5 Gbps) The  
configured value depends on the physical channel (PCB layout) De-Emphasis 0, –3.5, –6 dB The configured  
value depends on the physical channel (PCB layout) Differential impedance 72 - 120 Ω  
Table 4. Design Parameters  
PARAMETER  
VALUE  
COMMENT  
VDD18  
1.8 V  
75-200nF range allowed.  
TUSB542 biases both input and output common mode  
voltage, hence ac-coupling caps as required on both  
sides.  
AC Coupling Capacitors for SS signals  
100 nF  
Note: TX pairs need to be biased at the connector.  
Pull-up/down resistor to control CNF pins  
Input voltage range  
4.7 kΩ  
100 mV to 1200 mV  
900 mV to 1100 mV  
Output voltage range  
8.2.4.2 Detailed Design Procedure  
Figure 16 shows an example implementation of a USB Type-C DRP port using TUSB542. Texas Instruments  
TUSB322 is shown here as channel configuration (CC) controller. Note connections for CNFG pins of TUSB542  
is example only. The connection of the CNFG pins is application dependent; refer to the Table 2, where the user  
can find the available settings.  
It is recommended to run an overall system signal integrity analysis, in order to estimate the channel loss and  
configure the re-driver. It is also recommended to have pull-up and pull-down option on the configuration pins for  
debug and testing purposes.  
The signal integrity analysis must determine the following:  
Equalization (EQ) setting  
De-Emphasis (DE) setting  
Output Swing Amplitude (OS) setting  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
 
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
The equalization must be set based on the insertion loss in the pre-channel (channel before the TUSB542  
device). The input voltage to the device is able to have a large range because of the receiver sensitivity and the  
available EQ settings.  
The De-emphasis setting must be set based on the length and characteristics of the post channel (channel after  
the TUSB542 device).  
The output swing setting can also be configured based on the amplitude needed to pass the compliance test.  
This setting is also based on the length of interconnect or cable the TUSB542 is driving.  
Refer to the Table 2 for a detailed description on how to configure the CONFIG_A1/A2 and CONFIG_B1/A2  
terminals, in order to achieve the desired EQ, OS and DE settings.  
8.2.4.3 Application Curves  
For this design example, use the application curves shown in Application Curves.  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
TUSB542  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
TUSB542 has internal power on reset circuit to provide clean reset for state machine provided supply ramp and  
level recommendations are met.  
10 Layout  
10.1 Layout Guidelines  
RXP/N and TXP/N pairs should be routed with controlled 90-Ohm differential impedance (±15%).  
Keep away from other high speed signals.  
Intra-pair routing should be kept to within 2 mils.  
Length matching should be near the location of mismatch.  
Each pair should be separated at least by 3 times the signal trace width.  
The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left  
and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This will  
minimize any length mismatch causes by the bends and therefore minimize the impact bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding Test points will cause impedance discontinuity, and therefore; negatively impacts signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
10.2 Layout Example  
Figure 23. Example Layout  
22  
版权 © 2015–2017, Texas Instruments Incorporated  
TUSB542  
www.ti.com.cn  
ZHCSEG8E DECEMBER 2015REVISED JUNE 2017  
11 器件和文档支持  
11.1 文档支持  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我进行注册,即可收到任意产品  
信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2015–2017, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB542RWQR  
ACTIVE  
X2QFN  
RWQ  
18  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
54  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB542RWQR  
X2QFN  
RWQ  
18  
3000  
179.0  
8.4  
2.25  
2.65  
0.53  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
X2QFN RWQ 18  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
TUSB542RWQR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RWQ0018A  
X2QFN - 0.4 mm max height  
S
C
A
L
E
5
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
2.5  
2.3  
0.4 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.6  
1
0.1  
PKG  
(0.05)  
ALL AROUND  
5
9
EXPOSED  
THERMAL PAD  
14X 0.4  
4
10  
13  
2X  
SYMM  
2.05  
TYP  
1.2  
1.4 0.1  
1
0.25  
0.15  
18X  
18  
14  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
18X  
0.05  
1.65 TYP  
4221962/B 06/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWQ0018A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1)  
(R0.05) TYP  
18X (0.3)  
SYMM  
18  
14  
13  
1
18X (0.2)  
SYMM  
(0.45)  
(2.1)  
(1.4)  
14X (0.4)  
10  
4
(
0.2) TYP  
VIA  
5
9
(1.7)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221962/B 06/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWQ0018A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.95)  
(R0.05) TYP  
18X (0.3)  
18  
14  
1
13  
18X (0.2)  
SYMM  
(1.3)  
(2.1)  
14X (0.4)  
10  
4
METAL  
TYP  
5
9
SYMM  
(1.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4221962/B 06/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TUSB542RWQR

5Gbps USB 3.1 1 代 Type-C 2:1 多路复用器和线性转接驱动器 | RWQ | 18 | -40 to 85
TI

TUSB544

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器
TI

TUSB544IRNQR

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB544IRNQT

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB544RNQR

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB544RNQT

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85
TI

TUSB546-DCI

USB Type-C DP 交替模式线性转接驱动器交叉点开关
TI

TUSB546-DCIRNQR

USB Type-C DP 交替模式线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB546-DCIRNQT

USB Type-C DP 交替模式线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB546A-DCI

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关
TI

TUSB546A-DCIRNQR

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB546A-DCIRNQT

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI