TVP5147PFPR [TI]

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision⑩ Detection,YPbPr Inputs,and 5-Line Comb Filter; NTSC / PAL / SECAM 2×10位数字视频解码器, Macrovision⑩检测, YPbPr输入,而5线梳状滤波器
TVP5147PFPR
型号: TVP5147PFPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision⑩ Detection,YPbPr Inputs,and 5-Line Comb Filter
NTSC / PAL / SECAM 2×10位数字视频解码器, Macrovision⑩检测, YPbPr输入,而5线梳状滤波器

解码器 转换器 色度信号转换器 消费电路 商用集成电路
文件: 总100页 (文件大小:1471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
y
ꢧ ꢣ  
ꢕ ꢢ  
ꢣꢚ  
E
ꢖ ꢛꢕꢛꢝ ꢕꢔꢜ ꢣꢤ ꢥꢂ ꢦꢂꢞ  
ꢛ ꢞ  
Data Manual  
March 2007  
Digital Audio Video  
SLES099C  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2007, Texas Instruments Incorporated  
Contents  
Page  
Contents  
Section  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Detailed Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
TVP5147 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Related Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
Video Input Switch Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Analog Input Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Analog Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2  
Digital Video Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2.1  
2.2.2  
2.2.3  
2× Decimation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Composite Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Luminance Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.3  
2.4  
2.5  
Clock Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Real-Time Control (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.5.1  
Separate Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Embedded Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.5.2  
2
2.6  
2.7  
I C Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2
2.6.1  
2.6.2  
2.6.3  
Reset and I C Bus Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
I C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VBUS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VBI Data Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.7.1  
2.7.2  
VBI FIFO and Ancillary Data in Video Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
VBI Raw Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.8  
2.9  
2.10  
2.11  
Reset and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Adjusting External Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Internal Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.11.1  
2.11.2  
2.11.3  
2.11.4  
2.11.5  
2.11.6  
2.11.7  
2.11.8  
2.11.9  
2.11.10  
2.11.11  
Input Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
AFE Gain Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Video Standard Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Operation Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Autoswitch Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Color Killer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Luminance Processing Control 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Luminance Processing Control 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Luminance Processing Control 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Luminance Brightness Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Luminance Contrast Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
iii  
January 2005  
SLES099B  
Contents  
2.11.12  
2.11.13  
2.11.14  
2.11.15  
2.11.16  
2.11.17  
2.11.18  
2.11.19  
2.11.20  
2.11.21  
2.11.22  
2.11.23  
2.11.24  
2.11.25  
2.11.26  
2.11.27  
2.11.28  
2.11.29  
2.11.30  
2.11.31  
2.11.32  
2.11.33  
2.11.34  
2.11.35  
2.11.36  
2.11.37  
2.11.38  
2.11.39  
2.11.40  
2.11.41  
2.11.42  
2.11.43  
2.11.44  
2.11.45  
2.11.46  
2.11.47  
2.11.48  
2.11.49  
2.11.50  
2.11.51  
2.11.52  
2.11.53  
2.11.54  
2.11.55  
2.11.56  
2.11.57  
2.11.58  
2.11.59  
2.11.60  
Chrominance Saturation Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Chroma Hue Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Chrominance Processing Control 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Chrominance Processing Control 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
AVID Start Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
AVID Stop Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
HSYNC Start Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
HSYNC Stop Pixel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
VSYNC Start Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
VSYNC Stop Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
VBLK Start Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
VBLK Stop Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
CTI Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
CTI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
RTC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Sync Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Output Formatter 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Output Formatter 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Output Formatter 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Output Formatter 4 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Output Formatter 5 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Output Formatter 6 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Clear Lost Lock Detect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Status 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
AGC Gain Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Video Standard Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
GPIO Input 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
GPIO Input 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Vertical Line Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AFE Coarse Gain for CH 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
AFE Coarse Gain for CH 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
AFE Coarse Gain for CH 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
AFE Coarse Gain for CH 4 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
AFE Fine Gain for Pb Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
AFE Fine Gain for Y_G_Chroma Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
AFE Fine Gain for Pr Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
AFE Fine Gain for CVBS_Luma Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Field ID Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ROM Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
AGC White Peak Processing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
F and V Bit Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
VCR Trick Mode Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Horizontal Shake Increment Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
AGC Increment Speed Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
AGC Increment Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Analog Output Control 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Chip ID MSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Chip ID LSB Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
iv  
SLES099B  
January 2005  
Contents  
2.11.61  
2.11.62  
2.11.63  
2.11.64  
2.11.65  
2.11.66  
2.11.67  
2.11.68  
2.11.69  
2.11.70  
2.11.71  
2.11.72  
2.11.73  
2.11.74  
2.11.75  
2.11.76  
2.11.77  
2.11.78  
2.11.79  
2.11.80  
2.11.81  
2.11.82  
2.11.83  
2.11.84  
2.11.85  
VDP TTX Filter And Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
VDP TTX Filter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
VDP FIFO Word Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
VDP FIFO Interrupt Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
VDP FIFO Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
VDP FIFO Output Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
VDP Line Number Interrupt Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
VDP Pixel Alignment Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
VDP Line Start Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
VDP Line Stop Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
VDP Global Line Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
VDP Full Field Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
VDP Full Field Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
VBUS Data Access With No VBUS Address Increment Register . . . . . . . . . . . . . . . . . . . 65  
VBUS Data Access With VBUS Address Increment Register . . . . . . . . . . . . . . . . . . . . . . 65  
FIFO Read Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
VBUS Address Access Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Interrupt Raw Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Interrupt Raw Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupt Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupt Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Interrupt Mask 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Interrupt Mask 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Interrupt Clear 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Interrupt Clear 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
2.12  
VBUS Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
2.12.1  
2.12.2  
2.12.3  
2.12.4  
2.12.5  
2.12.6  
2.12.7  
2.12.8  
2.12.9  
VDP Closed Caption Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
VDP WSS Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
VDP VITC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
VDP V-Chip TV Rating Block 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
VDP V-Chip TV Rating Block 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
VDP V-Chip TV Rating Block 3 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VDP V-CHIP MPAA Rating Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VDP General Line Mode and Line Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
VDP VPS/Gemstar Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
2.12.10 Analog Output Control 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
2.12.11 Interrupt Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
3
3.1  
3.2  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
3.2.1  
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
3.3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
3.3.1  
3.3.2  
3.3.3  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Analog Processing and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
4
Example Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
4.1.1  
4.1.2  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
v
January 2005  
SLES099B  
List of Illustrations  
4.2  
4.3  
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
4.2.1  
4.2.2  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.3.1  
4.3.2  
Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Recommended Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
5
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
5.1  
5.2  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Designing With PowerPADDevices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
List of Illustrations  
Figure  
Title  
Page  
1−1 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1−2 Terminal Assignments Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2−1 Analog Processors and A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2−2 Digital Video Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2−3 Composite and S-Video Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2−4 Color Low-Pass Filter Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2−5 Color Low-Pass Filter With Filter Frequency Response, NTSC Square Pixel Sampling . . . . . . . . . . . . . . . . 13  
2−6 Color Low-Pass Filter With Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . 13  
2−7 Color Low-Pass Filter With Filter Characteristics, PAL Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . 13  
2−8 Chroma Trap Filter Frequency Response, NTSC Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2−9 Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2−10 Chroma Trap Filter Frequency Response, PAL ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2−11 Chroma Trap Filter Frequency Response, PAL Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2−12 Luminance Edge-Enhancer Peaking Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2−13 Peaking Filter Response, NTSC Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2−14 Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2−15 Peaking Filter Response, PAL Square Pixel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2−16 Reference Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2−17 RTC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2−18 Vertical Synchronization Signals for 525-Line System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2−19 Vertical Synchronization Signals for 625-Line System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2−20 Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2−21 Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2−22 VSYNC Position With Respect to HSYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2−23 VBUS Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2−24 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2−25 Teletext Filter Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3−1 Clocks, Video Data, and Sync Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
2
3−2 I C Host Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5−1 Example Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
List of Tables  
Table  
Title  
Page  
1−1 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
vi  
SLES099B  
January 2005  
List of Tables  
2−1 Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2−2 Summary of Line Frequencies, Data Rates, and Pixel/Line Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2−3 EAV and SAV Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2
2−4 I C Host Interface Terminal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
2−5 I C Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2−6 Supported VBI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2−7 Ancillary Data Format and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2−8 VBI Raw Data Output Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2−9 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2
2−10 I C Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2−11 VBUS Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2−12 Analog Channel and Video Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
vii  
January 2005  
SLES099B  
List of Tables  
viii  
SLES099B  
January 2005  
Introduction  
1
Introduction  
The TVP5147 device is a high-quality, single-chip digital video decoder that digitizes and decodes all popular  
baseband analog video formats into digital component video. The TVP5147 decoder supports the  
analog-to-digital (A/D) conversion of component YPbPr signals, as well as the A/D conversion and decoding  
of NTSC, PAL, and SECAM composite and S-video into component YCbCr. This decoder includes two 10-bit  
30-MSPS A/D converters (ADCs). Preceding each ADC in the device, the corresponding analog channel  
contains an analog circuit that clamps the input to a reference voltage and applies a programmable gain and  
offset. A total of 10 video input terminals can be configured to a combination of YPbPr, CVBS, or S-video video  
inputs.  
Composite or S-video signals are sampled at 2× the square-pixel or ITU-R BT.601 clock frequency, line-locked  
alignment, and are then decimated to the 1× pixel rate. CVBS decoding uses five-line adaptive comb filtering  
for both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap  
filter is also available. On CVBS and S-video inputs, the user can control video characteristics such as  
2
contrast, brightness, saturation, and hue via an I C host port interface. Furthermore, luma peaking  
(sharpness) with programmable gain is included, as well as a patented chroma transient improvement (CTI)  
circuit.  
The following output formats can be selected: 20-bit 4:2:2 YCbCr or 10-bit 4:2:2 YCbCr.  
The TVP5147 decoder generates synchronization, blanking, field, active video window, horizontal and vertical  
syncs, clock, genlock (for downstream video encoder synchronization), host CPU interrupt and programmable  
logic I/O signals, in addition to digital video outputs.  
The TVP5147 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI  
data processor (VDP) slices, parses, and performs error checking on teletext, closed caption (CC), and other  
VBI data. A built-in FIFO stores up to 11 lines of teletext data, and with proper host port synchronization,  
full-screen teletext retrieval is possible. The TVP5147 decoder can pass through the output formatter 2×  
sampled raw luma data for host-based VBI processing.  
The main blocks of the TVP5147 decoder include:  
Robust sync detection for weak and noisy signals as well as VCR trick modes  
Y/C separation by 2-D 5-line adaptive comb or chroma trap filter  
Two 10-bit, 30-MSPS A/D converters with analog preprocessors [clamp and automatic gain control  
(AGC)]  
Analog video output  
Luminance processor  
Chrominance processor  
Clock/timing processor and power-down control  
Software-controlled power-saving standby mode  
Output formatter  
2
I C host port interface  
VBI data processor  
Macrovisioncopy protection detection circuit (Type 1, 2, 3, and separate color stripe detection)  
3.3-V tolerant digital I/O ports  
Macrovision is a trademark of Macrovision Corporation.  
Other trademarks are the property of their respective owners.  
1
SLES099C—March 2007  
TVP5147PFP  
Introduction  
1.1 Detailed Functionality  
Two 30-MSPS, 10-bit A/D channels with programmable gain control  
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60) and SECAM (B, D, G, K, K1, L) CVBS, and  
S-video  
Supports analog component YPbPr video format with embedded sync  
10 analog video input terminals for multisource connection  
Supports analog video output  
User-programmable video output formats  
10-bit ITU-R BT.656 4:2:2 YCbCr with embedded syncs  
10-bit 4:2:2 YCbCr with separate syncs  
20-bit 4:2:2 YCbCr with separate syncs  
2× sampled raw VBI data in active video during a vertical blanking period  
Sliced VBI data during a vertical blanking period or active video period (full field mode)  
HSYNC/VSYNC outputs with programmable position, polarity, width, and field ID (FID) output  
Composite and S-video processing  
Adaptive 2-D 5-line adaptive comb filter for composite video inputs; chroma-trap available  
Automatic video standard detection (NTSC/PAL/SECAM) and switching  
Luma-peaking with programmable gain  
Patented chroma transient improvement (CTI)  
Patented architecture for locking to weak, noisy, or unstable signals  
Single 14.31818-MHz reference crystal for all standards (ITU-R.BT601 and square pixel sampling)  
Line-locked internal pixel sampling clock generation with horizontal and vertical lock signal outputs  
Genlock output RTC format for downstream video encoder synchronization  
Certified Macrovisioncopy protection detection  
2
TVP5147PFP  
SLES099C—March 2007  
Introduction  
VBI data processor  
Teletext (NABTS, WST)  
CC and extended data service (EDS)  
Wide screen signaling (WSS)  
Copy generation management system (CGMS)  
Video program system (VPS/PDC)  
Vertical interval time code (VITC)  
Gemstar1×/2× mode  
V-Chip decoding  
Register readback of CC, WSS (CGMS), VPS/PDC, VITC and Gemstar 1×/2× sliced data  
2
I C host port interface  
Reduced power consumption: 1.8-V digital core, 3.3-V for digital I/O, and 1.8-V/3.3 V analog core with  
power-save and power-down modes  
80-terminal TQFP PowerPADpackage  
1.2 TVP5147 Applications  
DLP projectors  
Digital TV  
LCD TV/monitors  
DVD recorders  
PVR  
PC video cards  
Video capture/video editing  
Video conferencing  
1.3 Related Products  
TVP5146 NTSC/PAL/SECAM 2y10-Bit Digital VIdeo Decoder With MacrovisionE Detection, YPbPr/RGB  
Inputs, and 5-Line Comb Filter (SLES084)  
TVP5150A Ultralow Power NTSC/PAL/SECAM Video Decoder With Robust Sync Detector (SLES087)  
1.4 Ordering Information  
PACKAGED DEVICES  
T
A
80-TERMINAL PLASTIC  
FLAT-PACK PowerPADE PACKAGE  
0°C to 70°C  
TVP5147PFP  
Gemstar is a trademark of Gemstar-TV Guide Intermational.  
PowerPAD is a trademark of Texas Instruments.  
3
SLES099C—March 2007  
TVP5147PFP  
Introduction  
1.5 Functional Block Diagram  
VBI  
Data  
Processor  
Copy  
Protection  
Detector  
CVBS/Y  
Analog  
Front End  
VI_1_A  
Composite and S-Video Processor  
Y/C  
CVBS/  
VI_1_B  
C/Pb  
VI_1_C  
Luma  
Y
Y[9:0]  
C[9:0]  
CVBS/Y  
C/CbCr  
Separation  
Processing  
Output  
Formatter  
YCbCr  
5-line  
VI_2_A  
C
Chroma  
Processing  
Clamping  
AGC  
Adaptive  
Comb  
CVBS/  
Y
VI_2_B  
VI_2_C  
M
U
X
2 × 11-Bit  
ADC  
VI_3_A  
VI_3_B  
VI_3_C  
CVBS/  
C/Pr  
CVBS/Y VI_4_A  
GPIO  
Sampling  
Clock  
Timing Processor  
With Sync Detector  
Host  
Interface  
Figure 1−1. Functional Block Diagram  
4
TVP5147PFP  
SLES099C—March 2007  
Introduction  
1.6 Terminal Assignments  
PFP PACKAGE  
(TOP VIEW)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
60  
VI_1_B  
VI_1_C  
C_6/GPIO  
C_7/GPIO  
C_8/GPIO  
C_9/GPIO  
DGND  
DVDD  
Y_0  
Y_1  
Y_2  
Y_3  
Y_4  
IOGND  
IOVDD  
Y_5  
Y_6  
Y_7  
Y_8  
Y_9  
DGND  
DVDD  
1
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
CH1_A33GND  
CH1_A33VDD  
CH2_A33VDD  
CH2_A33GND  
VI_2_A  
3
4
5
6
7
VI_2_B  
VI_2_C  
8
9
CH2_A18GND  
CH2_A18VDD  
A18VDD_REF  
A18GND_REF  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
VI_3_A  
VI_3_B  
VI_3_C  
NC  
NC  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Figure 1−2. Terminal Assignments Diagram  
5
SLES099C—March 2007  
TVP5147PFP  
Introduction  
1.7 Terminal Functions  
Table 1−1. Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Analog Video  
VI_1_A  
VI_1_B  
VI_1_C  
VI_2_A  
VI_2_B  
VI_2_C  
VI_3_A  
VI_3_B  
VI_3_C  
VI_4_A  
80  
1
2
7
8
I/O VI_1_A: Analog video input for CVBS/Pb/C or analog video output (see Section 2.11.58)  
I
I
I
I
I
I
I
I
I
VI_1_x: Analog video input for CVBS/Pb/C  
VI_2_x: Analog video input for CVBS/Y  
VI_3_x: Analog video input for CVBS/Pr/C  
VI_4_A: Analog video input for CVBS/Y  
Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof)  
can be supported.  
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF.  
The possible input configurations are listed in the input select register at I C subaddress 00h (see Section  
9
16  
17  
18  
23  
2
2.11.1).  
Clock Signals  
DATACLK  
40  
74  
75  
O
I
Line-locked data output clock  
External clock reference input. It can be connected to an external oscillator with a 1.8-V compatible clock  
signal or a 14.31818-MHz crystal oscillator.  
XTAL1  
XTAL2  
O
External clock reference output. Not connected if XTAL1 is driven by an external single-ended oscillator.  
Digital Video  
57, 58,  
59, 60,  
63, 64,  
65, 66,  
69, 70  
Digital video output of CbCr, C[9] is MSB and C[0] is LSB. Also, these terminals can be programmable  
general-purpose I/O.  
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.  
The C_1 terminal needs a pulldown resistor (see Figure 5−1).  
C_[9:0]/  
GPIO[9:0]  
I/O  
O
43, 44,  
45, 46,  
47, 50,  
51, 52,  
53, 54  
Digital video output of Y/YCbCr, Y[9] is MSB and Y[0] is LSB.  
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.  
Y[9:0]  
Miscellaneous Signals  
GPIO  
35  
37  
30  
I/O Programmable general-purpose I/O  
Genlock control output (GLCO) uses real time control (RTC) format.  
I/O  
GLCO/I2CA  
INTREQ  
2
During reset, this terminal is an input used to program the I C address LSB.  
O
Interrupt request  
14, 15,  
19, 20,  
21, 22  
Not connected. These terminals can be connected to power or ground (compatible with TVP5146  
terminals), internally floating.  
NC  
Power down input:  
1 = Power down  
0 = Normal mode  
PWDN  
33  
34  
I
I
RESETB  
Host Interface  
SCL  
Reset input, active low (see Section 2.8)  
2
I C clock input  
28  
29  
I
2
I/O I C data bus  
SDA  
6
TVP5147PFP  
SLES099C—March 2007  
Introduction  
Table 1−1. Terminal Functions (Continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NUMBER  
Power Supplies  
AGND  
26  
13  
12  
Analog ground. Connect to analog ground.  
Analog 1.8-V return  
A18GND_REF  
A18VDD_REF  
Analog power for reference 1.8 V  
CH1_A18GND  
CH2_A18GND  
A18GND  
79  
10  
24  
Analog 1.8-V return  
CH1_A18VDD  
CH2_A18VDD  
A18VDD  
78  
11  
25  
Analog power. Connect to 1.8 V.  
CH1_A33GND  
CH2_A33GND  
3
6
Analog 3.3-V return  
CH1_A33VDD  
CH2_A33VDD  
4
5
Analog power. Connect to 3.3 V.  
Digital return  
27, 32, 42,  
56, 68  
DGND  
DVDD  
31, 41, 55,  
67  
Digital power. Connect to 1.8 V.  
IOGND  
39, 49, 62  
38, 48, 61  
77  
Digital power return  
IOVDD  
Digital power. Connect to 3.3 V or less for reduced noise.  
Analog power return  
PLL_A18GND  
PLL_A18VDD  
Sync Signals  
76  
Analog power. Connect to 1.8 V.  
Horizontal sync output or digital composite sync output  
Programmable general-purpose I/O  
HS/CS/GPIO  
VS/VBLK/GPIO  
FID/GPIO  
72  
73  
71  
36  
I/O  
I/O  
I/O  
I/O  
Vertical sync output (for modes with dedicated VSYNC) or VBLK output  
Programmable general-purpose I/O  
Odd/even field indicator output. This terminal needs a pulldown resistor (see Figure 5−1).  
Programmable general-purpose I/O  
Active video indicator output  
Programmable general-purpose I/O  
AVID/GPIO  
7
SLES099C—March 2007  
TVP5147PFP  
Introduction  
8
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2
Functional Description  
2.1 Analog Processing and A/D Converters  
Figure 2−1 shows a functional diagram of the analog processors and A/D converters, which provide the analog  
interface to all video inputs. It accepts up to 10 inputs and performs source selection, video clamping, video  
amplification, A/D conversion, and gain and offset adjustments to center the digitized video signal. The  
TVP5147 supports one analog video output for the selected analog input video.  
I/O  
M
VI_1_A  
PGA  
U
X
Analog Front End  
CH1 A/D  
M
U
X
CVBS/  
Pb/C  
Clamp  
Clamp  
Clamp  
Clamp  
VI_1_B  
VI_1_C  
11-Bit  
PGA  
ADC  
VI_2_A  
VI_2_B  
VI_2_C  
CH2 A/D  
M
U
X
CVBS/  
Y
11-Bit  
ADC  
PGA  
Line-Locked  
Sampling Clock  
VI_3_A  
VI_3_B  
M
U
X
CVBS/  
Pr/C  
VI_3_C  
CVBS/  
Y
VI_4_A  
Figure 2−1. Analog Processors and A/D Converters  
2.1.1 Video Input Switch Control  
The TVP5147 decoder has two analog channels that accept up to 10 video inputs. The user can configure  
2
the internal analog video switches via the I C interface. The 10 analog video inputs can be used for different  
input configurations, some of which are:  
9
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
Up to 10 selectable individual composite video inputs  
Up to four selectable S-video inputs  
Up to three selectable analog YPbPr video inputs and one CVBS input  
Up to two selectable analog YPbPr video inputs, two S-video inputs, and two CVBS inputs  
2
The input selection is performed by the input select register at I C subaddress 00h (see Section 2.11.1).  
2.1.2 Analog Input Clamping  
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit  
provides line-by-line restoration of the video sync level to a fixed dc reference voltage. The selection between  
bottom and mid clamp is performed automatically by the TVP5147 decoder.  
2.1.3 Automatic Gain Control  
The TVP5147 decoder uses two programmable gain amplifiers (PGAs), one per channel. The PGA can scale  
a signal with a voltage-input compliance of 0.5-V to 2.0-V to a full-scale 10-bit A/D output code range.  
PP  
PP  
A 4-bit code sets the coarse gain with individual adjustment per channel. Minimum gain corresponds to a code  
0x0 (2.0-V full-scale input, −6-dB gain) while maximum gain corresponds to code 0xF (0.5 V full scale,  
PP  
PP  
+6-dB gain). The TVP5147 decoder also has 12-bit fine gain controls for each channel and applies  
independently to coarse gain controls. For composite video, the input video signal amplitude can vary  
significantly from the nominal level of 1 V . The TVP5147 decoder can adjust its PGA setting automatically:  
PP  
an automatic gain control (AGC) can be enabled and can adjust the signal amplitude such that the maximum  
range of the ADC is reached without clipping. Some nonstandard video signals contain peak white levels that  
saturate the ADC. In these cases, the AGC automatically cuts back gain to avoid clipping. If the AGC is on,  
then the TVP5147 decoder can read the gain currently being used.  
The TVP5147 AGC comprises the front-end AGC before Y/C separation and the back-end AGC after Y/C  
separation. The back-end AGC restores the optimum system gain whenever an amplitude reference such as  
the composite peak (which is only relevant before Y/C separation) forces the front-end AGC to set the gain  
too low. The front-end and back-end AGC algorithms can use up to four amplitude references: sync height,  
color burst amplitude, composite peak, and luma peak.  
The specific amplitude references being used by the front-end and back-end AGC algorithms can be  
independently controlled using the AGC white peak processing register located at subaddress 74h. The  
TVP5147 gain increment speed and gain increment delay can be controlled using the AGC increment speed  
register located at subaddress 78h and the AGC increment delay register located at subaddress 79h.  
2.1.4 Analog Video Output  
One of the analog input signals is available at the analog video output terminal, which is shared with input  
2
selected by I C registers. The signal at this terminal must be buffered by a source follower. The nominal output  
voltage is 2 V p-p, thus the signal can be used to drive a 75-line. The magnitude is maintained with an AGC  
in 16 steps controlled by the TVP5147 decoder. In order to use this function, terminal VI_1_A must be set as  
an output terminal. The input mode selection register also selects an active analog output signal.  
2.1.5 A/D Converters  
All ADCs have a resolution of 10 bits and can operate up to 30 MSPS. All A/D channels receive an identical  
clock from the on-chip phase-locked loop (PLL) at a frequency between 24 MHz and 30 MHz. All ADC  
reference voltages are generated internally.  
10  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.2 Digital Video Processing  
Figure 2−2 is a block diagram of the TVP5147 digital video decoder processing. This block receives digitized  
video signals from the ADCs and performs composite processing for CVBS and S-video inputs and YCbCr  
signal enhancements for CVBS and S-video inputs. It also generates horizontal and vertical syncs and other  
output control signals such as genlock for CVBS and S-video inputs. Additionally, it can provide field  
identification, horizontal and vertical lock, vertical blanking, and active video window indication signals. The  
digital data output can be programmed to two formats: 20-bit 4:2:2 with external syncs or 10-bit 4:2:2 with  
embedded/separate syncs. The circuit detects pseudosync pulses, AGC pulses, and color striping in  
Macrovision-encoded copy-protected material. Information present in the VBI interval can be retrieved and  
either inserted in the ITU-R BT.656 output as ancillary data or stored in internal FIFO and/or registers for  
retrieval via the host port interface.  
Copy  
VBI Data  
Slice VBI Data  
Protection  
Detector  
Processor  
Y[9:0]  
C[9:0]  
Output  
Formatter  
2×  
CH1 A/D  
CH2 A/D  
Decimation  
CVBS/Y  
C/CbCr  
Composite  
Processor  
YCbCr  
2×  
Decimation  
XTAL1  
FID  
XTAL2  
RESETB  
PWDN  
VS/VBLK  
HS/CS  
GLCO  
AVID  
SCL  
SDA  
Timing  
Processor  
Host  
Interface  
DATACLK  
Figure 2−2. Digital Video Processing Block Diagram  
2.2.1 2× Decimation Filter  
All input signals are typically oversampled by a factor of 2 (27 MHz). The A/D outputs initially pass through  
decimation filters that reduce the data rate to 1× the pixel rate. The decimation filter is a half-band filter.  
Oversampling and decimation filtering can effectively increase the overall signal-to-noise ratio by 3 dB.  
2.2.2 Composite Processor  
Figure 2−3 is a block diagram of the TVP5147 digital composite video processing circuit. This processing  
circuit receives a digitized composite or S-video signal from the ADCs and performs Y/C separation (bypassed  
for S-video input), chroma demodulation for PAL/NTSC and SECAM, and YUV signal enhancements.  
11  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
The 10-bit composite video is multiplied by the subcarrier signals in the quadrature demodulator to generate  
color difference signals U and V. The U and V signals are then sent to low-pass filters to achieve the desired  
bandwidth. An adaptive 5-line comb filter separates UV from Y based on the unique property of color phase  
shifts from line to line. The chroma is remodulated through a quadrature modulator and subtracted from  
line-delayed composite video to generate luma. This form of Y/C separation is completely complementary,  
thus there is no loss of information. However, in some applications, it is desirable to limit the U/V bandwidth  
to avoid crosstalk. In that case, notch filters can be turned on. To accommodate some viewing preferences,  
a peaking filter is also available in the luma path. Contrast, brightness, sharpness, hue, and saturation controls  
are programmable through the host port.  
Y
Peaking  
Delay  
CVBS/Y  
Line  
Delay  
Y
NTSC/PAL  
Remodulation  
SECAM Luma  
Contrast  
Brightness  
Saturation  
Adjust  
Cb  
Cr  
Notch  
Filter  
SECAM  
Color  
Demodulation  
CVBS  
Notch  
Filter  
Color LPF  
U
2  
Burst  
Accumulator  
(U)  
5-Line  
Adaptive  
Comb  
Filter  
Burst  
Accumulator  
(V)  
Notch  
Filter  
U
Delay  
Delay  
Notch  
Filter  
V
Color LPF  
2  
V
NTSC/PAL  
Demodulation  
CVBS/C  
Figure 2−3. Composite and S-Video Processing Block Diagram  
2.2.2.1 Color Low-Pass Filter  
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for  
nonstandard video sources that have asymmetrical U and V side bands, it is desirable to limit the filter  
bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable to enable one of the  
three notch filters. Figure 2−4 through Figure 2−7 represent the frequency responses of the wideband color  
low-pass filters.  
12  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
10  
0
10  
0
Filter 2  
−3 dB @ 767 kHz  
PAL SQP −3 dB  
@ 1.55 MHz  
Filter 0  
−3 dB @ 1.29 MHz  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
Filter 3  
−3 dB @ 504 kHz  
Filter 1  
−3 dB  
@ 936 kHz  
ITU-R BT.601 −3 dB  
@ 1.42 MHz  
NTSC SQP −3 dB  
@ 1.29 MHz  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 2−5. Color Low-Pass Filter With Filter  
Frequency Response, NTSC Square Pixel  
Sampling  
Figure 2−4. Color Low-Pass Filter Frequency  
Response  
10  
10  
Filter 2  
Filter 2  
−3 dB @ 844 kHz  
−3 dB @ 922 kHz  
0
0
Filter 0  
Filter 0  
−3 dB @ 1.55 MHz  
−3 dB @ 1.41 MHz  
−10  
−10  
Filter 3  
−3 dB  
@ 605 kHz  
Filter 3  
−3 dB @ 554 kHz  
−20  
−30  
−40  
−50  
−60  
−70  
−20  
Filter 1  
−3 dB  
@ 1.03 MHz  
Filter 1  
−3 dB  
@ 1.13 MHz  
−30  
−40  
−50  
−60  
−70  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
f − Frequency − MHz  
f − Frequency − MHz  
Figure 2−7. Color Low-Pass Filter With Filter  
Characteristics, PAL Square Pixel Sampling  
Figure 2−6. Color Low-Pass Filter With Filter  
Characteristics, NTSC/PAL ITU-R BT.601  
Sampling  
13  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.2.2.2 Y/C Separation  
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The comb  
filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path,  
then chroma trap filters are used which are shown in Figure 2−8 through Figure 2−11. TI’s patented adaptive  
comb filter algorithm reduces artifacts such as hanging dots at color boundaries. It detects and properly  
handles false colors in high-frequency luminance images such as a multiburst pattern or circle pattern.  
10  
5
10  
5
Notch 3 Filter  
Notch 2 Filter  
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
Notch 1 Filter  
Notch 2 Filter  
Notch 3 Filter  
Notch 1 Filter  
No Notch Filter  
No Notch Filter  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f − Frequency − MHz  
f − Frequency − MHz  
Figure 2−8. Chroma Trap Filter Frequency  
Response, NTSC Square Pixel Sampling  
Figure 2−9. Chroma Trap Filter Frequency  
Response, NTSC ITU-R BT.601 Sampling  
10  
5
10  
Notch 3 Filter  
Notch 3 Filter  
5
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−10  
Notch 1 Filter  
Notch 2 Filter  
Notch 1 Filter  
Notch 2 Filter  
−15  
−20  
−25  
−30  
−35  
−40  
No Notch Filter  
No Notch Filter  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f − Frequency − MHz  
f − Frequency − MHz  
Figure 2−10. Chroma Trap Filter Frequency  
Response, PAL ITU-R BT.601 Sampling  
Figure 2−11. Chroma Trap Filter Frequency  
Response, PAL Square Pixel Sampling  
14  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.2.3 Luminance Processing  
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter,  
either of which removes chrominance information from the composite signal to generate a luminance signal.  
The luminance signal is then fed into the input of a peaking circuit. Figure 2−12 illustrates the basic functions  
of the luminance data path. In the case of S-video, the luminance signal bypasses the comb filter or chroma  
trap filter and is fed directly to the circuit. A peaking filter (edge enhancer) amplifies high-frequency  
components of the luminance signal. Figure 2−13, Figure 2−14, and Figure 2−15 show the characteristics of  
2
the peaking filter at four different gain settings that are user-programmable via the I C interface.  
Gain  
Peak  
Detector  
Bandpass  
Filter  
Peaking  
Filter  
×
IN  
Delay  
+
OUT  
Figure 2−12. Luminance Edge-Enhancer Peaking Block Diagram  
7
6
7
Peak at  
f = 2.40 MHz  
Peak at  
f = 2.64 MHz  
6
Gain = 2  
Gain = 2  
5
5
4
Gain = 1  
Gain = 1  
4
3
3
Gain = 0.5  
Gain = 0.5  
2
2
1
1
0
0
Gain = 0  
Gain = 0  
−1  
−1  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f − Frequency − MHz  
f − Frequency − MHz  
Figure 2−13. Peaking Filter Response, NTSC  
Square Pixel Sampling  
Figure 2−14. Peaking Filter Response,  
NTSC/PAL ITU-R BT.601 Sampling  
15  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
7
6
Peak at  
f = 2.89 MHz  
Gain = 2  
5
Gain = 1  
4
3
Gain = 0.5  
2
1
0
Gain = 0  
−1  
0
1
2
3
4
5
6
7
f − Frequency − MHz  
Figure 2−15. Peaking Filter Response, PAL Square Pixel Sampling  
2.2.3.1 Color Transient Improvement  
Color transient improvement (CTI) enhances horizontal color transients. The color difference signal transition  
points are maintained, but the edges are enhanced for signals which have bandwidth-limited color  
components.  
2.3 Clock Circuits  
An internal line-locked PLL generates the system and pixel clocks. A 14.318-MHz clock is required to drive  
the PLL. This can be input to the TVP5147 decoder at the 1.8-V level on terminal 74 (XTAL1), or a crystal of  
14.318-MHz fundamental resonant frequency can be connected across terminals 74 and 75 (XTAL2). If a  
parallel resonant circuit is used as shown in Figure 2−16, then the external capacitors must have the following  
relationship:  
C
= C = 2C − C  
,
L1  
L2  
L
STRAY  
where C  
is the terminal capacitance with respect to ground. Figure 2−16 shows the reference clock  
STRAY  
configurations. The TVP5147 decoder generates the DATACLK signal used for clocking data.  
TVP5147  
TVP5147  
14.318-MHz  
Crystal  
C
C
L1  
L2  
74  
75  
74  
75  
14.318-MHz  
Clock  
XTAL1  
XTAL1  
XTAL2  
XTAL2  
Figure 2−16. Reference Clock Configurations  
16  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.4 Real-Time Control (RTC)  
Although the TVP5147 decoder is a line-locked system, the color burst information is used to determine  
accurately the color subcarrier frequency and phase. This ensures proper operation with nonstandard video  
signals that do not follow exactly the required frequency multiple between color subcarrier frequency and video  
line frequency. The frequency control word of the internal color subcarrier PLL and the subcarrier reset bit are  
transmitted via terminal 37 (GLCO) for optional use in an end system (for example, by a video encoder). The  
frequency control word is a 23-bit binary number. The instantaneous frequency of the color subcarrier can be  
calculated using the following equation:  
F
ctrl  
23  
F
+
  F  
PLL  
sclk  
2
where F  
is the frequency of the subcarrier PLL, F is the 23-bit PLL frequency control word, and F  
is  
PLL  
ctrl  
sclk  
two times the pixel frequency. This information can be generated on the GLCO terminal. Figure 2−17 shows  
the detailed timing diagram.  
Valid  
Invalid  
Sample  
Sample  
Reserved  
M
S
B
L
S
B
RTC  
S
R
22  
0
128 CLK  
18 CLK  
1 CLK  
45 CLK  
23-Bit Fsc PLL Increment  
3 CLK  
Start  
Bit  
NOTE: RTC reset bit (R) is active-low, Sequence bit (S) PAL: 1 = (R-Y) line normal, 0 = (R-Y) line inverted, NTSC: 1 = no change  
Figure 2−17. RTC Timing  
2.5 Output Formatter  
The output formatter sets how the data is formatted for output on the TVP5147 output buses. Table 2−1 shows  
the available output modes.  
17  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
Table 2−1. Output Format  
TERMINAL  
NAME  
TERMINAL  
NUMBER  
10-Bit 4:2:2  
YCbCr  
20-Bit 4:2:2  
YCbCr  
Y_9  
Y_8  
Y_7  
Y_6  
Y_5  
Y_4  
Y_3  
Y_2  
Y_1  
Y_0  
C_9  
C_8  
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
43  
44  
45  
46  
47  
50  
51  
52  
53  
54  
57  
58  
59  
60  
63  
64  
65  
66  
69  
70  
Cb9, Y9, Cr9  
Cb8, Y8, Cr8  
Cb7, Y7, Cr7  
Cb6, Y6, Cr6  
Cb5, Y5, Cr5  
Cb4, Y4, Cr4  
Cb3, Y3, Cr3  
Cb2, Y2, Cr2  
Cb1, Y1, Cr1  
Cb0, Y0, Cr0  
Y9  
Y8  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
Cb9, Cr9  
Cb8, Cr8  
Cb7, Cr7  
Cb6, Cr6  
Cb5, Cr5  
Cb4, Cr4  
Cb3, Cr3  
Cb2, Cr2  
Cb1, Cr1  
Cb0, Cr0  
Table 2−2. Summary of Line Frequencies, Data Rates, and Pixel/Line Counts  
PIXEL  
FREQUENCY  
(MHz)  
COLOR  
SUBCARRIER  
FREQUENCY (MHz)  
PIXELS PER  
LINE  
ACTIVE PIXELS  
PER LINE  
LINES PER  
FRAME  
HORIZONTAL  
LINE RATE (kHz)  
STANDARDS  
601 sampling  
NTSC-J, M  
NTSC-4.43  
PAL-M  
858  
858  
858  
858  
864  
864  
864  
720  
720  
720  
720  
720  
720  
720  
525  
525  
525  
525  
625  
625  
625  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
13.5  
3.579545  
4.43361875  
3.57561149  
4.43361875  
4.43361875  
4.43361875  
3.58205625  
15.73426  
15.73426  
15.73426  
15.73426  
15.625  
PAL-60  
PAL-B, D, G, H, I  
PAL-N  
15.625  
PAL-Nc  
15.625  
Dr = 4.406250  
Db = 4.250000  
SECAM  
864  
720  
625  
13.5  
15.625  
Square sampling  
NTSC-J, M  
NTSC-4.43  
PAL-M  
780  
780  
780  
780  
944  
944  
944  
640  
640  
640  
640  
768  
768  
768  
525  
525  
525  
525  
625  
625  
625  
12.2727  
12.2727  
12.2727  
12.2727  
14.75  
3.579545  
4.43361875  
3.57561149  
4.43361875  
4.43361875  
4.43361875  
3.58205625  
15.73426  
15.73426  
15.73426  
15.73426  
15.625  
PAL-60  
PAL-B, D, G, H, I  
PAL-N  
14.75  
15.625  
PAL-Nc  
14.75  
15.625  
Dr = 4.406250  
Db = 4.250000  
SECAM  
944  
768  
625  
14.75  
15.625  
18  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.5.1 Separate Syncs  
VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows any possible  
alignment to the internal pixel count and line count. The default settings for 525-line and 625-line video outputs  
are given as examples below. FID changes at the same transient time when the trailing edge of vertical sync  
2
occurs. The polarity of FID is programmable by an I C interface.  
525-Line  
525  
1
2
3
4
5
6
7
8
9
10  
20  
21  
First Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
VBLK Stop  
262 263 264 265 266 267 268 269 270 271 272 273  
283 284  
Second Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
NOTE: Line numbering conforms to ITU-R BT.470  
VBLK Stop  
Figure 2−18. Vertical Synchronization Signals for 525-Line System  
19  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
625-Line  
622 623 624 625  
1
2
3
4
5
6
7
23  
24  
25  
First Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
VBLK Stop  
310 311 312 313 314 315 316 317 318 319 320  
336 337 338  
Second Field Video  
HS  
VS  
VS Start  
VS Stop  
CS  
FID  
VBLK  
VBLK Start  
NOTE: Line numbering conforms to ITU-R BT.470  
VBLK Stop  
Figure 2−19. Vertical Synchronization Signals for 625-Line System  
20  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
0
DATACLK  
Y[9:0]  
EAV EAV EAV EAV  
SAV SAV SAV SAV  
Cb  
Y
Cr  
Y
Horizontal Blanking  
HS Start HS Stop  
Cb0 Y0 Cr0 Y1  
1
2
3
4
1
2
3
4
HS  
A
C
B
D
AVID  
AVID Stop  
AVID Start  
DATACLK = 2× Pixel Clock  
Mode  
A
B
C
D
NTSC 601  
PAL 601  
106 128  
112 128  
42  
48  
44  
80  
276  
288  
280  
352  
NTSC Sqp 108 128  
PAL Sqp 144 128  
NOTE: ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference  
Figure 2−20. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode  
21  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
0
DATACLK  
Y[9:0]  
Y
Y
Y
Y
Horizontal Blanking  
Y0 Y1 Y2 Y3  
CbCr[9:0]  
Cb Cr Cb Cr  
Horizontal Blanking  
HS Start HS Stop  
Cb0 Cr0 Cb1 Cr1  
HS  
A
C
B
D
2
AVID  
AVID Stop  
NOTE: AVID rising edge occurs 4 clock cycles early.  
AVID Start  
DATACLK = 1× Pixel Clock  
Mode  
A
B
C
D
NTSC 601  
PAL 601  
53  
56  
54  
72  
64  
64  
64  
64  
19  
22  
20  
38  
136  
142  
138  
174  
NTSC Sqp  
PAL Sqp  
NOTE: 20-bit 4:2:2 timing with 1× pixel clock reference  
Figure 2−21. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode  
22  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
HS  
VS  
First Field  
B/2  
B/2  
HS  
VS  
H/2 + B/2  
H/2 + B/2  
Second Field  
10-Bit (PCLK = 2× Pixel Clock)  
20-Bit (PCLK = 1× Pixel Clock)  
Mode  
B/2  
64  
64  
64  
64  
H/2  
858  
864  
780  
944  
B/2  
32  
32  
32  
32  
H/2  
429  
432  
390  
472  
NTSC 601  
PAL 601  
NTSC Sqp  
PAL Sqp  
Figure 2−22. VSYNC Position With Respect to HSYNC  
2.5.2 Embedded Syncs  
Standards with embedded syncs insert the SAV and EAV codes into the data stream on the rising and falling  
edges of AVID. These codes contain the V and F bits which also define vertical timing. Table 2−3 gives the  
format of the SAV and EAV codes.  
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and  
field counter varies depending on the standard.  
The P bits are protection bits:  
P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H  
Table 2−3. EAV and SAV Sequence  
D9 (MSB)  
D8  
1
D7  
1
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
1
D0  
1
Preamble  
Preamble  
Preamble  
Status word  
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
V
H
P3  
P2  
P1  
P0  
0
0
2
2.6 I C Host Interface  
2
2
Communication with the TVP5147 decoder is via an I C host interface. The I C standard consists of two  
signals, the serial input/output data (SDA) line and the serial input clock line (SCL), which carry information  
between the devices connected to the bus. A third signal (I2CA) is used for slave address selection. Although  
2
an I C system can be multimastered, the TVP5147 decoder functions as a slave device only.  
23  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
Because SDA and SCL are kept open-drain at a logic-high output level or when the bus is not driven, the user  
must connect SDA and SCL to a positive supply voltage via a pullup resistor on the board. The slave addresses  
2
select signal, terminal 37 (I2CA), enables the use of two TVP5147 devices tied to the same I C bus, because  
2
it controls the least significant bit of the I C device address.  
2
Table 2−4. I C Host Interface Terminal Description  
SIGNAL  
I2CA  
TYPE  
DESCRIPTION  
Slave address selection  
Input clock line  
I
I
SCL  
SDA  
I/O  
Input/output data line  
2
2.6.1 Reset and I C Bus Address Selection  
The TVP5147 decoder can respond to two possible chip addresses. The address selection is made at reset  
by an externally supplied level on the I2CA terminal. The TVP5147 decoder samples the level of terminal 37  
2
at power up or at the trailing edge of RESETB and configures the I C bus address bit A0. The I2CA terminal  
has an internal pulldown resistor to pull the terminal low to set a zero.  
2
Table 2−5. I C Address Selection  
A6  
1
A5  
0
A4  
1
A3  
1
A2  
1
A1  
0
A0 (I2CA)  
R/W  
1/0  
HEX  
B9/B8  
BB/BA  
0 (default)  
1
0
1
1
1
0
1
1/0  
2
If terminal 37 is strapped to DVDD via a 2.2-kresistor, I C device address A0 is set to 1.  
2
2.6.2 I C Operation  
Data transfers occur using the following illustrated formats.  
S
10111000  
ACK  
Subaddress  
ACK  
Send data  
ACK  
P
2
Read from I C control registers  
S
10111000  
ACK  
Subaddress  
ACK  
S
10111001  
ACK  
Receive data NAK  
P
2
2
S = I C bus start condition  
P = I C bus stop condition  
ACK = Acknowledge generated by the slave  
NAK = Acknowledge generated by the master, for multiple-byte read master with ACK each byte except  
last byte  
Subaddress = Subaddress byte  
Data = Data byte. If more than one byte of data is transmitted (read and write), the subaddress pointer is  
automatically incremented.  
2
2
I C bus address = Example shown that I CA is in default mode. Write (B8h), read (B9h)  
2.6.3 VBUS Access  
The TVP5147 decoder has additional internal registers accessible through an indirect access to an internal  
24-bit address wide VBUS. Figure 2−23 shows the VBUS register access.  
24  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2
I C Registers  
VBUS Registers  
00h  
00 0000h  
HOST  
Processor  
2
I C  
80 051Ch  
80 0520h  
80 052Ch  
80 0600h  
CC  
WSS  
VITC  
E0h  
VBUS  
Data  
Line  
Mode  
E1h  
E8h  
VBUS[23:0]  
80 0700h  
90 1904h  
VPS  
VBUS  
Address  
FIFO  
EAh  
FFh  
FF FFFFh  
VBUS Write  
Single Byte  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK  
P
P
S
B8 ACK E0 ACK Send Data ACK  
P
Multiple Bytes  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK  
S
B8 ACK E1 ACK Send Data ACK • • • Send Data ACK  
P
VBUS Read  
Single Byte  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P  
S
B8 ACK E0 ACK  
S
B9 ACK Read Data NAK P  
Multiple Bytes  
S
B8 ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P  
S
B8 ACK E1 ACK  
S
B9 ACK Read Data ACK • • • Read Data NAK  
P
2
NOTE: Examples use default I C address  
ACK = Acknowledge generated by the slave  
NAK = No acknowledge generated by the master  
Figure 2−23. VBUS Access  
25  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.7 VBI Data Processor  
The TVP5147 VBI data processor (VDP) slices various data services like teletext (WST, NABTS), closed  
caption (CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC),  
video program system (VPS), copy generation management system (CGMS) data, and electronic program  
guide (Gemstar) 1x/2x. Table 2−6 shows the supported VBI system.  
These services are acquired by programming the VDP to enable the reception of one or more vertical blank  
interval (VBI) data standard(s) during the VBI. The VDP can be programmed on a line-per-line basis to enable  
simultaneous reception of different VBI formats, one per line. The results are stored in a FIFO and/or registers.  
Because of the high data bandwidth, teletext results are stored in FIFO only. The TVP5147 decoder provides  
fully decoded V-Chip data to the dedicated registers at subaddresses 80 0540h−80 0543h.  
Table 2−6. Supported VBI System  
VBI SYSTEM  
Teletext WST A  
STANDARD  
SECAM  
PAL  
LINE NUMBER  
6−23 (Fields 1 and 2)  
6−22 (Fields 1 and 2)  
10−21 (Fields 1 and 2)  
10−21 (Fields 1 and 2)  
22 (Fields 1 and 2)  
21 (Fields 1 and 2)  
23 (Fields 1 and 2)  
20 (Fields 1 and 2)  
6−22  
NUMBER OF BYTES  
38  
Teletext WST B  
Teletext NABTS C  
Teletext NABTS D  
Closed Caption  
Closed Caption  
WSS  
43  
NTSC  
NTSC-J  
PAL  
34  
35  
2
NTSC  
PAL  
2
14 bits  
WSS-CGMS  
VITC  
NTSC  
PAL  
20 bits  
9
VITC  
NTSC  
PAL  
10−20  
9
VPS (PDC)  
V-Chip (decoded)  
Gemstar 1x  
Gemstar 2x  
User  
16  
13  
NTSC  
NTSC  
NTSC  
Any  
21 (Fields 1 and 2)  
2
2
5 with frame byte  
Programmable  
Programmable  
26  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.7.1 VBI FIFO and Ancillary Data in Video Stream  
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is output  
on the Y[9:2] terminals during the horizontal blanking period. Table 2−7 shows the header format and  
sequence of the ancillary data inserted into the video stream. This format is also used to store any VBI data  
into the FIFO. The size of the FIFO is 512 bytes. Therefore, the FIFO can store up to 11 lines of teletext data  
with the NTSC NABTS standard.  
Table 2−7. Ancillary Data Format and Sequence  
BYTE  
NO.  
D7  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
DESCRIPTION  
0
1
2
3
4
5
6
7
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Ancillary data preamble  
1
1
1
1
1
1
1
1
NEP  
NEP  
NEP  
EP  
EP  
EP  
0
1
0
DID2  
F2  
N2  
DID1  
F1  
N1  
DID0  
F0  
N0  
Data ID (DID)  
F5  
N5  
F4  
N4  
F3  
N3  
Secondary data ID (SDID)  
Number of 32-bit data (NN)  
Internal data ID0 (IDID0)  
Video line # [7:0]  
0
0
0
Data  
error  
Match  
#1  
Match  
#2  
Video line # [9:8] Internal data ID1 (IDID1)  
st  
8
9
1. Data  
Data byte  
Data byte  
Data byte  
Data byte  
:
1
word  
word  
2. Data  
3. Data  
4. Data  
:
10  
11  
:
:
th  
m. Data  
CS[7:0]  
Data byte  
Check sum  
N
4N+7  
0
0
0
0
0
0
0
0
Fill byte  
NOTE: The number of bytes (m) varies depending on the VBI data service.  
EP:  
Even parity for D0−D5, NEP: Negated even parity  
DID:  
91h: Sliced data of VBI lines of first field  
53h: Sliced data of line 24 to end of first field  
55h: Sliced data of VBI lines of second field  
97h: Sliced data of line 24 to end of second field  
SDID:  
NN:  
This field holds the data format taken from the line mode register bits [2:0] of the corresponding line.  
Number of Dwords beginning with byte 8 through 4N+7. Note this value is the number of Dwords  
where each Dword is 4 bytes.  
IDID0:  
IDID1:  
Transaction video line number [7:0]  
Bit 0/1 = Transaction video line number [9:8]  
Bit 2 = Match 2 flag  
Bit 3 = Match 1 flag  
Bit 4 = 1 if an error was detected in the EDC block. 0 if no error was detected.  
CS:  
Sum of D0−D7 of first data through last data byte.  
Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the sync  
pattern byte. Byte 9 is the first data byte.  
27  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.7.2 VBI Raw Data Output  
The TVP5147 decoder can output raw A/D video data at twice the sampling rate for external VBI slicing. This  
is transmitted as an ancillary data block, although somewhat differently from the way the sliced VBI data is  
transmitted in the FIFO format as described in Section 2.7.1. The samples are transmitted during the active  
portion of the line. VBI raw data uses ITU-R BT.656 format having only luma data. The chroma samples are  
replaced by luma samples. The TVP5147 decoder inserts a four-byte preamble 000h 3FFh 3FFh 180h before  
data start. There are no checksum bytes and fill bytes in this mode.  
Table 2−8. VBI Raw Data Output Format  
BYTE  
NO.  
D9  
(MSB)  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
DESCRIPTION  
0
1
0
1
1
0
0
1
1
1
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
VBI raw data preamble  
2
3
4
1. Data  
2. Data  
:
5
2× pixel rate luma data  
:
(i.e., NTSC 601: n = 1707)  
n−1  
n
n−5. Data  
n–4. Data  
2.8 Reset and Initialization  
Reset is initiated at power up or any time terminal 34 (RESETB) is brought low. Table 2−9 describes the status  
of the TVP5147 terminals during and immediately after reset.  
Table 2−9. Reset Sequence  
SIGNAL NAME  
Y[9:0], C[9:0]  
DURING RESET  
Input  
RESET COMPLETED  
High-impedance  
RESETB, PWDN, SDA, SCL, FSS,  
AVID, GLCO, HS, VS, FID  
Input  
Input  
INTREQ  
Input  
Output  
DATACLK  
Output  
High-impedance  
POWER  
(3.3 V and 1.8 V)  
1 ms (min)  
200 ns (min)  
Reset  
Normal Operation  
RESETB  
(Pin 34)  
1 ms (min)  
SDA  
(Pin 29)  
2
Invalid I C Cycle  
Valid  
Figure 2−24. Reset Timing  
The TVP5147 requires that pin 69 (C_1/GPIO) be held LOW. If using the 20-/16-bit mode or using this pin as  
GPIO, then this pin must be pulled low through a 2.2-kpulldown resistor (see Figure 5−1). If unused, this  
pin can be shorted to ground. (Note: If using the 20-/16-bit mode and only using the 16 MSBs, it is possible  
to short pin 69 to GND, but the current for IOVDD will increase by 2 or 3 mA.)  
28  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2
After reset, the user must write the following I C commands to the TVP5147:  
2
2
STEP  
1
I C SUBADDRESS  
I C DATA  
0xE8  
0xE9  
0xEA  
0xE0  
0xE8  
0xE9  
0xEA  
0xE0  
0xE8  
0xE9  
0xEA  
0xE0  
0xE8  
0xE9  
0xEA  
0xE0  
0x03  
0x03  
0x02  
0x00  
0x80  
0x01  
0x60  
0x00  
0xB0  
0x01  
0x16  
0x00  
0xA0  
0x16  
0x60  
0x00  
0xB0  
0x00  
0x01  
0x00  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Afterward, the user programs the device as usual.  
2.9 Adjusting External Syncs  
The proper sequence to program the following external syncs is:  
To set NTSC, PAL-M, NTSC 443, PAL60 (525-line modes):  
Set the video standard to NTSC (register 02h)  
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)  
To set PAL, PAL-N, SECAM (625-line modes):  
Set the video standard to PAL (register 02h)  
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)  
For autoswitch, set the video standard to autoswitch (register 02h)  
2.10 Internal Control Registers  
The TVP5147 decoder is initialized and controlled by a set of internal registers that define the operating  
parameters of the entire device. Communication between the external controller and the TVP5147 is through  
2
a standard I C host port interface, as described earlier. Table 2−10 shows the summary of these registers.  
Detailed programming information for each register is described in the following sections. Additional registers  
are accessible through an indirect procedure involving access to an internal 24-bit address wide VBUS.  
Table 2−11 shows the summary of the VBUS registers.  
NOTE: Do not write to reserved registers. Reserved bits in any defined register must be written  
with 0s, unless otherwise noted.  
29  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2
Table 2−10. I C Register Summary  
2
REGISTER NAME  
I C SUBADDRESS  
DEFAULT  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Input select  
00h  
01h  
AFE gain control  
Video standard  
Operation mode  
Autoswitch mask  
Color killer  
0Fh  
00h  
02h  
03h  
00h  
04h  
23h  
05h  
10h  
Luminance processing control 1  
Luminance processing control 2  
Luminance processing control 3  
Luminance brightness  
Luminance contrast  
Chrominance saturation  
Chroma hue  
06h  
00h  
07h  
00h  
08h  
02h  
09h  
80h  
0Ah  
80h  
0Bh  
80h  
0Ch  
00h  
Chrominance processing control 1  
Chrominance processing control 2  
Reserved  
0Dh  
00h  
0Eh  
0Eh  
0Fh−15h  
16h−17h  
18h−19h  
1Ah−1Bh  
1Ch−1Dh  
1Eh−1Fh  
20h−21h  
22h−23h  
24h−25h  
26h−2Ah  
2Bh  
AVID start pixel  
055h  
325h  
000h  
040h  
004h  
007h  
001h  
015h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AVID stop pixel  
HSYNC start pixel  
HSYNC stop pixel  
VSYNC start line  
VSYNC stop line  
VBLK start line  
VBLK stop line  
Reserved  
Overlay delay  
00h  
R/W  
Reserved  
2Ch  
CTI delay  
2Dh  
00h  
00h  
R/W  
R/W  
CTI control  
2Eh  
Reserved  
2Fh−30h  
31h  
GLCO/RTC  
05h  
00h  
40h  
00h  
FFh  
FFh  
FFh  
FFh  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Sync control  
32h  
Output formatter 1  
Output formatter 2  
Output formatter 3  
Output formatter 4  
Output formatter 5  
Output formatter 6  
Clear lost lock detect  
Status 1  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
Status 2  
3Bh  
R
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
30  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2
Table 2−10. I C Register Summary (Continued)  
2
REGISTER NAME  
I C SUBADDRESS  
DEFAULT  
R/W  
AGC gain status  
Reserved  
3Ch−3Dh  
3Eh  
R
Video standard status  
GPIO input 1  
3Fh  
R
R
R
R
40h  
GPIO input 2  
41h  
Vertical line count  
42h−43h  
44h−45h  
46h  
Reserved  
AFE coarse gain for CH1  
AFE coarse gain for CH2  
AFE coarse gain for CH3  
AFE coarse gain for CH4  
AFE fine gain for Pb  
AFE fine gain for chroma  
AFE fine gain for Pr  
AFE fine gain for CVBS_Luma  
Reserved  
20h  
20h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
47h  
48h  
20h  
49h  
20h  
4Ah−4Bh  
4Ch−4Dh  
4Eh−4Fh  
50h−51h  
52h−56h  
57h  
900h  
900h  
900h  
900h  
Field ID control  
00h  
R/W  
R
Reserved  
58h−6Fh  
70h  
ROM version  
Reserved  
71h−73h  
74h  
AGC white peak processing  
F and V bit control  
VCR trick mode control  
Horizontal shake increment  
AGC increment speed  
AGC increment delay  
Reserved  
00h  
12h  
8Ah  
64h  
05h  
1Eh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
75h  
76h  
77h  
78h  
79h  
7Ah−7Eh  
7Fh  
Analog output control 1  
Chip ID MSB  
00h  
51h  
47h  
R/W  
R
80h  
Chip ID LSB  
81h  
R
Reserved  
82h−B0h  
B1h  
VDP TTX filter 1 mask 1  
VDP TTX filter 1 mask 2  
VDP TTX filter 1 mask 3  
VDP TTX filter 1 mask 4  
VDP TTX filter 1 mask 5  
VDP TTX filter 2 mask 1  
VDP TTX filter 2 mask 2  
VDP TTX filter 2 mask 3  
VDP TTX filter 2 mask 4  
VDP TTX filter 2 mask 5  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
31  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2
Table 2−10. I C Register Summary (Continued)  
2
REGISTER NAME  
VDP TTX filter control  
I C SUBADDRESS  
DEFAULT  
R/W  
R/W  
R
BBh  
BCh  
00h  
VDP FIFO word count  
VDP FIFO interrupt threshold  
Reserved  
BDh  
80h  
R/W  
BEh  
VDP FIFO reset  
BFh  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
VDP FIFO output control  
VDP line number interrupt  
VDP pixel alignment  
Reserved  
C0h  
C1h  
00h  
C2h−C3h  
C4h−D5h  
D6h  
01Eh  
VDP line start  
06h  
1Bh  
FFh  
00h  
FFh  
R/W  
R/W  
R/W  
R/W  
R/W  
VDP line stop  
D7h  
VDP global line mode  
VDP full field enable  
VDP full field mode  
Reserved  
D8h  
D9h  
DAh  
DBh−DFh  
E0h  
VBUS data access with no VBUS address increment  
VBUS data access with VBUS address increment  
FIFO read data  
00h  
00h  
R/W  
R/W  
R
E1h  
E2h  
Reserved  
E3h−E7h  
E8h−EAh  
EBh−EFh  
F0h  
VBUS address access  
Reserved  
00 0000h  
R/W  
Interrupt raw status 0  
Interrupt raw status 1  
Interrupt status 0  
R
R
F1h  
F2h  
R
Interrupt status 1  
F3h  
R
Interrupt mask 0  
F4h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
Interrupt mask 1  
F5h  
Interrupt clear 0  
F6h  
Interrupt clear 1  
F7h  
Reserved  
F8h−FFh  
NOTE: R = Read only  
W = Write only  
R/W = Read and write  
Reserved register addresses must not be written to.  
32  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
Table 2−11. VBUS Register Summary  
2
REGISTER NAME  
I C SUBADDRESS  
DEFAULT  
R/W  
Reserved  
00 0000h−80 051Bh  
80 051Ch−80 051Fh  
80 0520h−80 0526h  
80 0527h−80 052Bh  
80 052Ch−80 0534h  
80 0535h−80 053Fh  
80 0540h−80 0543h  
80 0544h−80 05FFh  
80 0600h−80 0611h  
80 0612h−80 06FFh  
80 0700h−80 070Ch  
80 070Dh−90 1903h  
90 1904h  
VDP closed caption data  
VDP WSS data  
Reserved  
R
R
VDP VITC data  
Reserved  
R
R
VDP V-Chip data  
Reserved  
VDP general line mode and line address  
Reserved  
00h, FFh  
R/W  
R
VDP VPS (PDC)/Gemstar data  
Reserved  
VDP FIFO read  
Reserved  
R
90 1905h−A0 005Dh  
A0 05Eh  
Analog output control 2  
Reserved  
B2h  
00h  
R/W  
R/W  
A0 005Fh−B0 005Fh  
B0 0060h  
Interrupt configuration  
Reserved  
B0 0061h−FF FFFFh  
NOTE: Writing any value to a reserved register may cause erroneous operation of the TVP5147 decoder.  
It is recommended not to access any data to/from reserved registers.  
33  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11 Register Definitions  
2.11.1 Input Select Register  
Subaddress  
00h  
Default  
00h  
7
6
5
4
3
2
1
0
Input select [7:0]  
Table 2−12. Analog Channel and Video Mode Selection  
INPUT SELECT [7:0]  
OUTPUT  
(see Note 1)  
MODE  
INPUT(S) SELECTED  
VI_1_A (default)  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
6
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
3
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
2
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
HEX  
00  
01  
02  
04  
05  
06  
08  
09  
0A  
0C  
44  
45  
46  
54  
55  
56  
4C  
4D  
4E  
5C  
5D  
5E  
94  
95  
96  
CVBS  
N/A  
VI_1_B  
VI_1_C  
VI_2_A  
VI_2_B  
VI_2_C  
VI_3_A  
VI_3_B  
VI_3_C  
VI_4_A  
VI_1_B  
VI_1_C  
VI_2_A  
VI_2_B  
VI_2_C  
VI_3_A  
VI_3_B  
VI_3_C  
VI_4_A  
S-video VI_2_A(Y), VI_1_A(C)  
VI_2_B(Y), VI_1_B(C)  
VI_2_C(Y), VI_1_C(C)  
VI_2_A(Y), VI_3_A(C)  
VI_2_B(Y), VI_3_B(C)  
VI_2_C(Y), VI_3_C(C)  
VI_4_A(Y), VI_1_A(C)  
VI_4_A(Y), VI_1_B(C)  
VI_4_A(Y), VI_1_C(C)  
VI_4_A(Y), VI_3_A(C)  
VI_4_A(Y), VI_3_B(C)  
VI_4_A(Y), VI_3_C(C)  
N/A  
VI_2_B(Y)  
VI_2_C(Y)  
VI_2_A(Y)  
VI_2_B(Y)  
VI_2_C(Y)  
N/A  
VI_4_A(Y)  
VI_4_A(Y)  
VI_4_A(Y)  
VI_4_A(Y)  
VI_4_A(Y)  
N/A  
YPbPr  
VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr)  
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr)  
VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr)  
VI_2_B(Y)  
VI_2_C(Y)  
NOTE 1: When VI_1_A is set to output, the total number of inputs is nine. The video output can be either CVBS or luma.  
Ten input terminals can be configured to support composite, S-video, and component YPbPr as listed in  
Table 2−12. User must follow this table properly for S-video and component applications because only the  
terminal configurations listed in Table 2−12 are supported.  
34  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.2 AFE Gain Control Register  
Subaddress  
01h  
Default  
0Fh  
7
6
5
4
3
2
1
0
Reserved  
1
1
AGC chroma  
AGC luma  
Bit 3: 1 must be written to this bit.  
Bit 2: 1 must be written to this bit.  
AGC chroma enable: Controls automatic gain in the chroma/PbPr channel:  
0 = Manual (if AGC luma is set to manual, AGC chroma is forced to be in manual)  
1 = Enabled auto gain, applied a gain value acquired from the sync channel for S-video and component  
mode. When AGC luma is set, this state is valid. (default)  
AGC luma enable: Controls automatic gain in the embedded sync channel of CVBS, S-video, component  
video:  
0 = Manual gain, AFE coarse and fine gain frozen to the previous gain value set by AGC when this bit is set  
to 0.  
1 = Enabled auto gain applied to only the embedded sync channel (default)  
These settings only affect the analog front-end (AFE). The brightness and contrast controls are not affected  
by these settings.  
2.11.3 Video Standard Register  
Subaddress  
02h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Video standard [2:0]  
Video standard [2:0]:  
CVBS and S-Video  
Component Video  
000  
001  
010  
011  
100  
101  
110  
111  
= Autoswitch mode (default)  
= (M, J) NTSC  
Autoswitch mode (default)  
Component 525  
Component 625  
Reserved  
= (B, D, G, H, I, N) PAL  
= (M) PAL  
= (Combination-N) PAL  
= NTSC 4.43  
Reserved  
Reserved  
= SECAM  
Reserved  
= PAL 60  
Reserved  
With the autoswitch code running, the user can force the decoder to operate in a particular video standard  
mode by writing the appropriate value into this register. Changing these bits causes the register settings to  
be reinitialized.  
NOTE: Sampling rate (either square pixel or ITU-R BT.601) can be set by bit 7 (sampling rate)  
2
in the output formatter 1 register at I C subaddress 33h (see Section 2.11.28).  
35  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.4 Operation Mode Register  
Subaddress  
03h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Power save  
Power save:  
0 = Normal operation (default)  
2
1 = Power-save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I C  
interface is active and all current operating settings are preserved.  
2.11.5 Autoswitch Mask Register  
Subaddress  
04h  
Default  
23h  
7
6
5
4
3
2
1
0
Reserved  
PAL 60  
SECAM  
NTSC 4.43  
(Nc) PAL  
(M) PAL  
PAL  
(M, J) NTSC  
Autoswitch mode mask: Limits the video formats between which autoswitch is possible.  
PAL 60:  
0 = Autoswitch does not include PAL 60 (default)  
1 = Autoswitch includes PAL60  
SECAM:  
0 = Autoswitch does not include SECAM  
1 = Autoswitch includes SECAM (default)  
NTSC 4.43:  
0 = Autoswitch does not include NTSC 4.43 (default)  
1 = Autoswitch includes NTSC 4.43  
(Nc) PAL:  
0 = Autoswitch does not include (Nc) PAL (default)  
1 = Autoswitch includes (Nc) PAL  
(M) PAL:  
0 = Autoswitch does not include (M) PAL (default)  
1 = Autoswitch includes (M) PAL  
PAL:  
0 = Reserved  
1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)  
(M, J ) NTSC:  
0 = Reserved  
1 = Autoswitch includes (M, J) NTSC (default)  
NOTE: Bits 1 and 0 must always be 1.  
36  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.6 Color Killer Register  
Subaddress  
05h  
Default  
10h  
7
6
5
4
3
2
1
0
Reserved  
Automatic color killer  
Color killer threshold [4:0]  
Automatic color killer:  
00 = Automatic mode (default)  
01 = Reserved  
10 = Color killer enabled, the UV terminals are forced to a zero color state.  
11 = Color killer disabled  
Color killer threshold [4:0]:  
1 1111 = 31 (maximum)  
1 0000 = 16 (default)  
0 0000 = 0 (minimum)  
2.11.7 Luminance Processing Control 1 Register  
Subaddress  
06h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Pedestal not present  
Reserved  
VBI raw  
Luminance signal delay [3:0]  
Pedestal not present:  
0 = 7.5 IRE pedestal is present on the analog video input signal (default)  
1 = Pedestal is not present on the analog video input signal  
VBI raw:  
0 = Disabled (default)  
1 = Enabled  
During the duration of the vertical blanking as defined by the VBLK start and stop line registers at  
subaddresses 22h through 25h (see Sections 2.11.22 and 2.11.23), the chroma samples are replaced by luma  
samples. This feature can be used to support VBI processing performed by an external device during the  
vertical blanking interval. In order to use this bit, the output format must be 10-bit ITU-R BT.656 mode.  
Luminance signal delay [3:0]: Luminance signal delays with respect to the chroma signal in 1× pixel clock  
increments.  
0111 = Reserved  
0110 = 6-pixel delay  
0001 = 1-pixel delay  
0000 = 0 delay (default)  
1111 = −1-pixel delay  
1000 = −8-pixel delay  
37  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.8 Luminance Processing Control 2 Register  
Subaddress  
07h  
Default  
00h  
7
6
5
4
3
2
1
0
Luma filter select [1:0]  
Reserved  
Peaking gain [1:0]  
Reserved  
Luma filter selected [1:0]:  
00 = Luminance adaptive comb enabled (default on CVBS)  
01 = Luminance adaptive comb disabled (trap filter selected)  
10 = Luma comb/trap filter bypassed (default on S-video, component mode, and SECAM)  
11 = Reserved  
Peaking gain [1:0]:  
00 = 0 (default)  
01 = 0.5  
10 = 1  
11 = 2  
2.11.9 Luminance Processing Control 3 Register  
Subaddress  
08h  
Default  
02h  
7
6
5
4
3
2
1
0
Reserved  
Trap filter select [1:0]  
Trap filter select [1:0] selects one of the four trap filters to produce the luminance signal by removing the  
chrominance signal from the composite video signal. The stop band of the chroma trap filter is centered at the  
chroma subcarrier frequency with the stop-band bandwidth controlled by the two control bits.  
Trap filter stop-band bandwidth (MHz):  
Filter select [1:0]  
00 =  
NTSC ITU-R BT.601 NTSC square pixel PAL ITU-R BT.601 PAL square pixel  
1.2129  
0.8701  
0.7183  
0.5010  
1.1026  
0.7910  
0.6712  
0.4554  
1.2129  
0.8701  
0.7383  
0.5010  
1.3252  
0.9507  
0.8066  
0.5474  
01 =  
10 = (default)  
11 =  
2.11.10 Luminance Brightness Register  
Subaddress  
09h  
Default  
80h  
7
6
5
4
3
2
1
0
Brightness [7:0]  
Brightness [7:0]: This register works for CVBS, S-video, and component video luminance.  
1111 1111 = 255 (bright)  
1000 0000 = 128 (default)  
0000 0000 = 0 (dark)  
38  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.11 Luminance Contrast Register  
Subaddress  
0Ah  
Default  
80h  
7
6
5
4
3
2
1
0
Contrast [7:0]  
Contrast [7:0]: This register works for CVBS, S-video, and component video luminance.  
1111 1111 = 255 (maximum contrast)  
1000 0000 = 128 (default)  
0000 0000 = 0 (minimum contrast)  
2.11.12 Chrominance Saturation Register  
Subaddress  
0Bh  
Default  
80h  
7
6
5
4
3
2
1
0
0
0
Saturation [7:0]  
Saturation [7:0]: This register works for CVBS, S-video, and component video luminance.  
1111 1111 = 255 (maximum)  
1000 0000 = 128 (default)  
0000 0000 = 0 (no color)  
2.11.13 Chroma Hue Register  
Subaddress  
0Ch  
Default  
00h  
7
6
5
4
3
2
1
Hue [7:0]  
Hue [7:0] (does not apply to component video)  
0111 1111 = +180 degrees  
0000 0000 = 0 degrees (default)  
1000 0000 = −180 degrees  
2.11.14 Chrominance Processing Control 1 Register  
Subaddress  
0Dh  
Default  
00h  
7
6
5
4
3
2
1
Automatic color gain control [1:0]  
Chrominance adaptive  
comb enable  
Reserved  
Color PLL reset  
Reserved  
Color PLL reset:  
0 = Color subcarrier PLL not reset (default)  
1 = Color subcarrier PLL reset  
Chrominance adaptive comb enable: This bit is effective on composite video only.  
0 = Enabled (default)  
1 = Disabled  
Automatic color gain control (ACGC) [1:0]:  
00= ACGC enabled (default)  
01 = Reserved  
10= ACGC disabled, ACGC set to the nominal value  
11= ACGC frozen to the previous set value  
39  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.15 Chrominance Processing Control 2 Register  
Subaddress  
0Eh  
Default  
0Eh  
7
6
5
4
3
2
1
0
Reserved  
PAL compensation  
WCF  
Chrominance filter select [1:0]  
PAL compensation:  
0 = Disabled  
1 = Enabled (default)  
Wideband chroma LPF filter (WCF):  
0 = Disabled  
1 = Enabled (default)  
Chrominance filter select [1:0]:  
00 = Disabled  
01 = Notch 1  
10 = Notch 2 (default)  
11 = Notch 3  
See Figure 2−8 through Figure 2−11 for characteristics.  
2.11.16 AVID Start Pixel Register  
Subaddress  
16h−17h  
Default  
055h  
Subaddress  
16h  
7
6
5
4
3
2
1
0
AVID start [7:0]  
AVID active  
17h  
Reserved  
Reserved  
AVID start [9:8]  
AVID active:  
0 = AVID out active in VBLK (default)  
1 = AVID out inactive in VBLK  
AVID start [9:0]: AVID start pixel number, this is an absolute pixel location from HSYNC start pixel 0.  
NTSC 601  
85 (55h)  
NTSC Sqp  
86 (56h)  
PAL 601  
88 (58h)  
PAL Sqp  
default  
103 (67h)  
The TVP5147 decoder updates the AVID start only when the AVID start MSB byte is written to. If the user  
changes these registers, then the TVP5147 decoder retains values in different modes until this device resets.  
The AVID start pixel register also controls the position of the SAV code.  
40  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.17 AVID Stop Pixel Register  
Subaddress  
18h−19h  
Default  
325h  
Subaddress  
18h  
7
6
5
4
3
2
1
0
AVID stop [7:0]  
19h  
Reserved  
AVID stop [9:8]  
AVID stop [9:0]: AVID stop pixel number. The number of pixels of active video must be an even number. This  
is an absolute pixel location from HSYNC start pixel 0.  
NTSC 601  
805 (325h)  
NTSC Sqp  
726 (2D6h)  
PAL 601  
PAL Sqp  
default  
808 (328h)  
696 (2B8h)  
The TVP5147 decoder updates the AVID stop only when the AVID stop MSB byte is written to. If the user  
changes these registers, then the TVP5147 decoder retains values in different modes until this device resets.  
The AVID start pixel register also controls the position of the EAV code.  
2.11.18 HSYNC Start Pixel Register  
Subaddress  
1Ah−1Bh  
Default  
000h  
Subaddress  
1Ah  
7
6
5
4
3
2
1
0
HSYNC start [7:0]  
1Bh  
Reserved  
HSYNC start [9:8]  
HSYNC start pixel [9:0]: This is an absolute pixel location from HSYNC start pixel 0.  
The TVP5147 decoder updates the HSYNC start only when the HSYNC start MSB is written to. If the user  
changes these registers, then the TVP5147 decoder retains values in different modes until this device resets.  
2.11.19 HSYNC Stop Pixel Register  
Subaddress  
1Ch−1Dh  
Default  
040h  
Subaddress  
1Ch  
7
6
5
4
3
2
1
0
HSYNC stop [7:0]  
1Dh  
Reserved  
HSYNC stop [9:8]  
HSYNC stop [9:0]: This is an absolute pixel location from HSYNC start pixel 0.  
The TVP5147 decoder updates the HSYNC stop only when the HSYNC stop MSB is written to. If the user  
changes these registers, then the TVP5147 decoder retains values in different modes until this device resets.  
2.11.20 VSYNC Start Line Register  
Subaddress  
1Eh−1Fh  
Default  
004h  
Subaddress  
1Eh  
7
6
5
4
3
2
1
0
VSYNC start [7:0]  
1Fh  
Reserved  
VSYNC start [9:8]  
VSYNC start [9:0]: This is an absolute line number. The TVP5147 decoder updates the VSYNC start only when  
the VSYNC start MSB is written to. If the user changes these registers, then the TVP5147 decoder retains  
values in different modes until this decoder resets.  
NTSC: default 004h  
PAL: default 001h  
41  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.21 VSYNC Stop Line Register  
Subaddress  
20h−21h  
Default  
007h  
Subaddress  
20h  
7
6
5
4
3
2
1
0
VSYNC stop [7:0]  
21h  
Reserved  
VSYNC stop [9:8]  
VSYNC stop [9:0]: This is an absolute line number. The TVP5147 decoder updates the VSYNC stop only when  
the VSYNC stop MSB is written to. If the user changes these registers, the TVP5147 decoder retains values  
in different modes until this decoder resets.  
NTSC: default 007h  
PAL: default 004h  
2.11.22 VBLK Start Line Register  
Subaddress  
22h−23h  
Default  
001h  
Subaddress  
22h  
7
6
5
4
3
2
1
0
VBLK start [7:0]  
23h  
Reserved  
VBLK start [9:8]  
VBLK start [9:0]: This is an absolute line number. The TVP5147 decoder updates the VBLK start line only when  
the VBLK start MSB is written to. If the user changes these registers, the TVP5147 decoder retains values  
in different modes until this resets (see Section 2.11.16)  
NTSC: default 001h  
PAL: default 623 (26Fh)  
2.11.23 VBLK Stop Line Register  
Subaddress  
24h−25h  
Default  
015h  
Subaddress  
24h  
7
6
5
4
3
2
1
0
VBLK stop [7:0]  
25h  
Reserved  
VBLK stop [9:8]  
VBLK stop [9:0]: This is an absolute line number. The TVP5147 decoder updates the VBLK stop only when  
the VBLK stop MSB is written to. If the user changes these registers, then the TVP5147 decoder retains values  
in different modes until this device resets (see Section 2.11.16).  
NTSC: default 21 (015h)  
PAL: default 23 (017h)  
2.11.24 CTI Delay Register  
Subaddress  
2Dh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
CTI delay [2:0]  
CTI delay [2:0]: Sets the delay of the Y channel with respect to Cb/Cr in the CTI block  
011 = 3-pixel delay  
001 = 1-pixel delay  
000 = 0 delay (default)  
111 = −1-pixel delay  
100 = −4-pixel delay  
42  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.25 CTI Control Register  
Subaddress  
2Eh  
Default  
00h  
7
6
5
4
3
2
1
0
CTI coring [3:0]  
CTI gain [3:0]  
CTI coring [3:0]: 4-bit CTI coring limit control value, unsigned linear control range from 0 to 60, step size = 4  
1111 = 60  
0001 = 4  
0000 = 0 (default)  
CTI gain [3:0]: 4-bit CTI gain control values, unsigned linear control range from 0 to 15/16, step size = 1/16  
1111 = 15/16  
0001 = 1/16  
0000 = 0 disabled (default)  
2.11.26 RTC Register  
Subaddress  
31h  
Default  
05h  
7
6
5
4
3
2
1
0
Reserved  
Genlock [2:0]  
Genlock [2:0]:  
000 = Reserved  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = RTC mode  
110 = Reserved  
111 = Reserved  
43  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.27 Sync Control Register  
Subaddress  
32h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Polarity FID  
Polarity VS  
Polarity HS  
VS/VBLK  
HS/CS  
Polarity FID: determines polarity of FID terminal  
0 = First field high, second field low (default)  
1 = First field low, second field high  
Polarity VS: determines polarity of VS terminal  
0 = Active low (default)  
1 = Active high  
Polarity HS: determines polarity of HS terminal  
0 = Active low (default)  
1 = Active high  
VS or VBLK:  
0 = VS terminal outputs vertical sync (default)  
1 = VS terminal outputs vertical blank  
HS or CS:  
0 = HS terminal outputs horizontal sync (default)  
1 = HS terminal outputs composite sync  
2.11.28 Output Formatter 1 Register  
Subaddress  
33h  
Default  
40h  
7
6
5
4
3
2
1
0
Sampling rate  
YCbCr code range  
CbCr code  
Reserved  
Output format [2:0]  
Sampling rate (changing this bit causes the register settings to be reinitialized):  
0 = ITU-R BT.601 sampling rate (default)  
1 = Square pixel sampling rate  
YCbCr output code range:  
0 = ITU-R BT.601 coding range (Y ranges from 64 to 940. Cb and Cr range from 64 to 960.)  
1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016.) (default)  
CbCr code format:  
0 = Offset binary code (2s complement + 512) (default)  
1 = Straight binary code (2s complement)  
Output format [2:0]:  
000 = 10-bit 4:2:2 (pixel x 2 rate) with embedded syncs (ITU-R BT.656) (default)  
001 = 20-bit 4:2:2 (pixel rate) with separate syncs  
010 = Reserved  
011 = 10-bit 4:2:2 with separate syncs  
100−111= Reserved  
NOTE: 10-bit mode is also used for the raw VBI output mode when bit 4 (VBI raw) in the  
luminance processing control 1 register at subaddress 06h is set (see Section 2.11.7).  
44  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.29 Output Formatter 2 Register  
Subaddress  
34h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Data enable  
Black Screen [1:0]  
CLK polarity  
Clock enable  
Data enable: Y[9:0] AND C[9:0] output enable  
0 = Y[9:0] and C[9:0] high impedance (default)  
1 = Y [9:0] and C[9:0] active  
Black Screen [1:0]:  
00 = Normal operation (default)  
01 = Black screen out when TVP5147 detects lost lock (using with tuner input but not with VCR)  
10 = Black screen out  
11 = Black screen out  
CLK polarity:  
0 = Data clocked out on the falling edge of DATACLK (default)  
1 = Data clocked out on the rising edge of DATACLK  
Clock enable:  
0 = DATACLK outputs are high-impedance (default).  
1 = DATACLK outputs are enabled.  
2.11.30 Output Formatter 3 Register  
Subaddress  
35h  
Default  
FFh  
7
6
5
4
3
2
1
0
GPIO [1:0]  
AVID [1:0]  
GLCO [1:0]  
FID [1:0]  
GPIO [1:0]: FSS terminal function select  
00 = GPIO is logic 0 output.  
01 = GPIO is logic 1 output.  
10 = Reserved  
11 = GPIO is logic input (default).  
AVID [1:0]: AVID terminal function select  
00 = AVID is logic 0 output.  
01 = AVID is logic 1 output.  
10 = AVID is active video indicator output.  
11 = AVID is logic input (default).  
GLCO [1:0]: GLCO terminal function select  
00 = GLCO is logic 0 output.  
01 = GLCO is logic 1 output.  
10 = GCLO is genlock output.  
11 = GCLO is logic input (default).  
FID [1:0]: FID terminal function select  
00 = FID is logic 0 output.  
01 = FID is logic 1 output.  
10 = FID is FID output.  
11 = FID is logic input (default).  
45  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.31 Output Formatter 4 Register  
Subaddress  
36h  
Default  
FFh  
7
6
5
4
3
2
1
0
VS/VBLK [1:0]  
HS/CS [1:0]  
C_1 [1:0]  
C_0 [1:0]  
VS/VBLK [1:0]: VS terminal function select  
00 = VS/VBLK is logic 0 output.  
01 = VS/VBLK is logic 1 output.  
10 = VS/VBLK is vertical sync or vertical blank output corresponding to bit 1 (VS/VBLK) in the sync control  
register at subaddress 32h (see Section 2.11.27).  
11 = VS/VBLK is logic input (default).  
HS/CS [1:0]: HS terminal function select  
00 = HS/CS is logic 0 output.  
01 = HS/CS is logic 1 output.  
10 = HS/CS is horizontal sync or composite sync output corresponding to bit 0 (HS/CS) in the sync control  
register at subaddress 32h (see Section 2.11.27).  
11 = HS/CS is logic input (default).  
C_1 [1:0]: C_1 terminal function select  
00 = C_1 is logic 0 output.  
01 = C_1 is logic 1 output.  
10 = Reserved  
11 = C_1 is logic input (default).  
C_0 [1:0]: C_0 terminal function select  
00 = C_0 is logic 0 output.  
01 = C_0 is logic 1 output.  
10 = Reserved  
11 = C_0 is logic input (default).  
C_x functions are only available in the 10-bit output mode.  
46  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.32 Output Formatter 5 Register  
Subaddress  
37h  
Default  
FFh  
7
6
5
4
3
2
1
0
C_5 [1:0]  
C_4 [1:0]  
C_3 [1:0]  
C_2 [1:0]  
C_5 [1:0]: C_5 terminal function select  
00 = C_5 is logic 0 output.  
01 = C_5 is logic 1 output.  
10 = Reserved  
11 = C_5 is logic input (default).  
C_4 [1:0]: C_4 terminal function select  
00 = C_4 is logic 0 output.  
01 = C_4 is logic 1 output.  
10 = Reserved  
11 = C_4 is logic input (default).  
C_3 [1:0]: C_3 terminal function select  
00 = C_3 is logic 0 output.  
01 = C_3 is logic 1 output.  
10 = Reserved  
11 = C_3 is logic input (default).  
C_2 [1:0]: C_2 terminal function select  
00 = C_2 is logic 0 output.  
01 = C_2 is logic 1 output.  
10 = Reserved  
11 = C_2 is logic input (default).  
C_x functions are only available in the 10-bit output mode.  
47  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.33 Output Formatter 6 Register  
Subaddress  
38h  
Default  
FFh  
7
6
5
4
3
2
1
0
C_9 [1:0]  
C_8 [1:0]  
C_7 [1:0]  
C_6 [1:0]  
C_9 [1:0]: C_9 terminal function select  
00 = C_9 is logic 0 output.  
01 = C_9 is logic 1 output.  
10 = Reserved  
11 = C_9 is logic input (default).  
C_8 [1:0]: C_8 terminal function select  
00 = C_8 is logic 0 output.  
01 = C_8 is logic 1 output.  
10 = Reserved  
11 = C_8 is logic input (default).  
C_7 [1:0]: C_7 terminal function select  
00 = C_7 is logic 0 output.  
01 = C_7 is logic 1 output.  
10 = Reserved  
11 = C_7 is logic input (default).  
C_6 [1:0]: C_6 terminal function select  
00 = C_6 is logic 0 output.  
01 = C_6 is logic 1 output.  
10 = Reserved  
11 = C_6 is logic input (default).  
C_x functions are only available in the 10-bit output mode.  
2.11.34 Clear Lost Lock Detect Register  
Subaddress  
39h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Clear lost lock detect  
Clear lost lock detect: Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah (see Section  
2.11.35)  
0 = No effect (default)  
1 = Clears bit 4 in the status 1 register  
48  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.35 Status 1 Register  
Subaddress  
3Ah  
Read only  
7
6
5
4
3
2
1
0
Peak white  
detect status  
Line-alternating  
status  
Field rate  
status  
Lost lock  
detect  
Color subcarrier  
lock status  
Vertical sync  
lock status  
Horizontal sync  
lock status  
TV/VCR  
status  
Peak white detect status:  
0 = Peak white is not detected.  
1 = Peak white is detected.  
Line-alternating status:  
0 = Nonline-alternating  
1 = Line-alternating  
Field rate status:  
0 = 60 Hz  
1 = 50 Hz  
Lost lock detect:  
0 = No lost lock since this bit was cleared.  
1 = Lost lock since this bit was cleared.  
Color subcarrier lock status:  
0 = Color subcarrier is not locked.  
1 = Color subcarrier is locked.  
Vertical sync lock status:  
0 = Vertical sync is not locked.  
1 = Vertical sync is locked.  
Horizontal sync lock status:  
0 = Horizontal sync is not locked.  
1 = Horizontal sync is locked.  
TV/VCR status:  
0 = TV  
1 = VCR  
49  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.36 Status 2 Register  
Subaddress  
3Bh  
Read only  
7
6
5
4
3
2
1
0
Signal present  
Weak signal detection  
PAL switch polarity  
Field sequence status  
Reserved  
Macrovision detection [2:0]  
Signal present detection:  
0 = Signal not present  
1 = Signal present  
Weak signal detection:  
0 = No weak signal  
1 = Weak signal mode  
PAL switch polarity of first line of odd field:  
0 = PAL switch is zero.  
1 = PAL switch is one.  
Field sequence status:  
0 = Even field  
1 = Odd field  
Macrovision detection [2:0]:  
000 = No copy protection  
001 = AGC pulses/pseudo syncs present (type 1)  
010 = 2-line color stripe only present  
011 = AGC pulses/pseudo syncs and 2-line color stripe present (type 2)  
100 = Reserved  
101 = Reserved  
110 = 4-line color stripe only present  
111 = AGC pulses/pseudo syncs and 4-line color stripe present (type 3)  
2.11.37 AGC Gain Status Register  
Subaddress  
3Ch−3Dh  
Read only  
Subaddress  
3Ch  
7
6
5
4
3
2
1
0
Fine gain [7:0]  
3Dh  
Coarse gain [3:0]  
Fine gain [11:8]  
Fine gain [11:0]: This register provides the fine gain value of sync channel.  
1111 1111 1111 = 1.9995  
1000 0000 0000 = 1  
0010 0000 0000 = 0.5  
Coarse gain [3:0]: This register provides the coarse gain value of sync channel.  
1111 = 2  
0101 = 1  
0000 = 0.5  
These AGC gain status registers are updated automatically by the TVP5147 decoder with AGC on. In manual  
gain control mode, these register values are not updated by the TVP5147 decoder.  
50  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.38 Video Standard Status Register  
Subaddress  
3Fh  
Read only  
7
6
5
4
3
2
1
0
Autoswitch  
Reserved  
Video standard [2:0]  
Autoswitch mode:  
0 = Stand-alone (forced video standard) mode  
1 = Autoswitch mode  
Video standard [2:0]:  
CVBS and S-video  
000 = Reserved  
001 = (M, J) NTSC  
Component video  
Reserved  
Component 525  
010 = (B, D, G, H, I, N) PAL Component 625  
011 = (M) PAL Reserved  
100 = (Combination-N) PAL Reserved  
101 = NTSC 4.43  
110 = SECAM  
111 = PAL 60  
Reserved  
Reserved  
Reserved  
This register contains information about the detected video standard that the device is currently operating.  
When autoswitch code is running, this register must be tested to determine which video standard has been  
detected.  
2.11.39 GPIO Input 1 Register  
Subaddress  
40h  
Read only  
7
6
5
4
3
2
1
0
C_7  
C_6  
C_5  
C_4  
C_3  
C_2  
C_1  
C_0  
C_x input status:  
0 = Input is a low.  
1 = Input is a high.  
These status bits are only valid when terminals are used as input and its states updated at every line.  
51  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.40 GPIO Input 2 Register  
Subaddress  
41h  
Read only  
7
6
5
4
3
2
1
0
GPIO  
AVID  
GLCO  
VS  
HS  
FID  
C_9  
C_8  
GPIO input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
AVID input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
GLCO input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
VS input terminal status:  
0 = Input is a low.  
1 = Input is a high.  
HS input status:  
0 = Input is a low.  
1 = Input is a high.  
FID input status:  
0 = Input is a low.  
1 = Input is a high.  
C_x input status:  
0 = Input is a low.  
1 = Input is a high.  
These status bits are only valid when terminals are used as input and its states updated at every line.  
2.11.41 Vertical Line Count Register  
Subaddress  
42h−43h  
Read only  
Subaddress  
42h  
7
6
5
4
3
2
1
0
Vertical line [7:0]  
43h  
Reserved  
Vertical line [9:8]  
Vertical line [9:0] represents the detected total number of lines from the previous frame. This can be used with  
nonstandard video signals, such as a VCR in trick mode, to synchronize downstream video circuitry.  
52  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.42 AFE Coarse Gain for CH 1 Register  
Subaddress  
46h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 1 [3:0]  
Reserved  
CGAIN 1 [3:0]: Coarse_Gain = 0.5 + (CGAIN 1)/10, where 0 CGAIN 1 15  
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
2.11.43 AFE Coarse Gain for CH 2 Register  
Subaddress  
47h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 2 [3:0]  
Reserved  
CGAIN 2 [3:0]: Coarse_Gain = 0.5 + (CGAIN 2)/10, where 0 CGAIN 2 15  
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
53  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.44 AFE Coarse Gain for CH 3 Register  
Subaddress  
48h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 3 [3:0]  
Reserved  
CGAIN 3 [3:0]: Coarse_Gain = 0.5 + (CGAIN 3)/10, where 0 CGAIN 3 15  
This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
2.11.45 AFE Coarse Gain for CH 4 Register  
Subaddress  
49h  
Default  
20h  
7
6
5
4
3
2
1
0
CGAIN 4 [3:0]  
Reserved  
CGAIN 4 [3:0]: Coarse_Gain = 0.5 + (CGAIN 4)/10, where 0 CGAIN 4 15  
This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 = 2  
1110 = 1.9  
1101 = 1.8  
1100 = 1.7  
1011 = 1.6  
1010 = 1.5  
1001 = 1.4  
1000 = 1.3  
0111 = 1.2  
0110 = 1.1  
0101 = 1  
0100 = 0.9  
0011 = 0.8  
0010 = 0.7 (default)  
0001 = 0.6  
0000 = 0.5  
54  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.46 AFE Fine Gain for Pb Register  
Subaddress  
4Ah−4Bh  
Default  
900h  
Subaddress  
4Ah  
7
6
5
4
3
2
1
0
FGAIN 1 [7:0]  
4Bh  
Reserved  
FGAIN 1 [11:8]  
FGAIN 1 [11:0]: This fine gain applies to component Pb.  
Fine_Gain = (1/2048) * FGAIN 1, where 0 FGAIN 1 4095  
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
2.11.47 AFE Fine Gain for Y_Chroma Register  
Subaddress  
4Ch−4Dh  
Default  
900h  
Subaddress  
4Ch  
7
6
5
4
3
2
1
0
FGAIN 2 [7:0]  
4Dh  
Reserved  
FGAIN 2 [11:8]  
FGAIN 2 [11:0]: This gain applies to component Y channel or S-video chroma (see AFE fine gain for Pb  
register, Section 2.11.46).  
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
2.11.48 AFE Fine Gain for Pr Register  
Subaddress  
4Eh−4Fh  
Default  
900h  
Subaddress  
4Eh  
7
6
5
4
3
2
1
0
FGAIN 3 [7:0]  
4Fh  
Reserved  
FGAIN 3 [11:8]  
FGAIN 3 [11:0]: This fine gain applies to component Pr (see AFE fine gain for Pb register, Section 2.11.46).  
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
55  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.49 AFE Fine Gain for CVBS_Luma Register  
Subaddress  
50h−51h  
Default  
900h  
Subaddress  
50h  
7
6
5
4
3
2
1
0
FGAIN 4 [7:0]  
51h  
Reserved  
FGAIN 4 [11:8]  
FGAIN 4 [11:0]: This fine gain applies to CVBS or S-video luma (see AFE fine gain for Pb register,  
Section 2.11.46).  
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.  
1111 1111 1111 = 1.9995  
1100 0000 0000 = 1.5  
1001 0000 0000 = 1.125 (default)  
1000 0000 0000 = 1  
0100 0000 0000 = 0.5  
0011 1111 1111 to 0000 0000 0000 = Reserved  
2.11.50 Field ID Control Register  
Subaddress  
57h  
Default  
00h  
7
6
5
4
3
2
1
0
656 version  
FID control  
656 Version  
0 = ITU-R BT.656-4 (default)  
1 = ITU-R BT.656-3  
FID control  
0 = 01 adapts to field 1, 10 adapts to field 1+ field 2 (default)  
1 = 01 adapts to field 2, 10 adapts to field 1+ field 2 (for TVP5147 EVM)  
2.11.51 ROM Version Register  
Subaddress  
70h  
Read only  
7
6
5
4
3
2
1
0
ROM version [7:0]  
ROM Version [7:0]: ROM revision number  
56  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.52 AGC White Peak Processing Register  
Subaddress  
74h  
Default  
00h  
7
6
5
4
3
2
1
0
Luma peak A  
Reserved  
Color burst A  
Sync height A  
Luma peak B  
Composite peak  
Color burst B Sync height B  
Luma peak A: Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC  
algorithm.  
0 = Enabled (default)  
1 = Disabled  
Color burst A: Use of the color burst amplitude as a video amplitude reference for the back end.  
NOTE: Not available for SECAM, component, and B/W video sources.  
0 = Enabled (default)  
1 = Disabled  
Sync height A: Use of the sync height as a video amplitude reference for the back-end feed-forward type AGC  
algorithm.  
0 = Enabled (default)  
1 = Disabled  
Luma peak B: Use of the luma peak as a video amplitude reference for the front-end feedback type AGC  
algorithm.  
0 = Enabled (default)  
1 = Disabled  
Composite peak: Use of the composite peak as a video amplitude reference for the front-end feedback type  
AGC algorithm.  
NOTE: Required for CVBS video sources.  
0 = Enabled (default)  
1 = Disabled  
Color burst B: Use of the color burst amplitude as a video amplitude reference for the front-end feedback type  
AGC algorithm.  
NOTE: Not available for SECAM, component, and B/W video sources.  
0 = Enabled (default)  
1 = Disabled  
Sync height B:  
Use of the sync height as a video amplitude reference for the front-end feedback type AGC algorithm.  
0 = Enabled (default)  
1 = Disabled  
NOTE: If all 4 bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected),  
then the front-end analog and digital gains are automatically set to nominal values of 2 and  
2304, respectively.  
If all 4 bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then  
the back-end gain is set automatically to unity.  
If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than  
100%, then the back-end scale factor attempts to increase the contrast in the back end to restore the video  
amplitude to 100%.  
57  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.53 F and V Bit Control Register  
Subaddress  
75h  
Default  
12h  
7
6
5
4
3
2
1
0
2 line delay  
Stable HS  
Line limit  
Fast lock  
F and V [1:0]  
Phase Det.  
HPLL  
2-line delay: Enable bypass of internal 2-line delay when in VCR mode  
0 = Disabled (default)  
1 = Enabled  
Stable HSYNC: Enable work around code which stabilizes horizontal sync in VCR mode  
0 = Disabled (default)  
1 = Enabled  
Line limit: Enable 30 line limit from standard lines per frame on vertical sync PLL adjustment when vertical  
lock is true.  
0 = Disabled (default)  
1 = Enabled  
Fast lock: Enable fast lock where vertical PLL is reset and a 2 sec timer is initialized when vertical lock is lost;  
during time-out the detected input VSYNC is output.  
0 = Disabled  
1 = Enabled (default)  
F and V [1:0]  
F and V  
Lines per frame  
Standard  
F bit  
V bit  
00 = (default)  
ITU−R BT 656  
Forced to 1  
Toggles  
ITU−R BT 656  
Nonstandard−even  
Nonstandard−odd  
Standard  
Switch at field boundary  
Switch at field boundary  
ITU−R BT 656  
01 =  
10 =  
11 =  
ITU−R BT 656  
Toggles  
Nonstandard  
Standard  
Switch at field boundary  
ITU−R BT 656  
ITU−R BT 656  
Pulsed mode  
Nonstandard  
Switch at field boundary  
Reserved  
Phase Detector: Enable integral window phase detector  
0 = Disabled  
1 = Enabled (default)  
HPLL Enable horizontal PLL to free run  
0 = Disabled (default)  
1 = Enabled  
58  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.54 VCR Trick Mode Control Register  
Subaddress  
76h  
Default  
8Ah  
7
6
5
4
3
2
1
0
Switch header  
Horizontal shake threshold [6:0]  
Switch header: When in VCR trick mode, the header noisy area around the head switch is skipped.  
0 = Disabled  
1 = Enabled (default)  
Horizontal shake threshold [6:0]:  
000 0000 = Zero threshold  
000 1010 = 0Ah (default)  
111 1111 = Largest threshold  
2.11.55 Horizontal Shake Increment Register  
Subaddress  
77h  
Default  
64h  
7
6
5
4
3
2
1
0
Horizontal shake increment [7:0]  
Horizontal shake increment [7:0]:  
000 0000 =0  
000 1010 = 64h (default)  
111 1111 = FFh  
2.11.56 AGC Increment Speed Register  
Subaddress  
78h  
Default  
06h  
7
6
5
4
3
2
1
0
Reserved  
AGC increment speed [3:0]  
AGC increment speed: Adjusts gain increment speed.  
111 = 7 (slowest)  
110 = 6 (default)  
L
000 = 0 (fastest)  
2.11.57 AGC Increment Delay Register  
Subaddress  
79h  
Default  
1Eh  
7
6
5
4
3
2
1
0
AGC increment delay [7:0]  
AGC increment delay: Number of frames to delay gain increments  
1111 1111 = 255  
L
0001 1110 = 30 (default)  
L
0000 0000 = 0  
59  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.58 Analog Output Control 1 Register  
Subaddress  
7Fh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
AGC enable  
Input select  
Analog Output enable  
AGC enable:  
0 = Enabled (default)  
1 = Disabled, manual gain mode (see Section 2.12.10)  
Input select:  
00 = Input selected by TVP5147 decoder, (see Section 2.11.1) (default)  
01 = Input selected manually (see Section 2.12.10)  
Analog output enable:  
0 = VI_1_A is input (default).  
1 = VI_1_A is analog video output.  
2.11.59 Chip ID MSB Register  
Subaddress  
80h  
Read only  
7
6
5
4
3
2
1
0
Chip ID MSB [7:0]  
Chip ID MSB [7:0]: This register identifies the MSB of the device ID. Value = 51h  
2.11.60 Chip ID LSB Register  
Subaddress  
81h  
Read only  
7
6
5
4
3
2
1
0
Chip ID LSB [7:0]  
Chip ID LSB [7:0]: This register identifies the LSB of the device ID. Value = 47h  
2.11.61 VDP TTX Filter And Mask Registers  
Subaddress  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
00h  
B8h  
00h  
B9h  
00h  
BAh  
00h  
Default  
00h  
00h  
00h  
00h  
00h  
00h  
Subaddress  
B1h  
7
6
5
4
3
2
1
0
Filter 1 mask 1  
Filter 1 mask 2  
Filter 1 mask 3  
Filter 1 mask 4  
Filter 1 mask 5  
Filter 2 mask 1  
Filter 2 mask 2  
Filter 2 mask 3  
Filter 2 mask 4  
Filter 2 mask 5  
Filter 1 pattern 1  
Filter 1 pattern 2  
Filter 1 pattern 3  
Filter 1 pattern 4  
Filter 1 pattern 5  
Filter 2 pattern 1  
Filter 2 pattern 2  
Filter 2 pattern 3  
Filter 2 pattern 4  
Filter 2 pattern 5  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
60  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
For an NABTS system, the packet prefix consists of five bytes. Each byte contains 4 data bits (D[3:0])  
interlaced with 4 Hamming protection bits (H[3:0]):  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
D[3]  
H[3]  
D[2]  
H[2]  
D[1]  
H[1]  
D[0]  
H[0]  
Only data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern bits  
P[3:0] and mask bits M[3:0]. The filter ignores the Hamming protection bits.  
For WST system (PAL or NTSC), the packet prefix consists of two bytes. The two bytes contain three bits of  
magazine number (M[2:0]) and five bits of row address (R[4:0]), interlaced with eight Hamming protection bits  
H[7:0]:  
Bit 7  
R[0]  
R[4]  
Bit 6  
H[3]  
H[7]  
Bit 5  
M[2]  
R[3]  
Bit 4  
H[2]  
H[6]  
Bit 3  
M[1]  
R[2]  
Bit 2  
H[1]  
H[5]  
Bit 1  
M[0]  
R[1]  
Bit 0  
H[0]  
H[4]  
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB  
of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data  
bit on the transaction. If these match, then a true result is returned. A 0 in a bit of mask means that the filter  
module must ignore that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter  
matches all patterns returning a true result (default 00h).  
2.11.62 VDP TTX Filter Control Register  
Subaddress  
BBh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Filter logic [1:0]  
Mode  
TTX filter 2 enable  
TTX filter 1 enable  
Filter logic [1:0]: Allow different logic to be applied when combining the decision of filter 1 and filter 2 as follows:  
00 = NOR (default)  
01 = NAND  
10 = OR  
11 = AND  
Mode: indicates which teletext mode is in use.  
0 = Teletext filter applies to 2 header bytes (default)  
1 = Teletext filter applies to 5 header bytes  
TTX filter 2 enable: provides for enabling the teletext filter function within the VDP.  
0 = Disabled (default)  
1 = Enabled  
TTX filter 1 enable: provides for enabling the teletext filter function within the VDP.  
0 = Disabled (default)  
1 = Enabled  
If the filter matches or if the filter mask is all 0s, then a true result is returned.  
61  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
1P1[3]  
D1[3]  
1M1[3]  
1P1[2]  
D1[2]  
1M1[2]  
1M1[1]  
1P1[1]  
D1[1]  
1P1[0]  
D1[0]  
1M1[0]  
NIBBLE 1  
D2[3:0]  
1P2[3:0]  
1M2[3:0]  
NIBBLE 2  
NIBBLE 3  
NIBBLE 4  
NIBBLE 5  
PASS 1  
D3[3:0]  
1P3[3:0]  
1M3[3:0]  
Filter 1  
Enable  
00  
01  
D4[3:0]  
1P4[3:0]  
1M4[3:0]  
PASS  
10  
11  
D5[3:0]  
1P5[3:0]  
1M5[3:0]  
2
FILTER 1  
FILTER 2  
Filter Logic  
D1..D5  
2P1..2P5  
2M1..2M5  
PASS 2  
Filter 2  
Enable  
Figure 2−25. Teletext Filter Function  
2.11.63 VDP FIFO Word Count Register  
Subaddress  
BCh  
Read only  
7
6
5
4
3
2
1
0
FIFO word count [7:0]  
FIFO word count [7:0]: This register provides the number of words in the FIFO.  
NOTE: 1 word equals 2 bytes.  
62  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.64 VDP FIFO Interrupt Threshold Register  
Subaddress  
BDh  
Default  
80h  
7
6
5
4
3
2
1
0
Threshold [7:0]  
Threshold [7:0]: This register is programmed to trigger an interrupt when the number of words in the FIFO  
exceeds this value.  
NOTE: 1 word equals 2 bytes.  
2.11.65 VDP FIFO Reset Register  
Subaddress  
BFh  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
FIFO reset  
FIFO reset: Writing any data to this register clears the FIFO and VDP data register (CC, WSS, VITC and VPS).  
After clearing, this register is automatically cleared.  
2.11.66 VDP FIFO Output Control Register  
Subaddress  
C0h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Host access enable  
Host access enable: This register is programmed to allow the host port access to the FIFO or to allow all VDP  
data to go out the video output.  
0 = Output FIFO data to the video output Y[9:2] (default)  
1 = Allow host port access to the FIFO data  
2.11.67 VDP Line Number Interrupt Register  
Subaddress  
C1h  
Default  
00h  
7
6
5
4
3
2
1
0
Field 1 enable  
Field 2 enable  
Line number [5:0]  
Field 1 interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Field 2 interrupt enable:  
0 = Disabled (default)  
1 = Enabled  
Line number [5:0]: Interrupt line number (default 00h)  
This register is programmed to trigger an interrupt when the video line number exceeds this value in bits [5:0].  
This interrupt must be enabled at address F4h.  
NOTE: The line number value of 0 or 1 is invalid and does not generate an interrupt.  
63  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.68 VDP Pixel Alignment Register  
Subaddress  
C2h−C3h  
Default  
01Eh  
Subaddress  
C2h  
7
6
5
4
3
2
1
0
Pixel alignment [7:0]  
C3h  
Reserved  
Pixel alignment [9:8]  
Pixel alignment [9:8]: These registers form a 10-bit horizontal pixel position from the falling edge of horizontal  
sync, where the VDP controller initiates the program from one line standard to the next line standard, for  
example, the previous line of teletext to the next line of closed caption. This value must be set so that the switch  
occurs after the previous transaction has cleared the delay in the VDP, but early enough to allow the new  
values to be programmed before the current settings are required.  
The default value is 0x1E and has been tested with every standard supported here. A new value is needed  
only if a custom standard is in use.  
2.11.69 VDP Line Start Register  
Subaddress  
D6h  
Default  
06h  
7
6
5
4
3
2
1
0
VDP line start [7:0]  
VDP line start [7:0]: Set the VDP line starting address  
This register must be set properly before enabling the line mode registers. The VDP processor works only the  
VBI region set by this register and the VDP line stop register.  
2.11.70 VDP Line Stop Register  
Subaddress  
D7h  
Default  
1Bh  
7
6
5
4
3
2
1
0
VDP line stop [7:0]  
VDP line stop [7:0]: Set the VDP stop line address  
2.11.71 VDP Global Line Mode Register  
Subaddress  
D8h  
Default  
FFh  
7
6
5
4
3
2
1
0
Global line mode [7:0]  
Global line mode [7:0]: VDP processing for multiple lines set by the VDP start line register at subaddress D6h  
and the VDP stop line register at subaddress D7h.  
Global line mode register has the same bit definition as the general line mode registers.  
General line mode has priority over the global line mode.  
64  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.72 VDP Full Field Enable Register  
Subaddress  
D9h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Full field enable  
Full field enable:  
0 = Disabled full field mode (default)  
1 = Enabled full field mode  
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in  
the line mode register programmed with FFh are sliced with the definition of the VDP full field mode register  
at subaddress DAh. Values other than FFh in the line mode registers allow a different slice mode for that  
particular line.  
2.11.73 VDP Full Field Mode Register  
Subaddress  
DAh  
Default  
FFh  
7
6
5
4
3
2
1
0
Full field mode [7:0]  
Full field mode [7:0]:  
This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line  
settings take priority over the full field register. This allows each VBI line to be programmed independently but  
have the remaining lines in full field mode. The full field mode register has the same bit definition as line mode  
registers (default FFh).  
Global line mode has priority over the full field mode.  
2.11.74 VBUS Data Access With No VBUS Address Increment Register  
Subaddress  
E0h  
Default  
00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]: VBUS data register for VBUS single-byte read/write transaction.  
2.11.75 VBUS Data Access With VBUS Address Increment Register  
Subaddress  
E1h  
Default  
00h  
7
6
5
4
3
2
1
0
VBUS data [7:0]  
VBUS data [7:0]: VBUS data register for VBUS multibyte read/write transaction. VBUS address is  
autoincremented after each data byte read/write.  
2.11.76 FIFO Read Data Register  
Subaddress  
E2h  
Read only  
7
6
5
4
3
2
1
0
FIFO read data [7:0]  
65  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2
FIFO read data [7:0]: This register is provided to access VBI FIFO data through the I C interface. All forms  
of teletext data come directly from the FIFO, while all other forms of VBI data can be programmed to come  
from registers or from the FIFO. If the host port is to be used to read data from the FIFO, then bit 0 (host access  
enable) in the VDP FIFO output control register at subaddress C0h must be set to 1 (see Section 2.11.66).  
2.11.77 VBUS Address Access Register  
Subaddress  
E8h  
E9h  
EAh  
Default  
00h  
00h  
00h  
Subaddress  
E8h  
7
6
5
4
3
2
1
0
VBUS address [7:0]  
VBUS address [15:8]  
VBUS address [23:16]  
E9h  
EAh  
VBUS address [23:0]: VBUS is a 24-bit wide internal bus. The user needs to program in these registers the  
24-bit address of the internal register to be accessed via host port indirect access mode.  
2.11.78 Interrupt Raw Status 0 Register  
Subaddress  
F0h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed, unmasked  
0 = Not passed  
1 = Passed  
TTX: Teletext data available unmasked  
0 = Not available  
1 = Available  
WSS: WSS data available unmasked  
0 = Not available  
1 = Available  
VPS: VPS data available unmasked  
0 = Not available  
1 = Available  
VITC: VITC data available unmasked  
0 = Not available  
1 = Available  
CC F2: CC field 2 data available unmasked  
0 = Not available  
1 = Available  
CC F1: CC field 1 data available unmasked  
0 = Not available  
1 = Available  
Line: Line number interrupt unmasked  
0 = Not available  
1 = Available  
66  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
The host interrupt raw status 0 and 1 registers represent the interrupt status without applying mask bits.  
2.11.79 Interrupt Raw Status 1 Register  
Subaddress  
F1h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
H/V lock  
Macrovision status changed  
Standard changed  
FIFO full  
H/V lock: unmasked  
0 = H/V lock status unchanged  
1 = H/V lock status changed  
Macrovision status changed: unmasked  
0 = Macrovision status unchanged  
1 = Macrovision status changed  
Standard changed: unmasked  
0 = Video standard unchanged  
1 = Video standard changed  
FIFO full: unmasked  
0 = FIFO not full  
1 = FIFO was full during write to FIFO  
The FIFO full error flag is set when the current line of VBI data cannot enter the FIFO. For example, if the FIFO  
has only 10 bytes left and teletext is the current VBI line, then the FIFO full error flag is set, but no data is written  
because the entire teletext line does not fit. However, if the next VBI line is closed caption requiring only 2 bytes  
of data plus the header, then this goes into the FIFO even if the full error flag is set.  
2.11.80 Interrupt Status 0 Register  
Subaddress  
F2h  
Read only  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed, masked  
0 = Not passed  
1 = Passed  
TTX: Teletext data available masked  
0 = Not available  
1 = Available  
WSS: WSS data available masked  
0 = Not available  
1 = Available  
VPS: VPS data available masked  
0 = Not available  
1 = Available  
VITC: VITC data available masked  
0 = Not available  
1 = Available  
67  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
CC F2: CC field 2 data available masked  
0 = Not available  
1 = Available  
CC F1: CC field 1 data available masked  
0 = Not available  
1 = Available  
Line: Line number interrupt masked  
0 = Not available  
1 = Available  
The interrupt status 0 and 1 registers represent the interrupt status after applying mask bits. Therefore, the  
status bits are the result of a logical AND between the raw status and mask bits. The external interrupt terminal  
is derived from this register as an OR function of all nonmasked interrupts in this register.  
Reading data from the corresponding register does not clear the status flags automatically. These flags are  
reset using the corresponding bits in interrupt clear 0 and 1 registers.  
2.11.81 Interrupt Status 1 Register  
Subaddress  
F3h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
H/V lock  
Macrovision status changed  
Standard changed  
FIFO full  
H/V lock: H/V lock status changed mask  
0 = H/V lock status unchanged  
1 = H/V lock status changed  
Macrovision status changed: Macrovision status changed masked  
0 = Macrovision status not changed  
1 = Macrovision status changed  
Standard changed: Standard changed masked  
0 = Video standard not changed  
1 = Video standard changed  
FIFO full: full status of FIFO masked  
0 = FIFO not full  
1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h for details (see  
Section 2.11.83)  
68  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.11.82 Interrupt Mask 0 Register  
Subaddress  
F4h  
Default  
00h  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed mask  
0 = Disabled (default)  
1 = Enabled FIFO_THRES interrupt  
TTX: Teletext data available mask  
0 = Disabled (default)  
1 = Enabled TTX available interrupt  
WSS: WSS data available mask  
0 = Disabled (default)  
1 = Enabled WSS available interrupt  
VPS: VPS data available mask  
0 = Disabled (default)  
1 = Enabled VPS available interrupt  
VITC: VITC data available mask  
0 = Disabled (default)  
1 = Enabled VITC available interrupt  
CC F2: CC field 2 data available mask  
0 = Disabled (default)  
1 = Enabled CC_field 2 available interrupt  
CC F1: CC field 1 data available mask  
0 = Disabled (default)  
1 = Enabled CC_field 1 available interrupt  
Line: Line number interrupt mask  
0 = Disabled (default)  
1 = Enabled Line_INT interrupt  
The host interrupt mask 0 and 1 registers can be used by the external processor to mask unnecessary interrupt  
sources for the interrupt status 0 and 1 register bits, and for the external interrupt terminal. The external  
interrupt is generated from all nonmasked interrupt flags.  
69  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.11.83 Interrupt Mask 1 Register  
Subaddress  
F5h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
H/V lock  
Macrovision status changed  
Standard changed  
FIFO full  
H/V lock: H/V lock status changed masked  
0 = H/V lock status unchanged (default)  
1 = H/V lock status changed  
Macrovision status changed: Macrovision status changed mask  
0 = Macrovision status unchanged  
1 = Macrovision status changed  
Standard changed: Standard changed mask  
0 = Disabled (default)  
1 = Enabled video standard changed  
FIFO full: FIFO full mask  
0 = Disabled (default)  
1 = Enabled FIFO full interrupt  
2.11.84 Interrupt Clear 0 Register  
Subaddress  
F6h  
Default  
00h  
7
6
5
4
3
2
1
0
FIFO THRS  
TTX  
WSS  
VPS  
VITC  
CC F2  
CC F1  
Line  
FIFO THRS: FIFO threshold passed clear  
0 = No effect (default)  
1 = Clear bit 7 (FIFO_THRS) in the interrupt status 0 register at subaddress F2h  
TTX: Teletext data available clear  
0 = No effect (default)  
1 = Clear bit 6 (TTX available) in the interrupt status 0 register at subaddress F2h  
WSS: WSS data available clear  
0 = No effect (default)  
1 = Clear bit 5 (WSS available) in the interrupt status 0 register at subaddress F2h  
VPS: VPS data available clear  
0 = No effect (default)  
1 = Clear bit 4 (VPS available) in the interrupt status 0 register at subaddress F2h  
VITC: VITC data available clear  
0 = Disabled (default)  
1 = Clear bit 3 (VITC available) in the interrupt status 0 register at subaddress F2h  
CC F2: CC field 2 data available clear  
0 = Disabled (default)  
1 = Clear bit 2 (CC field 2 available) in the interrupt status 0 register at subaddress F2h  
CC F1: CC field 1 data available clear  
0 = Disabled (default)  
1 = Clear bit 1 (CC field 1 available) in the interrupt status 0 register at subaddress F2h  
70  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
Line: Line number interrupt clear  
0 = Disabled (default)  
1 = Clear bit 0 (line interrupt available) in the interrupt status 0 register at subaddress F2h  
The host interrupt clear 0 and 1 registers are used by the external processor to clear the interrupt status bits  
in the host interrupt status 0 and 1 registers. When no nonmasked interrupts remain set in the registers, the  
external interrupt terminal also becomes inactive.  
2.11.85 Interrupt Clear 1 Register  
Subaddress  
F7h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
H/V lock  
Macrovision status changed  
Standard changed  
FIFO full  
H/V lock: Clear H/V lock status changed flag  
0 = H/V lock status unchanged  
1 = H/V lock status changed  
Macrovision status changed: Clear Macrovision status changed flag  
0 = No effect (default)  
1 = Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress F3h and the  
interrupt raw status 1 register at subaddress F1h  
Standard changed: Clear standard changed flag  
0 = No effect (default)  
1 = Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress F3h and the  
interrupt raw status 1 register at subaddress F1h  
FIFO full: Clear FIFO full flag  
0 = No effect (default)  
1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw  
status 1 register at subaddress F1h  
71  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.12 VBUS Register Definitions  
2.12.1 VDP Closed Caption Data Register  
Subaddress  
80 051Ch−80 051Fh  
Read only  
Subaddress  
80 051Ch  
80 051Dh  
80 051Eh  
80 051Fh  
7
6
5
4
3
2
1
0
Closed caption field 1 byte 1  
Closed caption field 1 byte 2  
Closed caption field 2 byte 1  
Closed caption field 2 byte 2  
These registers contain the closed caption data arranged in bytes per field.  
2.12.2 VDP WSS Data Register  
Subaddress  
80 0520h−80 0526h  
WSS NTSC (CGMS):  
Read only  
Subaddress  
7
6
5
4
3
2
1
0
Byte  
80 0520h  
80 0521h  
80 0522h  
80 0523h  
80 0524h  
80 0525h  
80 0526h  
b5  
b4  
b3  
b2  
b1  
b0  
WSS field 1 byte 1  
WSS field 1 byte 2  
WSS field 1 byte 3  
b13  
b12  
b12  
b11  
b19  
b10  
b18  
b9  
b8  
b7  
b6  
b17  
b16  
b15  
b14  
Reserved  
b5  
b4  
b3  
b9  
b2  
b8  
b1  
b7  
b0  
b6  
WSS field 2 byte 1  
WSS field 2 byte 2  
WSS field 2 byte 3  
b13  
b11  
b19  
b10  
b18  
b17  
b16  
b15  
b14  
These registers contain the wide screen signaling data for NTSC.  
Bits 0−1 represent word 0, aspect ratio  
Bits 2−5 represent word 1, header code for word 2  
Bits 6−13 represent word 2, copy control  
Bits 14−19 represent word 3, CRC  
PAL/SECAM:  
Read only  
Subaddress  
80 0520h  
80 0521h  
80 0522h  
80 0523h  
80 0524h  
80 0525h  
80 0526h  
7
6
5
4
3
2
1
0
Byte  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b9  
b0  
b8  
WSS field 1 byte 1  
WSS field 1 byte 2  
b13  
b12  
b11  
b10  
Reserved  
Reserved  
b7  
b6  
b5  
b4  
b12  
b3  
b2  
b1  
b9  
b0  
b8  
WSS field 2 byte 1  
WSS field 2 byte 2  
b13  
b11  
b10  
Reserved  
PAL/SECAM:  
Bits 0−3 represent group 1, aspect ratio  
Bits 4−7 represent group 2, enhanced services  
Bits 8−10 represent group 3, subtitles  
Bits 11−13 represent group 4, others  
72  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.12.3 VDP VITC Data Register  
Subaddress  
80 052Ch−80 0534h  
Read only  
Subaddress  
80 052Ch  
80 052Dh  
80 052Eh  
80 052Fh  
80 0530h  
80 0531h  
80 0532h  
80 0533h  
80 0534h  
7
6
5
4
3
2
1
0
VITC frame byte 1  
VITC frame byte 2  
VITC seconds byte 1  
VITC seconds byte 2  
VITC minutes byte 1  
VITC minutes byte 2  
VITC hours byte 1  
VITC hours byte 2  
VITC CRC byte  
These registers contain the VITC data.  
2.12.4 VDP V-Chip TV Rating Block 1 Register  
Subaddress  
80 0540h  
Read only  
7
6
5
4
3
2
1
0
Reserved  
14-D  
PG-D  
Reserved  
MA-L  
14-L  
PG-L  
Reserved  
TV parental guidelines rating block 1:  
14-D: When incoming video program is TV-14-D rated then this bit is set high  
PG-D: When incoming video program is TV-PG-D rated then this bit is set high  
MA-L: When incoming video program is TV-MA-L rated then this bit is set high  
14-L: When incoming video program is TV-14-L rated then this bit is set high  
PG-L: When incoming video program is TV-PG-L rated then this bit is set high  
2.12.5 VDP V-Chip TV Rating Block 2 Register  
Subaddress  
80 0541h  
Read only  
7
6
5
4
3
2
1
0
MA-S  
14-S  
PG-S  
Reserved  
MA-V  
14-V  
PG-V  
Y7-FV  
TV parental guidelines rating block 2:  
MA-S: When incoming video program is TV-MA-S rated then this bit is set high  
14-S: When incoming video program is TV-14-S rated then this bit is set high  
PG-S: When incoming video program is TV-PG-S rated then this bit is set high  
MA-V: When incoming video program is TV-MA-V rated then this bit is set high  
14-V: When incoming video program is TV-14-V rated then this bit is set high  
PG-V: When incoming video program is TV-PG-S rated then this bit is set high  
Y7-FV: When incoming video program is TV-Y7-FV rated then this bit is set high  
73  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.12.6 VDP V-Chip TV Rating Block 3 Register  
Subaddress  
80 0542h  
Read only  
7
6
5
4
3
2
1
0
None  
TV-MA  
TV-14  
TV-PG  
TV-G  
TV-Y7  
TV-Y  
None  
TV parental guidelines rating block 3:  
None: no block intended  
TV-MA: When incoming video program is TV-MA rated in TV parental guidelines rating then this bit is set  
high  
TV-14: When incoming video program is TV-14 rated in TV parental guidelines rating then this bit is set  
high  
TV-PG: When incoming video program is TV-PG rated in TV parental guidelines rating then this bit is set  
high  
TV-G: When incoming video program is TV-G rated in TV parental guidelines rating then this bit is set high  
TV-Y7: When incoming video program is TV-Y7 rated in TV parental guidelines rating then this bit is set  
high  
TV-Y: When incoming video program is TV-G rated in TV parental guidelines rating then this bit is set high  
None: no block intended  
2.12.7 VDP V-CHIP MPAA Rating Data Register  
Subaddress  
80 0543h  
Read only  
7
6
5
4
3
2
1
0
Not Rated  
X
NC-17  
R
PG-13  
PG  
G
N/A  
MPAA rating block (E5h):  
Not rated: When incoming video program is not rated in MPAA rating then this bit is set high  
X: When incoming video program is X rated in MPAA rating then this bit is set high  
NC-17: When incoming video program is NC-17 rated in MPAA rating then this bit is set high  
R: When incoming video program is R rated in MPAA rating then this bit is set high  
PG-13: When incoming video program is PG-13 rated in MPAA rating then this bit is set high  
PG: When incoming video program is PG rated in MPAA rating then this bit is set high  
G: When incoming video program is G rated in MPAA rating then this bit is set high  
N/A: When incoming video program is N/A rated in MPAA rating then this bit is set high  
74  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.12.8 VDP General Line Mode and Line Address Register  
Subaddress  
80 0600h−80 0611h  
(default line mode = FFh, address = 00h)  
Subaddress  
80 0600h  
80 0601h  
80 0602h  
80 0603h  
80 0604h  
80 0605h  
80 0606h  
80 0607h  
80 0608h  
80 0609h  
80 060Ah  
80 060Bh  
80 060Ch  
80 060Dh  
80 060Eh  
80 060Fh  
80 0610h  
80 0611h  
7
6
5
4
3
2
1
0
Line address 1  
Line mode 1  
Line address 2  
Line mode 2  
Line address 3  
Line mode 3  
Line address 4  
Line mode 4  
Line address 5  
Line mode 5  
Line address 6  
Line mode 6  
Line address 7  
Line mode 7  
Line address 8  
Line mode 8  
Line address 9  
Line mode 9  
Line address [7:0]: Line number to be processed by a VDP set by a line mode register (default 00h)  
Line mode register [7:0]:  
Bit 7:  
0 = Disabled filters  
1 = Enabled filters for teletext and CC (null byte filter) (default)  
Bit 6:  
0 = Send sliced VBI data to registers only (default)  
1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)  
Bit 5:  
0 = Allow VBI data with errors in the FIFO  
1 = Do not allow VBI data with errors in the FIFO (default)  
Bit 4:  
0 = Disabled error detection and correction  
1 = Enabled error detection and correction (teletext only) (default)  
Bit 3:  
0 = Field 1  
1 = Field 2 (default)  
Bits [2:0]:  
000 = Teletext (WST625, Chinese teletext, NABTS 525)  
001 = CC (US, Europe, Japan, China)  
010 = WSS (525, 625)  
011 = VITC  
100 = VPS/PDC (PAL only), Gemstar (NTSC only)  
101 = USER 1  
110 = USER 2  
111 = Reserved (active video) (default)  
75  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
2.12.9 VDP VPS/Gemstar Data Register  
Subaddress  
80 0700h−80 070Ch  
VPS: Read only  
Subaddress  
80 0700h  
80 0701h  
80 0702h  
80 0703h  
80 0704h  
80 0705h  
80 0706h  
80 0707h  
80 0708h  
80 0709h  
80 070Ah  
80 070Bh  
80 070Ch  
7
6
5
4
3
2
1
0
VPS byte 1  
VPS byte 2  
VPS byte 3  
VPS byte 4  
VPS byte 5  
VPS byte 6  
VPS byte 7  
VPS byte 8  
VPS byte 9  
VPS byte 10  
VPS byte 11  
VPS byte 12  
VPS byte 13  
These registers contain the entire VPS data line except the clock run-in code or the start code.  
Gemstar: Read only  
Subaddress  
80 0700h  
80 0701h  
80 0702h  
80 0703h  
80 0704h  
80 0705h  
80 0706h  
80 0707h  
80 0708h  
80 0709h  
80 070Ah  
80 070Bh  
80 070Ch  
7
6
5
4
3
2
1
0
Gemstar frame code  
Gemstar byte 1  
Gemstar byte 2  
Gemstar byte 3  
Gemstar byte 4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
76  
TVP5147PFP  
SLES099C—March 2007  
Functional Description  
2.12.10 Analog Output Control 2 Register  
Subaddress  
A0 005Eh  
Default  
B2h  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Input Select [1:0]  
Gain [3:0]  
Analog input select [1:0]: These bits are effective when manual input select bit is set to 1 at subaddress 7Fh,  
bit 1.  
00 =  
01 =  
10 =  
11=  
CH1 selected  
CH2 selected  
CH3 selected  
CH4 selected (default)  
Analog output PGA gain [3:0]: These bits are effective when analog output AGC is set to 1 at subaddress 7Fh,  
bit 2.  
Gain [3:0]  
0000 =  
0001 =  
0010 = (default)  
0011 =  
0100 =  
0101 =  
0110 =  
0111 =  
Mode 1  
1.30  
1.56  
1.82  
2.08  
2.34  
2.60  
2.86  
3.12  
3.38  
3.64  
3.90  
4.16  
4.42  
4.68  
4.94  
5.20  
0000 =  
0001 =  
0010 =  
0011 =  
0100 =  
0101 =  
0110 =  
0111 =  
2.12.11 Interrupt Configuration Register  
Subaddress  
B0 0060h  
Default  
00h  
7
6
5
4
3
2
1
0
Reserved  
Polarity  
Reserved  
Polarity: Interrupt terminal polarity  
0 = Active high (default)  
1 = Active low  
77  
SLES099C—March 2007  
TVP5147PFP  
Functional Description  
78  
TVP5147PFP  
SLES099C—March 2007  
Electrical Specifications  
3
Electrical Specifications  
3.1 Absolute Maximum Ratings  
Supply voltage range: IOV  
to I/O GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2 V  
DD  
DV  
DD  
A33VDD (see Note 1) to A18GND (see Note 2) . . . . . . . . . . . . . . . . −0.3 V to 3.6 V  
A18VDD (see Note 3) to A33GND (see Note 4) . . . . . . . . . . . . . . . . . . −0.2 V to 2 V  
Digital input voltage, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
I
Digital output voltage, V to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.5 V  
O
Analog input voltage range AIN to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.2 V to 2 V  
Operating free-air temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. CH1_A33VDD, CH2_A33VDD  
2. CH1_A33GND, CH2_A33GND  
3. CH1_A18VDD, CH2_A18VDD, A18VDD_REF, PLL_A18VDD  
4. CH1_A18GND, CH2_A18GND, A18GND  
3.2 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
IOV  
Digital supply voltage  
3
1.65  
3
3.3  
1.8  
3.3  
1.8  
1
3.6  
1.95  
3.6  
V
V
DD  
DV  
Digital supply voltage  
DD  
AV  
AV  
Analog supply voltage  
V
DD33  
DD18  
I(P-P)  
IH  
Analog supply voltage  
1.65  
0.5  
1.95  
2
V
V
V
V
Analog input voltage (ac-coupling necessary)  
Digital input voltage, high (Note 1)  
Digital input voltage, low (Note 2)  
V
0.7 IOV  
V
DD  
0.3 IOV  
V
IL  
DD  
I
I
Output current, V  
Output current, V  
= 2.4 V  
= 0.4 V  
−4  
4
mA  
mA  
°C  
OH  
OL  
out  
out  
T
Operating free-air temperature  
0
70  
A
NOTES: 1. Exception: 0.7 AV  
2. Exception: 0.3 AV  
for XTAL1 terminal  
for XTAL1 terminal  
DD18  
DD18  
3.2.1 Crystal Specifications  
CRYSTAL SPECIFICATIONS  
MIN  
NOM  
14.31818  
MAX  
UNIT  
MHz  
ppm  
Frequency  
Frequency tolerance  
50  
79  
SLES099C—March 2007  
TVP5147PFP  
Electrical Specifications  
3.3 Electrical Characteristics  
For minimum/maximum values: IOV  
= 3 V to 3.6 V, DV  
= 1.65 V to 1.95 V, AV  
= 3 V to 3.6 V,  
DD  
DD  
DD33  
AV  
= 1.65 V to 1.95 V, T = 0°C to 70°C  
DD18  
A
For typical values: IOV  
= 3.3 V, DV  
= 1.8 V, AV  
= 3.3 V, AV  
= 1.8 V, T = 25°C  
DD  
DD  
DD33  
DD18 A  
3.3.1 DC Electrical Characteristics (see Note 1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
6
MAX  
UNIT  
CVBS  
I
I
I
I
3.3-V IO digital supply current  
mA  
DDIO(D)  
S-video  
CVBS  
6
55  
1.8-V digital supply current  
3.3-V analog supply current  
1.8-V analog supply current  
mA  
mA  
mA  
DD(D)  
S-video  
CVBS  
55  
24  
DD33(A)  
DD18(A)  
S-video  
CVBS  
39  
79  
S-video  
S-video  
135  
490  
100  
10  
P
P
P
Total power dissipation (normal operation)  
Total power dissipation (power save)  
Total power dissipation (power down)  
Input leakage current  
mW  
mW  
mW  
µA  
pF  
TOT  
SAVE  
DOWN  
I
10  
8
lkg  
C
Input capacitance  
By design  
i
V
V
Output voltage high  
0.8 IOV  
DD  
V
OH  
Output voltage low  
0.2 IOV  
V
OL  
DD  
NOTE 1: Measured with a load of 10 kin parallel to 15 pF.  
3.3.2 Analog Processing and A/D Converters  
3.3.2.1 F = 30 MSPS for CH1, CH2  
s
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kΩ  
Z
Input impedance, analog video inputs  
Input capacitance, analog video inputs  
Input voltage range  
By design  
By design  
200  
i
C
10  
2
pF  
i
Vi(pp)  
G  
C
= 0.1 µF  
0.5  
−6  
1
V
coupling  
Gain control range  
6
dB  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
AFE only  
AFE only  
0.75  
1
1
LSB  
LSB  
dB  
2.5  
Fr  
Frequency response  
Crosstalk  
Multiburst (60 IRE)  
1 MHz  
−0.9  
XTALK  
SNR  
GM  
−50  
dB  
Signal-to-noise ratio, all channels  
Gain match (Note 1)  
Noise spectrum  
1 MHz, 1 V  
P-P  
54  
1.5%  
−58  
0.5  
dB  
Full scale, 1 MHz  
NS  
Luma ramp (100 kHz to full, tilt-null)  
Modulated ramp  
dB  
DP  
Differential phase  
°
DG  
Differential gain  
Modulated ramp  
1.5%  
2
V
O
Output voltage  
C
= 10 pF  
L
2.4  
V
NOTE 1: Component inputs only  
80  
TVP5147PFP  
SLES099C—March 2007  
Electrical Specifications  
3.3.3 Timing  
3.3.3.1 Clocks, Video Data, Sync Timing  
TEST CONDITIONS  
(see NOTE 1)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Duty cycle DATACLK  
45%  
50%  
18.5  
18.5  
55%  
t
1
t
2
t
3
t
4
t
5
High time, DATACLK  
Low time, DATACLK  
Fall time, DATACLK  
Rise time, DATACLK  
Output delay time  
ns  
ns  
ns  
ns  
ns  
90% to 10%  
10% to 90%  
4
4
10  
NOTE 1:  
C = 15 pF  
L
t
2
t
1
V
OH  
DATACLK  
V
OL  
t
t
t
4
3
V
V
OH  
Y, C, AVID, VS, HS, FID  
Valid Data  
Valid Data  
OL  
5
Figure 3−1. Clocks, Video Data, and Sync Timing  
2
3.3.3.2 I C Host Port Timing  
PARAMETER  
TEST CONDITIONS  
MIN  
1.3  
0
TYP  
MAX  
UNIT  
t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
Bus free time between STOP and START  
µs  
µs  
ns  
Data hold time  
0.9  
Data setup time  
100  
0.6  
0.6  
0.6  
Setup time for a (repeated) START condition  
Setup time for a STOP condition  
Hold time for a (repeated) START condition  
Rise time VC1(SDA) and VC0(SCL) signal  
Fall time VC1(SDA) and VC0(SCL) signal  
Capacitive load for each bus line  
µs  
ns  
µs  
ns  
250  
250  
400  
400  
ns  
C
pF  
kHz  
b
2
f
I C clock frequency  
I2C  
Stop Start  
Stop  
VC1 (SDA)  
VC0 (SCL)  
Data  
t
t
1
6
t
3
t
6
t
t
2
5
t
4
t
t
7
8
Change  
Data  
2
Figure 3−2. I C Host Port Timing  
81  
SLES099C—March 2007  
TVP5147PFP  
Electrical Specifications  
82  
TVP5147PFP  
SLES099C—March 2007  
Example Register Settings  
4
Example Register Settings  
The following example register settings are provided only as a reference. These settings, given the assumed  
input connector, video format, and output format, set up the TVP5147 decoder and provide video output.  
Example register settings for other features and the VBI data processor are not provided here.  
4.1 Example 1  
4.1.1 Assumptions  
Input connector: Composite (VI_1_A) (default)  
Video format: NTSC (J, M), PAL (B, G, H, I, N) or SECAM (default)  
NOTE: NTSC-443, PAL-Nc, and PAL-M are masked from the autoswitch process by default.  
See the autoswitch mask register at address 04h.  
Output format:  
10-bit ITU-R BT.656 with embedded syncs (default)  
4.1.2 Recommended Settings  
2
Recommended I C writes: For the given assumptions, only one write is required. All other registers are set  
up by default.  
2
I C register address 08h = Luminance processing control 3 register  
2
I C data 00h = Optimizes the trap filter selection for NTSC and PAL  
2
I C register address 0Eh = Chrominance processing control 2 register  
2
I C data 04h = Optimizes the chrominance filter selection for NTSC and PAL  
2
I C register address 34h = Output formatter 2 register  
2
I C data 11h = Enables YCbCr output and the clock output  
NOTE: HS/CS, VS/VBLK, AVID, FID, and GLCO are logic inputs by default. See output  
formatter 3 and 4 registers at addresses 35h and 36h, respectively.  
4.2 Example 2  
4.2.1 Assumptions  
Input connector: S-video [VI_2_C (luma), VI_1_C (chroma)]  
Video format:  
Output format:  
NTSC (J, M, 443), PAL (B, D, G, H, I, N, Nc, 60) or SECAM (default)  
10-bit ITU-R BT.656 with discrete sync outputs  
4.2.2 Recommended Settings  
2
Recommended I C writes: This setup requires additional writes to output the discrete sync 10-bit 4:2:2 data,  
HS, and VS, and to autoswitch between all video formats mentioned above.  
83  
SLES099C—March 2007  
TVP5147PFP  
Example Register Settings  
2
I C register address 00h = Input select register  
2
I C data 46h = Sets luma to VI_2_C and chroma to VI_1_C  
2
I C register address 04h = Autoswitch mask register  
2
I C data 3Fh = Includes NTSC 443 and PAL (M, Nc, 60) in the autoswitch  
2
I C register address 08h = Luminance processing control 3 register  
2
I C data 00h = Optimizes the trap filter selection for NTSC and PAL  
2
I C register address 0Eh = Chrominance processing control 2 register  
2
I C data 04h = Optimizes the chrominance filter selection for NTSC and PAL  
2
I C register address 33h = Output formatter 1 register  
2
I C data 41h = Selects the 10-bit 4:2:2 output format  
2
I C register address 34h = Output formatter 2 register  
2
I C data 11h = Enables YCbCr output and the clock output  
2
I C register address 36h = Output formatter 4 register  
2
I C data 11h = Enables HS and VS sync outputs  
4.3 Example 3  
4.3.1 Assumptions  
Input connector: Component [VI_1_B (Pb), VI_2_B (Y), VI_3_B (Pr)]  
Video format:  
Output format:  
NTSC (J, M, 443), PAL (B, D, G, H, I, N, Nc, 60) or SECAM (default)  
20-bit ITU-R BT.656 with discrete sync outputs  
4.3.2 Recommended Settings  
2
Recommended I C writes: This setup requires additional writes to output the discrete sync 20-bit 4:2:2 data,  
HS, and VS, and to autoswitch between all video formats mentioned above.  
84  
TVP5147PFP  
SLES099C—March 2007  
Example Register Settings  
2
I C register address 00h = Input select register  
2
I C data 95h = Sets Pb to VI_1_B, Y to VI_2_B, and Pr to VI_3_B  
2
I C register address 04h = Autoswitch mask register  
2
I C data 3Fh = Includes NTSC 443 and PAL (M, Nc, 60) in the autoswitch  
2
I C register address 08h = Luminance processing control 3 register  
2
I C data 00h = Optimizes the trap filter selection for NTSC and PAL  
2
I C register address 0Eh = Chrominance processing control 2 register  
2
I C data 04h = Optimizes the chrominance filter selection for NTSC and PAL  
2
I C register address 33h = Output formatter 1 register  
2
I C data 41h = Selects the 20-bit 4:2:2 output format  
2
I C register address 34h = Output formatter 2 register  
2
I C data 11h = Enables YCbCr output and the clock output  
2
I C register address 36h = Output formatter 4 register  
2
I C data AFh = Enables HS and VS sync outputs  
85  
SLES099C—March 2007  
TVP5147PFP  
Example Register Settings  
86  
TVP5147PFP  
SLES099C—March 2007  
Application Information  
5
Application Information  
5.1 Application Example  
C0  
FID  
C1  
C2  
VS/VBLK  
HS/CS  
2.2 k  
2.2 kΩ  
IOVDD3.3V  
C3  
C4  
C5  
A3.3VDD  
A1.8VDD  
XTAL1  
XTAL2  
DVDD1.8V  
22 Ω  
VOUT  
12 kΩ  
0.1 µF (2)  
22 µF  
0.1 µF (2)  
75 Ω  
1 kΩ  
22 kΩ  
VI_1A  
1
2
60  
59  
58  
57  
56  
55  
VI_1B  
VI_1C  
C6  
VI_1_B  
VI_1_C  
C_6  
C_7  
C_8  
C7  
C8  
C9  
3
4
5
6
7
8
9
0.1 µF (3)  
CH1_A33GND  
CH1_A33VDD  
CH2_A33VDD  
CH2_A33GND  
VI_2_A  
75 (3)  
C_9  
0.1 µF (2)  
0.1 µF (3)  
DGND  
DVDD  
Y_0  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VI_2A  
0.1 µF  
Y_0  
Y_1  
Y_2  
Y_3  
Y_4  
VI_2_B  
VI_2_C  
CH2_A18GND  
Y_1  
VI_2B  
VI_2C  
Y_2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Y_3  
75 (3)  
TVP5147PFP  
CH2_A18VDD  
A18VDD_REF  
A18GND_REF  
NC  
Y_4  
IOGND  
IOVDD  
0.1 µF (3)  
0.1 µF  
Y_5  
Y_6  
Y_7  
Y_8  
Y_5  
Y_6  
Y_7  
Y_8  
Y_9  
NC  
VI_3A  
VI_3B  
VI_3C  
VI_3_A  
VI_3_B  
VI_3_C  
NC  
Y_9  
DGND  
DVDD  
0.1 µF (3)  
0.1 µF  
75 (3)  
NC  
0.1 µF  
0.1 µF  
75 Ω  
VI_4A  
2.2 k(2)  
0.1 µF  
GND  
DATACLK  
GLCO/I2CA  
0.1 µF  
IOVDD  
0.1 µF  
XTAL1  
XTAL2  
AVID  
10 kΩ  
FSS  
RESETB  
PWDN  
I2C Address selection  
1−2 Base Addr. 0xBA  
2−3 Base Addr. 0xB8  
GLCO/I2CA  
1
3
14.31818 MHz  
CL2  
2
INTREQ  
SDA  
CL1  
10 kΩ  
SCL  
NOTE: If XTAL1 is connected to clock source, input voltage high must be 1.8 V.  
TVP5147 can be a drop-in replacement for TVP5146.  
Terminals 69 and 71 must be connected to ground through pulldown resistors.  
Figure 5−1. Example Application Circuit  
87  
SLES099C—March 2007  
TVP5147PFP  
Application Information  
5.2 Designing With PowerPADt Devices  
The TVP5147 device is housed in a high-performance, thermally enhanced, 80-terminal PowerPAD package  
(TI package designator: 80PFP). Use of the PowerPAD package does not require any special considerations  
except to note that the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic  
thermal and electrical conductor. Therefore, if not implementing the PowerPADPCB features, the use of solder  
masks (or other assembly techniques) can be required to prevent any inadvertent shorting by the exposed  
thermal padof connection etches or vias under the package. The recommended option, however, is not to run  
any etches or signal vias under the device, but to have only a grounded thermal land as in the following  
explanation. Although the actual size of the exposed die pad may vary, the minimum size required for the  
keep-out area for the 80-terminal PFP PowerPAD package is 8 mm × 8 mm.  
It is recommended that there be a thermal land, which is an area of solder-tinned-copper, underneath the  
PowerPAD package. The thermal land varies in size, depending on the PowerPAD package being used, the  
PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land may or may  
not contain numerous thermal vias depending on PCB construction.  
Other requirements for using thermal lands and thermal vias are detailed in the TI application note  
PowerPADt Thermally Enhanced Package Application Report, (SLMA002), available via the TI Web pages  
beginning at URL: http://www.ti.com  
For the TVP5147 device, this thermal land must be grounded to the low-impedance ground plane of the  
device. This improves not only thermal performance but also the electrical grounding of the device. It is also  
recommended that the device ground terminal landing pads be connected directly to the grounded thermal  
land. The land size must be as large as possible without shorting device signal terminals. The thermal land  
can be soldered to the exposed thermal pad using standard reflow soldering techniques.  
While the thermal land can be electrically floated and configured to remove heat to an external heat sink, it  
is recommended that the thermal land be connected to the low-impedance ground plane for the device. More  
information can be obtained from the TI application note PHY Layout (SLLA020).  
PowerPAD is a trademark of Texas Instruments.  
88  
TVP5147PFP  
SLES099C—March 2007  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Feb-2007  
PACKAGING INFORMATION  
Orderable Device  
TVP5147PFP  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HTQFP  
PFP  
80  
80  
80  
80  
96 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TVP5147PFPG4  
TVP5147PFPR  
TVP5147PFPRG4  
HTQFP  
HTQFP  
HTQFP  
PFP  
PFP  
PFP  
96 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
1000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  

相关型号:

TVP5147PFPRG4

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision⑩ Detection,YPbPr Inputs,and 5-Line Comb Filter
TI

TVP5147PFP_07

NTSC/PAL/SECAM 2x10-Bit Digital Video Decoder With Macrovision⑩ Detection,YPbPr Inputs,and 5-Line Comb Filter
TI

TVP5150

LOW POWER VIDEO DECODER WITH SCALING
TI

TVP5150A

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150AM1

ULTRALOW POWER NTSC/PAL/SECAM VIDEO DECODER WITH REBUST SYNC DETECTOR
TI

TVP5150AM1-EP

Ultralow-Power NTSC/PAL/SECAM Video Decoder
TI

TVP5150AM1IPBS

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSQ1

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSR

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSRQ

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI

TVP5150AM1IPBSRQ1

COLOR SIGNAL DECODER, PQFP32, PLASTIC, TQFP-32
TI

TVP5150AM1IZQC

Ultralow-Power NTSC,PAL,SECAM Video Decoder
TI