TUSB544IRNQR [TI]

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85;
TUSB544IRNQR
型号: TUSB544IRNQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

驱动 驱动器
文件: 总64页 (文件大小:2008K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
TUSB544 USB TYPE-C™ 8.1 Gbps 多协议线性转接驱动器  
1 特性  
2 应用  
1
支持高达 8.1 Gbps 的协议无关正反两用式 4 通道  
线性转接驱动器。  
平板电脑  
笔记本电脑  
台式机  
带有 USB 3.1 1 代和 DisplayPort 1.4 作为交  
替模式的 USB Type-C。  
扩展坞  
支持集成有 USB 3.1 DisplayPort 多路复用器,  
适用于 Type-C 应用的处理器  
3 说明  
支持信号调节内部 Type-C 线缆  
TUSB544 是一种 USB Type-C 交替模式转接驱动器开  
关,可支持高达 8.1Gbps 的数据速率。此协议无关线  
性转接驱动器能够支持包括 VESA DisplayPort 在内的  
USB Type-C 交替模式接口。  
适用于 SBU 信号的交叉点多路复用器  
频率为 4.05GHz 时,支持高达 11dB 的线性均衡功  
用于通道方向和均衡的 GPIO I2C 控制  
TUSB544 提供多个接收线性均衡级别,用于补偿因线  
缆或电路板线迹损耗产生的码间串扰 (ISI)。该器件由  
3.3V 单电源供电运行,支持商业级温度范围和工业级  
温度范围。  
通过监控 USB 功耗状态和嗅探 DP 链路训练可实  
现高级电源管理  
可通过 GPIO I2C 进行配置  
支持热插拔  
3.3V 单电源  
TUSB544 的全部四个通道均为正反两用式,这使其成  
为可用于诸多应用的多用途 信号调节器。  
工业级温度范围:–40ºC 85ºC (TUSB544I)  
商业级温度范围:0ºC 70ºC (TUSB544)  
4mm × 6mm0.4mm 间距、40 引脚 QFN 封装  
器件信息(1)  
器件型号  
TUSB544  
TUSB544I  
封装  
封装尺寸(标称值)  
WQFN (40)  
4.00mm x 6.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
简化原理图  
D+/-  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
TUSB544  
USB/DP/  
Custom  
Source  
AUXp  
AUXn  
SBU1  
SBU2  
CTL  
0 1  
FLIP  
HPD  
Control  
CC1  
CC2  
USB PD  
Controller  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEZ0  
 
 
 
 
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 19  
7.5 Programming .......................................................... 33  
7.6 Register Maps ........................................................ 34  
Application and Implementation ........................ 43  
8.1 Application Information............................................ 43  
8.2 Typical Application ................................................. 43  
8.3 System Examples .................................................. 47  
Power Supply Recommendations...................... 54  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Power Supply Characteristics ................................... 7  
6.6 DC Electrical Characteristics .................................... 7  
6.7 AC Electrical Characteristics..................................... 8  
6.8 Timing Requirements.............................................. 10  
6.9 Switching Characteristics........................................ 10  
6.10 Typical Characteristics.......................................... 13  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
8
9
10 Layout................................................................... 55  
10.1 Layout Guidelines ................................................. 55  
10.2 Layout Example .................................................... 55  
11 器件和文档支持 ..................................................... 56  
11.1 文档支持 ............................................................... 56  
11.2 接收文档更新通知 ................................................. 56  
11.3 社区资源................................................................ 56  
11.4 ....................................................................... 56  
11.5 静电放电警告......................................................... 56  
11.6 术语表 ................................................................... 56  
12 机械、封装和可订购信息....................................... 56  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (November 2017) to Revision E  
Page  
更改了简化原理................................................................................................................................................................... 1  
Changes from Revision C (October 2017) to Revision D  
Page  
更改了说明 部分第二段中的文本,将“..因码间串扰 (ISI) 产生的线缆或电路板迹线损耗更改成了“..因线缆或电路板线  
迹损耗产生的码间串扰 (ISI)” ............................................................................................................................................... 1  
Changed Pin 2 and Pin 35 text From: "When I2C_EN !=0,.." To: "In I2C mode,.." in the Pin Functions............................... 4  
Changed Pin 14 text From: "..levels for the GPIO configuration.." To: "..levels for the 2-level GPIO configuration.." in  
the Pin Functions.................................................................................................................................................................... 5  
Changed Pin 17 in the text From: 0 = GPIO Mode (I2C disabled) To: 0 = GPIO Mode AUX Snoop enabled (I2C  
disabled) in the Pin Functions ................................................................................................................................................ 5  
Changed Pins 21, 22, and 23 From: "When I2C_EN !=0,.." To: "In GPIO mode,.." in the Pin Functions.............................. 5  
Removed "When I2C_EN = 0" from pin 32. .......................................................................................................................... 5  
In pin 32, changed 2ms to tCTL1_DEBOUNCE ............................................................................................................................... 5  
From: DEQ1 sets the high-frequency equalizer gain for downstream facing URX1, URX2, UTX1, UTX2 receivers.  
To: DEQ1 sets the high-frequency equalizer gain for downstream facing DRX1, DRX2, DTX1, DTX2 receivers ............... 5  
Deleted the MAX value of 10 ms from tCTL1_DEBOUNCE in the Switching Characteristics ....................................................... 10  
Added test Condition " DP lanes will be disabled if low for greater than min value" for tCTL1_DEBOUNCE in the Switching  
Characteristics...................................................................................................................................................................... 10  
Changed text From: "There is an internal 30 kpull-up and a 94kpull-down." To: "There are internal pull-up and a  
pull-down resisters." in 4-Level Inputs.................................................................................................................................. 18  
Changed text From: "..when I2C_EN = “0”." To: "..when I2C_EN = “0” or "F"." in the first paragraph of Device  
Configuration in GPIO Mode ................................................................................................................................................ 19  
Changed 4 ....................................................................................................................................................................... 21  
Changed text From: "..when I2C_EN is not equal to “0”." To: "..when I2C_EN is equal to “1”. " in Device  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
Configuration in I2C Mode.................................................................................................................................................... 28  
Changed text From: "When I2C_EN is ‘0’,.." To: :In I2C mode,.." in DisplayPort Mode...................................................... 29  
Changed text From: "When I2C_EN is ‘0’,.." To: :In GPIO mode,.." in Custom Alternate Mode ......................................... 29  
Deleted the Cable Mode section and all "cable mode" from datasheet. ............................................................................. 29  
Changed Table 12 ................................................................................................................................................................ 35  
Changed Bit 5-2 Type From: R/WU To: R/W in Table 15 .................................................................................................... 36  
Changed Bit 7-0 Type From: R/WU To: R/W in Figure 25 and Table 16............................................................................. 37  
Changed Bit 7-0 Type From: R/WU To: R/W in Figure 26 and Table 17............................................................................. 37  
Changed Bit 6-0 Type From: RU To: RH in Figure 27 and Table 18................................................................................... 38  
Changed Figure 29 and Table 20......................................................................................................................................... 40  
Changed Bit 7-0 Type From: R/WU To: R/W in Figure 30 and Table 21............................................................................. 40  
Changed Bit 3-0 Type From: R/WU To: R/W in Figure 31 and Table 22............................................................................. 41  
Changed bit 7 From: R/WU To: RH in Figure 32 and Table 23 ........................................................................................... 41  
USB3.1_# register default changed to 4h from 0h. .............................................................................................................. 41  
Changed USB3.1_4 register default to 23h from 00h. ........................................................................................................ 42  
Changed SBU1, and SBU2 pin labels on the Sink side of 40 ......................................................................................... 48  
Changed SBU1, and SBU2 pin labels on the Sink side of 41 ......................................................................................... 49  
Changed SBU1, and SBU2 pin labels on the Sink side of 42 ......................................................................................... 49  
Changed SBU1, and SBU2 pin labels on the Sink side of 48 ......................................................................................... 52  
Changed SBU1, and SBU2 pin labels on the Sink side of 49 ......................................................................................... 53  
Changed SBU1, and SBU2 pin labels on the Sink side of 50 ......................................................................................... 53  
Changes from Revision B (Mayl 2017) to Revision C  
Page  
Changed Tcfg_su From: 350 ms To: 350 µs in 9................................................................................................................ 33  
Changes from Revision A (April 2017) to Revision B  
Page  
Added a MIN value of 0.5 pF to CI_I2C in the DC Electrical Characteristics table .................................................................. 8  
Changed VRX-DC-CM, deleted the MIN and MAX values and added TYP = 0 V in the AC Electrical Characteristics table...... 8  
Changed EQSS Description From: "Receiver equalization" To: "Receiver equalization at maximum setting" in the AC  
Electrical Characteristics table ............................................................................................................................................... 8  
Changed EQSS From: MAX = 9.8 dB To: MAX = 9 dB in the AC Electrical Characteristics table ......................................... 8  
Changed VTX-DC-CM, deleted the MIN and MAX values and added TYP = 1.75 V in the AC Electrical Characteristics table. 8  
Changed RLTX-DIFF From: TYP = -14 dB To: TYP = -13 dB in the AC Electrical Characteristics table................................... 9  
Changed RLTX-CM From: TYP = -13 dB To: TYP = -11 dB in the AC Electrical Characteristics table .................................... 9  
Changed GLF From: MAX = 2.5 dB To: MAX = 1 dB in the AC Electrical Characteristics table ............................................ 9  
Changed VIC, deleted the MIN and MAX values and added TYP = 0 V in the AC Electrical Characteristics table............... 9  
Changed the EQDP entry in the AC Electrical Characteristics table....................................................................................... 9  
Changed VTX(DC-CM), deleted the MIN and MAX values and added TYP = 1.75 V in the AC Electrical Characteristics table 9  
Changed the tIDLEExit_DISC value From: TYP = 10 µs To TYP = 15 ms in the Timing Requirements table............................ 10  
Changed the tCTL1_DEBOUNCE value From: MIN = 2 ms To: MIN = 3 ms in the Switching Characteristics table ................... 10  
Changes from Original (April 2017) to Revision A  
Page  
Changed SBU1, SBU2, AUXn, and AUXp pin labels on the Sink side of 45 .................................................................. 51  
Changed SBU1, SBU2, AUXn, and AUXp pin labels on the Sink side of 46 .................................................................. 51  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
RNQ Package  
40-Pin (WQFN)  
Top View  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
UEQ1/A1  
CFG0  
2
3
SBU1  
SBU2  
CFG1  
SWAP  
VCC  
4
5
6
7
8
AUXn  
Thermal  
Pad  
AUXp  
CTL1  
SLP_S0#  
DIR0  
CTL0/SDA  
FLIP/SCL  
Not to scale  
Pin Functions  
PIN  
NAME  
VCC  
I/O  
DESCRIPTION  
NO.  
1
P
3.3 V Power Supply  
This pin along with UEQ0 sets the high-frequency equalizer gain for upstream facing URX1, URX2, UTX1,  
UTX2 receivers. Up to 9.4 dB of EQ available. In I2C mode, this pin will also set TUSB544 I2C address.  
Refer to 10.  
2
UEQ1/A1  
4 Level I  
CFG0. This pin along with CFG1 will select VOD linearity range and DC gain for all the downstream and  
upstream channels. Refer to 8 for VOD linearity range and DC gain options.  
3
4
CFG0  
CFG1  
4 Level I  
4 Level I  
CFG1. This pin along with CFG0 will set VOD linearity range and DC gain for all the downstream and  
upstream channels. Refer to 8 for VOD linearity range and DC gain options.  
This pin swaps all the channel directions and EQ settings of downstream facing and upstream facing data  
path inputs.  
0 – Do not swap channel directions and EQ settings (Default)  
1. – Swap channel directions and EQ settings.  
5
6
SWAP  
VCC  
2 Level I  
P
3.3V Power Supply  
This pin when asserted low will disable Receiver Detect functionality. While this pin is low and TUSB544 is  
in U2/U3, TUSB544 will disable LOS and LFPS detection circuitry and RX termination for both channels  
will remain enabled. If this pin is low and TUSB544 is in Disconnect state, the RX detect functionality will  
be disabled and RX termination for both channels will be disabled.  
0 – RX Detect disabled  
7
8
SLP_S0#  
2 Level I  
1 – RX Detect enabled (Default)  
This pin along with DIR1 sets the data path signal direction format. Refer to 4 for signal direction  
formats.  
DIR0  
2 Level I  
9
URX2p  
URX2n  
Diff I/O  
Diff I/O  
Differential positive input/output for upstream facing RX2 port.  
Differential negative input/output for upstream facing RX2 port.  
10  
This pin along with DIR0 sets the data path signal direction format. Refer to 4 for signal direction  
formats.  
11  
DIR1  
2 Level I/O  
12  
13  
UTX2p  
UTX2n  
Diff I/O  
Diff I/O  
Differential positive input/output for upstream facing TX2 port.  
Differential negative input/output for upstream facing TX2 port.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
This pin selects I/O voltage levels for the 2-level GPIO configuration pins and the I2C interface:  
0 = 3.3-V configuration I/O voltage, 3.3-V I2C interface (Default)  
R = 3.3-V configuration I/O voltage, 1.8-V I2C interface  
14  
VIO_SEL  
4 Level I/O  
F = 1.8-V configuration I/O voltage, 3.3-V I2C interface  
1 = 1.8-V configuration I/O voltage, 1.8-V I2C interface.  
15  
16  
UTX1n  
UTX1p  
Diff I/O  
Diff I/O  
Differential negative input/output for upstream facing TX1 port.  
Differential positive input/output for upstream facing TX1 port.  
I2C Programming or Pin Strap Programming Select.  
0 = GPIO Mode AUX Snoop enabled (I2C disabled)  
R = TI Test Mode (I2C enabled)  
F = GPIO Mode, AUX Snoop Disabled (I2C disabled)  
1 = I2C enabled.  
17  
I2C_EN  
4 Level I  
18  
19  
20  
URX1n  
URX1p  
VCC  
Diff I/O  
Diff I/O  
P
Differential negative input/output for upstream facing RX1 port.  
Differential positive input/output for upstream facing RX1 port.  
3.3V Power Supply  
2 Level I  
(Failsafe)  
In GPIO mode, this is Flip control pin, otherwise this pin is I2C clock.  
21  
22  
FLIP/SCL  
2 Level I  
(Failsafe)  
In GPIO mode, this is a USB3.1 Switch control pin, otherwise this pin is I2C data.  
CTL0/SDA  
DP Alt mode Switch Control Pin. In GPIO mode, this pin will enable or disable DisplayPort functionality.  
Otherwise DisplayPort functionality is enabled and disabled through I2C registers.  
L = DisplayPort Disabled.  
H = DisplayPort Enabled.  
In I2C mode, this pin is not used by device.  
2 Level I  
(PD)  
23  
24  
CTL1  
AUXp  
AUXp. DisplayPort AUX positive I/O connected to the DisplayPort source or sink through an AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 100-kΩ resistor to GND between  
the AC coupling capacitor and the AUXp pin if the TUSB544 is used on the DisplayPort source side, or a  
1-MΩ resistor to DP_PWR (3.3V) between the AC coupling capacitor and the AUXp pin if TUSB544 is  
used on the DisplayPort sink side. This pin along with AUXn is used by the TUSB544 for AUX snooping  
and is routed to SBU1/2 based on the orientation of the Type-C plug.  
I/O,  
CMOS  
AUXn. DisplayPort AUX I/O connected to the DisplayPort source or sink through an AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 100-kΩ resistor to DP_PWR (3.3V)  
between the AC coupling capacitor and the AUXn pin if the TUSB544 is used on the DisplayPort source  
side, or a 1-MΩ resistor to GND between the AC coupling capacitor and the AUXn pin if TUSB544 is used  
on the DisplayPort sink side. This pin along with AUXp is used by the TUSB544 for AUX snooping and is  
routed to SBU1/2 based on the orientation of the Type-C plug.  
I/O,  
CMOS  
25  
AUXn  
SBU2. When the TUSB544 is used on the DisplayPort source side, this pin should be DC coupled to the  
SBU2 pin of the Type-C receptacle. When the TUSB544 is used on the DisplayPort sink side, this pin  
should be DC coupled to the SBU1 pin of the Type-C receptacle. A 2-MΩ resistor to GND is also  
recommended.  
I/O,  
CMOS  
26  
27  
SBU2  
SBU1  
SBU1. When the TUSB544 is used on the DisplayPort source side, this pin should be DC coupled to the  
SBU1 pin of the Type-C receptacle. When the TUSB544 is used on the DisplayPort sink side, this pin  
should be DC coupled to the SBU2 pin of the Type-C receptacle. A 2-MΩ resistor to GND is also  
recommended.  
I/O,  
CMOS  
28  
29  
VCC  
P
3.3V Power Supply  
This pin along with DEQ0 sets the high-frequency equalizer gain for downstream facing DRX1, DRX2,  
DTX1, DTX2 receivers.  
DEQ1  
4 Level I  
Up to 11 dB of EQ available.  
30  
31  
DRX1p  
DRX1n  
Diff I/O  
Diff I/O  
Differential positive input/output for downstream facing RX1 port.  
Differential negative input/output for downstream facing RX1 port.  
This pin is an input for Hot Plug Detect received from DisplayPort sink. When HPDIN is low for greater  
than tCTL1_DEBOUNCE, all DisplayPort lanes are disabled and AUX to SBU switch will remain closed.  
32  
HPDIN  
2 Level I (PD)  
33  
34  
DTX1p  
DTX1n  
Diff I/O  
Diff I/O  
Differential positive input/output for downstream facing TX1 port.  
Differential negative input/output for downstream facing TX1 port.  
This pin along with UEQ1 sets the high-frequency equalizer gain for upstream facing URX1, URX2, UTX1,  
UTX2 receivers. Up to 9.4 dB of EQ available. In I2C mode, this pin will also set TUSB544 I2C address.  
Refer to 10.  
35  
UEQ0/A0  
4 Level I  
36  
37  
DTX2n  
DTX2p  
Diff I/O  
Diff I/O  
Differential negative input/output for downstream facing TX2 port.  
Differential positive input/output for downstream facing TX2 port.  
This pin along with DEQ1 sets the high-frequency equalizer gain for downstream facing DRX1, DRX2,  
38  
DEQ0  
4 Level I  
DTX1, DTX2 receivers.  
Up to 11 dB of EQ available.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
39  
NAME  
DRX2n  
Diff I/O  
Diff I/O  
GND  
Differential negative input/output for downstream facing RX2 port.  
Differential positive input/output for downstream facing RX2 port.  
Ground  
40  
DRX2p  
Thermal Pad  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage  
VCC  
–0.3  
4
V
Differential voltage between positive and  
negative inputs  
–2.5  
2.5  
V
Voltage Range at any input or output pin  
Voltage at differential inputs  
CMOS Inputs  
–0.5  
–0.5  
VCC + 0.5  
VCC + 0.5  
125  
V
V
Maximum junction temperature, TJ  
Storage temperature ,TSTG  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±6  
kV  
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
100  
3.6  
100  
70  
UNIT  
V
Main power supply  
3
3.3  
VCC  
Supply ramp requirement  
ms  
V
VI2C  
Supply that external resistors on SDA and SCL are pulled up to.  
Supply Noise on VCC terminals  
1.70  
VPSN  
mV  
°C  
TUSB544  
Operating free-air temperature  
0
TA  
TUSB544I  
–40  
85  
°C  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
6.4 Thermal Information  
TUSB544  
THERMAL METRIC(1)  
RNQ (QFN)  
40 PINS  
37.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
20.7  
9.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.4  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN1 data transmission.  
EQ control pins = NC, K28.5 pattern at 5  
Gbps, VID = 1000 mVp-p ; VOD Linearity =  
900 mVp-p; CTL1 = L; CTL0 = H  
Average active power  
USB Only  
PCC-ACTIVE-USB  
297  
mW  
Link in U0 with GEN1 data transmission.  
EQ control pins = NC, K28.5 pattern at 5  
Gbps, VID = 1000 mVp-p; VOD Linearity =  
900 mVp-p; CTL1 = H; CTL0 = H  
Average active power  
USB + 2 Lane DP  
PCC-ACTIVE-USB-DP1  
578  
578  
mW  
mW  
Link in U0 with GEN1 data transmission.  
EQ control pins = NC, K28.5 pattern at 5  
Gbps, VID = 1000 mVp-p; VOD Linearity =  
900 mVp-p; CTL1 = H; CTL0 = H  
Average active power  
USB + 2 Channel  
Custom Alt Mode  
PCC-ACTIVE-USB-CUSTOM  
Four active DP lanes operating at 8.1  
Gbps; EQ control pins = NC, K28.5 pattern  
at 5 Gbps, VID = 1000 mVp-p; VOD  
Linearity = 900 mVp-p; CTL1 = H; CTL0 =  
L;  
Average active power  
4 Lane DP Only  
PCC-Active-DP  
564  
2.5  
mW  
mW  
No GEN1 device is connected to  
TXP/TXN; CTL1 = L; CTL0 = H;  
PCC-NC-USB  
Average power with no connection  
Link in U2 or U3 USB Mode Only; CTL1 =  
L; CTL0 = H;  
PCC-U2U3  
Average power in U2/U3  
Device Shutdown  
2.0  
mW  
mW  
PCC-SHUTDOWN  
CTL1 = L; CTL0 = L; I2C_EN = 0;  
0.65  
6.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-State CMOS Inputs(UEQ[1:0];DEQ[1:0], CFG[1:0], A[1:0], I2C_EN, VIO_SEL)  
IIH  
IIL  
High level input current  
Low level input current  
Threshold 0 / R  
VCC = 3.6 VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
VCC = 3.3 V  
20  
80  
µA  
µA  
V
–160  
–40  
0.55  
1.65  
2.7  
35  
4-Level VTH  
Threshold R/ Float  
VCC = 3.3 V  
V
Threshold Float / 1  
VCC = 3.3 V  
V
RPU  
RPD  
Internal pull-up resistance  
Internal pull-down resistance  
kΩ  
kΩ  
95  
2-State CMOS Input (CTL0, CTL1, FLIP, HPDIN, SLP_S0#, SWAP, DIR[1:0]).  
VIH  
VIL  
RPD  
IIH  
High-level input voltage  
0.7×VIO  
0
3.6  
V
Low-level input voltage  
0.3×VIO  
V
Internal pull-down resistance for CTL1  
High-level input current  
500  
k  
µA  
µA  
VIN = 3.6 V  
–25  
–25  
25  
25  
IIL  
Low-level input current  
VIN = GND, VCC = 3.6 V  
I2C Control Pins SCL, SDA  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
DC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
I2C_EN = 0  
0.7 x VI2C  
3.6  
0.3 x VI2C  
0.4  
VIL  
I2C_EN = 0  
0
0
V
VOL  
IOL  
I2C_EN = 0; IOL = 3 mA  
I2C_EN = 0; VOL = 0.4 V  
0.1 x VI2C < Input voltage < 3.3 V  
V
20  
mA  
µA  
pF  
II_I2C  
CI_I2C  
–10  
0.5  
10  
10  
6.7 AC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB Gen 1 Differential Receiver (UTX1P/N, UTX2P/N, DRX1P/N, DRX2P/N)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
Input differential peak-peak voltage  
swing linear dynamic range  
VRX-DIFF-PP  
2000  
0
mVpp  
Common-mode voltage bias in the  
receiver (DC)  
VRX-DC-CM  
RRX-DIFF-DC  
RRX-CM-DC  
V
Ω
Ω
Present after a GEN1 device is  
detected on receiver pins  
Differential input impedance (DC)  
72  
18  
120  
30  
Receiver DC common mode  
impedance  
Present after a GEN1 device is  
detected on receiver pins  
Present when no GEN1 device is  
detected on receiver pins. Measured  
over the range of 0-500mV with  
respect to GND.  
Common-mode input impedance with  
termination disabled (DC)  
ZRX-HIGH-IMP-DC-POS  
25  
kΩ  
Input differential peak-to-peak signal  
detect assert level  
At 5 Gbps, no loss at the input,  
PRBS7 pattern  
VSIGNAL-DET-DIFF-PP  
VRX-IDLE-DET-DIFF-PP  
VRX-LFPS-DET-DIFF-PP  
80  
60  
mV  
mV  
mV  
Input differential peak-to-peak signal  
detect de-assert Level  
At 5 Gbps, no loss at the input,  
PRBS7 pattern  
Low frequency periodic signaling  
(LFPS) detect threshold  
Below the minimum is squelched.  
100  
300  
VRX-CM-AC-P  
CRX  
Peak RX AC common-mode voltage  
RX input capacitance to GND  
Measured at package pin  
At 2.5 GHz  
150  
1
mV  
pF  
dB  
dB  
dB  
0.5  
–16  
–14  
–13  
50 MHz – 1.25 GHz at 90 Ω  
2.5 GHz at 90 Ω  
RLRX-DIFF  
Differential return Loss  
RLRX-CM  
EQSS  
Common-mode return loss  
50 MHz – 2.5 GHz at 90 Ω  
Receiver equalization at maximum  
setting  
UEQ[1:0] and  
DEQ[1:0]. at 2.5 GHz  
9
dB  
USB Gen 1 Differential Transmitter (DTX1P/N, DTX2P/N, URX1P/N, URX2P/N)  
VTX-DIFF-PP  
Transmitter dynamic differential voltage swing range.  
1600  
1.75  
mVPP  
mV  
VTX-RCV-DETECT  
Amount of voltage change allowed during receiver detection  
600  
600  
Transmitter idle common-mode voltage change while in U2/U3 and not actively  
transmitting LFPS  
VTX-CM-IDLE-DELTA  
VTX-DC-CM  
–600  
mV  
V
Common-mode voltage bias in the transmitter (DC)  
Max mismatch from Txp + Txn for both  
Tx AC common-mode voltage active  
VTX-CM-AC-PP-ACTIVE  
100  
10  
mVPP  
time and amplitude  
AC electrical idle differential peak-to-  
At package pins  
VTX-IDLE-DIFF-AC-PP  
VTX-IDLE-DIFF-DC  
0
0
mV  
mV  
mV  
peak output voltage  
DC electrical idle differential output  
voltage  
At package pins after low pass filter to  
remove AC component  
14  
VTX-CM-DC-ACTIVE-IDLE- Absolute DC common-mode voltage  
At package pin  
200  
between U1 and U0  
DELTA  
RTX-DIFF  
Differential impedance of the driver  
AC coupling capacitor  
75  
75  
120  
265  
Ω
CAC-COUPLING  
nF  
Measured with respect to AC ground  
over  
0–500 mV  
Common-mode impedance of the  
driver  
RTX-CM  
18  
30  
Ω
8
Copyright © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
AC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
dB  
ITX-SHORT  
RLTX-DIFF  
TX short circuit current  
TXP/N shorted to GND  
50 MHz – 1.25 GHz at 90 Ω  
2.5 GHz at 90 Ω  
67  
–16  
–13  
–11  
Differential return loss  
dB  
RLTX-CM  
Common-mode return loss  
50 MHz – 2.5 GHz at 90 Ω  
dB  
AC Characteristics  
Differential crosstalk between any  
signal pairs  
Crosstalk  
GLF  
at 4.05 GHz  
–30  
0
dB  
dB  
at 10 MHz, 200 mVPP < VID  
< 2000 mVPP; 0-dB low-frequency gain  
setting  
Low frequency voltage gain  
–1  
1
at 10 MHz, 200 mVPP < VID  
< 2000 mVPP; VOD linearity setting =  
1100mVPP  
Low frequency 1-dB compression  
point  
CP1dB-LF  
1100  
1200  
mVPP  
mVPP  
at 4.05 GHz, 200 mVPP < VID  
< 2000 mVPP; VOD linearity setting =  
1100mVPP  
High frequency 1-dB compression  
point  
CP1dB-HF  
fLF  
Low frequency cutoff  
200 mVPP< VID < 2000 mVPP  
25  
50  
kHz  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
0.05  
UIpp  
DJ  
TJ  
TX output deterministic jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
8.1 Gbps  
0.08  
0.08  
UIpp  
UIpp  
UIpp  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
TX output total jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
8.1 Gbps  
0.135  
DisplayPort Receiver UTX1P/N, UTX2P/N, URX1P/N, URX2P/N  
VID_PP Peak-to-peak input differential dynamic voltage range  
VIC  
2000  
0
mVpp  
V
Input common mode voltage  
CAC  
EQDP  
dR  
AC coupling capacitance  
75  
80  
200  
nF  
Receiver equalizer at maximum setting DEQ[1:0],UEQ[1:0] at 4.05 GHz  
9.5  
100  
dB  
Data rate  
HBR3  
8.1  
Gbps  
Ω
Rti  
Input termination resistance  
120  
DisplayPort Transmitter DTX1P/N, DTX2P/N, DRX1P/N, DRX2P/N  
VTX-DIFFPP  
VOD dynamic range  
1500  
1.75  
mV  
mA  
V
ITX-SHORT  
TX short circuit current  
TXP/N shorted to GND  
67  
VTX(DC-CM)  
Common-mode voltage bias in the transmitter (DC)  
AUXP/N and SBU1/2  
VCC = 3.3 V; VI = 0 to  
RON  
Output ON resistance  
0.4 V for AUXP;  
VI = 2.7 V to 3.6 V for AUXN  
5
10  
1
Ω
Ω
Ω
VCC = 3.3 V; VI = 0 to  
0.4V for AUXP;  
VI = 2.7V to 3.6V for AUXN  
ΔRON  
ON resistance mismatch within pair  
ON resistance flatness (RON max –  
RON min) measured at identical VCC  
and temperature  
VCC = 3.3 V; VI = 0 to  
0.4V for AUXP;  
VI = 2.7V to 3.6 V for AUXN  
RON_FLAT  
2
AUX Channel DC common mode  
voltage for AUXP and SBU1.  
VAUXP_DC_CM  
VAUXN_DC_CM  
CAUX_ON  
VCC = 3.3 V  
VCC = 3.3 V  
0
0.4  
3.6  
7
V
V
AUX Channel DC common mode  
voltage for AUXN and SBU2  
2.7  
VCC = 3.3V; CTL1 = 1;  
VI = 0V or 3.3V  
ON-state capacitance  
OFF-state capacitance  
4
3
pF  
pF  
VCC = 3.3V; CTL1 = 0;  
VI = 0V or 3.3V  
CAUX_OFF  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
9
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
6.8 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
USB Gen 2  
tIDLEEntry  
Delay from U0 to electrical idle  
See 4  
See 4  
10  
6
ns  
ns  
U1 exist time: break in electrical idle to  
the transmission of LFPS  
tIDELExit_U1  
tIDLEExit_U2U3  
tRXDET_INTVL  
tIDLEExit_DISC  
tExit_SHTDN  
tDIFF_DLY  
U2/U3 exit time: break in electrical idle to transmission of LFPS  
RX detect interval while in Disconnect  
Disconnect Exit Time  
10  
µs  
ms  
ms  
ms  
ps  
12  
15  
1
Shutdown Exit Time  
Differential Propagation Delay  
See 3  
300  
20%-80% of differential  
voltage measured 1 inch  
from the output pin  
tR, tF  
Output Rise/Fall time (see 5)  
40  
ps  
ps  
20%-80% of differential  
voltage measured 1 inch  
from the output pin  
tRF_MM  
Output Rise/Fall time mismatch  
2.6  
6.9 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
AUXP/N and SBU1/2  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tAUX_PD  
Switch propagation delay  
400  
500  
ps  
ns  
Switching time CTL1 to switch  
OFF  
tAUX_SW_OFF  
Not including tCTL1_DEBOUNCE  
tAUX_SW_ON  
tAUX_INTRA  
Switching time CTL1 to switch ON  
Intra-pair output skew  
500  
100  
ns  
ps  
USB3.1 and DisplayPort mode transition requirement GPIO mode  
Min overlap of CTL1 and CTL1 when transitioning from USB 3.1 only  
mode to 4-Lane DisplayPort mode or vice versa.  
tGP_USB_4DP  
4
3
µs  
CTL1 and HPDIN  
tCTL1_DEBOUNCE  
CTL1 and HPDIN debounce time DP Lanes will be disabled if low  
ms  
when transitioning from H to L.  
for greater than min value.  
I2C (Refer to 1)  
fSCL  
tBUF  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
Hold time after repeated START After this period, the first clock  
tHDSTA  
0.26  
µs  
condition.  
pulse is generated  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Low period of the I2C clock  
High period of the I2C clock  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
μs  
ns  
ns  
ns  
μs  
pF  
Setup time for a repeated START condition  
Data hold time  
Data setup time  
50  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
Capacitive load for each bus line  
120  
120  
tF  
20 × (VI2C/5.5 V)  
0.26  
tSUSTO  
Cb  
100  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
70%  
30%  
SDA  
t
t
t
F
HDSTA  
R
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
P
S
P
S
t
t
t
t
SUDAT  
HDDAT  
SUSTO  
HDSTA  
t
SUSTA  
1. I2C Timing Diagram Definitions  
4us  
(min)  
CTL1 pin  
CTL0 pin  
2. USB3.1 to 4-Lane DisplayPort in GPIO Mode  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
3. Propagation Delay  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
4. Electrical Idle Mode Exit and Entry Delay  
80%  
20%  
t
r
t
f
5. Output Rise and Fall Times  
50%  
50%  
CTL1  
OUT  
90%  
10%  
V
T
AUX_SW_ON  
T
+ T  
CTL1_DEBOUNCE  
AUX_SW_OFF  
6. AUX and SBU Switch ON and OFF Timing Diagram  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
6.10 Typical Characteristics  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-10  
-15  
-20  
-25  
-30  
-35  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (GHz)  
Frequency (GHz)  
D001  
D002  
7. Input Return Loss Performance of the Downstream  
8. Output Return Loss Performance of the Downstream  
Ports  
Ports  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (GHz)  
Frequency (GHz)  
D003  
D004  
9. Input Return Loss Performance of the Upstream Ports  
10. Output Return Loss Performance of the Upstream  
Ports  
1800  
1600  
1400  
1200  
1000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
EQ 0  
EQ 2  
EQ 4  
EQ 6  
EQ 8  
EQ 10  
EQ 12  
EQ 15  
EQ 0  
EQ 2  
EQ 4  
EQ 6  
EQ 8  
EQ 10  
EQ 12  
EQ 15  
800  
600  
400  
200  
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Differential Input Voltage (mVpp)  
Differential Input Voltage (mVpp)  
D010  
D008  
2.5 GHz  
4.05 GHz  
11. Downstream-to-Upstream Linearity Performance at  
12. Downstream-to-Upstream Linearity Performance at  
2.5 GHz  
4.05 GHz  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
EQ 0  
EQ 2  
EQ 4  
EQ 6  
EQ 8  
EQ 10  
EQ 12  
EQ 15  
EQ 0  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Differential Input Voltage (mVpp)  
Differential Input Voltage (mVpp)  
D009  
D010  
100 MHz  
2.5 GHz  
13. Downstream-to-Upstream Linearity Performance at  
14. Upstream-to-Downstream Linearity Performance at  
100 MHz  
2.5 GHz  
1600  
1400  
1200  
1000  
1600  
1400  
1200  
1000  
800  
800  
EQ 0  
EQ 2  
EQ 4  
600  
600  
EQ 6  
EQ 8  
EQ 10  
EQ 12  
EQ 15  
400  
200  
0
400  
200  
EQ 0  
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Differential Input Voltage (mVpp)  
D011  
D012  
4.05 GHz  
100 MHz  
15. Upstream-to-Downstream Linearity Performance at  
16. Upstream-to-Downstream Linearity Performance at  
4.05 GHz  
100 MHz  
Source  
Data Rate: 8.1 Gbps  
Data Pattern: PRBS7  
Swing: 1 Vpp  
Source  
Data Rate: 5 Gbps  
Swing: 1 Vpp  
Data Pattern: PRBS7  
Channel  
Settings  
Upstream-to-Downstream, 12 in 6 mil Input PCB  
Channel  
EQ Setting: 7 DC Gain Setting: 0 dB  
Linear Range Setting: 1100 mVpp  
Channel  
Settings  
Upstream-to-Downstream, 12 in 6 mil Input PCB  
Channel  
EQ Setting: 7  
DC Gain Setting: 0 dB  
Linear Range Setting: 1100 mVpp  
18. Output Eye-Pattern Performance at 8.1 Gbps  
17. Output Eye-Pattern Performance at 5 Gbps  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
Typical Characteristics (接下页)  
15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
10  
5
0
-5  
-10  
0.01  
0.1  
1
10  
20  
Frequency (GHz)  
D005  
19. Upstream-to-Downstream EQ Settings Curves  
15  
10  
5
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
0
-5  
-10  
0.01  
0.1  
1
10  
20  
Frequency (GHz)  
D006  
20. Downstream-to-Upstream EQ Settings Curves  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TUSB544 is a USB Type-C Alt Mode redriver switch supporting data rates up to 8.1 Gbps. This device  
implements 5th generation USB redriver technology. The device is utilized for configurations C, D, E, and F from  
the VESA DisplayPort Alt Mode on USB Type-C Standard. It can also be configured to support custom USB  
Type-C alternate modes.  
The TUSB544 provides several levels of receive equalization to compensate for cable and board trace loss due  
to inter-symbol interference (ISI) when USB 3.1 Gen 1 or DisplayPort (or other Alt modes) signals travel across a  
PCB or cable. This device requires a 3.3V power supply. It comes for both commercial temperature range and  
industrial temperature range operation.  
For host (source) or device (sink) applications the TUSB544 enables the system to pass both transmitter  
compliance and receiver jitter tolerance tests for USB 3.1 Gen 1 and DisplayPort version 1.4 HBR3. The re-driver  
recovers incoming data by applying equalization that compensates for channel loss, and drives out signals with a  
high differential voltage. Each channel has a receiver equalizer with selectable gain settings. Equalization control  
for upstream and downstream facing ports can be set using UEQ[1:0], and DEQ[1:0] pins respectively or through  
the I2C interface.  
Moreover, the CFG[1:0] or the equivalent I2C registers provide the ability to control the EQ DC gain and the  
voltage linearity range for all the channels (Refer to 8). This flexible control makes it easy to set up the device  
to pass various standard compliance requirements.  
The TUSB544 advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB544. periodically performs receiver detection on the TX pairs. If it detects a USB 3.1 Gen 1 receiver, the  
RX termination is enabled, and the TUSB544 is ready to re-drive.  
The TUSB544 provides extremely flexible data path signal direction control using the CTL[1:0], FLIP, DIR[1:0],  
and SWAP pins or through the I2C interface. Refer to 4 for detailed information on the input to output signal  
pin mapping.  
The device ultra-low-power architecture operates at a 3.3 V power supply and achieves enhanced performance.  
The automatic LFPS De-Emphasis control further enables the system to be USB 3.1 compliant.  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
7.2 Functional Block Diagram  
DRX2EQ_SEL  
Driver  
EQ  
URX2EQ_SEL  
URX2p  
CHANNEL 0  
URX2n  
DRX2p  
DRX2n  
Driver  
EQ  
EQ  
CHANNEL 0  
DTX2EQ_SEL  
DTX1EQ_SEL  
DRX1EQ_SEL  
Driver  
EQ  
UTX2EQ_SEL  
UTX2p  
DTX2p  
DTX2n  
Driver  
EQ  
EQ  
CHANNEL 1  
CHANNEL 1  
CHANNEL 2  
UTX2n  
Driver  
EQ  
UTX1EQ_SEL  
UTX1n  
CHANNEL 2  
UTX1p  
DTX1n  
DTX1p  
Driver  
EQ  
EQ  
Driver  
EQ  
URX1EQ_SEL  
URX1n  
CHANNEL 3  
URX1p  
DRX1n  
DRX1p  
Driver  
EQ  
EQ  
CHANNEL 3  
DTX[2:1]EQ_SEL  
DRX[2:1]EQ_SEL  
UTX[2:1]EQ_SEL  
URX[2:1]EQ_SEL  
UEQ1/A1  
UEQ0/A0  
I2C_EN  
DEQ[1:0]  
SWAP  
DIR[1:0]  
FSM, Control Logic &  
Registers  
FLIP/SCL  
CTL0/SDA  
CTL1  
I2C  
Slave  
SLP_S0#  
VIO_SEL  
CFG[1:0]  
M
U
X
SBU1  
SBU2  
AUXp  
AUXn  
VREG  
VCC  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 USB 3.1  
The TUSB544 supports USB 3.1 data rates up to 5 Gbps. The TUSB544 supports all the USB defined power  
states (U0, U1, U2, and U3). Because the TUSB544 is a linear redriver, it can’t decode USB3.1 physical layer  
traffic. The TUSB544 monitors the actual physical layer conditions like receiver termination, electrical idle, LFPS,  
and SuperSpeed signaling rate to determine the USB power state of the USB3.1 interface.  
The TUSB544 features an intelligent low frequency periodic signaling (LFPS) detector. The LFPS detector  
automatically senses the low frequency signals and disables receiver equalization functionality. When not  
receiving LFPS, the TUSB544 will enable receiver equalization based on the UEQ[1:0] and DEQ[1:0] pins or  
values programmed into UEQ[3:0]_SEL, and DEQ[3:0]_SEL registers.  
7.3.2 DisplayPort  
The TUSB544 supports up to 4 DisplayPort lanes at data rates up to 8.1Gbps (HBR3). The TUSB544, when  
configured in DisplayPort mode, monitors the native AUX traffic as it traverses between DisplayPort source and  
DisplayPort sink. For the purposes of reducing power, the TUSB544 will manage the number of active  
DisplayPort lanes based on the content of the AUX transactions. The TUSB544 snoops native AUX writes to  
DisplayPort sink’s DPCD registers 00101h (LANE_COUNT_SET) and 00600h (SET_POWER_STATE).  
TUSB544 will disable/enable lanes based on value written to LANE_COUNT_SET. The TUSB544 will disable all  
lanes when SET_POWER_STATE is in the D3. Otherwise active lanes will be based on value of  
LANE_COUNT_SET.  
DisplayPort AUX snooping is enabled by default but can be disabled by changing the AUX_SNOOP_DISABLE  
register. Once AUX snoop is disabled, management of TUSB544’s DisplayPort lanes are controlled through  
various configuration registers.  
7.3.3 4-Level Inputs  
The TUSB544 has (I2C_EN, UEQ[1:0], DEQ[1:0], CFG[1:0], and A[1:0]) 4-level inputs pins that are used to  
control the equalization gain, voltage linearity range, and place TUSB544 into different modes of operation.  
These 4-level inputs utilize a resistor divider to help set the 4 valid levels and provide a wider range of control  
settings. There are internal pull-up and a pull-down resisters. These resistors together with the external resistor  
connection combine to achieve the desired voltage level.  
1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 K5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 K5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 K5%to VCC  
.
1
Option 2: Tie directly to VCC  
.
All four-level inputs are latched on rising edge of internal reset. After Tcfg_hd, the internal  
pull-up and pull-down resistors will be isolated in order to save power.  
7.3.4 Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system. The receiver overcomes these losses by attenuating the low frequency components of the signals  
with respect to the high frequency components. The proper gain setting should be selected to match the channel  
insertion loss. Two 4-level input pins enable up to 16 possible equalization settings. The upstream path, and the  
downstream path each have their own two 4-level inputs for equalization settings; UEQ[1:0] and DEQ[1:0]  
respectively. The TUSB544 also provides the flexibility of adjusting equalization settings through I2C registers  
URX[2:1]EQ_SEL, UTX[2:1]EQ_SEL, DRX[2:1]EQ_SEL, and DTX[2:1]EQ_SEL for each individual channel and  
for each direction (upstream or downstream) .  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
7.4 Device Functional Modes  
7.4.1 Device Configuration in GPIO Mode  
The TUSB544 is in GPIO configuration when I2C_EN = “0” or "F". The TUSB544 supports operational  
combinations with USB and two different Type-C Alternate Modes.. One combination includes USB and Alternate  
Mode DisplayPort, and the other combination includes USB and custom Alternate Mode. For each operational  
combination the data path directions can be further set using the DIR[1:0] pins or through I2C to enable the  
device to operate in the source or sink sides. Please refer to 2 for all the configuration of all the operational  
modes.  
When the device is set to operate in a USB and Alternate Mode DisplayPort the following configurations can be  
further set: USB3.1 only, 2 DisplayPort lanes + USB3.1, or 4 DisplayPort lanes (no USB3.1). The CTL1 pin  
controls whether DisplayPort is enabled. The combination of CTL1 and CTL0 selects between USB3.1 only, 2  
lanes of DisplayPort, or 4-lanes of DisplayPort as detailed in 2. The AUXP/N to SBU1/2 mapping is controlled  
based on 3..  
When the device is set to operate in a USB and custom Alternate Mode the following configurations can be  
further set: USB3.1 only, 2 Channels of custom Alternate Mode + USB3.1, or 4 Channels of custom Alternate  
Mode (no USB3.1). The CTL1 pin controls whether custom Alternate Mode is enabled. The combination of CTL1  
and CTL0 selects between USB3.1 only, 2 channels of custom Alternate Mode, or 4 channels of custom  
Alternate Mode as detailed in 2. The AUXP/N to SBU1/2 mapping is controlled based on 3.  
Further data path direction control can be achieved using the SWAP pin. When set high, the SWAP pin reverses  
the data path direction on all the channels and swaps the equalization settings of the upstream and downstream  
facing input ports. This pin may be found useful in active cable application with TUSB544 installed on only one  
end. The SWAP pin can be set based on which cable end is plugged to the source or sink side receptacle  
After power-up (VCC from 0 V to 3.3 V), the TUSB544 will default to USB3.1 mode. The USB PD controller,  
upon detecting no device attached to Type-C port or USB3.1 operation not required by attached device, must  
take TUSB544 out of USB3.1 mode by transitioning the CTL0 pin from L to H and back to L.  
2. GPIO Configuration Control  
VESA DisplayPort ALT  
MODE  
DFP_D Configuration  
DIR1  
PIN  
DIR0  
PIN  
CTL1  
PIN  
CTL0  
PIN  
FLIP  
PIN  
TUSB544 CONFIGURATION  
USB + DisplayPort Alternate Mode (Source Side)  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
Power Down  
Power Down  
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
L
H
L
H
H
C and E  
C and E  
L
H
4 Lane DP – with Flip  
One Port USB 3.1 + 2 Lane DP- No  
Flip  
L
L
L
L
H
H
H
H
L
D and F  
D and F  
One Port USB 3.1 + 2 Lane DP– with  
Flip  
H
USB + DisplayPort Alternate Mode (Sink Side)  
L
L
L
L
L
L
H
H
H
H
H
H
L
L
L
L
L
H
L
Power Down  
Power Down  
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
4 Lane DP – With Flip  
L
H
L
H
H
C and E  
C and E  
L
H
One Port USB 3.1 + 2 Lane DP- No  
Flip  
L
L
H
H
H
H
H
H
L
D and F  
D and F  
One Port USB 3.1 + 2 Lane DP– With  
Flip  
H
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
2. GPIO Configuration Control (接下页)  
VESA DisplayPort ALT  
MODE  
DFP_D Configuration  
DIR1  
PIN  
DIR0  
PIN  
CTL1  
PIN  
CTL0  
PIN  
FLIP  
PIN  
TUSB544 CONFIGURATION  
USB + Custom Alternate Mode (Source Side)  
H
H
H
H
H
L
L
L
L
L
L
L
L
L
H
L
L
Power Down  
Power Down  
L
H
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Channel Custom Alt Mode - No Flip  
H
L
4 Channel Custom Alt Mode– With  
Flip  
H
H
H
L
L
L
H
H
H
L
H
L
One Port USB 3.1 + 2 Channel  
Custom Alt Mode- No Flip  
H
H
One Port USB 3.1 + 2 Channel  
Custom Alt Mode – With Flip  
H
USB + Custom Alternate Mode (Sink Side)  
H
H
H
H
H
H
H
H
H
H
L
L
L
L
H
L
L
Power Down  
Power Down  
-
-
-
-
-
L
H
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Channel Custom Alt Mode - No Flip  
H
L
4 Channel Custom Alt Mode– With  
Flip  
H
H
H
H
H
H
H
H
H
L
H
L
-
-
-
One Port USB 3.1 + 2 Channel  
Custom Alt Mode- No Flip  
H
H
One Port USB 3.1 + 2 Channel  
Custom Alt Mode – With Flip  
H
3. GPIO AUXP/N to SBU1/2 Mapping  
CTL1 pin  
FLIP pin  
Mapping  
AUXP -> SBU1  
AUXN -> SBU2  
H
L
AUXP -> SBU2  
AUXN -> SBU1  
H
H
X
L > 2ms  
Open  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
details the TUSB544 mux routing. This table is valid for GPIO mode. This table is also valid for I2C mode for the  
case where CH_SWAP_SEL = 4'b0000 or 4'b1111.  
4. INPUT to OUTPUT Mapping  
SWAP = L  
From  
SWAP = H  
From  
From  
To  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
PIN PIN  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
USB + DisplayPort Alternate Mode (Source Side)  
L
L
L
L
L
L
L
L
L
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
H
URX1P  
(SSRXP)  
URX1P  
(SSTXP)  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX1P  
DRX1N  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX1P  
DRX1N  
URX1N  
(SSRXN)  
URX1N  
(SSTXN)  
L
L
L
H
L
UTX1P  
(SSTXP)  
UTX1P  
(SSRXP)  
DTX1P  
DTX1N  
DTX1P  
DTX1N  
UTX1N  
(SSTXN)  
UTX1N  
(SSRXN)  
URX2P  
(SSRXP)  
URX2P  
(SSTXP)  
DRX2P  
DRX2N  
DRX2P  
DRX2N  
URX2N  
(SSRXN)  
URX2N  
(SSTXN)  
L
L
L
H
H
UTX2P  
(SSTXP)  
UTX2P  
(SSRXP)  
DTX2P  
DTX2N  
DRX2P  
DRX2N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DRX1P  
DRX1N  
DTX2P  
DTX2N  
DRX2P  
DRX2N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DRX1P  
DRX1N  
UTX2N  
(SSTXN)  
UTX2N  
(SSRXN)  
URX2P  
(DP0P)  
URX2P  
(DP0P)  
URX2N  
(DP0N)  
URX2N  
(DP0N)  
UTX2P  
(DP1P)  
UTX2P (DP1P)  
UTX2N  
(DP1N)  
UTX2N  
(DP1N)  
L
L
H
L
L
UTX1P  
(DP2P)  
UTX1P (DP2P)  
UTX1N  
(DP2N)  
UTX1N  
(DP2N)  
URX1P  
(DP3P)  
URX1P  
(DP3P)  
URX1N  
(DP3N)  
URX1N  
(DP3N)  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
4. INPUT to OUTPUT Mapping (接下页)  
SWAP = L  
SWAP = H  
From  
From  
From  
To  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
PIN  
PIN  
URX1P  
(DP0P)  
URX1P  
(DP0P)  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX1P  
DRX1N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DRX2P  
DRX2N  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX1P  
DRX1N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DRX2P  
DRX2N  
URX1N  
(DP0N)  
URX1N  
(DP0N)  
UTX1P  
(DP1P)  
UTX1P (DP1P)  
UTX1N  
(DP1N)  
UTX1N  
(DP1N)  
L
L
L
L
H
L
H
H
H
UTX2P  
(DP2P)  
UTX2P (DP2P)  
UTX2N  
(DP2N)  
UTX2N  
(DP2N)  
URX2P  
(DP3P)  
URX2P  
(DP3P)  
URX2N  
(DP3N)  
URX2N  
(DP3N)  
URX1P  
(SSRXP)  
URX1P  
(SSTXP)  
DRX1P  
DRX1N  
DRX1P  
DRX1N  
URX1N  
(SSRXN)  
URX1N  
(SSTXN)  
UTX1P  
(SSTXP)  
UTX1P  
(SSRXP)  
DTX1P  
DTX1N  
DRX2P  
DRX2N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DRX2P  
DRX2N  
DTX2P  
DTX2N  
UTX1N  
(SSTXN)  
UTX1N  
(SSRXN)  
L
H
L
URX2P  
(DP0P)  
URX2P  
(DP0P)  
URX2N  
(DP0N)  
URX2N  
(DP0N)  
UTX2P  
(DP1P)  
UTX2P (DP1P)  
UTX2N  
(DP1N)  
UTX2N  
(DP1N)  
URX2P  
(SSRXP)  
URX2P  
(SSTXP)  
DRX2P  
DRX2N  
DRX2P  
DRX2N  
URX2N  
(SSRXN)  
URX2N  
(SSTXN)  
UTX2P  
(SSTXP)  
UTX2P  
(SSRXP)  
DTX2P  
DTX2N  
DRX1P  
DRX1N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DRX1P  
DRX1N  
DTX1P  
DTX1N  
UTX2N  
(SSTXN)  
UTX2N  
(SSRXN)  
L
H
H
URX1P  
(DP0P)  
URX1P  
(DP0P)  
URX1N  
(DP0N)  
URX1N  
(DP0N)  
UTX1P  
(DP1P)  
UTX1P (DP1P)  
UTX1N  
(DP1N)  
UTX1N  
(DP1N)  
USB + DisplayPort Alternate Mode (Sink Side)  
L
L
H
H
L
L
L
L
L
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
H
22  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
4. INPUT to OUTPUT Mapping (接下页)  
SWAP = L  
SWAP = H  
From  
From  
To  
From  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
PIN  
PIN  
DTX2P  
(SSRXP)  
DTX2P  
(SSTXP)  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UTX2P  
UTX2N  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UTX2P  
UTX2N  
DTX2N  
(SSRXN)  
DTX2N  
(SSTXN)  
L
H
L
H
L
DRX2P  
(SSTXP)  
DRX2P  
(SSRXP)  
URX2P  
URX2N  
URX2P  
URX2N  
DRX2N  
(SSTXN)  
DRX2N  
(SSRXN)  
DTX1P  
(SSRXP)  
DTX1P  
(SSTXP)  
UTX1P  
UTX1N  
UTX1P  
UTX1N  
DTX1N  
(SSRXN)  
DTX1N  
(SSTXN)  
L
H
L
H
H
DRX1P  
(SSTXP)  
DRX1P  
(SSRXP)  
URX1P  
URX1N  
URX1P  
URX1N  
DRX1N  
(SSTXN)  
DRX1N  
(SSRXN)  
DRX2P  
(DP3P)  
DRX2P  
(DP3P)  
URX2P  
URX2N  
UTX2P  
UTX2N  
UTX1P  
UTX1N  
URX1P  
URX1P  
URX1P  
URX1N  
UTX1P  
UTX1N  
UTX2P  
UTX2N  
URX2P  
URX2N  
URX2P  
URX2N  
UTX2P  
UTX2N  
UTX1P  
UTX1N  
URX1P  
URX1N  
URX1P  
URX1N  
UTX1P  
UTX1N  
UTX2P  
UTX2N  
URX2P  
URX2N  
DRX2N  
(DP3N)  
DRX2N  
(DP3N)  
DTX2P  
(DP2P)  
DTX2P  
(DP2P)  
DTX2N  
(DP2N)  
DTX2N  
(DP2N)  
L
H
H
L
L
DTX1P  
(DP1P)  
DTX1P  
(DP1P)  
DTX1N  
(DP1N)  
DTX1N  
(DP1N)  
DRX1P  
(DP0P)  
DRX1P  
(DP0P)  
DRX1N  
(DP0P)  
DRX1N  
(DP0N)  
DRX1P  
(DP3P)  
DRX1P  
(DP3P)  
DRX1N  
(DP3N)  
DRX1N  
(DP3N)  
DTX1P  
(DP2P)  
DTX1P  
(DP2P)  
DTX1N  
(DP2N)  
DTX1N  
(DP2N)  
L
H
H
L
H
DTX2P  
(DP1P)  
DTX2P  
(DP1P)  
DTX2N  
(DP1N)  
DTX2N  
(DP1N)  
DRX2P  
(DP0P)  
DRX2P  
(DP0P)  
DRX2N  
(DP0N)  
DRX2N  
(DP0N)  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
4. INPUT to OUTPUT Mapping (接下页)  
SWAP = L  
SWAP = H  
From  
From  
From  
To  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
PIN  
PIN  
DRX2P  
(SSRXP)  
DRX2P  
(SSRXP)  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
URX2P  
URX2N  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
URX2P  
URX2N  
DRX2N  
(SSRXN)  
DRX2N  
(SSRXN)  
DTX2P  
(SSTXP)  
DTX2P  
(SSTXP)  
UTX2P  
UTX2N  
URX1P  
URX1N  
UTX1P  
UTX1N  
UTX2P  
UTX2N  
URX1P  
URX1N  
UTX1P  
UTX1N  
DTX2N  
(SSTXN)  
DTX2N  
(SSTXN)  
L
H
H
H
L
DRX1P  
(DP0P)  
DRX1P  
(DP0P)  
DRX1N  
(DP0N)  
DRX1N  
(DP0N)  
DTX1P  
(DP1P)  
DTX1P  
(DP1P)  
DTX1N  
(DP1N)  
DTX1N  
(DP1N)  
DRX1P  
(SSRXP)  
DRX1P  
(SSRXP)  
URX1P  
URX1N  
URX1P  
URX1N  
DRX1N  
(SSRXN)  
DRX1N  
(SSRXN)  
DTX1P  
(SSTXP)  
DTX1P  
(SSTXP)  
UTX1P  
UTX1N  
URX2P  
URX2N  
UTX2P  
UTX2N  
UTX1P  
UTX1N  
URX2P  
URX2N  
UTX2P  
UTX2N  
DTX1N  
(SSTXN)  
DTX1N  
(SSTXN)  
L
H
H
H
H
DRX2P  
(DP0P)  
DRX2P  
(DP0P)  
DRX2N  
(DP0N)  
DRX2N  
(DP0N)  
DTX2P  
(DP1P)  
DTX2P  
(DP1P)  
DTX2N  
(DP1N)  
DTX2N  
(DP1N)  
USB + Custom Alternate Mode (Source Side)  
H
H
L
L
L
L
L
L
L
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
H
URX1P  
(SSRXP)  
URX1P  
(SSTXP)  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX1P  
DRX1N  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX1P  
DRX1N  
URX1N  
(SSRXN)  
URX1N  
(SSTXN)  
H
L
L
H
L
UTX1P  
(SSTXP)  
UTX1P  
(SSRXP)  
DTX1P  
DTX1N  
DTX1P  
DTX1N  
UTX1N  
(SSTXN)  
UTX1N  
(SSRXN)  
URX2P  
(SSRXP)  
URX2P  
(SSTXP)  
DRX2P  
DRX2N  
DRX2P  
DRX2N  
URX2N  
(SSRXN)  
URX2N  
(SSTXN)  
H
L
L
H
H
UTX2P  
(SSTXP)  
UTX2P  
(SSRXP)  
DTX2P  
DTX2N  
DTX2P  
DTX2N  
UTX2N  
(SSTXN)  
UTX2N  
(SSRXN)  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
4. INPUT to OUTPUT Mapping (接下页)  
SWAP = L  
SWAP = H  
From  
From  
To  
From  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
PIN  
PIN  
URX2P  
(LN1RXP)  
URX2P  
(LN1RXP)  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DRX2P  
DRX2N  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DRX2P  
DRX2N  
URX2N  
(LN1RXN)  
URX2N  
(LN1RXN)  
UTX2P  
(LN1TXP)  
UTX2P  
(LN1TXP)  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
UTX2N  
(LN1TXN)  
UTX2N  
(LN1TXN)  
H
L
H
L
L
UTX1P  
(LN0TXP)  
UTX1P  
(LN0TXP)  
UTX1N  
(LN0TXN)  
UTX1N  
(LN0TXN)  
URX1P  
(LN0RXP)  
URX1P  
(LN0RXP)  
DRX1P  
DRX1N  
DRX1P  
DRX1N  
DRX1P  
DRX1N  
DRX1P  
DRX1N  
URX1N  
(LN0RXN)  
URX1N  
(LN0RXN)  
URX1P  
(LN1RXP)  
URX1P  
(LN1RXP)  
URX1N  
(LN1RXN)  
URX1N  
(LN1RXN)  
UTX1P  
(LN1TXP)  
UTX1P  
(LN1TXP)  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
H
L
H
L
H
UTX1N  
(LN1TXN)  
UTX1N  
(LN1TXN)  
UTX2P  
(LN0TXP)  
UTX2P  
(LN0TXP)  
UTX2N  
(LN0TXN)  
UTX2N  
(LN0TXN)  
URX2P  
(LN0RXP)  
URX2P  
(LN0RXP)  
DRX2P  
DRX2N  
DRX1P  
DRX1N  
DRX2P  
DRX2N  
DRX1P  
DRX1N  
URX2N  
(LN0RXN)  
URX2N  
(LN0RXN)  
URX1P  
(SSRXP)  
URX1P  
(SSTXP)  
URX1N  
(SSRXN)  
URX1N  
(SSTXN)  
UTX1P  
(SSTXP)  
UTX1P  
(SSRXP)  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
H
L
H
H
L
UTX1N  
(SSTXN)  
UTX1N  
(SSRXN)  
UTX2P  
(LN0TXP)  
UTX2P  
(LN0TXP)  
UTX2N  
(LN0TXN)  
UTX2N  
(LN0TXN)  
URX2P  
(LN0RXP)  
URX2P  
(LN0RXP)  
DRX2P  
DRX2N  
DRX2P  
DRX2N  
URX2N  
(LN0RXN)  
URX2N  
(LN0RXN)  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
4. INPUT to OUTPUT Mapping (接下页)  
SWAP = L  
SWAP = H  
From  
From  
From  
To  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
PIN  
PIN  
URX2P  
(SSRXP)  
URX2P  
(SSTXP)  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DRX2P  
DRX2N  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DRX2P  
DRX2N  
URX2N  
(SSRXN)  
URX2N  
(SSTXN)  
UTX2P  
(SSTXP)  
UTX2P  
(SSRXP)  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
UTX2N  
(SSTXN)  
UTX2N  
(SSRXN)  
H
L
H
H
H
UTX1P  
(LN0TXP)  
UTX1P  
(LN0TXP)  
UTX1N  
(LN0TXN)  
UTX1N  
(LN0TXN)  
URX1P  
(LN0RXP)  
URX1P  
(LN0RXP)  
DRX1P  
DRX1N  
DRX1P  
DRX1N  
URX1N  
(LN0RXN)  
URX1N  
(LN0RXN)  
USB + Custom Alternate Mode (Sink Side)  
H
H
H
H
L
L
L
L
L
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
H
DTX2P  
(SSRXP)  
DTX2P  
(SSTXP)  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UTX2P  
UTX2N  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UTX2P  
UTX2N  
DTX2N  
(SSRXN)  
DTX2N  
(SSTXN)  
H
H
L
H
L
DRX2P  
(SSTXP)  
DRX2P  
(SSRXP)  
URX2P  
URX2N  
URX2P  
URX2N  
DRX2N  
(SSTXN)  
DRX2N  
(SSRXN)  
DTX1P  
(SSRXP)  
DTX1P  
(SSTXP)  
UTX1P  
UTX1N  
UTX1P  
UTX1N  
DTX1N  
(SSRXN)  
DTX1N  
(SSTXN)  
H
H
L
H
H
DRX1P  
(SSTXP)  
DRX1P  
(SSRXP)  
URX1P  
URX1N  
URX1P  
URX1N  
DRX1N  
(SSTXN)  
DRX1N  
(SSRXN)  
URX2P  
(LN1TXP)  
URX2P  
(LN1TXP)  
DRX2P  
DRX2N  
DRX2P  
DRX2N  
URX2N  
(LN1TXN)  
URX2N  
(LN1TXN)  
UTX2P  
(LN1RXP)  
UTX2P  
(LN1RXP)  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
UTX2N  
(LN1RXN)  
UTX2N  
(LN1RXN)  
H
H
H
L
L
UTX1P  
(LN0RXP)  
UTX1P  
(LN0RXP)  
UTX1N  
(LN0RXN)  
UTX1N  
(LN0RXN)  
URX1P  
(LN0RXP)  
URX1P  
(LN0RXP)  
DRX1P  
DRX1N  
DRX1P  
DRX1N  
URX1N  
(LN0RXN)  
URX1N  
(LN0RXN)  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
4. INPUT to OUTPUT Mapping (接下页)  
SWAP = L  
SWAP = H  
From  
From  
To  
From  
From  
To  
Rx EQ  
Control  
PINS  
Rx EQ  
Control  
PINS  
DIR1  
PIN  
DIR0 CTL1  
CTL0  
PIN  
FLIP  
PIN  
Input  
PIN  
Output  
PIN  
Input  
PIN  
Output  
PIN  
PIN  
PIN  
URX2P  
(LN0RXP)  
URX2P  
(LN0RXP)  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX2P  
DRX2N  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
DEQ[1:0]  
UEQ[1:0]  
UEQ[1:0]  
DRX2P  
DRX2N  
URX2N  
(LN0RXN)  
URX2N  
(LN0RXN)  
UTX2P  
(LN0RXP)  
UTX2P  
(LN0RXP)  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
DTX2P  
DTX2N  
DTX1P  
DTX1N  
UTX2N  
(LN0RXN)  
UTX2N  
(LN0RXN)  
H
H
H
H
H
L
H
H
H
UTX1P  
(LN0RXP)  
UTX1P  
(LN0RXP)  
UTX1N  
(LN0RXN)  
UTX1N  
(LN0RXN)  
URX1P  
(LN0TXP)  
URX1P  
(LN0TXP)  
DRX1P  
DRX1N  
UTX2P  
UTX2N  
DRX1P  
DRX1N  
UTX2P  
UTX2N  
URX1N  
(LN0TXN)  
URX1N  
(LN0TXN)  
DTX2P  
(SSRXP)  
DTX2P  
(SSTXP)  
DTX2N  
(SSRXN)  
DTX2N  
(SSTXN)  
DRX2P  
(SSTXP)  
DRX2P  
(SSRXP)  
URX2P  
URX2N  
URX2P  
URX2N  
DRX2N  
(SSTXN)  
DRX2N  
(SSRXN)  
H
H
L
DTX1P  
(LN0RXP)  
DTX1P  
(LN0RXP)  
UTX1P  
UTX1N  
UTX1P  
UTX1N  
DTX1N(LN0R  
XN)  
DTX1N(LN0R  
XN)  
DRX1P  
(LN0TXP)  
DRX1P  
(LN0TXP)  
URX1P  
URX1N  
URX1P  
URX1N  
DRX1N  
(LN0TXN)  
DRX1N  
(LN0TXN)  
DTX1P  
(SSRXP)  
DTX1P  
(SSSXP)  
UTX1P  
UTX1N  
UTX1P  
UTX1N  
DTX1N  
(SSRXN)  
DTX1N  
(SSSXN)  
DRX1P  
(SSTXP)  
DRX1P  
(SSRXP)  
URX1P  
URX1N  
URX1P  
URX1N  
DRX1N  
(SSTXN)  
DRX1N  
(SSRXN)  
H
H
H
URX2P  
(LN0TXP)  
URX2P  
(LN0TXP)  
DRX2P  
DRX2N  
DRX2P  
DRX2N  
URX2N  
(LN0TXN)  
URX2N  
(LN0TXN)  
UTX2P  
(LN0RXP)  
UTX2P  
(LN0RXP)  
DTX2P  
DTX2N  
DTX2P  
DTX2N  
UTX2N  
(LN0RXN)  
UTX2N  
(LN0RXN)  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.4.2 Device Configuration in I2C Mode  
The TUSB544 is in I2C mode when I2C_EN is equal to “1”. The same configurations defined in GPIO mode are  
also available in I2C mode. The TUSB544’s USB3.1, DisplayPort, and custom Alternate Mode configuration is  
controlled based on 5. The AUXP/N to SBU1/2 mapping control is based on 5.  
5. I2C Configuration Control  
Registers  
CTLSEL1  
VESA DisplayPort Alt Mode  
DFP_D Configuration  
TUSB544 Configuration  
DIRSEL1  
DIRSEL0  
CTLSEL0  
FLIPSEL  
USB + DisplayPort Alternate Mode (Source Side)  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
Power Down  
Power Down  
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
4 Lane DP – With Flip  
L
H
L
H
H
C and E  
C and E  
L
H
One Port USB 3.1 + 2 Lane  
DP- No Flip  
L
L
L
L
H
H
H
H
L
D and F  
D and F  
One Port USB 3.1 + 2 Lane  
DP– With Flip  
H
USB + DisplayPort Alternate Mode (Sink Side)  
L
L
L
L
L
L
H
H
H
H
H
H
L
L
L
L
L
H
L
Power Down  
Power Down  
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
4 Lane DP – With Flip  
L
H
L
H
H
C and E  
C and E  
L
H
One Port USB 3.1 + 2 Lane  
DP- No Flip  
L
L
H
H
H
H
H
H
L
D and F  
D and F  
One Port USB 3.1 + 2 Lane  
DP– With Flip  
H
USB + Custom Alternate Mode (Source Side)  
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
L
Power Down  
Power Down  
H
H
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
H
4 Channel Custom Alt Mode -  
No Flip  
H
H
L
L
H
H
L
L
L
4 Channel Custom Alt Mode–  
With Flip  
H
One Port USB 3.1 + 2  
Channel Custom Alt Mode-  
No Flip  
H
H
L
L
H
H
H
H
L
One Port USB 3.1 + 2  
Channel Custom Alt Mode –  
With Flip  
H
USB + Custom Alternate Mode (Sink Side)  
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
Power Down  
Power Down  
H
H
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
H
4 Channel Custom Alt Mode -  
No Flip  
H
H
H
L
L
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
5. I2C Configuration Control (接下页)  
Registers  
CTLSEL1  
VESA DisplayPort Alt Mode  
TUSB544 Configuration  
DFP_D Configuration  
DIRSEL1  
DIRSEL0  
CTLSEL0  
FLIPSEL  
4 Channel Custom Alt Mode–  
With Flip  
H
H
H
L
H
One Port USB 3.1 + 2  
Channel Custom Alt Mode-  
No Flip  
H
H
H
H
H
H
H
L
One Port USB 3.1 + 2  
Channel Custom Alt Mode –  
With Flip  
H
H
6. I2C Mode AUXP/N to SBU1/2 Mapping  
Registers  
AUX_SBU_OVR  
CTLSEL1  
FLIPSEL  
Mapping  
AUXp -> SBU1  
AUXn -> SBU2  
00  
H
L
AUXp -> SBU2  
AUXn -> SBU1  
00  
00  
01  
H
L
H
X
X
Open  
AUXp -> SBU1  
AUXn -> SBU2  
X
AUXp -> SBU2  
AUXn -> SBU1  
10  
11  
X
X
X
X
Open  
7.4.3 DisplayPort Mode  
The TUSB544 supports up to four DisplayPort lanes at datarates up to 8.1Gbps. TUSB544 can be enabled for  
DisplayPort through GPIO control or through I2C register control. In GPIO mode, DisplayPort is controlled based  
on 2. When not in GPIO mode, enable of DisplayPort functionality is controlled through I2C registers.  
7.4.4 Custom Alternate Mode  
The TUSB544 supports up to two lanes (or 4 channels) of custom Alternate Mode at datarates up to 8.1Gbps.  
TUSB544 can be enabled for custom Alternate Mode through GPIO control or through I2C register control. in  
GPIO mode, custom Alternate Mode is controlled based on 2. When not in GPIO mode, enable of custom  
Alternate Mode functionality is controlled through I2C registers. In I2C mode, the operation of this mode requires  
setting AUX_SNOOP_DISABLE register 13h bit 7 to 0.  
7.4.5 Linear EQ Configuration  
TUSB544 receiver lanes have controls for receiver equalization for upstream and downstream facing ports. The  
receiver equalization gain value can be controlled either through I2C registers or through GPIOs. 7 details the  
gain value for each available combination when TUSB544 is in GPIO mode. These same options are also  
available per channel and for upstream and downstream facing ports in I2C mode by updating registers  
URX[2:1]EQ_SEL, UTX[2:1]EQ_SEL, DRX[2:1]EQ_SEL, and DTX[2:1]EQ_SEL.  
7. TUSB544 Receiver Equalization GPIO Control  
Downstream Facing Ports  
Upstream Facing Port  
DEQ1  
pin  
Level  
DEQ0  
pin  
Level  
EQ GAIN  
2.5GHz  
(dB)  
EQ GAIN  
4.05GHz  
(dB)  
UEQ1  
pin  
Level  
UEQ0  
pin  
Level  
EQ GAIN  
2.5GHz  
(dB)  
EQ GAIN  
4.05GHz  
(dB)  
0
0
0
0
0
R
F
1
-1.0  
0.1  
1.0  
2.1  
-1.4  
0.4  
1.7  
3.2  
0
0
0
0
0
R
F
1
-2.2  
-1.1  
-0.2  
0.9  
-3.3  
-1.5  
0.0  
1.4  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7. TUSB544 Receiver Equalization GPIO Control (接下页)  
Downstream Facing Ports  
Upstream Facing Port  
R
R
R
R
F
F
F
F
1
0
R
F
1
2.9  
3.8  
4.6  
5.4  
6.1  
6.8  
7.3  
7.9  
8.4  
8.9  
9.3  
9.8  
4.1  
5.2  
R
R
R
R
F
F
F
F
1
0
R
F
1
1.8  
2.7  
3.4  
4.3  
5.0  
5.7  
6.2  
6.8  
7.3  
7.8  
8.2  
8.7  
2.4  
3.5  
4.3  
5.2  
6.0  
6.6  
7.2  
7.7  
8.1  
8.6  
9.0  
9.4  
6.1  
6.9  
0
7.7  
0
R
F
1
8.3  
R
F
1
8.8  
9.4  
0
9.8  
0
1
R
F
1
10.3  
10.6  
11.0  
1
R
F
1
1
1
1
1
7.4.6 Adjustable VOD Linear Range and DC Gain  
The CFG0 and CFG1 pins can be used to adjust the TUSB544 differential output voltage (VOD) swing linear  
range and receiver equalization DC gain for both downstream and upstream data path directions. 8 details the  
available options.  
8. VOD Linear Range and DC Gain  
Downstream  
VOD Linear  
Range  
Upstream  
VOD Linear  
Range  
Downstream  
DC Gain  
(dB)  
Setting  
#
CFG1 pin  
Level  
CFG0 pin  
Level  
Upstream  
DC Gain (dB)  
(mVpp)  
(mVpp)  
1
2
0
0
0
R
F
1
1
0
900  
900  
900  
900  
0
1
3
0
0
0
900  
900  
4
0
1
1
900  
900  
5
R
R
R
R
F
F
F
F
1
0
0
0
1100  
1100  
6
R
F
1
1
0
1100  
1100  
7
0
1
1100  
1100  
8
2
2
1100  
1100  
9
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
10  
11  
12  
13  
14  
15  
16  
R
F
1
0
1
R
F
1
1
1
7.4.7 USB3.1 modes  
The TUSB544 monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and  
SuperSpeed signaling rate to determine the state of the USB3.1 interface. Depending on the state of the USB  
3.1 interface, the TUSB544 can be in one of four primary modes of operation when USB 3.1 is enabled (CTL0 =  
H or CTLSEL0 = 1b1): Disconnect, U2/U3, U1, and U0.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
The Disconnect mode is the state in which TUSB544 has not detected far-end termination on both upstream  
facing port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of each of  
the four modes. The TUSB544 will remain in this mode until far-end receiver termination has been detected on  
both UFP and DFP. The TUSB544 will immediately exit this mode and enter U0 once far-end termination is  
detected.  
Once in U0 mode, the TUSB544 will redrive all traffic received on UFP and DFP. U0 is the highest power mode  
of all USB3.1 modes. The TUSB544 will remain in U0 mode until electrical idle occurs on both UFP and DFP.  
Upon detecting electrical idle, the TUSB544 will immediately transition to U1.  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB544’s UFP  
and DFP receiver termination will remain enabled. The UFP and DFP transmitter DC common mode is  
maintained. The power consumption in U1 will be similar to power consumption of U0.  
Next to the disconnect mode, the U2 and U3 mode is next lowest power state. While in this mode, the TUSB544  
will periodically perform far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either UFP or DFP, the TUSB544 will leave the U2 and U3 mode and transition to the Disconnect mode. It will  
also monitor for a valid LFPS. Upon detection of a valid LFPS, the TUSB544 will immediately transition to the U0  
mode. In U2 and U3 mode, the TUSB544’s receiver terminations will remain enabled but the TX DC common  
mode voltage will not be maintained.  
When SLP_S0# is asserted low it will disable Receiver Detect functionality. While SLP_S0# is low and TUSB544  
is in U2 and U3, TUSB544 will disable LOS and LFPS detection circuitry and RX termination for both channels  
will remain enabled. This allows even lower TUSB544 power consumption while in the U2 and U3 mode. Once  
SLP_S0# is asserted high, the TUSB544 will again start performing far-end receiver detection as well as monitor  
LFPS so it can know when to exit the U2 and U3 mode.  
When SLP_S0# is asserted low and the TUSB544 is in Disconnect mode, the TUSB544 will remain in  
Disconnect mode and never perform far-end receiver detection. This allows even lower TUSB544 power  
consumption while in the Disconnect mode. Once SLP_S0# is asserted high, the TUSB544 will again start  
performing far-end receiver detection so it can know when to exit the Disconnect mode.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.4.8 Operation Timing – Power Up  
Tctl_db  
Mode of operation  
determined by value of  
FLIPSEL bit and CTLSEL[1:0]  
bits at offset 0x0A. Default  
is USB3.1-only no Flip.  
TUSB544  
In I2C mode  
USB3.1-only  
FLIP = 0  
DISABLED  
If ((CTL[1:0] == 2'b00 | CTL[1:0] == 2'b01) & FLIP == 0 ) {  
USB3.1-only no FLIP;  
} ELSEIF ((CTL[1:0] == 2'b00 | CTL[1:0] == 2'b01) & FLIP == 1 ) {  
USB3.1-only with FLIP;  
} ELSEIF (CTL[1:0] == 2'b10 & FLIP == 0) {  
4-Lane DP no FLIP;  
} ELSEIF (CTL[1:0] == 2'b10 & FLIP == 1) {  
4-Lane DP with FLIP;  
TUSB544  
In GPIO mode  
USB3.1-only  
FLIP = 0  
DISABLED  
} ELSEIF (CTL[1:0] == 2'b11 & FLIP == 0) {  
2-Lane DP USB3.1 no FLIP;  
}ELSE {  
2-lane DP USB3.1 with FLIP;  
};  
CTL[1:0] pins  
FLIP pin  
VCC (min)  
VCC  
Td_pg  
Internal  
Power  
Good  
Tcfg_hd  
Tcfg_su  
CFG pins  
21. Power-Up Timing  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
9. Power-Up Timing  
PARAMETER  
MIN  
MAX  
UNIT  
µs  
Td_pg  
Tcfg_su  
VCC (min) to Internal Power Good asserted high  
500  
(2)  
CFG(1) pins setup  
CFG(1) pins hold  
350  
10  
µs  
Tcfg_hd  
µs  
TCTL_DB  
TVCC_RAMP  
CTL[1:0] and FLIP pin debounce  
VCC supply ramp requirement  
16  
ms  
ms  
100  
(1) Following pins comprise CFG pins: I2C_EN, UEQ[1:0], DEQ[1:0], CFG[1:0], DIR[1:0],VIO_SEL, SLP_S0#, and SWAP.  
(2) Recommend CFG pins are stable when VCC is at min.  
7.5 Programming  
For further programmability, the TUSB544 can be controlled using I2C. The SCL and SDA terminals are used for  
I2C clock and I2C data respectively.  
10. I2C Slave Address  
TUSB544 I2C Slave Address  
UEQ1/A1  
Pin Level  
UEQ0/A0  
Pin Level  
Bit 0  
(W/R)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
R
F
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
7.5.1 The Following Procedure Should be Followed to Write to TUSB544 I2C Registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB544 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle .  
2. The TUSB544 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB544) to be written, consisting of one byte of  
data, MSB-first.  
4. The TUSB544 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TUSB544 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TUSB544.  
8. The master terminates the write operation by generating a stop condition (P).  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.5.2 The Following Procedure Should be Followed to Read the TUSB544 I2C Registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TUSB544 7-bit  
address and a one-value “W/R” bit to indicate a read cycle  
2. The TUSB544 acknowledges the address cycle.  
3. The TUSB544 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
sub-address+1. If a write to the TUSB544 I2C register occurred prior to the read, then the TUSB544 shall  
start at the sub-address specified in the write.  
4. The TUSB544 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TUSB544 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
7.5.3 The Following Procedure Should be Followed for Setting a Starting Sub-Address for I2C Reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB544 7-bit  
address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB544 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB544) to be written, consisting of one byte of  
data, MSB-first.  
4. The TUSB544 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
If no sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation. If a I2C address write occurred prior to the read, then the reads start at the  
sub-address specified by the address write.  
7.6 Register Maps  
7.6.1 TUSB544 Registers  
Table 11 lists the memory-mapped registers for the TUSB544. All register offset addresses not listed in Table 11  
should be considered as reserved locations and the register contents should not be modified.  
Table 11. TUSB544 Registers  
Offset  
Ah  
Acronym  
Register Name  
Section  
Go  
GENERAL_4  
GENERAL_5  
GENERAL_6  
DISPLAYPORT_1  
DISPLAYPORT_2  
DISPLAYPORT__3  
DISPLAYPORT_4  
DISPLAYPORT_5  
USB3.1_1  
General Registers 4  
Bh  
General Register 5  
Go  
Ch  
General Register 6  
Go  
10h  
11h  
12h  
13h  
1Bh  
20h  
21h  
22h  
23h  
DisplayPort Control/Status Registers 1  
DisplayPort Control/Status Registers 2  
DisplayPort Control/Status Registers 3  
DisplayPort Control/Status Registers 4  
DisplayPort Control/Status Registers 5  
USB3.1 Control/Status Registers 1  
USB3.1 Control/Status Registers 2  
USB3.1 Control/Status Registers 3  
USB3.1 Control/Status Registers 4  
Go  
Go  
Go  
Go  
Go  
Go  
USB3.1_2  
Go  
USB3.1_3  
Go  
USB3.1_4  
Go  
34  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
Complex bit access types are encoded to fit into small table cells. Table 12 shows the codes that are used for  
access types in this section.  
Table 12. TUSB544 Access Type Codes  
Access Type  
Code  
R
Description  
Read Type  
The field can be read by software  
H
The field can be read by software but hardware  
may autonomously update the field.  
Write Type  
W
The field can be written by software.  
1S  
The field can only be set by a write of one. Writes of  
zero to the field have no effect.  
1C  
The field can only be cleared by a write of one.  
Writes of zero to the field have no effect.  
1SH  
The field can only be set by a write of one but  
hardware will later autonomously clear the field.  
Writes of zero to the field have no effect.  
Reset or default value  
-n  
Value after reset or the default value  
7.6.1.1 GENERAL_4 Register (Offset = Ah) [reset = 1h]  
GENERAL_4 is shown in Figure 22 and described in Table 13.  
Return to Summary Table.  
Figure 22. GENERAL_4 Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
SWAP_SEL  
EQ_OVERIDE HPDIN_OVER  
RIDE  
FLIPSEL  
CTLSEL[1:0]  
R/W-1h  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 13. GENERAL_4 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
RESERVED  
Reserved  
Reserved  
6
R/W  
0h  
Setting of this field performs global direction swap on all the  
channels  
0 – Channel directions and EQ settings are in normal mode (Default)  
1 – Reverse all channel directions and EQ settings for the input ports  
5
4
SWAP_SEL  
R/W  
R/W  
0h  
0h  
Setting of this field will allow software to use EQ settings from  
registers instead of value sample from pins.  
0 – EQ settings based on sampled state of the EQ pins.  
1 – EQ settings based on programmed value of each of the EQ  
registers  
EQ_OVERIDE  
0 – HPD IN based on state of HPD_IN pin (Default)  
1 – HPD_IN high.  
3
2
HPDIN_OVERRIDE  
FLIPSEL  
R/W  
R/W  
0h  
0h  
FLIPSEL. Refer to 5 and 6 for this field functionality.  
00 – Disabled. All RX and TX for USB3 and DisplayPort are  
disabled.  
1-0  
CTLSEL[1:0]  
R/W  
1h  
01 – USB3.1 only enabled. (Default)  
10 – Four DisplayPort lanes enabled.  
11 – Two DisplayPort lanes and one USB3.1  
Copyright © 2017–2018, Texas Instruments Incorporated  
35  
 
 
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.6.1.2 GENERAL_5 Register (Offset = Bh) [reset = 0h]  
GENERAL_5 is shown in Figure 23 and described in Table 14.  
Return to Summary Table.  
Figure 23. GENERAL_5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
RESERVED  
R-0h  
CH_SWAP_SEL  
R/W-0h  
Table 14. GENERAL_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
7-6  
5-4  
RESERVED  
RESERVED  
R
0h  
R
0h  
0h  
Setting of this field swaps direction (TX to RX and RX to TX) and EQ  
settings of individual channels. Channels are numbered 0 to 3 from  
top to bottom (see block diagram on Figure 8.1).  
0 – Channel direction and EQ setting are in normal mode (Default)  
1 – Reverse channel direction and EQ setting for the input port. For  
example, setting 0x0B[3:0] to 4b1100 swaps directions and EQ  
settings only on channels 2 and 3  
3-0  
CH_SWAP_SEL  
R/W  
7.6.1.3 GENERAL_6 Register (Offset = Ch) [reset = 0h]  
GENERAL_6 is shown in Figure 24 and described in Table 15.  
Return to Summary Table.  
Figure 24. GENERAL_6 Register  
7
6
5
4
3
2
1
0
RESERVED  
VOD_DCGAIN  
_OVERRIDE  
VOD_DCGAIN_SEL  
DIR_SEL[1:0]  
R/W-0h  
R-0h  
R/W-0h  
R/W-0h  
Table 15. GENERAL_6 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7
R
0h  
Reserved  
6
VOD_DCGAIN_OVERRID R/W  
E
0h  
Setting of this field will allow software to use VOD linearity range and  
DC gain settings from registers instead of value sampled from pins.  
0 – VOD linearity range and DC gain settings based on sampled  
state of CFG[2:1] pins.  
1 – EQ settings based on programmed value of each of the VOD  
linearity range and DC gain registers  
5-2  
VOD_DCGAIN_SEL  
R/W  
0h  
Field selects VOD linearity range and DC gain for all the channels  
and in all directions. When VOD_DCGAIN_OVERRIDE = 1’b0, this  
field reflects the sampled state of CFG[1:0] pins. When  
VOD_DCGAIN_OVERRIDE = 1’b1, software can change the VOD  
linearity range and DC gain for all the channels and in all directions  
based on value written to this field. Refer to Table 8 8. Each CFG is  
a 2-bit value. The register-to-CFG1/0 mapping is: [5:2] = {CFG1[1:0],  
CFG0[1:0]} where CFGx[1:0] mapping is:  
00 = 0  
01 = R  
10 = F  
11 = 1  
1-0  
DIR_SEL[1:0]  
R/W  
0h  
DIR_SEL[1:0]. Sets operation mode  
00 – USB + DP Alt Mode (source) (Default)  
01 – USB + DP Alt Mode (sink)  
10 – USB + Custom Alt Mode (source)  
11 – USB + Custom Alt Mode (sink)  
36  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
7.6.1.4 DISPLAYPORT_1 Register (Offset = 10h) [reset = 0h]  
DISPLAYPORT is shown in Figure 25 and described in Table 16.  
Return to Summary Table.  
Figure 25. DISPLAYPORT Register  
7
6
5
4
3
2
1
0
UTX2EQ_SEL  
R/W-0h  
URX2EQ_SEL  
R/W-0h  
Table 16. DISPLAYPORT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 9.4 dB of EQ for UTX2P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
UEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for UTX2P/N pins based on value written to this field.  
7-4  
3-0  
UTX2EQ_SEL  
URX2EQ_SEL  
RW  
0h  
Field selects between 0 to 9.4 dB of EQ for URX2P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
UEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for URX2P/N pins based on value written to this field.  
RW  
0h  
7.6.1.5 DISPLAYPORT_2 Register (Offset = 11h) [reset = 0h]  
DISPLAYPORT_2 is shown in Figure 26 and described in Table 17.  
Return to Summary Table.  
Figure 26. DISPLAYPORT_2 Register  
7
6
5
4
3
2
1
0
UTX1EQ_SEL  
R/W-0h  
URX1EQ_SEL  
R/W-0h  
Table 17. DISPLAYPORT_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 9.4 dB of EQ for UTX1P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
UEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for UTX1P/N pins based on value written to this field.  
7-4  
3-0  
UTX1EQ_SEL  
URX1EQ_SEL  
R/W  
0h  
Field selects between 0 to 9.4 dB of EQ for URX1P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
UEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for URX1P/N pins based on value written to this field.  
R/W  
0h  
Copyright © 2017–2018, Texas Instruments Incorporated  
37  
 
 
 
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.6.1.6 DISPLAYPORT_3 Register (Offset = 12h) [reset = 0h]  
DISPLAYPORT__3 is shown in Figure 27 and described in Table 18.  
Return to Summary Table.  
Figure 27. DISPLAYPORT_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
SET_POWER_STATE  
RH-0h  
LANE_COUNT_SET  
RH-0h  
Table 18. DISPLAYPORT_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
Reserved  
This field represents the snooped value of the AUX write to DPCD  
address 0x00600. When AUX_SNOOP_DISABLE = 1’b0, the  
TUSB544 will enable/disable DP lanes based on the snooped value.  
When AUX_SNOOP_DISABLE = 1’b1, then DP lane enable/disable  
are determined by state of DPx_DISABLE registers, where x = 0, 1,  
2, or 3. This field is reset to 2’b00 by hardware when CTLSEL1  
changes from a 1’b1 to a 1’b0.  
6-5  
4-0  
SET_POWER_STATE  
LANE_COUNT_SET  
RH  
RH  
0h  
0h  
This field represents the snooped value of AUX write to DPCD  
address 0x00101 register. When AUX_SNOOP_DISABLE = 1’b0,  
TUSB544 will enable DP lanes specified by the snoop value. Unused  
DP lanes will be disabled to save power. When  
AUX_SNOOP_DISABLE = 1’b1, then DP lanes enable/disable are  
determined by DPx_DISABLE registers, where x = 0, 1, 2, or 3. This  
field is reset to 0x0 by hardware when CTLSEL1 changes from a  
1’b1 to a 1’b0.  
38  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
7.6.1.7 DISPLAYPORT_4 Register (Offset = 13h) [reset = 0h]  
DISPLAYPORT_4 is shown in Figure 28 and described in Table 19.  
Return to Summary Table.  
Figure 28. DISPLAYPORT_4 Register  
7
6
5
4
3
2
1
0
AUX_SNOOP_  
DISABLE  
RESERVED  
AUX_SBU_OVR  
DP3_DISABLE DP2_DISABLE DP1_DISABLE DP0_DISABLE  
R/W-0h  
R-0h  
R/W-0h  
R/W-0h R/W-0h R/W-0h R/W-0h  
Table 19. DISPLAYPORT_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0 – AUX snoop enabled. (Default)  
1 – AUX snoop disabled.  
7
AUX_SNOOP_DISABLE  
RESERVED  
R/W  
0h  
6
R
0h  
Reserved  
This field overrides the AUXP/N to SBU1/2 connect and disconnect  
based on CTL1 and FLIP. Changing this field to 1’b1 will allow traffic  
to pass through AUX to SBU regardless of the state of CTLSEL1  
and FLIPSEL register.  
00 – AUX to SBU connect/disconnect determined by CTLSEL1 and  
FLIPSEL (Default)  
5-4  
AUX_SBU_OVR  
R/W  
0h  
01 – AUXP -> SBU1 and AUXN -> SBU2 connection always  
enabled.  
10 – AUXP -> SBU2 and AUXN -> SBU1 connection always  
enabled. 1  
1 = AUX to SBU open.  
When AUX_SNOOP_DISABLE = 1b1, this field can be used to  
enable or disable DP lane 3. When AUX_SNOOP_DISABLE = 1b0,  
changes to this field will have no effect on lane 3 functionality.  
0 – DP Lane 3 Enabled (default)  
3
2
1
0
DP3_DISABLE  
DP2_DISABLE  
DP1_DISABLE  
DP0_DISABLE  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
1 – DP Lane 3 Disabled.  
When AUX_SNOOP_DISABLE = 1 'b1, this field can be used to  
enable or disable DP lane 2. When AUX_SNOOP_DISABLE = 1b0,  
changes to this field will have no effect on lane 2 functionality.  
0 – DP Lane 2 Enabled (default)  
1 – DP Lane 2 Disabled.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 1. When AUX_SNOOP_DISABLE = 1’b0,  
changes to this field will have no effect on lane 1 functionality.  
0 – DP Lane 1 Enabled (default)  
1 – DP Lane 1 Disabled.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 0. When AUX_SNOOP_DISABLE = 1’b0,  
changes to this field will have no effect on lane 0 functionality.  
0 – DP Lane 0 Enabled (default)  
1 – DP Lane 0 Disabled.  
Copyright © 2017–2018, Texas Instruments Incorporated  
39  
 
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.6.1.8 DISPLAYPORT_5 Register (Offset = 1Bh) [reset = 0h]  
DISPLAYPORT_5 is shown in Figure 29 and described in Table 20.  
Return to Summary Table.  
Figure 29. DISPLAYPORT_5 Register  
7
6
5
4
3
2
1
0
I2C_RST  
R/WSH-0h  
DPCD_RST  
R/WSH-0h  
RESERVED  
R-00h  
Table 20. DISPLAYPORT_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C_RST  
R/WSH  
0h  
Resets I2C registers to default values. This field is self- clearing.  
6
DPCD_RST  
Reserved  
R/WSH  
R
0h  
Resets DPCD registers to default values. This field is self- clearing.  
Reserved  
5:0  
00h  
7.6.1.9 USB3.1_1 Register (Offset = 20h) [reset = 0h]  
USB3.1 is shown in Figure 30 and described in Table 21.  
Return to Summary Table.  
Figure 30. USB3.1 Register  
7
6
5
4
3
2
1
0
DTX2EQ_SEL  
R/W-0h  
DRX2EQ_SEL  
R/W-0h  
Table 21. USB3.1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 11 dB of EQ for DTX2P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for DTX2P/N pins based on value written to this field.  
7-4  
3-0  
DTX2EQ_SEL  
DRX2EQ_SEL  
R/W  
0h  
Field selects between 0 to 11 dB of EQ for DRX2P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for DRX2P/N pins based on value written to this field.  
R/W  
0h  
40  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
7.6.1.10 USB3.1_2 Register (Offset = 21h) [reset = 0h]  
USB3.1_2 is shown in Figure 31 and described in Table 22.  
Return to Summary Table.  
Figure 31. USB3.1_2 Register  
7
6
5
4
3
2
1
0
DTX1EQ_SEL  
R/W-0h  
DRX1EQ_SEL  
R/W-0h  
Table 22. USB3.1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 11 dB of EQ for DTX1P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for DTX1P/N pins based on value written to this field.  
7-4  
3-0  
DTX1EQ_SEL  
DRX1EQ_SEL  
R/W  
0h  
Field selects between 0 to 11 dB of EQ for DRX1P/N pins. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can change  
the EQ setting for DRX1P/N pins based on value written to this field.  
R/W  
0h  
7.6.1.11 USB3.1_3 Register (Offset = 22h) [reset = 0h]  
USB3.1_3 is shown in Figure 32 and described in Table 23.  
Return to Summary Table.  
Figure 32. USB3.1_3 Register  
7
6
5
4
3
2
1
0
CM_ACTIVE  
LFPS_EQ  
U2U3_LFPS_D DISABLE_U2U  
DFP_RXDET_INTERVAL  
USB3_COMPLIANCE_CTRL  
EBOUNCE  
3_RXDET  
RH-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
Table 23. USB3.1_3 Register Field Descriptions  
Bit  
Field  
CM_ACTIVE  
Type  
Reset  
Description  
0 - device not in USB 3.1 compliance mode. (Default)  
1 - device in USB 3.1 compliance mode  
7
RH  
0h  
Controls whether settings of EQ based on URX[2:1]EQ_SEL,  
UTX[2:1]EQ_SEL, DRX[2:1]EQ_SEL, and DTX[2:1]EQ_SEL applies  
to received LFPS signal.  
6
LFPS_EQ  
R/W  
0h  
0 - EQ set to zero when receiving LFPS (default)  
1 - EQ set by the related registers when receiving LFPS.  
0 - No debounce of LFPS before U2/U3 exit. (Default)  
1 - 200us debounce of LFPS before U2/U3 exit.  
5
4
U2U3_LFPS_DEBOUNCE R/W  
DISABLE_U2U3_RXDET R/W  
0h  
0h  
0 - Rx.Detect in U2/U3 enabled. (Default)  
1 - Rx.Detect in U2/U3 disabled.  
This field controls the Rx.Detect interval for the Downstream facing  
port (TX1P/N and TX2P/N).  
00 - 8 ms  
01 - 12 ms (default)  
10 - Reserved  
3-2  
1-0  
DFP_RXDET_INTERVAL R/W  
1h  
0h  
11 - Reserved  
00 - FSM determined compliance mode. (Default)  
01 - Compliance Mode enabled in DFP direction (UTX1/UTX2  
DTX1/DTX2)  
10 - Compliance Mode enabled in UFP direction (DRX1/DRX2  
URX1/URX2)  
USB3_COMPLIANCE_CT  
R/W  
RL  
11 - Compliance Mode Disabled.  
Copyright © 2017–2018, Texas Instruments Incorporated  
41  
 
 
 
 
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.6.1.12 USB3.1_4 Register (Offset = 23h) [reset = 23h]  
USB3.1_4 is shown in Figure 33 and described in Table 24.  
Return to Summary Table.  
Figure 33. USB3.1_4 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
CFG_LOS_HYST  
R/W-4h  
CFG_LOS_VTH  
R/W-3h  
Table 24. USB3.1_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R
0h  
Reserved  
Controls LOS hysteresis defined as 20 log (LOS de-assert  
threshold/LOS assert threshold).  
000 - 0.15 dB  
001 - 0.85 dB  
010 - 1.45 dB  
011 - 2.00 dB  
5-3  
CFG_LOS_HYST  
R/W  
4h  
100 - 2.70 dB (default)  
101 - 3.00 dB  
110 - 3.40 dB  
111 - 3.80 dB  
Controls LOS assert threshold voltage  
000 - 67 mV  
001 - 72 mV  
010 - 79 mV  
2-0  
CFG_LOS_VTH  
R/W  
3h  
011 - 85 mV (default)  
100 - 91 mV  
101 - 97 mV  
110 - 105 mV  
111 - 112 mV  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TUSB544 is a linear redriver designed specifically to compensate for intersymbol interference (ISI) jitter  
caused by signal attenuation through a passive medium like PCB traces and cables. Because the TUSB544 has  
four independent inputs, it can be optimized to correct ISI on all those seven inputs through 16 different  
equalization choices. Placing the TUSB544 between a USB3.1 Host/DisplayPort 1.4 GPU and a USB3.1 Type-C  
receptacle can correct signal integrity issues resulting in a more robust system.  
8.2 Typical Application  
A
B
F
E
PCB Trace of Length XAB  
PCB Trace of Length XEF  
URX2P  
RX2P  
URX2N  
UTX2P  
RX2N  
TX2P  
DRX2P  
DRX2N  
UTX2N  
TX2N  
DTX2P  
DTX2N  
USB3.1/  
DP1.4  
Host  
TUSB544  
DTX1N  
DTX1P  
UTX1N  
TX1N  
DRX1N  
DRX1P  
UTX1P  
URX1N  
URX1P  
TX1P  
RX1N  
RX1P  
PCB Trace of Length XCD  
PCB Trace of Length XGH  
G
H
C
D
34. TUSB544 in a Host Application  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters shown in 25.  
25. Design Parameters  
PARAMETER  
A to B PCB trace length, XAB  
C to D PCB trace length, XCD  
E to F PCB trace length, XEF  
G to H PCB trace length, XGH  
PCB trace width  
VALUE  
12 inches  
12 inches  
2 inches  
2 inches  
4 mils  
AC-coupling capacitor (75 nF to 265 nF)  
VCC supply (3 V to 3.6 V)  
I2C Mode or GPIO Mode  
100 nF  
3.3 V  
I2C Mode. (I2C_EN pin != "0")  
3.3V I2C. Pull-up the I2C_EN pin to 3.3V with a 1K  
ohm resistor.  
1.8V or 3.3V I2C Interface  
8.2.2 Detailed Design Procedure  
A typical usage of the TUSB544 device is shown in 35. The device can be controlled either through its GPIO  
pins or through its I2C interface. In the example shown below, a Type-C PD controller is used to configure the  
device through the I2C interface. In I2C mode, the equalization settings for each receiver can be independently  
controlled through I2C registers. For this reason, all of the equalization pins (UEQ[1:0] and DEQ[1:0]) can be left  
unconnected. If these pins are left unconnected, the TUSB544 7-bit I2C slave address will be 12h because both  
UEQ1/A1 and UEQ0/A0 will be at pin level "F". If a different I2C slave address is desired, UEQ1/A1 and  
UEQ0/A0 pins should be set to a level which produces the desired I2C slave address.  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
 
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
3.3 V  
10uF  
100nF  
100nF  
100nF  
100nF  
100 nF  
DRX2P  
DRX2N  
DTX2P  
DTX2N  
RX2P  
RX2N  
TX2P  
TX2N  
URX2P  
URX2N  
UTX2P  
UTX2N  
100 nF  
100 nF  
100 nF  
USB Type-C  
Receptacle  
100 nF  
A12  
A11  
A10  
A9  
GND  
URXP2  
URXN2  
VBUS  
SBU1  
DN1  
100 nF  
B1  
B2  
GND  
TXP2  
TXN2  
100K  
100 nF  
100 nF  
AUXP  
AUXN  
AUXP  
AUXN  
B3  
B4  
VBUS  
CC2  
A8  
100K  
SBU1  
SBU2  
DP_PWR (3.3V)  
B5  
USB 3.1/DP1.4  
Host  
A7  
B6  
DP2  
DN2  
2M  
DP1  
A6  
2M  
B7  
A5  
CC1  
B8  
SBU2  
VBUS  
VBUS  
100 nF  
100 nF  
A4  
100 nF  
100 nF  
100 nF  
100 nF  
DTX1N  
TX1N  
UTX1N  
UTX1P  
URX1N  
B9  
A3  
TXN1  
TXP1  
DTX1P  
DRX1N  
TX1P  
RX1N  
B10  
B11  
B12  
URXN1  
URXP1  
GND  
A2  
DRX1P  
RX1P  
URX1P  
3.3V  
3.3V  
A1  
GND  
SWAP  
I2C_EN  
3.3V  
3.3V  
UEQ0/A0  
UEQ1/A1  
VI2C  
3.3V  
R
R
VIO_SEL  
FLIP/SCL  
CTL0/SDA  
CTL1  
CFG0  
CFG1  
DEQ0  
Type-C  
PD  
Controller  
3.3V  
3.3V  
3.3V  
3.3V  
SLP_S0#  
HPDIN  
DEQ1  
3.3V  
3.3V  
DIR0  
DIR1  
GPIO Mode Only Connections  
GPIO/I2C Mode Connections  
35. Typical Application Circuit  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
8.2.3 Application Curve  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
Length=12in, Width=6mil  
Length=16in, Width=6mil  
Length=20in, Width=6mil  
Length=24in, Width=6mil  
Length=4in, Width=4mil  
Length=8in, Width=10mil  
Length=8in, Width=6mil  
0
2
4
6
8
10  
12  
14  
16  
Frequency (GHz)  
D009  
36. Insertion Loss of FR4 PCB Traces  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
8.3 System Examples  
8.3.1 USB 3.1 only (USB/DP Alternate Mode)  
The TUSB544 will be in USB3.1 only when the CTL1 pin is low and CTL0 pin is high.  
USB/DP Source (USB  
USB/DP Sink  
Only œ No Flip)  
(USB Only œ No Flip)  
D+/-  
D+/-  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
TX1  
RX1  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
TX1  
RX1  
USB/DP  
Source  
USB/DP  
Sink  
TX1  
RX1  
TX1  
RX1  
AUXp  
AUXn  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
HPDIN  
HPDIN  
CTL  
0 1  
FLIP  
0
CTL  
1
FLIP  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = L/L/L/H/L  
DIR1/DIR0/CTL1/CTL0/FLIP = L/H/L/H/L  
37. USB3.1 Only – No Flip  
USB/DP Source (USB  
USB/DP Sink  
Only œ Flip)  
(USB Only œ Flip)  
D+/-  
D+/-  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
RX2  
TX2  
RX2  
TX2  
TX1  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
USB/DP  
Source  
DP/USB  
Sink  
RX2  
TX2  
RX2  
TX2  
AUXp  
AUXn  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
HPDIN  
HPDIN  
CTL  
0 1  
FLIP  
0
CTL  
1
FLIP  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = L/L/L/H/H  
DIR1/DIR0/CTL1/CTL0/FLIP = L/H/L/H/H  
38. USB3.1 Only – With Flip  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
System Examples (接下页)  
8.3.2 USB3.1 and 2 lanes of DisplayPort  
USB/DP Source  
USB/DP Sink  
(USB + 2 Lane DP œ No Flip)  
(USB + 2 Lane DP œ No Flip)  
D+/-  
D+/-  
USB/DP  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
ML0  
ML1  
TX1  
RX1  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
URX2  
UTX2  
DRX2  
DTX2  
TX1  
RX1  
USB/DP  
Source  
DTX1  
DRX1  
UTX1  
URX1  
ML1  
ML0  
AUXp  
AUXn  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = L/H/H/H/L  
DIR1/DIR0/CTL1/CTL0/FLIP = L/L/H/H/L  
39. USB3.1 + 2 Lane DP – No Flip  
USB/DP Source  
USB/DP Sink  
(USB + 2 Lane DP œ Flip)  
(USB + 2 Lane DP œ Flip)  
D+/-  
D+/-  
USB/DP  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
DRX2  
DTX2  
DTX1  
DRX1  
URX2  
UTX2  
UTX1  
URX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
ML0  
ML1  
RX2  
TX2  
USB/DP  
Source  
ML1  
ML0  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = L/L/H/H/H  
DIR1/DIR0/CTL1/CTL0/FLIP = L/H/H/H/H  
40. USB 3.1 + 2 Lane DP – Flip  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
System Examples (接下页)  
8.3.3 DisplayPort Only  
USB/DP Source  
USB/DP Sink  
(4 Lane DP œ No Flip)  
(4 Lane DP œ No Flip)  
D+/-  
D+/-  
USB/DP  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
ML0  
ML1  
ML2  
ML3  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
ML3  
ML2  
USB/DP  
Source  
ML1  
ML0  
SBU2  
SBU1  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXp  
AUXn  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = L/H/H/L/L  
DIR1/DIR0/CTL1/CTL0/FLIP = L/L/H/L/L  
41. Four Lane DP – No Flip  
USB/DP Source  
USB/DP Sink  
(4 Lane DP œ Flip)  
(4 Lane DP œ Flip)  
D+/-  
D+/-  
USB/DP  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
ML3  
ML2  
ML1  
ML0  
RX2  
TX2  
TX1  
RX1  
TX1  
ML0  
RX1  
RX2  
TX2  
ML1  
ML2  
ML3  
USB/DP  
Source  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXn  
AUXp  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = L/L/H/  
L/H  
DIR1/DIR0/CTL1/CTL0/FLIP = L/H/H/L/H  
42. Four Lane DP – With Flip  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
System Examples (接下页)  
8.3.4 USB 3.1 only (USB/Custom Alternate Mode)  
USB/Custom Source  
USB/Custom Sink  
(USB Only œ No Flip)  
(USB Only œ No Flip)  
D+/-  
D+/-  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
TX1  
RX1  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
TX1  
RX1  
USB/Custom  
Source  
USB/Custom  
TX1  
RX1  
TX1  
RX1  
Sink  
AUXp  
AUXn  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = H/L/L/H/L  
DIR1/DIR0/CTL1/CTL0/FLIP = H/H/L/H/L  
43. USB3.1 Only – No Flip  
USB/Custom Source  
USB/Custom Sink  
(USB Only œ Flip)  
(USB Only œ Flip)  
D+/-  
D+/-  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
RX2  
TX2  
RX2  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
TX2  
USB/Custom  
Source  
Custom/USB  
Sink  
TX1  
RX2  
TX2  
RX2  
TX2  
AUXp  
AUXn  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = H/L/L/H/H  
DIR1/DIR0/CTL1/CTL0/FLIP = H/H/L/H/H  
44. USB3.1 Only – With Flip  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
System Examples (接下页)  
8.3.5 USB3.1 and 1 Lane of Custom Alt Mode  
USB/Custom Sink  
USB/Custom Source  
(USB + 1 Lane Custom œ No Flip)  
(USB + 1 Lane Custom œ No Flip)  
D+/-  
D+/-  
USB/Custom  
TUSB544  
TUSB544  
Sink  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
RX2  
TX2  
TX1  
RX1  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
URX2  
UTX2  
DRX2  
DTX2  
TX1  
RX1  
RX2  
TX2  
USB/Custom  
Source  
DTX1  
DRX1  
UTX1  
URX1  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/0/FLIP = H/L/H/H/L  
DIR1/DIR0/CTL1/0/FLIP = H/H/H/H/L  
45. USB3.1 + 1 Lane Custom Alt Mode – No Flip  
USB/Custom Source  
USB/Custom Sink  
(USB + 1 Lane Custom œ Flip)  
(USB + 1 Lane Custom œ Flip)  
D+/-  
D+/-  
USB/Custom  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
DRX2  
DTX2  
DTX1  
DRX1  
URX2  
UTX2  
UTX1  
URX1  
RX2  
TX2  
TX1  
RX1  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
TX1  
RX1  
RX2  
TX2  
USB/Custom  
Source  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
CC1  
CC2  
HPD  
CC1  
CC2  
HPD  
PD Controller  
PD Controller  
Control  
Control  
DIR1/DIR0/CTL1/0/FLIP = H/L/H/H/H  
DIR1/DIR0/CTL1/0/FLIP = H/H/H/H/H  
46. USB 3.1 + 1 Lane Custom Alt. Mode – Flip  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
System Examples (接下页)  
8.3.6 USB3.1 and 2 Lane of Custom Alt Mode  
USB/Custom Source  
USB/Custom Sink  
(USB + 2 Lane Custom œ No Flip)  
(USB + 2 Lane Custom œ No Flip)  
D+/-  
D+/-  
USB/Custom  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
LN0  
LN1  
TX1  
RX1  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
URX2  
UTX2  
DRX2  
TX1  
RX1  
DTX2  
DTX1  
DRX1  
USB/Custom  
Source  
UTX1  
URX1  
LN1  
LN0  
AUXp  
AUXn  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = H/L/H/H/L  
DIR1/DIR0/CTL1/CTL0/FLIP = H/H/H/H/L  
47. Two Lane Custom Alternate Mode – No Flip  
USB/Custom Source  
USB/Custom Sink  
(USB + 2 Lane Custom œ Flip)  
(USB + 2 Lane Custom œ Flip)  
D+/-  
D+/-  
USB/Custom  
Sink  
TUSB544  
TUSB544  
DRX2  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
URX2  
UTX2  
UTX1  
URX1  
RX2  
TX2  
LN1  
LN0  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
LN0  
LN1  
DTX2  
DTX1  
DRX1  
USB/Custom  
Source  
RX2  
TX2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = H/L/H/H/H  
DIR1/DIR0/CTL1/CTL0/FLIP = H/H/H/H/H  
48. Two Lane Custom Alternate Mode – With Flip  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
System Examples (接下页)  
8.3.7 USB3.1 and 4 Lane of Custom Alt Mode  
USB/Custom Source  
USB/Custom Sink  
(4 Lane Custom œ No Flip)  
(4 Lane Custom œ No Flip)  
D+/-  
D+/-  
USB/Custom  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
LN0  
LN1  
LN2  
LN3  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
LN3  
LN2  
USB/Custom  
Source  
LN1  
LN0  
SBU2  
SBU1  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXp  
AUXn  
SBU1  
SBU2  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = H/L/H/L/L  
DIR1/DIR0/CTL1/CTL0/FLIP = H/H/H/L/L  
49. Four Lane Custom Alternate Mode – No Flip  
USB/Custom Source  
USB/Custom Sink  
(4 Lane Custom œ Flip)  
(4 Lane Custom œ Flip)  
D+/-  
D+/-  
USB/Custom  
Sink  
TUSB544  
TUSB544  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
Type-C Cable  
URX2  
UTX2  
UTX1  
URX1  
DRX2  
DTX2  
DTX1  
DRX1  
LN3  
LN2  
LN1  
LN0  
RX2  
TX2  
TX1  
RX1  
TX1  
RX1  
RX2  
TX2  
LN0  
LN1  
USB/Custom  
Source  
LN2  
LN3  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
SBU1  
SBU2  
AUXn  
AUXn  
AUXp  
HPDIN  
HPDIN  
CTL  
1
CTL  
FLIP 0 1  
FLIP 0  
HPD  
HPD  
Control  
CC1  
CC2  
DIR1/DIR0/CTL1/CTL0/FLIP = H/L/H/L/H  
CC1  
CC2  
PD Controller  
PD Controller  
Control  
DIR1/DIR0/CTL1/CTL0/FLIP = H/H/H/L/H  
50. Four Lane Custom Alternate Mode – With Flip  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The TUSB544 is designed to operate with a 3.3 V power supply. Levels above those listed in the Absolute  
Maximum Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator  
can be used to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power  
supply integrity. A 0.1-µF capacitor should be used on each power pin.  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
TUSB544  
www.ti.com.cn  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
10 Layout  
10.1 Layout Guidelines  
1. RXP/N and TXP/N pairs should be routed with controlled 90-Ohm differential impedance (+/- 15%).  
2. Keep away from other high speed signals.  
3. Intra-pair routing should be kept to within 2 mils.  
4. Length matching should be near the location of mismatch.  
5. Each pair should be separated at least by 3 times the signal trace width.  
6. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on  
EMI.  
7. Route all differential pairs on the same of layer.  
8. The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
9. Keep traces on layers adjacent to ground plane.  
10. Do NOT route differential pairs over any plane split.  
11. Adding Test points will cause impedance discontinuity; and therefore, negatively impacts signal  
performance. If test points are used, the test points should be placed in series and symmetrically. The test  
points must not be placed in a manner that causes a stub on the differential pair.  
10.2 Layout Example  
AC Coupling  
capacitors  
DRX2  
DTX2  
URX2  
UTX2  
UTX1  
GND  
DTX1  
DRX1  
URX1  
51.  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
TUSB544  
ZHCSG75E APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
本节标识的文档均在本规范中引用。为简化文本,文中的大多数参考文献均用文档标签 [文档标签] 标识,而不使用  
完整的文档标题。  
相关文档如下:  
[USB31] 通用串行总线 3.1 规范。  
[TYPEC] 通用串行总线 Type C 线缆和连接器规范  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB544IRNQR  
TUSB544IRNQT  
TUSB544RNQR  
TUSB544RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TUSB544  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TUSB544  
TUSB544  
TUSB544  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB544IRNQR  
TUSB544IRNQT  
TUSB544RNQR  
TUSB544RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB544IRNQR  
TUSB544IRNQT  
TUSB544RNQR  
TUSB544RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB544IRNQT

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544RNQR

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB544RNQT

USB Type-C™ 8.1 Gbps 多协议线性转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546-DCI

USB Type-C DP 交替模式线性转接驱动器交叉点开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546-DCIRNQR

USB Type-C DP 交替模式线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546-DCIRNQT

USB Type-C DP 交替模式线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546A-DCI

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546A-DCIRNQR

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546A-DCIRNQT

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546AI-DCIRNQR

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB546AI-DCIRNQT

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TUSB551

具有 1.8V 电源的 USB 3.0 单通道转接驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI