TUSB546AI-DCIRNQR [TI]

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85;
TUSB546AI-DCIRNQR
型号: TUSB546AI-DCIRNQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85

开关 驱动 驱动器
文件: 总49页 (文件大小:1598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
TUSB546A-DCI USB Type-C™ DP 交替模式线性转接驱动器交叉点开关  
1 特性  
3 说明  
1
USB Type-C 交叉点开关支持  
TUSB546-DCI 是一种 VESA USB Type-C™ 交替模式  
转接驱动开关,对于下行端口(主机),支持高达  
5Gbps USB 3.1 数据传输速率以及高达 8.1Gbps 的  
DisplayPort 1.4 数据传输速率。这款 VESA  
DisplayPort Alt 模式器件支持基于 USB Type-C 标准  
1.1 版本的配置 CDE F。此线性转接驱动器与  
协议无关,并且还支持其他 USB Type-C Alt 模式接  
口。  
USB 3.1 SS + 2 DP 信道  
4 DP 信道  
USB 3.1 1 代高达 5Gbps  
DisplayPort™1.4 高达 8.1Gbps (HBR3)  
支持 cde f 配置的 VESA DisplayPort 交替  
模式 DFP 转接驱动交叉点开关  
超低功耗架构  
具有高达 14dB 均衡功能的线性转接驱动器  
透明呈现 DisplayPort 链路训练  
自动 LFPS 去加重控制,满足 USB 3.1 认证要求  
可通过 GPIO I2C 进行配置  
TUSB546A-DCI 提供有多个接收线性均衡级别,用于  
补偿由于线缆或电路板走线损耗产生的码间串扰  
(ISI)。该器件由 3.3V 单电源供电运行,支持商业级温  
度范围和工业级温度范围。  
基于 USB Type-C™ Intel 专有 DCI 功能,可实  
现不开箱调试  
器件信息(1)  
支持热插拔  
器件型号  
TUSB546A-DCI  
TUSB546AI-DCI  
封装  
封装尺寸(标称值)  
工业温度范围:-40ºC 85ºC (TUSB546AI-DCI)  
商业级温度范围:0ºC 70ºC (TUSB546A-DCI)  
4mm x 6mm0.4mm 间距 WQFN 封装  
WQFN (40)  
4.00mm x 6.00mm  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
2 应用  
平板电脑  
笔记本电脑  
台式机  
扩展坞  
简化电路原理图  
TUSB546A-DCI 眼图  
D+/-  
TUSB546A-DCI  
USB Host  
SSTX  
SSRX  
TUSB546A-DCI  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP2  
GPU  
DP3  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF14  
 
 
 
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 17  
8.5 Programming........................................................... 22  
8.6 Register Maps......................................................... 24  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Application ................................................. 29  
9.3 System Examples .................................................. 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Power Supply Characteristics ................................... 6  
6.6 DC Electrical Characteristics .................................... 6  
6.7 AC Electrical Characteristics..................................... 7  
6.8 DCI Specific Electrical Characteristics...................... 8  
6.9 Timing Requirements................................................ 9  
6.10 Switching Characteristics........................................ 9  
6.11 Typical Characteristics.......................................... 10  
Parameter Measurement Information ................ 12  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 15  
9
10 Power Supply Recommendations ..................... 38  
11 Layout................................................................... 39  
11.1 Layout Guidelines ................................................. 39  
11.2 Layout Example .................................................... 39  
12 器件和文档支持 ..................................................... 40  
12.1 器件支持 ............................................................... 40  
12.2 相关链接................................................................ 40  
12.3 接收文档更新通知 ................................................. 40  
12.4 社区资源................................................................ 40  
12.5 ....................................................................... 40  
12.6 静电放电警告......................................................... 40  
12.7 术语表 ................................................................... 40  
13 机械、封装和可订购信息....................................... 41  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (April 2018) to Revision B  
Page  
Added following to pin 11 description: If I2C_EN = “F”, then this pin must be set to “F” or “0”. ........................................... 4  
Changes from Original (June 2017) to Revision A  
Page  
Changed the appearance of the pinout image in the Pin Configuration and Function section.............................................. 3  
Added Note 1 to the Pin Functions table................................................................................................................................ 3  
Changed the USB3.1 Control/Status Registers reset value From: 00000000 To: 00000100.............................................. 28  
Changed the Reset value of bit 3:2 From: 00 To: 01 in Table 18 ....................................................................................... 28  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
5 Pin Configuration and Functions  
RNQ Package  
40-Pin (WQFN)  
Top View  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
DPEQ1  
SSEQ1  
2
3
SBU1  
SBU2  
SSRXn  
SSRXp  
VCC  
4
5
6
7
8
AUXn  
Thermal  
Pad  
AUXp  
CTL1/HPDIN  
CTL0/SDA  
FLIP/SCL  
SSTXn  
SSTXp  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DP0p  
DP0n  
DP1p  
DP1n  
DP2p  
DP2n  
DP3p  
DP3n  
NO.  
9
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
Diff I  
DP Differential positive input for DisplayPort Lane 0.  
DP Differential negative input for DisplayPort Lane 0.  
DP Differential positive input for DisplayPort Lane 1.  
DP Differential negative input for DisplayPort Lane 1.  
DP Differential positive input for DisplayPort Lane 2.  
DP Differential negative input for DisplayPort Lane 2.  
DP Differential positive input for DisplayPort Lane 3.  
DP Differential negative input for DisplayPort Lane 3.  
10  
12  
13  
15  
16  
18  
19  
Differential negative output for DisplayPort or differential negative input for USB3.1 Downstream  
Facing port.  
RX1n  
RX1p  
31  
30  
Diff I/O  
Diff I/O  
Differential positive output for DisplayPort or differential positive input for USB3.1 Downstream  
Facing port.  
TX1n  
TX1p  
TX2p  
TX2n  
34  
33  
37  
36  
Diff O  
Diff O  
Diff O  
Diff O  
Differential negative output for DisplayPort or USB3.1 downstream facing port.  
Differential positive output for DisplayPort or USB 3.1 downstream facing port.  
Differential positive output for DisplayPort or USB 3.1 downstream facing port.  
Differential negative output for DisplayPort or USB 3.1 downstream facing port.  
Differential positive output for DisplayPort or differential positive input for USB3.1 Downstream  
Facing port.  
RX2p  
RX2n  
40  
39  
Diff I/O  
Diff I/O  
Differential negative output for DisplayPort or differential negative input for USB3.1 Downstream  
Facing port.  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
SSTXp  
SSTXn  
SSRXp  
SSRXn  
NO.  
8
Diff I  
Diff I  
Differential positive input for USB3.1 upstream facing port.  
Differential negative input for USB3.1 upstream facing port.  
Differential positive output for USB3.1 upstream facing port.  
Differential negative output for USB3.1 upstream facing port.  
7
5
Diff O  
Diff O  
4
This pin along with EQ0 sets the USB receiver equalizer gain for downstream facing RX1 and RX2  
when USB used. Up to 11dB of EQ available.  
EQ1  
EQ0  
35  
38  
4 Level I  
4 Level I  
This pin along with EQ1 sets the USB receiver equalizer gain for downstream facing RX1 and RX2  
when USB used. Up to 11 dB of EQ available.  
When I2C_EN ! = 0, this pin functions as DCI data output Leave open if not used. When I2C_EN =  
0 , this pin is CAD_SNK (L = AUX snoop enabled and H = AUX snoop disabled with all lanes  
active).  
I/O  
(PD)  
CAD_SNK/DCI_DAT(1)  
HPDIN/DCI_CLK(1)  
29  
32  
When I2C_EN ! = 0, this pin is functions as DCI clock output Leave open if not used. When  
I2C_EN = 0, this pin is an input for Hot Plug Detect received from DisplayPort sink. When HPDIN  
is Low for greater than 2ms, all DisplayPort lanes are disabled while the AUX to SBU switch will  
remain closed.  
I/O  
(PD)  
I2C Programming Mode or GPIO Programming Select. I2C is only disabled when this pin is ‘0".  
0 = GPIO mode (I2C disabled)  
R = TI Test Mode (I2C enabled at 3.3 V)  
F = I2C enabled at 1.8 V  
1 = I2C enabled at 3.3 V.  
I2C_EN  
17  
4 Level I  
SBU1. This pin should be DC coupled to the SBU1 pin on the Type-C receptacle. A 2-M ohm  
resistor to GND is also recommended.  
SBU1  
SBU2  
27  
26  
I/O, CMOS  
I/O, CMOS  
SBU2. This pin should be DC coupled to the SBU2 pin on the Type-C receptacle. A 2-M ohm  
resistor to GND is also recommended.  
AUXp. DisplayPort AUX positive I/O connected to the DisplayPort source through a AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 100K resistor to GND. This  
pin along with AUXN is used by the TUSB546A-DCI for AUX snooping and is routed to SBU1/2  
based on the orientation of the Type-C.  
AUXp  
24  
I/O, CMOS  
AUXn. DisplayPort AUX negative I/O connected to the DisplayPort source through a AC coupling  
capacitor. In addition to AC coupling capacitor, this pin also requires a 100K resistor to DP_PWR  
(3.3V). This pin along with AUXP is used by the TUSB546A-DCI for AUX snooping and is routed to  
SBU1/2 based on the orientation of the Type-C.  
AUXn  
25  
2
I/O, CMOS  
4 Level I  
DisplayPort Receiver EQ. This along with DPEQ0 will select the DisplayPort receiver equalization  
gain.  
DPEQ1  
DisplayPort Receiver EQ. This along with DPEQ1 will select the DisplayPort receiver equalization  
gain. When I2C_EN is not ‘0’, this pin will also set the TUSB546A-DCI I2C address.  
DPEQ0/A1  
SSEQ1  
14  
3
4 Level I  
4 Level I  
Along with SSEQ0, sets the USB receiver equalizer gain for upstream facing SSTXP/N.  
Along with SSEQ1, sets the USB receiver equalizer gain for upstream facing SSTXP/N. When  
I2C_EN is not ‘0’, this pin will also set the TUSB546A-DCI I2C address. If I2C_EN = “F”, then this  
pin must be set to “F” or “0”.  
SSEQ0/A0  
11  
4 Level I  
When I2C_EN=’0’ this is Flip control pin, otherwise this pin is I2C clock. . When used for I2C clock  
pullup to I2C master's VCC I2C supply.  
FLIP/SCL  
21  
22  
2 Level I  
2 Level I  
When I2C_EN=’0’ this is a USB3.1 Switch control pin, otherwise this pin is I2C data. When used  
for I2C data pullup to I2C master's VCC I2C supply.  
CTL0/SDA  
DP Alt mode Switch Control Pin. When I2C_EN = ‘0’, this pin will enable or disable DisplayPort  
functionality. Otherwise, when I2C_EN is not "0", DisplayPort functionality is enabled and disabled  
through I2C registers.  
L = DisplayPort Disabled.  
H = DisplayPort Enabled.  
When I2C_EN is not "0" this pin is an input for Hot Plug Detect received from DisplayPort sink.  
When this HPDIN is Low for greater than 2 ms, all DisplayPort lanes are disabled and AUX to SBU  
switch will remain closed.  
2 Level I  
(Failsafe)  
(PD)  
CTL1/HPDIN  
23  
VCC  
1, 6, 20, 28  
P
3.3-V Power Supply  
Ground  
Thermal Pad  
G
(1) Not a fail-safe I/O. Actively driving pin high while VCC is removed results in leakage voltage on VCC pins.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage Range(2), VCC  
–0.3  
4
V
Differential voltage between positive and  
negative inputs  
±2.5  
V
Voltage Range at any input or output pin  
Voltage at differential inputs  
CMOS Inputs  
–0.5  
–0.5  
VCC + 0.5  
VCC + 0.5  
125  
V
V
Maximum junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±5000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.6  
100  
3.6  
100  
70  
UNIT  
V
Main power supply  
3
3.3  
VCC  
Supply Ramp Requirement  
ms  
V
V(12C)  
V(PSN)  
Supply that external resistors are pulled up to on SDA and SCL  
Supply Noise on VCC pins  
1.7  
mV  
°C  
TUSB546A-DCI  
Operating free-air temperature  
0
TA  
TUSB546I-DCI  
–40  
85  
°C  
6.4 Thermal Information  
TUSB546A-DCI  
THERMAL METRIC(1)  
RNQ (WQFN)  
UNIT  
40 PINS  
37.6  
20.7  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
9.4  
RθJC(bot)  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
 
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
6.5 Power Supply Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Link in U0 with GEN1 data transmission.  
EN, EQ cntrl pins = NC, k28.5 pattern at  
Average active power  
USB Only  
PCC(ACTIVE-USB)  
335  
mW  
5 Gbps, VID = 1000 mVPP  
CTL1 = L; CTL0 = H  
;
Link in U0 with GEN1 data transmission.  
EN, EQ cntrl pins = NC, k28.5 pattern at  
Average active power  
USB + 2 Lane DP  
PCC(ACTIVE-USB-DP1)  
634  
mW  
5 Gbps, VID = 1000 mVPP  
;
CTL1 = H; CTL0 = H  
Four active DP lanes operating at  
8.1Gbps;  
CTL1 = H; CTL0 = L;  
Average active power  
4 Lane DP Only  
PCC(ACTIVE--DP)  
660  
2.4  
mW  
mW  
No GEN1 device is connected to  
TXP/TXN;  
PCC(NC-USB)  
Average power with no connection  
CTL1 = L; CTL0 = H;  
Link in U2 or U3 USB Mode Only;  
CTL1 = L; CTL0 = H;  
PCC(U2U3)  
Average power in U2/U3  
Device Shutdown  
3.0  
mW  
mW  
PCC(SHUTDOWN)  
CTL1 = L; CTL0 = L; I2C_EN = 0;  
0.85  
6.6 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-State CMOS Inputs(EQ[1:0], SSEQ[1:0], DPEQ[1:0], I2C_EN)  
IIH  
IIL  
High level input current  
Low level input current  
Threshold 0 / R  
VCC = 3.6 V; VIN = 3.6 V  
VCC = 3.6 V; VIN = 0 V  
VCC = 3.3 V  
20  
80  
µA  
µA  
V
–160  
-40  
0.55  
1.65  
2.7  
35  
4-Level VTH  
Threshold R/ Float  
VCC = 3.3 V  
V
Threshold Float / 1  
VCC = 3.3 V  
V
RPU  
RPD  
Internal pull-up resistance  
Internal pull-down resistance  
kΩ  
kΩ  
95  
2-State CMOS Input (CTL0, CTL1, FLIP, CAD_SNK, HPDIN) CTL1, CTL0 and FLIP are Failsafe.  
VIH  
VIL  
High-level input voltage  
2
0
3.6  
0.8  
V
V
Low-level input voltage  
RPD  
Internal pull-down resistance for CTL1  
500  
150  
k  
Internal pull-down resistance for  
CAD_SNK (pin 29), and HPDIN (pin 32)  
R(ENPD)  
kΩ  
IIH  
IIL  
High-level input current  
Low-level input current  
VIN = 3.6 V  
–25  
–25  
25  
25  
µA  
µA  
VIN = GND, VCC = 3.6 V  
I2C Control Pins SCL, SDA  
VIH  
High-level input voltage  
I2C_EN = 0  
0.7 x V(I2C)  
3.6  
0.3 x V(I2C)  
0.4  
V
V
VIL  
Low-level input voltage  
Low-level output voltage  
Low-level output current  
Input current on SDA pin  
Input capacitance  
I2C_EN = 0  
0
0
VOL  
IOL  
I2C_EN = 0; IOL = 3 mA  
I2C_EN = 0; VOL = 0.4 V  
0.1 x V(I2C) < Input voltage < 3.3 V  
V
20  
mA  
µA  
pF  
pF  
pF  
II(I2C)  
CI(I2C)  
–10  
10  
10  
C(I2C_FM+_BUS) I2C bus capacitance for FM+ (1MHz)  
150  
150  
C(I2C_FM_BUS)  
R(EXT_I2C_FM+)  
I2C bus capacitance for FM (400kHz)  
External resistors on both SDA and SCL  
when operating at FM+ (1MHz)  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
910  
External resistors on both SDA and SCL  
when operating at FM (400kHz)  
R(EXT_I2C_FM)  
1500  
2200  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
6.7 AC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
USB Gen 1 Differential Receiver (RX1P/N, RX2P/N, SSTXP/N)  
AC-coupled differential peak-to-peak  
signal measured post CTLE through a  
reference channel  
Input differential peak-peak voltage  
V(RX-DIFF-PP)  
2000  
0
mVpp  
swing linear dynamic range  
Common-mode voltage bias in the  
receiver (DC)  
V(RX-DC-CM)  
V
Ω
Ω
Present after a GEN1 device is  
detected on TXP/TXN  
R(RX-DIFF-DC)  
R(RX-CM-DC)  
Differential input impedance (DC)  
72  
18  
120  
30  
Receiver DC common mode  
impedance  
Present after a GEN1 device is  
detected on TXP/TXN  
Present when no GEN1 device is  
detected on TXP/TXN. Measured over  
the range of 0-500mV with respect to  
GND.  
Common-mode input impedance with  
termination disabled (DC)  
Z(RX-HIGH-IMP-DC-POS)  
25  
kΩ  
Input differential peak-to-peak signal  
detect assert level  
At 5 Gbps, no input loss, PRBS7  
pattern  
V(SIGNAL-DET-DIFF-PP)  
V(RX-IDLE-DET-DIFF-PP)  
V(RX-LFPS-DET-DIFF-PP)  
80  
60  
mV  
mV  
mV  
Input differential peak-to-peak signal  
detect de-assert Level  
At 5 Gbps, no input loss, PRBS7  
pattern  
Low frequency periodic signaling  
(LFPS) detect threshold  
Below the minimum is squelched  
100  
300  
V(RX-CM-AC-P)  
C(RX)  
Peak RX AC common-mode voltage  
RX input capacitance to GND  
Measured at package pin  
At 2.5 GHz  
150  
1
mV  
pF  
dB  
dB  
dB  
dB  
0.5  
–19  
–14  
–13  
50 MHz – 1.25 GHz at 90 Ω  
2.5 GHz at 90 Ω  
RL(RX-DIFF)  
Differential return Loss  
RL(RX-CM)  
EQ(SSP)  
Common-mode return loss  
Receiver equalization  
50 MHz – 2.5 GHz at 90 Ω  
SSEQ[1:0] and EQ[1:0] at 2.5 GHz  
11  
USB Gen 1 Differential Transmitter (TX1P/N, TX2P/N, SSRXP/N)  
VTX(DIFF-PP)  
Transmitter dynamic differential voltage swing range  
1500  
1.75  
mVPP  
mV  
VTX(RCV-DETECT)  
Amount of voltage change allowed during receiver detection  
600  
600  
Transmitter idle common-mode voltage change while in U2/U3 and not actively  
transmitting LFPS  
VTX(CM-IDLE-DELTA)  
VTX(DC-CM)  
–600  
mV  
V
Common-mode voltage bias in the transmitter (DC)  
Max mismatch from Txp + Txn for both  
Tx AC common-mode voltage active  
VTX(CM-AC-PP-ACTIVE)  
100  
10  
mVPP  
time and amplitude  
AC electrical idle differential peak-to-  
At package pins  
VTX(IDLE-DIFF-AC-PP)  
VTX(IDLE-DIFF-DC)  
0
0
mV  
mV  
mV  
peak output voltage  
DC electrical idle differential output  
voltage  
At package pins after low pass filter to  
remove AC component  
14  
VTX(CM-DC-ACTIVE-IDLE- Absolute DC common-mode voltage  
At package pin  
200  
between U1 and U0  
DELTA)  
RTX(DIFF)  
Differential impedance of the driver  
AC coupling capacitor  
75  
75  
120  
265  
Ω
CAC(COUPLING)  
nF  
Measured with respect to AC ground  
over  
0–500 mV  
Common-mode impedance of the  
driver  
RTX(CM)  
18  
30  
Ω
ITX(SHORT)  
TX short circuit current  
TXP/N shorted to GND  
At package pins, at 2.5GHz  
50 MHz – 1.25 GHz at 90 Ω  
2.5 GHz at 90 Ω  
67  
mA  
pF  
dB  
dB  
dB  
CTX(PARASITIC)  
TX input capacitance for return loss  
1.25  
-15  
-12  
-13  
RLTX(DIFF)  
Differential return loss  
RLTX(CM)  
Common-mode return loss  
50 MHz – 2.5 GHz at 90 Ω  
AC Characteristics  
Differential crosstalk between TX and  
RX signal pairs  
Crosstalk  
C(P1dB-LF)  
C(P1dB-HF)  
at 2.5 GHz  
–30  
1300  
1300  
dB  
Low frequency 1-dB compression  
point  
at 100 MHz, 200 mVPP < VID  
< 2000 mVPP  
mVPP  
mVPP  
High frequency 1-dB compression  
point  
at 2.5 GHz, 200 mVPP < VID  
< 2000 mVPP  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
AC Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fLF  
Low frequency cutoff  
200 mVPP< VID < 2000 mVPP  
20  
50  
kHz  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
0.05  
0.08  
UIpp  
UIpp  
UIpp  
UIpp  
TX output deterministic jitter  
TX output total jitter  
200 mVPP < VID < 2000 mVPP, PRBS7,  
8.1 Gbps  
200 mVPP < VID < 2000 mVPP, PRBS7,  
5 Gbps  
0.08  
200 mVPP < VID < 2000 mVPP, PRBS7,  
8.1 Gbps  
0.135  
DisplayPort Receiver (DP[3:0]p or DP[3:0]n)  
VID(PP) Peak-to-peak input differential dynamic voltage range  
VIC  
2000  
0
V
V
Input common mode voltage  
AC coupling capacitance  
Receiver equalization  
Data rate  
C(AC)  
EQ(DP)  
dR  
75  
80  
200  
14  
nF  
DPEQ[1:0] at 4.05 GHz  
HBR3  
dB  
Gbps  
Ω
8.1  
120  
R(ti)  
Input termination resistance  
100  
DisplayPort Transmitter (TX1p or TX1n, TX2p or TX2n, RX1p or RX1n, RX2p or RX2n)  
ITX(SHORT) TX short circuit current TX± shorted to GND  
VTX(DC-CM) Common-mode voltage bias in the transmitter (DC)  
AUXp or AUXn and SBU1 or SBU2  
67  
mA  
V
1.75  
5
VCC = 3.3V; VI = 0 to 0.4 V for AUXp;  
VI = 2.7 V to 3.6 V for AUXn  
RON  
Output ON resistance  
10  
Ω
Ω
VCC = 3.3 V; VI = 0 to 0.4 V for AUXP;  
VI = 2.7 V to 3.6 V for AUXN  
ΔRON  
ON resistance mismatch within pair  
2.5  
ON resistance flatness (RON max –  
RON min) measured at identical VCC  
and temperature  
VCC = 3.3 V; VI = 0 to 0.4 V for AUXp;  
VI = 2.7 V to 3.6 V for AUXn  
RON(FLAT)  
2
Ω
AUX Channel DC common mode  
voltage for AUXp and SBU1.  
V(AUXP_DC_CM)  
V(AUXN_DC_CM)  
C(AUX_ON)  
VCC = 3.3 V  
VCC = 3.3 V  
0
0.4  
3.6  
7
V
V
AUX Channel DC common mode  
voltage for AUXn and SBU2  
2.7  
VCC = 3.3 V; CTL1 = 1; VI = 0 V  
or 3.3 V  
ON-state capacitance  
OFF-state capacitance  
4
3
pF  
pF  
VCC = 3.3 V; CTL1 = 0; VI = 0 V  
or 3.3 V  
C(AUX_OFF)  
6
6.8 DCI Specific Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.45  
33  
UNIT  
DCI_CLK and DCI_DAT LVCMOS Outputs  
VOL  
Low-Level output voltage  
High-Level output voltage  
Output characteristic impedance  
DCI Clock period  
VCC = 3 V; IOL = 2 mA; CL = 10 pF  
VCC = 3 V; IOL = –2 mA;  
V
V
VOH  
2.4  
21  
RDCI  
tPERIOD  
25  
Ω
Measured at 50%  
6.67  
ns  
Rising edge of DCI clock to DCI  
data valid  
tVALID  
1
ns  
tDCI_RISE  
tDCI_FALL  
DCI output rise time  
DCI output fall time  
Measured at 20% to 80%.  
Measured at 80% to 20%  
350  
350  
ps  
ps  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
6.9 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
USB Gen 1  
tIDLEEntry  
Delay from U0 to electrical idle  
See Figure 14  
See Figure 14  
10  
6
ns  
ns  
U1 exist time: break in electrical idle to  
the transmission of LFPS  
tIDELExit_U1  
tIDLEExit_U2U3  
tRXDET_INTVL  
tIDLEExit_DISC  
tExit_SHTDN  
tDIFF_DLY  
U2/U3 exit time: break in electrical idle to transmission of LFPS  
RX detect interval while in Disconnect  
Disconnect Exit Time  
10  
µs  
ms  
µs  
12  
10  
1
Shutdown Exit Time  
ms  
ps  
Differential Propagation Delay  
See Figure 13  
300  
20%-80% of differential  
voltage measured 1 inch  
from the output pin  
tR, tF  
Output Rise/Fall time (see Figure 15)  
40  
ps  
ps  
20%-80% of differential  
voltage measured 1 inch  
from the output pin  
tRF_MM  
Output Rise/Fall time mismatch  
2.6  
6.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUXp or AUXn and SBU1 or SBU2  
tAUX_PD  
Switch propagation delay  
400  
500  
ps  
ns  
Switching time CTL1 to switch OFF. Not including  
TCTL1_DEBOUNCE.  
tAUX_SW_OFF  
tAUX_SW_ON  
tAUX_INTRA  
Switching time CTL1 to switch ON  
Intra-pair output skew  
500  
100  
ns  
ps  
USB3.1 and DisplayPort mode transition requirement GPIO mode  
Min overlap of CTL0 and CTL1 when transitioning from USB 3.1 only  
mode to 4-Lane DisplayPort mode or vice versa.  
tGP_USB_4DP  
4
2
µs  
CTL1 and HPDIN  
tCTL1_DEBOUNCE CTL1 and HPDIN debounce time when transitioning from H to L.  
I2C (Refer to Figure 11)  
10  
1
ms  
fSCL  
tBUF  
I2C clock frequency  
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
Hold time after repeated START condition. After this period, the first  
clock pulse is generated  
tHDSTA  
0.26  
µs  
tLOW  
Low period of the I2C clock  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
μs  
ns  
ns  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Data setup time  
50  
Rise time of both SDA and SCL signals  
120  
120  
20 × (V(I2C)/5.5  
V)  
tF  
Fall time of both SDA and SCL signals  
ns  
tSUSTO  
Cb  
Setup time for STOP condition  
Capacitive load for each bus line  
0.26  
μs  
150  
pF  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
6.11 Typical Characteristics  
15  
10  
5
15  
10  
5
0
0
-5  
-5  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
-10  
-10  
-15  
-15  
0.01  
0.1  
1
Frequency (GHz)  
10  
0.01  
0.1  
1
Frequency (GHz)  
10  
D001  
D002  
Figure 1. DisplayPort EQ Settings Curves  
Figure 2. USB RX EQ Settings Curves  
15  
10  
5
1.6  
1.4  
1.2  
1
0
0.8  
0.6  
0.4  
0.2  
0
-5  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
-10  
-15  
0.01  
0.1  
1
Frequency (GHz)  
10  
0
0.2 0.4 0.6 0.8  
1
Differential Input Voltage (V)  
1.2 1.4 1.6 1.8  
2
D003  
D004  
Figure 3. USB TX EQ Settings Curves  
Figure 4. DisplayPort Linearity Curves at 4.05 GHz  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
EQ0  
EQ1  
EQ2  
EQ3  
EQ4  
EQ5  
EQ6  
EQ7  
EQ8  
EQ9  
EQ10  
EQ11  
EQ12  
EQ13  
EQ14  
EQ15  
0
0.2 0.4 0.6 0.8  
1
Differential Input Voltage (V)  
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
Differential Input Voltage (V)  
1.2 1.4 1.6 1.8  
2
D005  
D006  
Figure 5. USB TX Linearity Curves at 2.5 GHz  
Figure 6. USB RX Linearity Curves at 2.5 GHz  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
Typical Characteristics (continued)  
5
5
0
DP0  
DP1  
DP2  
DP3  
SSTX  
RX1  
RX2  
RX1  
RX2  
TX1  
TX2  
SSRX  
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
0.01  
0.1  
1
Frequency (GHz)  
10  
0.01  
0.1  
1
Frequency (GHz)  
10  
D007  
D008  
Figure 7. Input Return Loss Performance  
Figure 8. Output Return Loss Performance  
Time (20.57 ps/Div)  
Time (33.33 ps/Div)  
Figure 9. DisplayPort HBR3 Eye-Pattern Performance with  
12-inch Input PCB Trace at 8.1 Gbps  
Figure 10. USB 3.1 Gen1 Eye-Pattern Performance with  
12-inch Input PCB Trace at 5 Gbps  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
70%  
SDA  
30%  
t
t
t
F
HDSTA  
R
tHIGH  
t
t
LOW  
BUF  
70%  
30%  
SCL  
S
P
P
S
t
t
SUSTO  
t
t
SUDAT  
HDDAT  
HDSTA  
t
SUSTA  
Figure 11. I2C Timing Diagram Definitions  
4us  
(min)  
CTL1 pin  
CTL0 pin  
Figure 12. USB3.1 to 4-Lane DisplayPort in GPIO Mode  
IN  
T
T
DIFF_DLY  
DIFF_DLY  
OUT  
Figure 13. Propagation Delay  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
Parameter Measurement Information (continued)  
IN+  
V
Vcm  
RX-LFPS-DET-DIFF-PP  
IN-  
T
T
IDLEEntry  
IDLEExit  
OUT+  
Vcm  
OUT-  
Figure 14. Electrical Idle Mode Exit and Entry Delay  
80%  
20%  
t
r
t
f
Figure 15. Output Rise and Fall Times  
50%  
50%  
CTL1  
90%  
10%  
V
OUT  
T
AUX_SW_ON  
T
+ T  
CTL1_DEBOUNCE  
AUX_SW_OFF  
Figure 16. AUX and SBU Switch ON and OFF Timing Diagram  
TDCI_CLK_PD  
TDCI_CLK_PD  
VIH_MIN  
RX1N  
or  
RX2N  
VIH_MAX  
VOH_MIN  
DCI_CLK  
VOL_MAX  
Figure 17. DCI Clock Propagation Delay  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TUSB546A-DCI is a VESA USB Type-C Alt Mode redriving switch supporting data rates up to 8.1 Gbps for  
downstream facing port. These devices utilize 5th generation USB redriver technology. The devices are utilized  
for DFP configurations C, D, E, and F from the VESA DisplayPort Alt Mode on USB Type-C.  
The TUSB546A-DCI provides several levels of receive equalization to compensate for cable and board trace loss  
due to inter-symbol interference (ISI) when USB 3.1 Gen1 or DisplayPort 1.4 signals travel across a PCB or  
cable. This device requires a 3.3-V power supply. It comes in a commercial temperature range and industrial  
temperature range.  
For a host application the TUSB546A-DCI enables the system to pass both transmitter compliance and receiver  
jitter tolerance tests for USB 3.1 Gen 1 and DisplayPort version 1.4 HBR3. The re-driver recovers incoming data  
by applying equalization that compensates for channel loss, and drives out signals with a high differential  
voltage. Each channel has a receiver equalizer with selectable gain settings. The equalization should be set  
based on the amount of insertion loss before the TUSB546A-DCI receivers. Independent equalization control for  
each channel can be set using EQ[1:0], SSEQ[1:0], and DPEQ[1:0] pins.  
The TUSB546A-DCI advanced state machine makes it transparent to hosts and devices. After power up, the  
TUSB546A-DCI. periodically performs receiver detection on the TX pairs. If it detects a USB 3.1 Gen1 receiver,  
the RX termination is enabled, and the TUSB546A-DCI is ready to re-drive.  
The device ultra-low-power architecture operates at a 3.3-V power supply and achieves Enhanced performance.  
The automatic LFPS De-Emphasis control further enables the system to be USB3.1 compliant.  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
8.2 Functional Block Diagram  
SSRXp  
SSRXn  
Driver  
EQ_SEL  
EQ  
SSEQ_SEL  
SSTXp  
EQ  
RX2p  
RX2n  
SSTXn  
Driver  
DPEQ_SEL  
DP0p  
DP0n  
TX2p  
TX2n  
EQ  
Driver  
MUX  
TX1n  
TX1p  
Driver  
DP1p  
EQ  
EQ  
DP1n  
DPEQ_SEL  
RX1n  
RX1p  
Driver  
DP2p  
DP2n  
EQ  
EQ_SEL  
DP3p  
EQ  
DP3n  
DPEQ_SEL  
SSEQ_SEL  
DPEQ_SEL  
EQ_SEL  
DPEQ[1:0]/A1  
SSEQ[1:0]/A0  
I2C_EN  
EQ[1:0]  
FSM, Control Logic and  
Registers  
FLIP/SCL  
I2C  
Slave  
CTL0/SDA  
HPDIN/DCI_CLK  
CTL1/HPDIN  
CAD_SNK/DCI_DAT  
M
U
X
SBU1  
SBU2  
AUXp  
AUXn  
VREG  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 USB 3.1  
The TUSB546A-DCI supports USB 3.1 Gen1 datarates up to 5 Gbps. The TUSB546A-DCI supports all the USB  
defined power states (U0, U1, U2, and U3). Because the TUSB546A-DCI is a linear redriver, it can’t decode  
USB3.1 physical layer traffic. The TUSB546A-DCI monitors the actual physical layer conditions like receiver  
termination, electrical idle, LFPS, and SuperSpeed signaling rate to determine the USB power state of the USB  
3.1 interface.  
The TUSB546A-DCI features an intelligent low frequency periodic signaling (LFPS) detector. The LFPS detector  
automatically senses the low frequency signals and disables receiver equalization functionality. When not  
receiving LFPS, the TUSB546A-DCI will enable receiver equalization based on the EQ[1:0] and SSEQ[1:0] pins  
or values programmed into EQ1_SEL, EQ2_SEL, and SSEQ_SEL registers.  
8.3.2 DisplayPort  
The TUSB546A-DCI supports up to 4 DisplayPort lanes at datarates up to 8.1Gbps (HBR3). The TUSB546A-  
DCI, when configured in DisplayPort mode, monitors the native AUX traffic as it traverses between DisplayPort  
source and DisplayPort sink. For the purposes of reducing power, the TUSB546A-DCI manages the number of  
active DisplayPort lanes based on the content of the AUX transactions. The TUSB546A-DCI snoops native AUX  
writes to DisplayPort sink’s DPCD registers 0x00101 (LANE_COUNT_SET) and 0x00600  
(SET_POWER_STATE). TUSB546A-DCI disables/enables lanes based on value written to LANE_COUNT_SET.  
The TUSB546A-DCI disables all lanes when SET_POWER_STATE is in the D3. Otherwise active lanes will be  
based on value of LANE_COUNT_SET.  
DisplayPort AUX snooping is enabled by default but can be disabled by changing the AUX_SNOOP_DISABLE  
register. Once AUX snoop is disabled, management of TUSB546A-DCI DisplayPort lanes are controlled through  
various configuration registers. When TUSB546A-DCI is enabled for GPIO mode (I2C_EN = "0"), the CAD_SNK  
pin can be used to disable AUX snooping. When CAD_SNK pin is high, the AUX snooping functionality is  
disabled and all four DisplayPort lanes will be active.  
8.3.3 4-level Inputs  
The TUSB546A-DCI has (I2C_EN, EQ[1:0], DPEQ[1:0], and SSEQ[1:0]) 4-level inputs pins that are used to  
control the equalization gain and place TUSB546A-DCI into different modes of operation. These 4-level inputs  
utilize a resistor divider to help set the 4 valid levels and provide a wider range of control settings. There is an  
internal 30 kpull-up and a 94 kpull-down. These resistors, together with the external resistor connection  
combine to achieve the desired voltage level.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
Option 1: Tie 1 K5% to GND.  
Option 2: Tie directly to GND.  
0
R
F
Tie 20 K5% to GND.  
Float (leave pin open)  
Option 1: Tie 1 K5%to VCC  
.
1
Option 2: Tie directly to VCC  
.
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
NOTE  
All four-level inputs are latched on rising edge of internal reset. After tcfg_hd, the internal  
pull-up and pull-down resistors will be isolated in order to save power.  
8.3.4 Receiver Linear Equalization  
The purpose of receiver equalization is to compensate for channel insertion loss and inter-symbol interference in  
the system before the input of the TUSB546A-DCI. The receiver overcomes these losses by attenuating the low  
frequency components of the signals with respect to the high frequency components. The proper gain setting  
should be selected to match the channel insertion loss before the input of the TUSB546A-DCI receivers. Two 4-  
level inputs pins enable up to 16 possible equalization settings. USB3.1 upstream path, USB3.1 downstream  
path, and DisplayPort each have their own two 4-level inputs. The TUSB546A-DCI also provides the flexibility of  
adjusting settings through I2C registers.  
8.4 Device Functional Modes  
8.4.1 Device Configuration in GPIO Mode  
The TUSB546A-DCI is in GPIO configuration when I2C_EN = “0”. The TUSB546A-DCI supports the following  
configurations: USB 3.1 only, 2 DisplayPort lanes + USB 3.1, or 4 DisplayPort lanes (no USB 3.1). The CTL1 pin  
controls whether DisplayPort is enabled. The combination of CTL1 and CTL0 selects between USB 3.1 only, 2  
lanes of DisplayPort, or 4-lanes of DisplayPort as detailed in Table 2. The AUXp or AUXn to SBU1 or SBU2  
mapping is controlled based on Table 3.  
After power-up (VCC from 0 V to 3.3 V), the TUSB546A-DCI defaults to USB3.1 mode. The USB PD controller  
upon detecting no device attached to Type-C port or USB3.1 operation not required by attached device must  
take TUSB546A-DCI out of USB3.1 mode by transitioning the CTL0 pin from L to H and back to L.  
Table 2. GPIO Configuration Control  
VESA DisplayPort ALT MODE  
DFP_D CONFIGURATION  
CTL1 PIN  
CTL0 PIN  
FLIP PIN  
TUSB546A-DCI CONFIGURATION  
L
L
L
L
L
H
L
Power Down  
Power Down  
L
H
H
L
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
L
H
L
H
H
H
H
C and E  
C and E  
D and F  
D and F  
L
H
L
4 Lane DP – With Flip  
H
H
One Port USB 3.1 + 2 Lane DP- No Flip  
One Port USB 3.1 + 2 Lane DP– With Flip  
H
Table 3. GPIO AUXp or AUXn to SBU1 or SBU2 Mapping  
CTL1 PIN  
FLIP PIN  
MAPPING  
AUXp SBU1  
AUXn SBU2  
H
L
AUXp SBU2  
AUXn SBU1  
H
H
X
L > 2 ms  
Open  
Table 4 Details the TUSB546A-DCI’s mux routing. This table is valid for both I2C and GPIO configuration modes.  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
 
 
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
Table 4. INPUT to OUTPUT Mapping  
FROM  
TO  
OUTPUT PIN  
NA  
CTL1 PIN  
CTL0 PIN  
FLIP PIN  
INPUT PIN  
NA  
L
L
L
L
L
H
NA  
NA  
RX1P  
RX1N  
SSTXP  
SSTXN  
RX2P  
RX2N  
SSTXP  
SSTXN  
DP0P  
DP0N  
DP1P  
DP1N  
DP2P  
DP2N  
DP3P  
DP3N  
DP0P  
DP0N  
DP1P  
DP1N  
DP2P  
DP2N  
DP3P  
DP3N  
RX1P  
RX1N  
SSTXP  
SSTXN  
DP0P  
DP0N  
DP1P  
DP1N  
RX2P  
RX2N  
SSTXP  
SSTXN  
DP0P  
DP0N  
DP1P  
DP1N  
SSRXP  
SSRXN  
TX1P  
L
L
H
H
L
TX1N  
SSRXP  
SSRXN  
TX2P  
H
TX2P  
RX2P  
RX2N  
TX2P  
TX2N  
TX1P  
H
H
H
H
L
L
H
L
TX1N  
RX1P  
RX1N  
RX1P  
RX1N  
TX1P  
TX1N  
TX2P  
L
TX2N  
RX2P  
RX2N  
SSRXP  
SSRXN  
TX1P  
TX1N  
RX2P  
RX2N  
TX2P  
H
TX2N  
SSRXP  
SSRXN  
TX2P  
TX2N  
RX1P  
RX1N  
TX1P  
H
H
TX1N  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
8.4.2 Device Configuration In I2C Mode  
The TUSB546A-DCI is in I2C mode when I2C_EN is not equal to “0”. The same configurations defined in GPIO  
mode are also available in I2C mode. The TUSB546A-DCI USB3.1 and DisplayPort configuration is controlled  
based on Table 5. The AUXp or AUXn to SBU1 or SBU2 mapping control is based on Table 6.  
Table 5. I2C Configuration Control  
REGISTERS  
VESA DisplayPort ALT MODE  
DFP_D CONFIGURATION  
TUSB546A-DCI CONFIGURATION  
CTLSEL1  
CTLSEL0  
FLIPSEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Power Down  
Power Down  
One Port USB 3.1 - No Flip  
One Port USB 3.1 – With Flip  
4 Lane DP - No Flip  
C and E  
C and E  
D and F  
D and F  
4 Lane DP – With Flip  
One Port USB 3.1 + 2 Lane DP- No Flip  
One Port USB 3.1 + 2 Lane DP– With Flip  
Table 6. I2C AUXp or AUXn to SBU1 or SBU2 Mapping  
REGISTERS  
MAPPING  
AUX_SBU_OVR  
CTLSEL1  
FLIPSEL  
AUXp SBU1  
AUXn SBU2  
00  
1
0
AUXp SBU2  
AUXn SBU1  
00  
00  
01  
1
1
X
1
X
X
Open  
AUXp SBU1  
AUXn SBU2  
AUXp SBU2  
AUXn SBU1  
10  
11  
X
X
X
X
Open  
8.4.3 DisplayPort Mode  
The TUSB546A-DCI supports up to four DisplayPort lanes at datarates up to 8.1 Gbps. TUSB546A-DCI can be  
enabled for DisplayPort through GPIO control or through I2C register control. When I2C_EN is ‘0’, DisplayPort is  
controlled based on Table 2. When not in GPIO mode, enable of DisplayPort functionality is controlled through  
I2C registers.  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
 
 
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8.4.4 Linear EQ Configuration  
Each of the TUSB546A-DCI receiver lanes has individual controls for receiver equalization. The receiver  
equalization gain value can be controlled either through I2C registers or through GPIOs. Table 7 details the gain  
value for each available combination when TUSB546A-DCI is in GPIO mode. These same options are also  
available in I2C mode by updating registers DP0EQ_SEL, DP1EQ_SEL, DP2EQ_SEL, DP3EQ_SEL, EQ1_SEL,  
EQ2_SEL, and SSEQ_SEL.  
Table 7. TUSB546A-DCI Receiver Equalization GPIO Control  
USB3.1 DOWNSTREAM FACING PORTS  
USB 3.1 UPSTREAM FACING PORT  
ALL DISPLAYPORT LANES  
Equalization  
Setting #  
EQ GAIN at  
2.5 GHz  
(dB)  
EQ1 PIN  
LEVEL  
SSEQ1 PIN  
LEVEL  
SSEQ0 PIN  
LEVEL  
EQ GAIN at 2.5  
GHz (dB)  
DPEQ1 PIN  
LEVEL  
DPEQ0 PIN  
LEVEL  
EQ GAIN at  
4.05 GHz (dB)  
EQ0 PIN LEVEL  
0
1
0
0
0
R
F
1
0.2  
1.2  
2.2  
3.3  
4.2  
5.1  
5.9  
6.7  
7.4  
8.1  
8.7  
9.3  
9.7  
10.2  
10.6  
11.1  
0
0
0
R
F
1
-1.6  
-0.5  
0.5  
1.6  
2.4  
3.4  
4.1  
4.9  
5.7  
6.4  
6.9  
7.5  
8.0  
8.5  
8.9  
9.4  
0
0
0
R
F
1
1.0  
3.3  
2
0
0
0
4.9  
3
0
0
0
6.5  
4
R
R
R
R
F
F
F
F
1
0
R
R
R
R
F
F
F
F
1
0
R
R
R
R
F
F
F
F
1
0
7.5  
5
R
F
1
R
F
1
R
F
1
8.6  
6
9.5  
7
10.4  
11.1  
11.7  
12.3  
12.8  
13.2  
13.6  
14.0  
14.4  
8
0
0
0
9
R
F
1
R
F
1
R
F
1
10  
11  
12  
13  
14  
15  
0
0
0
1
R
F
1
1
R
F
1
1
R
F
1
1
1
1
1
1
1
8.4.5 USB3.1 Modes  
The TUSB546A-DCI monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and  
SuperSpeed signaling rate to determine the state of the USB3.1 interface. Depending on the state of the USB  
3.1 interface, the TUSB546A-DCI can be in one of four primary modes of operation when USB 3.1 is enabled  
(CTL0 = H or CTLSEL0 = 1b1): Disconnect, U2/U3, U1, and U0.  
The Disconnect mode is the state in which TUSB546A-DCI has not detected far-end termination on both  
upstream facing port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of  
each of the four modes. The TUSB546A-DCI remains in this mode until far-end receiver termination has been  
detected on both UFP and DFP. The TUSB546A-DCI immediately exits this mode and enter U0 once far-end  
termination is detected.  
Once in U0 mode, the TUSB546A-DCI will redrive all traffic received on UFP and DFP. U0 is the highest power  
mode of all USB3.1 modes. The TUSB546A-DCI remains in U0 mode until electrical idle occurs on both UFP and  
DFP. Upon detecting electrical idle, the TUSB546A-DCI immediately transitions to U1.  
The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB546A-DCI  
UFP and DFP receiver termination remains enabled. The UFP and DFP transmitter DC common mode is  
maintained. The power consumption in U1 is similar to power consumption of U0.  
Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB546A-  
DCI periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on  
either UFP or DFP, the TUSB546A-DCI leaves the U2/U3 mode and transitions to the Disconnect mode. It also  
monitors for a valid LFPS. Upon detection of a valid LFPS, the TUSB546A-DCI immediately transitions to the U0  
mode. In U2/U3 mode, the TUSB546A-DCI receiver terminations remain enabled but the TX DC common mode  
voltage is not maintained.  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
8.4.6 Operation Timing – Power Up  
Tctl_db  
Mode of operation  
determined by value of  
FLIPSEL bit and CTLSEL[1:0]  
bits at offset0x0A. Default  
is USB3.1- only no Flip.  
USB3.1-only  
FLIP = 0  
TUSB546A-DCI  
In I2C mode  
DISABLED  
If(( CTL[1:0 ] ==2'b 00 | CTL[1:0 ] ==2'b01 ) & FLIP == 0 ) {  
USB3.1- only no FLIP;  
} ELSEIF((CTL[1:0 ] ==2'b 00 | CTL[1:0 ] ==2'b01 ) & FLIP == 1 ){  
USB3.1- only with FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b10 & FLIP ==0 ) {  
4-Lane DP no FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b10 & FLIP ==1 ){  
4-Lane DP with FLIP;  
} ELSEIF(CTL[1:0 ] ==2'b11 & FLIP ==0 ) {  
2-Lane DP USB3.1 no FLIP;  
TUSB546A-DCI  
In GPIO mode  
USB3.1-only  
FLIP = 0  
DISABLED  
} ELSE{  
2-Lane DP USB3.1 with FLIP ;  
};  
CTL[1:0 pins  
]
FLIP pin  
VCC (min)  
VCC  
Td_pg  
Internal  
Power  
Good  
T Cfg_su  
TCfg_hd  
CFG pins  
Figure 18. Power-Up Timing  
Table 8. Power-Up Timing(1)(2)  
PARAMETER  
MIN  
MAX  
UNIT  
µs  
td_pg  
VCC (minimum) to Internal Power Good asserted high  
CFG(1) pins setup(2)  
500  
tcfg_su  
50  
10  
µs  
tcfg_hd  
CFG(1) pins hold  
µs  
tCTL_DB  
tVCC_RAMP  
CTL[1:0] and FLIP pin debounce  
VCC supply ramp requirement  
16  
ms  
ms  
100  
(1) Following pins comprise CFG pins: I2C_EN, EQ[1:0], SSEQ[1:0], and DPEQ[1:0].  
(2) Recommend CFG pins are stable when VCC is at min.  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8.5 Programming  
For further programmability, the TUSB546A-DCI can be controlled using I2C. The SCL and SDA pins are used  
for I2C clock and I2C data respectively.  
Table 9. TUSB546A-DCI I2C Target Address  
DPEQ0/A1  
PIN LEVEL  
SSEQ0/A0  
PIN LEVEL  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
0
0
0
R
F
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0
0
R
R
R
R
F
F
F
F
1
0
R
F
1
0
R
F
1
0
1
R
F
1
1
1
The following procedure should be followed to write to TUSB546A-DCI I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB546A-DCI 7-  
bit address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB546A-DCI acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB546A-DCI) to be written, consisting of one  
byte of data, MSB-first.  
4. The TUSB546A-DCI acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The TUSB546A-DCI acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TUSB546A-DCI.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure should be followed to read the TUSB546A-DCI I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the TUSB546A-DCI 7-  
bit address and a one-value “W/R” bit to indicate a read cycle.  
2. The TUSB546A-DCI acknowledges the address cycle.  
3. The TUSB546A-DCI transmit the contents of the memory registers MSB-first starting at register 00h or last  
read sub-address+1. If a write to the T I2C register occurred prior to the read, then the TUSB546A-DCI shall  
start at the sub-address specified in the write.  
4. The TUSB546A-DCI shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the  
master after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the TUSB546A-DCI transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure should be followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the TUSB546A-DCI 7-  
bit address and a zero-value “W/R” bit to indicate a write cycle.  
2. The TUSB546A-DCI acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within TUSB546A-DCI) to be written, consisting of one  
byte of data, MSB-first.  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
4. The TUSB546A-DCI acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
NOTE  
If no sub-addressing is included for the read procedure, and reads start at register offset  
00h and continue byte by byte through the registers until the I2C master terminates the  
read operation. If a I2C address write occurred prior to the read, then the reads start at the  
sub-address specified by the address write.  
Table 10. Register Legend  
ACCESS TAG  
NAME  
Read  
MEANING  
R
W
S
The field may be read by software  
The field may be written by software  
Write  
Set  
The field may be set by a write of one. Writes of zeros to the field have no effect.  
The field may be cleared by a write of one. Write of zero to the field have no effect.  
Hardware may autonomously update this field.  
C
Clear  
U
Update  
No Access  
NA  
Not accessible or not applicable  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 General Register (address = 0x0A) [reset = 00000001]  
Figure 19. General Registers  
7
6
5
4
3
2
1
0
Reserved  
R
SWAP_HPDIN EQ_OVERRID HPDIN_OVRRI  
FLIPSEL  
CTLSEL[1:0].  
R/W  
E
DE  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. General Registers  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Reserved.  
R
00  
Reserved.  
0 – HPDIN is in default location (Default)  
5
4
SWAP_HPDIN  
EQ_OVERRIDE  
R/W  
R/W  
0
0
1 – HPDIN location is swapped (PIN 23 to PIN 32, or PIN 32 to  
PIN23).  
Setting of this field will allow software to use EQ settings from  
registers instead of value sample from pins.  
0 – EQ settings based on sampled state of the EQ pins  
(SSEQ[1:0], EQ[1:0], and DPEQ[1:0]).  
1 – EQ settings based on programmed value of each of the EQ  
registers  
0 – HPD IN based on state of HPD_IN pin (Default)  
1 – HPD_IN high.  
3
2
HPDIN_OVRRIDE  
FLIPSEL  
R/W  
R/W  
0
0
FLIPSEL. Refer to Table 5 and Table 6 for this field functionality.  
00 – Disabled. All RX and TX for USB3 and DisplayPort are  
disabled.  
1:0  
CTLSEL[1:0].  
R/W  
01  
01 – USB3.1 only enabled. (Default)  
10 – Four DisplayPort lanes enabled.  
11 – Two DisplayPort lanes and one USB3.1  
8.6.2 DisplayPort Control/Status Registers (address = 0x10) [reset = 00000000]  
Figure 20. DisplayPort Control/Status Registers (0x10)  
7
6
5
4
3
2
1
0
DP1EQ_SEL  
R/W/U  
DP0EQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. DisplayPort Control/Status Registers (0x10)  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 14dB of EQ for DP lane 1. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 1 based on value written to  
this field.  
7:4  
DP1EQ_SEL  
R/W/U  
0000  
Field selects between 0 to 14dB of EQ for DP lane 0. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 0 based on value written to  
this field.  
3:0  
DP0EQ_SEL  
R/W/U  
0000  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
8.6.3 DisplayPort Control/Status Registers (address = 0x11) [reset = 00000000]  
Figure 21. DisplayPort Control/Status Registers (0x11)  
7
6
5
4
3
2
1
0
DP3EQ_SEL  
R/W/U  
DP2EQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. DisplayPort Control/Status Registers (0x11)  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 14dB of EQ for DP lane 3. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 3 based on value written to  
this field.  
7:4  
DP3EQ_SEL  
R/W/U  
0000  
Field selects between 0 to 14dB of EQ for DP lane 2. When  
EQ_OVERRIDE = 1’b0, this field reflects the sampled state of  
DPEQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software can  
change the EQ setting for DP lane 2 based on value written to  
this field.  
3:0  
DP2EQ_SEL  
R/W/U  
0000  
8.6.4 DisplayPort Control/Status Registers (address = 0x12) [reset = 00000000]  
Figure 22. DisplayPort Control/Status Registers (0x12)  
7
Reserved  
R
6
5
4
3
2
LANE_COUNT_SET  
RU  
1
0
SET_POWER_STATE  
RU  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. DisplayPort Control/Status Registers (0x12)  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R
0
Reserved  
This field represents the snooped value of the AUX write to  
DPCD address 0x00600. When AUX_SNOOP_DISABLE = 1’b0,  
the TUSB546A-DCI will enable/disable DP lanes based on the  
snooped value. When AUX_SNOOP_DISABLE = 1’b1, then DP  
lane enable/disable are determined by state of DPx_DISABLE  
registers, where x = 0, 1, 2, or 3. This field is reset to 2’b00 by  
hardware when CTLSEL1 changes from a 1’b1 to a 1’b0.  
6:5  
4:0  
SET_POWER_STATE  
LANE_COUNT_SET  
R/U  
R/U  
00  
This field represents the snooped value of AUX write to DPCD  
address 0x00101 register. When AUX_SNOOP_DISABLE =  
1’b0, TUSB546A-DCI will enable DP lanes specified by the  
snoop value. Unused DP lanes will be disabled to save power.  
When AUX_SNOOP_DISABLE = 1’b1, then DP lanes  
enable/disable are determined by DPx_DISABLE registers,  
where x = 0, 1, 2, or 3. This field is reset to 0x0 by hardware  
when CTLSEL1 changes from a 1’b1 to a 1’b0.  
00000  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8.6.5 DisplayPort Control/Status Registers (address = 0x13) [reset = 00000000]  
Figure 23. DisplayPort Control/Status Registers (0x13)  
7
6
5
4
3
2
1
0
AUX_SNOOP_  
DISABLE  
Reserved  
AUX_SBU_OVR  
DP3_DISABLE DP2_DISABLE DP1_DISABLE DP0_DISABLE  
R/W  
R
R/W  
R/W R/W R/W R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. DisplayPort Control/Status Registers (0x13)  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
0 – AUX snoop enabled. (Default)  
1 – AUX snoop disabled.  
AUX_SNOOP_DISABLE  
Reserved  
0
0
6
Reserved  
This field overrides the AUXp or AUXn to SBU1 or SBU2  
connect and disconnect based on CTL1 and FLIP. Changing this  
field to 1’b1 will allow traffic to pass through AUX to SBU  
regardless of the state of CTLSEL1 and FLIPSEL register  
00 – AUX to SBU connect/disconnect determined by CTLSEL1  
and FLIPSEL (Default)  
5:4  
AUX_SBU_OVR  
R/W  
00  
01 – AUXp -> SBU1 and AUXn -> SBU2 connection always  
enabled.  
10 – AUXp -> SBU2 and AUXn -> SBU1 connection always  
enabled.  
11 – AUX to SBU open.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 3. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 3  
functionality.  
0 – DP Lane 3 Enabled (default)  
1 – DP Lane 3 Disabled.  
3
2
1
0
DP3_DISABLE  
DP2_DISABLE  
DP1_DISABLE  
DP0_DISABLE  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 2. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 2  
functionality.  
0 – DP Lane 2 Enabled (default)  
1 – DP Lane 2 Disabled.  
When AUX_SNOOP_DISABLE = 1’b1, this field can be used to  
enable or disable DP lane 1. When AUX_SNOOP_DISABLE =  
1’b0, changes to this field will have no effect on lane 1  
functionality.  
0 – DP Lane 1 Enabled (default)  
1 – DP Lane 1 Disabled.  
DISABLE. When AUX_SNOOP_DISABLE = 1’b1, this field can  
be used to enable or disable DP lane 0. When  
AUX_SNOOP_DISABLE = 1’b0, changes to this field will have  
no effect on lane 0 functionality.  
0 – DP Lane 0 Enabled (default)  
1 – DP Lane 0 Disabled.  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
8.6.6 USB3.1 Control/Status Registers (address = 0x20) [reset = 00000000]  
Figure 24. USB3.1 Control/Status Registers (0x20)  
7
6
5
4
3
2
1
0
EQ2_SEL  
R/W/U  
EQ1_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. USB3.1 Control/Status Registers (0x20)  
Bit  
Field  
Type  
Reset  
Description  
Field selects between 0 to 9 dB of EQ for USB3.1 RX2 receiver.  
When EQ_OVERRIDE = 1’b0, this field reflects the sampled  
state of EQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software  
can change the EQ setting for USB3.1 RX2 receiver based on  
value written to this field.  
7:4  
EQ2_SEL  
R/W/U  
0000  
Field selects between 0 to 9 dB of EQ for USB3.1 RX1 receiver.  
When EQ_OVERRIDE = 1’b0, this field reflects the sampled  
state of EQ[1:0] pins. When EQ_OVERRIDE = 1’b1, software  
can change the EQ setting for USB3.1 RX1 receiver based on  
value written to this field.  
3:0  
EQ1_SEL  
R/W/U  
0000  
8.6.7 USB3.1 Control/Status Registers (address = 0x21) [reset = 00000000]  
Figure 25. USB3.1 Control/Status Registers (0x21)  
7
6
5
4
3
2
1
0
Reserved  
R
SSEQ_SEL  
R/W/U  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. USB3.1 Control/Status Registers (0x21)  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Reserved  
R
0000  
Reserved  
Field selects between 0 to 11 dB of EQ for USB3.1 SSTXP/N  
receiver. When EQ_OVERRIDE = 1’b0, this field reflects the  
sampled state of SSEQ[1:0] pins. When EQ_OVERRIDE = 1’b1,  
software can change the EQ setting for USB3.1 SSTXP/N  
receiver based on value written to this field.  
3:0  
SSEQ_SEL  
R/W/U  
0000  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
8.6.8 USB3.1 Control/Status Registers (address = 0x22) [reset = 00000100]  
Figure 26. USB3.1 Control/Status Registers (0x22)  
7
6
5
4
3
2
1
0
CM_ACTIVE  
LFPS_EQ  
U2U3_LFPS_D DISABLE_U2U  
DFP_RXDET_INTERVAL  
USB3_COMPLIANCE_CTRL  
EBOUNCE  
3_RXDET  
R/U  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. USB3.1 Control/Status Registers (0x22)  
Bit  
Field  
Type  
Reset  
Description  
0 –device not in USB 3.1 compliance mode. (Default)  
1 –device in USB 3.1 compliance mode  
7
CM_ACTIVE  
R/U  
0
Controls whether settings of EQ based on EQ1_SEL, EQ2_SEL  
and SSEQ_SEL applies to received LFPS signal.  
0 – EQ set to zero when receiving LFPS (default)  
1 – EQ set to EQ1_SEL, EQ2_SEL, and SSEQ_SEL when  
receiving LFPS.  
6
LFPS_EQ  
R/W  
0
0 – No debounce of LFPS before U2/U3 exit. (Default)  
1 – 200 µs debounce of LFPS before U2/U3 exit.  
5
4
U2U3_LFPS_DEBOUNCE  
DISABLE_U2U3_RXDET  
R/W  
R/W  
0
0
0 – Rx.Detect in U2/U3 enabled. (Default)  
1 – Rx.Detect in U2/U3 disabled.  
This field controls the Rx.Detect interval for the Downstream  
facing port (TX1P/N and TX2P/N).  
00 – 8 ms  
01 – 12 ms (default)  
10 – Reserved  
3:2  
1:0  
DFP_RXDET_INTERVAL  
R/W  
R/W  
01  
00  
11 – Reserved  
00 – FSM determined compliance mode. (Default)  
01 – Compliance Mode enabled in DFP direction (SSTX ->  
TX1/TX2)  
10 – Compliance Mode enabled in UFP direction (RX1/RX2 ->  
SSRX)  
USB3_COMPLIANCE_CTRL  
11 – Compliance Mode Disabled.  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TUSB546A-DCI is a linear redriver designed specifically to compensation for intersymbol interference (ISI)  
jitter caused by signal attenuation through a passive medium like PCB traces and cables. Because the  
TUSB546A-DCI has four independent DisplayPort 1.4 inputs, one upstream facing USB 3.1 Gen1 input, and two  
downstream facing USB 3.1 Gen1 inputs, it can be optimized to correct ISI on all those seven inputs through 16  
different equalization choices. Placing the TUSB546A-DCI between a USB3.1 Host/DisplayPort 1.4 GPU and a  
USB3.1 Type-C receptacle can correct signal integrity issues resulting in a more robust system.  
9.2 Typical Application  
A
B
F
E
PCB Trace of Length XAB  
PCB Trace of Length XEF  
SSRXP  
SSRXN  
SSTXP  
USB3.1  
Host  
RX2P  
RX2N  
SSTXN  
TX2P  
TX2N  
TUSB546A-DCI  
DP0P  
DP0N  
DP1P  
DP1N  
TX1N  
TX1P  
DP 1.4  
GPU  
DP2P  
RX1N  
RX1P  
DP2N  
DP3P  
DP3N  
PCB Trace of Length XCD  
PCB Trace of Length XGH  
G
H
C
D
Copyright © 2017, Texas Instruments Incorporated  
Figure 27. TUSB546A-DCI in a Host Application  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in Table 19.  
Table 19. Design Parameters  
PARAMETER  
A to B PCB trace length, XAB  
C to D PCB trace length, XCD  
E to F PCB trace length, XEF  
G to H PCB trace length, XGH  
PCB trace width  
VALUE  
12 inches  
12 inches  
2 inches  
2 inches  
4 mils  
AC-coupling capacitor (75 nF to 265 nF)  
VCC supply (3 V to 3.6 V)  
100 nF  
3.3 V  
I2C Mode or GPIO Mode  
I2C Mode. (I2C_EN pin != "0")  
3.3V I2C. Pull-up the I2C_EN pin to 3.3V with a 1K  
ohm resistor.  
1.8V or 3.3V I2C Interface  
9.2.2 Detailed Design Procedure  
A typical usage of the TUSB564-DCI device is shown in Figure 28. The device can be controlled either through  
its GPIO pins or through its I2C interface. In the example shown below, a Type-C PD controller is used to  
configure the device through the I2C interface. When configured for I2C mode, pins 29 and 32 can be left  
unconnected if DCI is not used. In I2C mode, the equalization settings for each receiver can be independently  
controlled through I2C registers. For this reason, all of the equalization pins (EQ[1:0], SSEQ[1:0], and  
DPEQ[1:0]) can be left unconnected. If these pins are left unconnected, the TUSB546A-DCI 7-bit I2C slave  
address will be 0x12 because both DPEQ/A1 and SSEQ0/A0 will be at pin level "F". If a different I2C slave  
address is desired, DPEQ/A1 and SSEQ0/A0 pins should be set to a level which produces the desired I2C slave  
address.  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
3.3V  
10mF  
100nF  
100nF  
100nF  
100nF  
USB 3.1 Host  
100nF  
SSRXP  
SSRXP  
SSRXN  
SSTXP  
RX2P  
RX2N  
TX2P  
TX2N  
100nF  
100nF  
100nF  
USB Type-C  
Receptacle  
SSRXN  
100nF  
SSTXP  
SSTXN  
A12  
GND  
RXP2  
RXN2  
VBUS  
SBU1  
DN1  
100nF  
SSTXN  
B1  
B2  
GND  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
22O  
To PCH DCI  
TXP2  
TXN2  
DCI_CLK  
DCI_DAT  
»
»
Clock Input  
100K  
22O  
To PCH DCI  
DATA Input  
100nF  
100nF  
DP1.4 AUXP  
GPU  
AUXP  
AUXN  
B3  
AUXN  
B4  
VBUS  
CC2  
100K  
SBU1  
SBU2  
DP_PWR (3.3V)  
B5  
100nF  
100nF  
B6  
DP2  
DN2  
DP_ML0P  
DP0P  
2M  
DP1  
2M  
DP_ML0N  
DP_ML1P  
DP_ML1N  
DP_ML2P  
DP_ML2N  
DP_ML3P  
DP_ML3N  
DP0N  
DP1P  
B7  
100nF  
100nF  
100nF  
100nF  
100nF  
100nF  
CC1  
B8  
SBU2  
VBUS  
DP1N  
VBUS  
100 nF  
100 nF  
DP2P  
DP2N  
TX1N  
B9  
TXN1  
TXP1  
TX1P  
RX1N  
B10  
B11  
B12  
RXN1  
RXP1  
GND  
DP3P  
DP3N  
RX1P  
3.3V  
GND  
I2C_EN  
3.3V  
3.3V  
SSEQ0/A0  
SSEQ1  
DPEQ0/A1  
DPEQ1  
EQ0  
VI2C  
R
R
FLIP/SCL  
CTL0/SDA  
3.3V  
3.3V  
3.3V  
3.3V  
Type-C  
PD  
Controller  
CTL1/HPDIN  
EQ1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Application Circuit  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
9.2.3 Application Curve  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
Length=12in, Width=6mil  
Length=16in, Width=6mil  
Length=20in, Width=6mil  
Length=24in, Width=6mil  
Length=4in, Width=4mil  
Length=8in, Width=10mil  
Length=8in, Width=6mil  
0
2
4
6
8
10  
Frequency (GHz)  
12  
14  
16  
D009  
Figure 29. Insertion Loss of FR4 PCB Traces  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
9.3 System Examples  
9.3.1 USB 3.1 Only  
The TUSB546A-DCI is in USB3.1 only when the CTL1 pin is low and CTL0 pin is high.  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB546A-DCI  
TUSB564  
SSRX  
SSTX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
DP0  
DP0  
DP1  
DP2  
DP1  
DP2  
RX1  
GPU  
DP RX  
DP3  
DP3  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXp  
HPDIN  
AUXn  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CTL1/0/FLIP=L/H/L  
CTL1/0/FLIP=L/H/L  
Copyright © 2017, Texas Instruments Incorporated  
Figure 30. USB3.1 Only – No Flip (CTL1 = L, CTL0 = H, FLIP = L)  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
System Examples (continued)  
D+/-  
D+/-  
1 Port USB  
USB Host  
USB Hub  
TUSB564  
TUSB546A-DCI  
SSTX  
SSRX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
DP0  
DP1  
DP2  
DP0  
DP1  
RX1  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
SBU1  
SBU2  
SBU2  
SBU1  
AUXn  
AUXp  
AUXn  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
CC1  
CC2  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CTL1/0/FLIP=L/H/H  
CTL1/0/FLIP=L/H/H  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. USB3.1 Only – With Flip (CTL1 = L, CTL0 = H, FLIP = H)  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
System Examples (continued)  
9.3.2 USB 3.1 and 2 Lanes of DisplayPort  
The TUSB546A-DCI operates in USB3.1 and 2 Lanes of DisplayPort mode when the CTL1 pin is high and CTL0  
pin is high.  
1 Port USB &  
2 Lane DP  
D+/-  
D+/-  
USB Host  
USB Hub  
SSRX  
SSTX  
SSTX  
SSRX  
TUSB546A-DCI  
TUSB564  
TX1  
RX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
CTL1/0/FLIP=H/H/L  
CTL1/0/FLIP=H/H/L  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. USB3.1 + 2 Lane DP – No Flip (CTL1 = H, CTL0 = H, FLIP = L)  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
System Examples (continued)  
1 Port USB &  
2 Lane DP  
D+/-  
D+/-  
USB Host  
USB Hub  
TUSB546A-DCI  
SSTX  
TUSB564  
SSRX  
SSTX  
SSRX  
RX2  
TX1  
RX1  
RX2  
TX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP3  
DP RX  
DP3  
SBU1  
SBU2  
AUXp  
AUXn  
SBU1  
SBU2  
AUXn  
AUXp  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
HPD  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
Control  
CTL1/0/FLIP=H/H/H  
CTL1/0/FLIP=H/H/H  
Copyright © 2016, Texas Instruments Incorporated  
Figure 33. USB 3.1 + 2 Lane DP – Flip (CTL1 = H, CTL0 = H, FLIP = H)  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
System Examples (continued)  
9.3.3 DisplayPort Only  
The TUSB546A-DCI operates in 4 Lanes of DisplayPort only mode when the CTL1 pin is high and CTL0 pin is  
low.  
D+/-  
D+/-  
4 Lane DP  
USB Host  
USB Hub  
TUSB564  
TUSB546A-DCI  
SSTX  
SSRX  
SSRX  
SSTX  
RX2  
TX1  
RX1  
TX2  
TX1  
RX1  
DP0  
DP0  
RX2  
TX2  
DP1  
DP2  
DP1  
DP2  
GPU  
DP RX  
DP3  
DP3  
AUXp  
AUXn  
SBU1  
SBU2  
SBU1  
SBU2  
AUXn  
AUXp  
HPDIN  
HPDIN  
FLIP 0 1 CTL  
PD Controller  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
CTL1/0/FLIP=H/L/L  
CTL1/0/FLIP=H/L/L  
Copyright © 2017, Texas Instruments Incorporated  
Figure 34. Four Lane DP – No Flip (CTL1 = H, CTL0 = L, FLIP = L)  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
System Examples (continued)  
D+/-  
D+/-  
4 Lane DP  
USB Host  
USB Hub  
SSRX  
SSTX  
SSTX  
SSRX  
TUSB546A-DCI  
TUSB564  
TX1  
RX1  
RX2  
TX2  
RX2  
TX2  
TX1  
RX1  
DP0  
DP1  
DP0  
DP1  
DP2  
DP2  
GPU  
DP RX  
DP3  
DP3  
SBU1  
SBU2  
AUXn  
AUXp  
SBU1  
SBU2  
AUXp  
AUXn  
HPDIN  
HPDIN  
CTL  
FLIP 0 1  
FLIP 0 1 CTL  
PD Controller  
HPD  
Control  
HPD  
Control  
CC1  
CC2  
CC1  
CC2  
PD Controller  
CTL1/0/FLIP=H/L/H  
CTL1/0/FLIP=H/L/H  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. Four Lane DP – With Flip (CTL1 = H, CTL0 = L, FLIP = H)  
10 Power Supply Recommendations  
The TUSB546A-DCI is designed to operate with a 3.3-V power supply. Levels above those listed in the Absolute  
Maximum Ratings table should not be used. If using a higher voltage system power supply, a voltage regulator  
can be used to step down to 3.3 V. Decoupling capacitors should be used to reduce noise and improve power  
supply integrity. A 0.1-µF capacitor should be used on each power pin.  
38  
Copyright © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
11 Layout  
11.1 Layout Guidelines  
1. RXP/N and TXP/N pairs should be routed with controlled 90-Ω differential impedance (±15%).  
2. Keep away from other high speed signals.  
3. Intra-pair routing should be kept to within 2 mils.  
4. Length matching should be near the location of mismatch.  
5. Each pair should be separated at least by 3 times the signal trace width.  
6. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of  
left and right bends should be as equal as possible and the angle of the bend should be 135 degrees. This  
will minimize any length mismatch causes by the bends and therefore minimize the impact bends have on  
EMI.  
7. Route all differential pairs on the same of layer.  
8. The number of VIAS should be kept to a minimum. It is recommended to keep the VIAS count to 2 or less.  
9. Keep traces on layers adjacent to ground plane.  
10. Do NOT route differential pairs over any plane split.  
11. Adding Test points will cause impedance discontinuity, and therefore, negatively impact signal performance.  
If test points are used, they should be placed in series and symmetrically. They must not be placed in a  
manner that causes a stub on the differential pair.  
11.2 Layout Example  
To USB Host  
AC Coupling  
capacitors  
RX2  
TX2  
DP0  
DP1  
DP2  
DP3  
TX1  
RX1  
Figure 36. Layout Example  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
TUSB546A-DCI  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
20. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
样片与购买  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TUSB546A-DCI  
TUSB546AI-DCI  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
DisplayPort is a trademark of VESA.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
TUSB546A-DCI  
www.ti.com.cn  
ZHCSGH4B JUNE 2017REVISED MAY 2019  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TUSB546A-DCIRNQR  
TUSB546A-DCIRNQT  
TUSB546AI-DCIRNQR  
TUSB546AI-DCIRNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
TUSB46  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TUSB46  
TUSB46  
TUSB46  
-40 to 85  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TUSB546A-DCIRNQR  
TUSB546A-DCIRNQT  
TUSB546AI-DCIRNQR  
TUSB546AI-DCIRNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TUSB546A-DCIRNQR  
TUSB546A-DCIRNQT  
TUSB546AI-DCIRNQR  
TUSB546AI-DCIRNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TUSB546AI-DCIRNQT

USB Type-C™ 8.1Gbps 多协议拉电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85
TI

TUSB551

具有 1.8V 电源的 USB 3.0 单通道转接驱动器
TI

TUSB551RWBR

具有 1.8V 电源的 USB 3.0 单通道转接驱动器 | RWB | 12 | -40 to 85
TI

TUSB564

USB Type-C™ 8.1Gbps DP 交替模式灌电流侧线性转接驱动器交叉点开关
TI

TUSB564IRNQR

USB Type-C™ 8.1Gbps DP 交替模式灌电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85
TI

TUSB564IRNQT

USB Type-C™ 8.1Gbps DP 交替模式灌电流侧线性转接驱动器交叉点开关 | RNQ | 40 | -40 to 85
TI

TUSB564RNQR

USB Type-C™ 8.1Gbps DP 交替模式灌电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB564RNQT

USB Type-C™ 8.1Gbps DP 交替模式灌电流侧线性转接驱动器交叉点开关 | RNQ | 40 | 0 to 70
TI

TUSB6010B

USB2.0 High Speed (HS) On-the-Go (OTG) Dual Role Controller
TI

TUSB6010BIZQE

UNIVERSAL SERIAL BUS CONTROLLER, PBGA80, GREEN, MICRO, BGA-80
TI

TUSB6010BIZQER

UNIVERSAL SERIAL BUS CONTROLLER, PBGA80, GREEN, MICRO, BGA-80
TI

TUSB6010BZQE

UNIVERSAL SERIAL BUS CONTROLLER, PBGA80, ROHS COMPLIANT, MICRO, BGA-80
TI