TWL2203GGVR [TI]

Power Supply Management IC 64-BGA MICROSTAR;
TWL2203GGVR
型号: TWL2203GGVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Power Supply Management IC 64-BGA MICROSTAR

文件: 总16页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
Li-Ion Battery Charging Control  
Over-Voltage Shutdown  
Three General-Purpose Operational  
Amplifiers  
Ringer Driver  
Seven Low-Dropout Low-Noise Linear  
Voltage Regulators (LDO)  
Power Supply Switch for Accessories  
Low Quiescent Current  
48-pin TQFP  
Voltage Detectors (With Power-Off Delay)  
Four-Channel Analog Multiplexer  
PFB PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RINGON  
RING  
VOUT6  
DET_DELAY  
VOUT2  
VREF  
MUXOUT  
MUXIN0  
MUX0  
1
2
3
4
5
6
7
8
9
MUX1  
V
MUXIN1  
MUXIN2  
MUXIN3  
OP1I–  
CC  
VSUP  
VOUT4  
VOUT5  
VOUT3  
VOUT1  
EN3  
OP1I+ 10  
OP2I– 11  
OP2I+ 12  
13 14 15 16 17 18 19 20 21 22 23 24  
description  
The TWL2203 incorporates a complete power-management system for a cellular telephone that uses  
lithium-ion cells. The device includes circuitry to control the gate voltage of two P-channel MOSFETs. The  
MOSFETs perform constant-voltage/constant-current charging (CVCC). The TWL2203 has seven low-drop  
linear voltage regulators (LDO) to regulate the battery power supply to the different sections of the phone, a  
battery voltage monitor, a ringer driver, an analog multiplexer, and three general-purpose operational amplifiers  
for signal conditioning.  
The TWL2203 is packaged in TI’s 48-pin thin-quad flat package (PFB).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
MicroStar is a trademark of Texas Instruments Incorporated.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
AVAILABLE OPTIONS  
PACKAGE  
T
A
PLASTIC THIN-QUAD FLAT PACKAGE  
(PFB)  
30°C to 85°C  
TWL2203PFB  
functional block diagram  
ICH-  
VG1  
VCH  
IADJ ICH+  
VG2  
TCOUT  
CVCC  
Trickle  
Charge  
Switch  
Control  
Charge  
Current  
Control  
4.2 V  
Regulation  
VB  
CH  
Current Limit  
Control  
Over-  
Voltage  
Shutdown  
VEXT  
DET1  
VOUT2  
VREF  
VOUT7  
EN4  
VREF  
VDET1  
LDO REG 7  
VDET2  
DET2  
VCC  
EN3  
EN2  
EN1  
DET_DELAY  
VSUP  
Power Switch  
LDO REG 1  
VOUT1  
RING  
Ringer Drive  
VOUT2  
VOUT3  
RINGON  
LDO REG 2  
LDO REG 3  
MUXOUT  
MUXIN0  
MUXIN1  
MUXIN2  
MUXIN3  
M
U
X
VOUT4  
LDO REG 4  
LDO REG 5  
LDO REG 6  
VOUT5  
VOUT6  
+
_
+
_
+
_
MUX0  
MUX1  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
Terminal Functions  
TERMINAL  
NAME  
NO.  
QFB  
39  
33  
21  
19  
23  
24  
25  
22  
42  
18  
37  
47  
43  
45  
4
I/O  
DESCRIPTION  
CH  
I
CMOS signal input set to logic high to enable battery-charging function  
DET_DELAY  
DET1  
I/O Delay programming pin for VDET2  
O
O
I
Voltage detector CMOS output  
DET2  
Voltage detector output with 40-kpull–up resistor  
Set to logic high to enable LDO regulators 1–4 and power supply switch  
Set to logic high to enable LDO regulator 5  
Set to logic high to enable LDO regulator 6  
Set to logic high to enable LDO regulator 7  
Set to logic high to enable the op amps and the analog multiplexer  
Ground for most sections of the device  
EN1  
EN2  
I
EN3  
I
EN4  
I
ENOP_MUX  
GND  
I
GNDRING  
IADJ  
Ringer ground  
I/O Terminal for gain control of battery-charging current monitor  
ICH–  
I
I
Current-sense input/trickle charge, input/power supply to LDO regulator 7, and reference.  
Current-sense input  
ICH+  
MUX0  
I
Analog multiplexer channel selector bit-input (logic high is true)  
Analog multiplexer channel selector bit-input (logic high is true)  
Analog multiplexer input 0  
MUX1  
5
I
MUXIN0  
MUXIN1  
MUXIN2  
MUXIN3  
MUXOUT  
OP1I–  
OP1I+  
OP1O  
3
I
6
I
Analog multiplexer input 1  
7
I
Analog multiplexer input 2  
8
I
Analog multiplexer input 3  
2
O
I
Analog multiplexer output  
9
Op amp 1 negative input  
10  
15  
11  
12  
16  
14  
13  
17  
35  
36  
41  
40  
31  
20  
48  
46  
38  
26  
32  
I
Op amp 1 positive input  
O
I
Op amp 1 output  
OP2I–  
OP2I+  
OP2O  
Op amp 2 negative input  
I
Op amp 2 positive input  
O
I
Op amp 2 output  
OP3I–  
OP3I+  
OP3O  
Op amp 3 negative input  
I
Op amp 3 positive input  
O
I
Op amp 3 output  
RING  
Ringer drive input  
RINGON  
TCOUT  
I
Ringer enable (logic high to enable)  
Trickle-charge output  
O
I
V
B
Battery voltage input for charging control  
Power supply to most of the device  
External power supply input for voltage detection  
External voltage input  
V
CC  
VCH  
I
VEXT  
VG1  
I
O
O
O
O
MOSFET M1 gate drive  
VG2  
MOSFET M2 gate drive  
VOUT1  
VOUT2  
LDO REG 1 output 1  
LDO REG 2 output 2  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
Terminal Functions (Continued)  
TERMINAL  
NAME  
NO.  
QFB  
27  
I/O  
DESCRIPTION  
VOUT3  
O
O
O
O
O
O
O
LDO REG 3 output 3  
VOUT4  
VOUT5  
VOUT6  
VOUT7  
VREF  
29  
LDO REG 4 output 4  
28  
LDO REG 5 output 5  
34  
LDO REG 6 output 6  
44  
LDO REG 7 output 7  
1
Voltage-reference bypass output  
Power-supply switch output  
VSUP  
30  
detailed description  
battery-charging control  
The battery charging control block in the device is a part of the lithium-ion battery (Li-Ion) charging system of  
the phone. It is capable of regulating the external power source to charge the lithium-ion battery according to  
the battery-charging requirements. More information on battery-charging control is presented in the application  
information section.  
The MOSFET driver and its feedback-control circuit are enabled/disabled by a CMOS control signal provided  
by the phone’s microprocessor. The maximum-charging current is set by external resistors for design flexibility.  
overvoltage shutdown  
The device shuts down the charging circuit in the presence of an overvoltage condition.  
low-dropout linear voltage regulators  
The device has seven separate low-dropout linear-voltage regulators. A single enable signal controls four of  
the regulators. The last three regulators are controlled by their own enable signals.  
voltage detectors (with power-off delay)  
The device has two voltage detectors. The voltage detectors monitor the voltage level of the external power and  
V
. The external power detector (VDET1) has a CMOS output. The V  
detector (VDET2) activates on the  
CC  
CC  
falling edge and has user-adjustable power-off delay. There is an internal pullup resistor on the output.  
analog multiplexer  
The device has a four-channel analog multiplexer with two-bit channel-selector signal input and a shutdown  
function. In the shutdown mode, all the input and output terminals are in the high-impedance state.  
operational amplifiers  
The device has three rail-to-rail operational amplifiers with common shutdown control.  
power supply switch for external phone accessories  
The device provides current-limited voltage supply to the external phone accessories via the external-interface  
connector. The power supply switch is controlled by the same enable signal (EN1) that controls the four  
regulators—LDO1-LDO4. The external phone accessories are resistive in nature.  
ringer driver  
The device is capable of driving a ringer. It is controlled by a CMOS signal, and uses an N-channel low-side  
driver.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
DISSIPATION-RATING TABLE – FREE-AIR TEMPERATURE  
<25°C OPERATING FACTOR = 70°C  
PACKAGE  
T
A
T
A
T = 85°C  
A
POWER RATING  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
PFB  
1962 mW  
15.7 mW/°C  
1256 mW  
1020 mW  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply-voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
CC  
External-voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15 V  
Output-voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
Input-voltage range, all other pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 6.5 V  
Continuous total-power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation-Rating Table  
Free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –30°C to 85°C  
Storage-temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
2.85  
2.85  
0
TYP  
MAX  
4.25  
6
UNIT  
In regulation  
3.75  
Supply voltage, V  
V
CC  
In transient condition  
Allowable range  
5.5  
5.5  
12  
6
VEXT  
VCH  
V
Normal charging operation  
4.6  
2.1  
2.1  
6
V
V
V
High-level logic input, V  
IH  
Low-level logic input, V  
IL  
0.9  
electrical characteristics over recommended operating junction temperature range, V  
and VEXT = 5.5 V (unless otherwise specified)  
= 3.75 V  
CC  
current table, T = –40°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EN1 = EN2 = EN3 = EN4 = ENOP_MUX = VCH =  
CH = RINGON = VEXT = GND  
Shutdown current  
50  
90  
Quiescent current  
LDOreg. 1–4, power-switch quiescent current  
EN1 = VOUT2, EN2 = EN3 = EN4 = ENOP_MUX  
= VCH = CH = RINGON = VEXT = GND  
210  
240  
270  
300  
350  
400  
450  
500  
Quiescent current  
LDOreg. 1–5, power-switch quiescent current  
EN1 = EN2 = VOUT2, EN3 = EN4 = ENOP_MUX  
= VCH = CH = RINGON = VEXT = GND  
Quiescent current  
LDOreg. 1–6, power-switch quiescent current  
EN1 = EN2 = EN3 = VOUT2, EN4 = ENOP_MUX  
= VCH = CH = RINGON = VEXT = GND  
µA  
Quiescent current  
LDOreg. 1–7, power-switch quiescent current  
EN1 = EN2 = EN3 = EN4 = VOUT2, ENOP_MUX  
= VCH = CH = RINGON = VEXT = GND  
Quiescent current  
LDOreg. 1–7, Power-switch, MUX, op amp  
quiescent current  
EN1 = EN2 = EN3 = EN4 = ENOP_MUX =  
VOUT2, VCH = CH = RINGON = VEXT = GND  
470  
800  
Quiescent current  
LDOreg. 1–4, Power-switch, MUX, op amp  
quiescent current  
EN1 = ENOP_MUX = VOUT2, EN2 = EN3 = EN4  
= RINGON = VCH = CH = VEXT = GND  
370  
2.5  
700  
4.0  
LDOreg. 1–7, Power-switch, MUX, op amp, charger VCH = 4.8 V, EN1 = EN2 = EN3 = EN4 =  
mA  
quiescent current  
ENOP_MUX = CH = VOUT2, RINGON = GND  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
battery charging control, T = 0°C to 50°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Charge current = 50 mA, EN1 = CH =  
VOUT2, EN2 = EN3 = EN4 = ENOP_MUX =  
GND, VEXT = 5 – 6 V  
Constant voltage VB  
4.15  
4.20  
4.25  
V
Voltage drop across sense resistor ICH+ – ICH– CH = V  
CC  
85  
75  
100  
125  
115  
175  
mV  
mV  
V
Precharge current (VR6 threshold)  
Precharge threshold  
TCOUT – VB, VB<Vtc  
Vtc  
Ipc  
3.30  
3.40  
3.50  
VB = 3.5 V,  
Current limit control is disabled  
TCIN = 4.15 V, R6 =2 Ω,  
Precharge capability  
50  
mA  
over-voltage shutdown, T = 0°C to 50°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
4.7  
TYP  
5.4  
MAX  
6
UNIT  
V
Vchco  
Vgco  
Over-voltage cutoff point for VCH  
Over-voltage cutoff point for VEXT  
6.5  
7.5  
8.5  
V
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
electrical characteristics over recommended operating junction temperature range, V  
and VEXT = 5.5 V (unless otherwise specified) (continued)  
= 3.75 V  
CC  
LDO regulator 1 (LCD Module), T = –20°C to 85°C  
A
PARAMETER  
Output voltage VOUT1  
Dropout voltage  
Maximum current  
Current limit  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.05  
100  
UNIT  
V
IOUT1 = 0.5 mA to 3 mA,  
IOUT1 = 1 mA  
V
CC  
= 3.3 V to 4.2 V, EN1 = 3 V  
2.95  
3
mV  
mA  
mA  
dB  
V
CC  
= 3.75 V,  
VOUT1 = 2.85 V  
IOUT1 = 1 mA  
5
VOUT1 shorted to GND  
f = 400 Hz,  
7.5  
Ripple rejection  
50  
LDO regulator 2 (Digital), T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
IOUT2 = 5 mA to 150 mA, = 3.3 V to 4.2 V, EN1 = 3 V  
IOUT2 = 80 mA  
= 3.75 V,  
MIN  
TYP  
MAX  
3.175  
250  
UNIT  
V
Output voltage VOUT2  
Dropout voltage  
Maximum current  
Current limit  
V
2.825  
3
CC  
mV  
mA  
mA  
dB  
V
CC  
VOUT2 = 2.85 V  
IOUT2 = 100 mA  
200  
300  
VOUT2 shorted to GND  
f = 400 Hz,  
Ripple rejection  
50  
LDO regulator 3 (TCX0), T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
IOUT3 = 1 mA to 3 mA, = 3.3 V to 4.2 V, EN1 = 3 V  
IOUT3 = 3 mA  
= 3.75 V,  
MIN  
TYP  
MAX  
3.175  
100  
UNIT  
V
Output voltage VOUT3  
Dropout voltage  
Maximum current  
Current limit  
V
2.825  
3
CC  
mV  
mA  
mA  
dB  
V
CC  
VOUT3 = 2.85 V  
IOUT3 = 3 mA  
5
VOUT3 shorted to GND  
f = 400 Hz,  
7.5  
Ripple rejection  
60  
LDO regulator 4 (Audio), T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
IOUT4 = 5 mA to 40 mA, = 3.3 V to 4.2 V, EN1 = 3 V  
IOUT4 = 40 mA  
= 3.75 V,  
MIN  
TYP  
MAX  
3.175  
250  
UNIT  
V
Output voltage VOUT4  
Dropout voltage  
Maximum current  
Current limit  
V
2.825  
3
CC  
mV  
mA  
mA  
dB  
V
CC  
VOUT4 = 2.85 V  
IOUT4 = 30 mA  
75  
VOUT4 shorted to GND  
f = 400 Hz,  
112  
Ripple rejection  
60  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
electrical characteristics over recommended operating junction temperature range, V  
and VEXT = 5.5 V (unless otherwise specified) (continued)  
= 3.75 V  
CC  
LDO regulator 5 (RX), T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
IOUT5 = 10 mA to 30 mA, = 3.3 V to 4.2 V, EN1 = 3 V 2.825  
IOUT5 = 20 mA  
= 3.75 V,  
MIN  
TYP  
MAX  
3.175  
250  
UNIT  
V
Output voltage VOUT5  
Dropout voltage  
Maximum current  
Current limit  
V
3
CC  
mV  
mA  
mA  
dB  
V
CC  
VOUT5 = 2.85 V  
IOUT5 = 20 mA  
40  
60  
VOUT5 shorted to GND  
f = 400 Hz,  
Ripple rejection  
60  
LDO regulator 6 (TX), T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.175  
250  
UNIT  
V
Output voltage VOUT6  
Dropout voltage  
Maximum current  
Current limit  
IOUT6 = 30 mA to 70 mA,  
IOUT6 = 50 mA  
= 3.75 V,  
V
= 3.3 V to 4.2 V, EN1 = 3 V 2.825  
3
CC  
mV  
mA  
mA  
dB  
V
CC  
VOUT6 = 2.85 V  
IOUT6 = 50 mA  
70  
VOUT6 shorted to GND  
f = 400 Hz,  
105  
Ripple rejection  
60  
LDO regulator 7 (PLL), T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
IOUT7 = 10 mA to 25 mA, V  
MIN  
TYP  
MAX  
3.175  
250  
UNIT  
V
Output voltage VOUT7  
Dropout voltage  
= 3.3 V to 4.2 V, EN1 = 3 V 2.825  
3
CC  
IOUT7 = 20 mA  
= 3.75 V,  
mV  
mA  
mA  
dB  
Maximum current  
Current limit  
V
CC  
VOUT7 = 2.85 V  
IOUT7 = 20 mA  
30  
45  
VOUT7 shorted to GND  
f = 400 Hz,  
Ripple rejection  
60  
100  
Output noise voltage (RMS)  
BW = 300 Hz – 50 kHz  
µV  
With external filtering  
VDET1, T = 25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
2.85  
TYP  
3
MAX  
UNIT  
V
CH  
Threshold voltage of CH  
Hysteresis voltage of CH  
Output voltage  
3.15  
V
mV  
V
100  
VODET1  
VODET2  
TCDET1  
VCH > THRESHOLDV  
0
0.3  
0.3  
Output voltage  
VCH < THRESHOLDV  
VOUT2  
±100  
V
Temp. coefficient of VODET1  
ppm/°C  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
electrical characteristics over recommended operating junction temperature range, V  
and VEXT = 5.5 V (unless otherwise specified) (continued)  
= 3.75 V  
CC  
VDET2, T = 25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
UNIT  
V
Threshold voltage of VCC  
Hysteresis voltage of VCC  
Output voltage  
2.85  
3.15  
100  
0
mV  
V
VODET1  
VODET2  
TCDET2  
VCH > THRESHOLDV  
0.3  
75  
Output voltage  
VCH < THRESHOLDV  
VOUT2  
±100  
50  
V
Temperature coefficient of VDET2  
ppm/°C  
ms  
TDELAY2 Delay of VDET2  
Cdet_delay = 0.1 µF  
35  
power switch, T = 25°C  
A
PARAMETER  
TEST CONDITIONS  
ISUP = 0 mA – 50 mA, V = 3.75 V  
MIN  
TYP  
MAX  
3.75  
300  
UNIT  
V
VSUP Output voltage  
3.45  
3.60  
CC  
V
On voltage  
V
CC  
V
CC  
V
CC  
= 3.3 V – 5 V,  
= 3.75 V  
ISUP = 30 mA  
,VSUP = 0 V  
mV  
mA  
mA  
ON  
MAX  
MIN  
I
I
Maximum current  
Minimum current  
200  
= 3.75 V,  
VSUP = 3.45 V  
70  
analog multiplexer, T = –30°C to 85°C  
A
PARAMETER  
Sine-wave distortion  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1 kHz, 1 Vpp, 1.5 VDC offset  
–3 dB gain  
0.1%  
FMAX Frequency response (switch on)  
Feed-through attenuation (switch off)  
Crosstalk (control input to signal output)  
Crosstalk (between switches)  
DC CHARACTERISTICS  
1
MHz  
dB  
f = 250 kHz  
–40  
100  
–50  
Tr = Tf = 50 ns  
f = 250 kHz  
mV  
dB  
R
On resistance  
700  
10  
1200  
ON  
R  
Difference of ON resistance between  
switches  
ON  
I
I
I
Input/output leakage current  
Switch input leakage current  
Control-input current  
±400  
±400  
±1  
nA  
nA  
µA  
µA  
OFF  
Z
IN  
Iq  
Quiescent current  
10  
AC CHARACTERISTICS  
Phase difference between input and output 1 kHz (spec is flexible, dependent on the design)  
Output enable time tpzl, tpzh  
50  
100  
150  
10  
ns  
ns  
ns  
pF  
pF  
pF  
pF  
Output disable time tplz, tphz  
C
C
C
C
Control input capacitance  
Input terminal capacitance  
Output terminal capacitance  
Feed-through capacitance  
All pins  
IN  
15  
IOS  
IS  
50  
2
IOS  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
electrical characteristics over recommended operating junction temperature range, V  
and VEXT = 5.5 V (unless otherwise specified) (continued)  
= 3.75 V  
CC  
operational amplifiers, T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX  
10  
UNIT  
mV  
na  
V
Input offset voltage  
Input bias current  
Input offset current  
Input resistance  
Vcm = 1.5 V  
OS  
I
I
50  
5
250  
50  
OPB  
nA  
MΩ  
dB  
V
OPOS  
R
DC resistance  
100  
75  
IN  
CMMR Common-mode rejection ratio  
f = 400 Hz, Vcm = 1.5 V  
65  
0.1  
60  
VCM  
Input common voltage  
Power-supply rejection ratio  
Common-mode input capacitance  
Output swing, high  
2.9  
PSRR  
f = 400 Hz, Vcm = 1.5 V  
70  
3
dB  
pF  
V
C
IN  
Output high, I = 2.5 mA (source)  
2.9  
2.95  
0.1  
O
V
O
Output swing, low  
Output low,  
DC Current  
f = 1 kHz,  
I
O
= –2.5 mA (sink)  
0.15  
V
I
O
Output current  
±2.5  
mA  
THD  
SR  
Total harmonic distortion  
Slew rate  
20 dB closed-loop gain,  
I
O
= 0.5 mA  
1%  
0.3  
Vs  
GBW  
Gain bandwidth product  
300  
kHz  
ringer driver, T = –30°C to 85°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3
UNIT  
R
On resistance  
Turnon time  
Turnoff time  
RINGON = V , IOUTRING = 100 mA, T = 25°C  
CC A  
ON  
TONRING  
10  
µs  
TOFFRING  
10  
µs  
internal power supply  
PARAMETER  
TEST CONDITIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VINTERNAL Output voltage  
ILOAD = 7.5 mA  
3.1  
3.25  
3.4  
V
bandgap reference  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Output voltage  
1.1812 1.192 1.2028  
V
Output noise voltage (RMS)  
BW = 300 Hz – 50 kHz  
800 nV/Hz  
REFVALID Reference valid  
5
µA  
thermal shutdown  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
°C  
Trip point  
160  
190  
Hysteresis temperature  
15  
°C  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
THERMAL INFORMATION  
The implementation of integrated circuits in low-profile and fine-pitch surface-mount packages requires special  
attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat  
sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below.  
Improving the power dissipation capability of the printed-circuit board design  
Improving the thermal coupling of the component to the printed-circuit board  
Introducing airflow into the system  
Using the given R  
for this device, the maximum power dissipation can be calculated with the equation:  
T
θJA  
T
J(MAX)  
A
P
D(MAX)  
R
JA  
APPLICATION INFORMATION  
capacitor selection  
The output bypass capacitor of each LDO regulator should be selected from the list of ceramic capacitors shown  
below. The VCC bypass capacitors should be selected from the list of tantalum capacitors shown below.  
Tantalum capacitors have good temperature stability and offer good capacitance for their size. Care should be  
taken when using marginal quality tantalum capacitors, as the increase of the equivalent series resistance  
(ESR) at low temperatures can cause instability. For a given capacitance, ceramic capacitors are usually larger  
and more costly than tantalums. The capacitance of ceramic capacitors varies greatly with temperature. In  
addition, the ESR of ceramic capacitors can be low enough to cause instability. A low-value resistor can be  
added in series with the ceramic capacitor to provide a minimum ESR.  
ceramic (X7R or X5R)  
CAPACITANCE  
1 µF  
CASE SIZE  
0805  
ESR (MAX)  
3.8 mΩ  
2.2 µF  
0805  
4.5 mΩ  
3.3 µF  
0805  
4.1 mΩ  
2.2 µF  
1206  
3.4 mΩ  
4.7 µF  
1206  
1.9 mΩ  
tantalum (6.3 V rating)  
CAPACITANCE  
4.7 µF  
CASE SIZE  
A(3216)  
A(3216)  
A(3216)  
P(0805)  
ESR (MAX)  
6 Ω  
6.8 µF  
6 Ω  
10 µF  
4 Ω  
10 µF  
6 Ω  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
APPLICATION INFORMATION  
recommended parts list  
REFERENCE  
DESCRIPTION  
Ceramic, 0805, X7R  
Ceramic, 0805, X7R  
MANUFACTURER  
VALUE  
100 pF  
0.01 µF  
PART NUMBER  
C1  
C2  
C3  
Tantalum, 6.3 V, Case B, 20%  
Ceramic, 0805  
Siemens Matsushita  
Siemens Matsushita  
Taiyo Yuden  
10 µF B 45 196-E1106-M20  
C4  
0.01 µF  
C5  
Tantalum, 6.3 V, Case B, 20%  
Ceramic, 0805, X7R  
10 µF B 45 196-E1106-M20  
Cldo1  
Cldo2  
Cldo3  
Cldo4  
Cldo5  
Cldo6  
Cldo7  
Cvref  
Cdet_delay  
D1  
0.22 µF  
Ceramic, 10 V, 1206, X5R, 20%  
Ceramic, 0805, X7R  
4.7 µF LMK316BJ475ML  
0.22 µF  
Ceramic, 10 V, 1206, X5R, 20%  
Ceramic, 16 V, 0805, X5R, 20%  
Ceramic, 10 V, 1206, X5R, 20%  
Ceramic, 16 V, 0805, X5R, 20%  
Ceramic, 0805, X7R  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
3.3 µF LMK316BJ335ML  
2.2 µF LMK212BJ225MG  
4.7 µF LMK316BJ475ML  
2.2 µF LMK212BJ225MG  
1000 pF  
0.1 µF  
Ceramic, 0805, X7R  
Schottky diode  
Rohm  
RB051L-40  
1 µH  
L1  
M1  
Siliconix  
Fairchild  
Siliconix  
Siliconix  
Siliconix  
Fairchild  
Si3455DV  
FDC654P  
Si3441DV  
Si3443DV  
Si2305DS  
FDC634P  
0.1 Ω  
M2  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
1/4 W, 5%  
0805, 1/10 W, 5%  
0805, 1/10 W, 5%  
0805, 1/10 W, 5%  
0805, 1/10 W, 5%  
0805, 1/10 W, 5%  
0805, 1/10 W, 5%  
10 kΩ  
1 kΩ  
560 Ω  
6.8 kΩ  
2.7 Ω  
10 kΩ  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
APPLICATION INFORMATION  
battery charging control  
D1  
R2  
R1  
R4  
M1  
M2  
VEXT  
+
Lithium Ion  
Battery  
R7  
C1  
C2  
C3  
R5  
R6  
ICH-  
VG1  
VCH  
IADJ ICH+  
VG2  
TCOUT  
L1  
CVCC  
Charge  
Switch  
Control  
Trickle  
Charge  
Current  
Control  
4.2 V  
Regulation  
VB  
CH  
Current Limit  
Control  
Over-  
Voltage  
VEXT  
Shutdown  
VREF  
VREF  
VOUT2  
Cvref  
VOUT7  
VDET1  
DET1  
LDO REG 7  
Cldo7  
EN4  
VDET2  
DET2  
EN3  
EN2  
EN1  
DET_DELAY  
C4  
C5  
VSUP  
Power Switch  
LDO REG 1  
Cdet_Delay  
VOUT1  
Cldo1  
VOUT2  
RING  
Ringer Drive  
RINGON  
LDO REG 2  
LDO REG 3  
Cldo2  
VOUT3  
MUXOUT  
Cldo3  
VOUT4  
MUXIN0  
MUXIN1  
MUXIN2  
MUXIN3  
M
U
X
LDO REG 4  
LDO REG 5  
LDO REG 6  
Cldo4  
VOUT5  
+
_
+
_
+
_
MUX0  
MUX1  
Cldo5  
VOUT6  
Cldo6  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
APPLICATION INFORMATION  
battery-charging control (continued)  
The battery-charging control block in the device is a part of the Li-Ion battery charging system of the phone. The  
device controls the P-channel MOSFET to accomplish constant-voltage/constant-current charging (CVCC)  
within a ±1% tolerance in the charging termination voltage.  
The battery charging control consists of the two sections:  
CVCC charge-switch control with feedback loops for voltage and current control  
Trickle charge-current control  
When the voltage-detector output (DET1) is set high, the voltage-control loop is activated to regulate the voltage  
of ICH- to 4.2 V. Then, when the control signal input CH is set high, either the current-control loop or the  
trickle-charge control block is activated, depending upon battery voltage.  
When VB is below the threshold Vtc, the trickle-charge current control block directs the current to the battery  
viaTCIN, trickle-chargingcurrentcontrol, TCOUT, R6, andthebattery. Themeasureofthevoltageacrosssense  
resistor R6 is used for feedback-control of the rate of charging current.  
Once the battery voltage reaches the threshold Vtc, the CVCC charge-switch control block becomes active and  
controls the P-channel MOSFET M1. The feedback control ensures that the voltage ICH- does not exceed 4.2  
V ± 0.05 V (4.2 V regulation), and the current draw of resistor R1 does not exceed the specified value  
(current-limit control). In this case, the charging current drains via R1, M2, and the battery. The maximum  
charging current is set by external resistors for design flexibility.  
analog multiplexer output table  
MUX1  
MUX2  
OUTPUT  
MUXIN0  
MUXIN1  
MUXIN2  
MUXIN3  
0
0
1
1
0
1
0
1
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TWL2203  
POWER SUPPLY MANAGEMENT IC  
SLVS185 – FEBRUARY 2000  
MECHANICAL DATA  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,50  
M
0,08  
0,17  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

TWL2203PFB

POWER SUPPLY MANAGEMENT IC
TI

TWL2203PFBR

Power Supply Management IC 48-TQFP -30 to 85
TI

TWL2213CA

POWER SUPPLY MANAGEMENT IC AND Li-Ion BATTERY CHARGE CONTROL
TI

TWL2214CA

Power Supply Management IC and Li-Ion Battery Charge Control
ETC

TWL2214CAPFB

1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48
TI

TWL2214CAPFBR

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PQFP48, PLASTIC, TQFP-48, Power Management Circuit
TI

TWL6030

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B107CMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B107CMRR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A0CMR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A0CMRR

Fully Integrated Power Management with Switch Mode Charger
TI

TWL6030B1A4CMR

Fully Integrated Power Management with Switch Mode Charger
TI