UCC27212A-Q1 [TI]

具有 5V UVLO 的汽车类 4A、120V 半桥栅极驱动器;
UCC27212A-Q1
型号: UCC27212A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 5V UVLO 的汽车类 4A、120V 半桥栅极驱动器

栅极驱动 驱动器
文件: 总30页 (文件大小:1724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
UCC27212A-Q1 汽车120V 自举 4A 峰值电流高频高侧  
和低侧驱动器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AECA-Q100 标准的下列特性:  
UCC27212A-Q1 驱动器是基于常用的 UCC27211  
MOSFET 驱动器设计的。此外,UCC27212A-Q1 具  
有更宽的工作电压范围,可低至 5V,有助于降低功率  
损耗。  
器件温度等级 –40°C +140°C  
器件 HBM 分类等级 2  
器件 CDM 分类等级 C6  
峰值输出上拉和下拉电流分别为 4A 拉电流和 4A 灌电  
流,而且上拉和下拉电阻均为 0.9Ω。这使得该器件能  
够驱动大功率 MOSFET,减少由于 MOSFET 的米勒  
平台导致的开关损耗。  
5V 关断欠压锁定 (UVLO)  
通过独立输入驱动高侧和低侧配置中的两个 N 沟道  
MOSFET  
最大引导电压 120V 直流  
4A 拉电流,4A灌电流能力  
0.9Ω 上拉和下拉电阻  
输入结构可直接处理 -10V 电压,这提高了器件的鲁棒  
性,并且无需使用整流二极管即可实现与栅极驱动变压  
器直接连接。此外,输入还独立于电源电压,且具有  
20V 的最大额定值。  
输入引脚能够耐受 –10V +20V 的电压,并且与  
电源电压范围无关  
TTL 兼容输入  
UCC27212A-Q1 的开关节点(HS 引脚)最高可处理  
-18V 电压,从而保护高侧通道不受寄生电感和杂散电  
容所固有的负电压影响。UCC27212A-Q1 具有更高的  
迟滞,因而支持连接至具有增强型抗噪性能的模拟或数  
PWM 控制器。  
5V 17V VDD 工作范围,(最大绝对值 20V)  
7.2ns 上升时间和 5.5ns 下降时间(采用 1000pF  
负载)  
快速传播延迟时间(典型值 20ns)  
4ns 典型延迟匹配  
低侧和高侧栅极驱动器是独立控制的,且彼此的开通和  
采用 SOIC8(Powerpad) 封装  
关断时间均为 4ns。  
2 应用  
由于使用了一个额定电压为 100V 的片上自举二极管,  
因此无需采用外部分立式二极管。高侧和低侧驱动器均  
配有欠压锁定功能,可提供对称的开通和关断行为,并  
且能够在驱动电压低于额定阈值时将输出强拉至低电  
平。  
汽车应用中的 电源  
半桥和全桥转换器  
高电压同步降压转换器  
双开关正向转换器  
推挽式和有源钳位正向转换器  
D 类音频放大器  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
UCC27212A-Q1  
SOIC8(Powerpad)  
5.0mm x 6.0mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCZ8  
 
 
 
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
典型应用图  
传播延迟与电源电压间的关系 (T = 25°C)  
12 V  
VDD  
100 V  
32  
28  
24  
20  
16  
12  
8
TDLRR  
TDLFF  
TDHRR  
TDHFF  
HB  
SECONDARY  
SIDE  
CIRCUIT  
HO  
HS  
LO  
HI  
DRIVE  
HI  
PWM  
CONTROLLER  
LI  
DRIVE  
LO  
UCC27212-Q1  
4
ISOLATION  
AND  
FEEDBACK  
0
8
12  
16  
20  
Supply Voltage (V)  
D001  
Copyright © 2017, Texas Instruments Incorporated  
2
版权 © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
目录  
7.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application ................................................. 17  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings ............................................................ 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 7  
6.6 Switching Characteristics.......................................... 8  
6.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 15  
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 文档支持 ............................................................... 24  
11.2 接收文档更新通知 ................................................. 24  
11.3 社区资源................................................................ 24  
11.4 ....................................................................... 24  
11.5 静电放电警告......................................................... 24  
11.6 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
版权 © 2017, Texas Instruments Incorporated  
3
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
4 修订历史记录  
日期  
修订版本  
说明  
2017 7 月  
*
初始发行版。  
4
Copyright © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
5 Pin Configuration and Functions  
DDA Package  
8-Pin SO-PowerPAD  
Top View  
VDD  
HB  
1
2
3
4
8
7
6
5
LO  
VSS  
LI  
HO  
HS  
HI  
Thermal pad  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
High-side bootstrap supply. The bootstrap diode is on-chip but the external bootstrap capacitor is  
required. Connect positive side of the bootstrap capacitor to this pin. Typical range of HB bypass  
capacitor is 0.022 µF to 0.1 µF. The capacitor value is dependant on the gate charge of the high-  
side MOSFET and must also be selected based on speed and ripple criteria.  
2
HB  
P
5
3
HI  
I
High-side input.(1)  
HO  
O
High-side output. Connect to the gate of the high-side power MOSFET.  
High-side source connection. Connect to source of high-side power MOSFET. Connect the  
negative side of bootstrap capacitor to this pin.  
4
HS  
P
6
8
LI  
I
Low-side input.(1)  
LO  
O
Low-side output. Connect to the gate of the low-side power MOSFET.  
Positive supply to the lower-gate driver. De-couple this pin to VSS (GND). Typical decoupling  
capacitor range is 0.22 µF to 4.7 µF (See (2)).  
1
7
VDD  
VSS  
P
Negative supply terminal for the device that is generally grounded.  
Thermal  
pad(3)  
Electrically referenced to VSS (GND). Connect to a large thermal mass trace or GND plane to  
dramatically improve thermal performance.  
Pad  
(1) HI or LI input is assumed to connect to a low impedance source signal. The source output impedance is assumed less than 100 Ω. If the  
source impedance is greater than 100 Ω, add a bypassing capacitor, each, between HI and VSS and between LI and VSS. The added  
capacitor value depends on the noise levels presented on the pins, typically from 1 nF to 10 nF should be effective to eliminate the  
possible noise effect. When noise is present on two pins, HI or LI, the effect is to cause HO and LO malfunctions to have wrong logic  
outputs.  
(2) For cold temperature applications TI recommends the upper capacitance range. Follow the for PCB layout.  
(3) The thermal pad is not directly connected to any leads of the package; however, it is electrically and thermally connected to the  
substrate which is the ground of the device.  
Copyright © 2017, Texas Instruments Incorporated  
5
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–10  
MAX  
20  
UNIT  
V
VDD(2), VHB – VHS  
VLI, VHI  
Supply voltage range  
Input voltages on LI and HI  
20  
V
DC  
–0.3  
VDD + 0.3  
VDD + 0.3  
VHB + 0.3  
VHB + 0.3  
100  
V
V
V
V
V
V
VLO  
VHO  
VHS  
Output voltage on LO  
Output voltage on HO  
Repetitive pulse < 100  
ns(3)  
–2  
VHS – 0.3  
VHS – 2  
–1  
DC  
Repetitive pulse < 100  
ns(3)  
DC  
Voltage on HS  
Voltage on HB  
Repetitive pulse < 100  
ns(3)  
–(24 V –  
VDD)  
115  
VHB  
–0.3  
–40  
–65  
120  
150  
150  
V
TJ  
Operating virtual junction temperature range  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to VSS unless otherwise noted. Currents are positive into and negative out of the specified terminal.  
(3) Verified at bench characterization. VDD is the value used in an application design.  
6.2 ESD Ratings  
VALUE  
±2000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
6
Copyright © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range, all voltages are with respect to VSS; currents are positive into and negative out of  
the specified terminal. –40°C < TJ = TA < 140°C (unless otherwise noted)  
MIN  
NOM  
MAX  
17  
UNIT  
V
VDD  
VHS  
VHS  
VHB  
Supply voltage range, VHB – VHS  
Voltage on HS  
7
–1  
12  
100  
110  
115  
50  
V
Voltage on HS (repetitive pulse < 100 ns)  
Voltage on HB  
–(20 V – VDD)  
VHS + 8  
V
V
Voltage slew rate on HS  
Operating junction temperature  
V/ns  
°C  
–40  
140  
6.4 Thermal Information  
UCC27212A-Q1  
DDA (SOIC8  
Powerpad)  
THERMAL METRIC(1)  
UNIT  
8 PINS  
37.7  
47.2  
9.6  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.8  
ψJB  
9.4  
RθJC(bot)  
3.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range, VHS = VSS = 0 V, no load on LO or HO, TA = TJ = –40°C to +140°C, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENTS, VDD = VHB = 12 V  
IDD  
VDD quiescent current  
V(LI) = V(HI) = 0 V  
0.05  
2.1  
0.085  
2.5  
0.17  
6.5  
0.1  
5.1  
1
mA  
mA  
mA  
mA  
µA  
IDDO  
IHB  
VDD operating current  
f = 500 kHz, CLOAD = 0  
V(LI) = V(HI) = 0 V  
Boot voltage quiescent current  
Boot voltage operating current  
HB to VSS quiescent current  
HB to VSS operating current  
0.015  
1.5  
0.065  
2.5  
IHBO  
IHBS  
IHBSO  
f = 500 kHz, CLOAD = 0  
V(HS) = V(HB) = 115 V  
f = 500 kHz, CLOAD = 0  
0.0005  
0.07  
1.2  
mA  
SUPPLY CURRENTS, VDD = VHB = 6.8 V  
IDD  
VDD quiescent current  
V(LI) = V(HI) = 0 V  
0.02  
0.7  
0.065  
1.4  
0.14  
6.5  
0.08  
5.1  
1
mA  
mA  
mA  
mA  
µA  
IDDO  
IHB  
VDD operating current  
f = 500 kHz, CLOAD = 0  
V(LI) = V(HI) = 0 V  
Boot voltage quiescent current  
Boot voltage operating current  
HB to VSS quiescent current  
HB to VSS operating current  
0.01  
0.5  
0.04  
IHBO  
IHBS  
IHBSO  
f = 500 kHz, CLOAD = 0  
V(HS) = V(HB) = 115 V  
f = 500 kHz, CLOAD = 0  
1.23  
0.0005  
0.07  
1.2  
mA  
INPUT, VDD = VHB = 12 V  
VHIT  
VLIT  
VIHYS  
RIN  
Input voltage threshold  
1.7  
1.2  
2.3  
1.6  
700  
68  
2.55  
1.9  
V
V
Input voltage threshold  
Input voltage hysteresis  
Input pulldown resistance  
mV  
kΩ  
INPUT, VDD = VHB = 6.8 V  
VHIT  
Input voltage threshold  
1.6  
2.0  
2.6  
V
Copyright © 2017, Texas Instruments Incorporated  
7
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VHS = VSS = 0 V, no load on LO or HO, TA = TJ = –40°C to +140°C, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.5  
MAX  
UNIT  
V
VLIT  
VIHYS  
RIN  
Input voltage threshold  
Input voltage hysteresis  
Input pulldown resistance  
1.1  
2.1  
500  
68  
mV  
kΩ  
UNDER-VOLTAGE LOCKOUT (UVLO), VDD = VHB = 12 V  
VDDR  
VDD turnon threshold  
Hysteresis  
4.9  
5.7  
0.4  
5.3  
0.3  
6.4  
6.3  
V
V
V
V
VDDHYS  
VHBR  
VHB turnon threshold  
Hysteresis  
4.35  
VHBHYS  
BOOTSTRAP DIODE, VDD = VHB = 12 V  
VF  
Low-current forward voltage  
High-current forward voltage  
Dynamic resistance, ΔVF/ΔI  
IVDD-HB = 100 µA  
0.65  
0.85  
0.5  
0.8  
0.95  
0.85  
V
V
Ω
VFI  
RD  
IVDD-HB = 100 mA  
IVDD-HB = 100 mA and 80 mA  
0.3  
0.3  
BOOTSTRAP DIODE, VDD = VHB = 6.8 V  
VF  
Low-current forward voltage  
High-current forward voltage  
Dynamic resistance, ΔVF/ΔI  
IVDD-HB = 100 µA  
0.65  
0.85  
0.5  
0.8  
0.95  
0.85  
V
V
Ω
VFI  
RD  
IVDD-HB = 100 mA  
IVDD-HB = 100 mA and 80 mA  
LO GATE DRIVER, VDD = VHB = 12 V  
VLOL  
VLOH  
Low-level output voltage  
High level output voltage  
Peak pullup current(1)  
0.05  
0.1  
0.1  
0.16  
3.7  
0.19  
0.29  
V
V
A
A
(1)  
Peak pulldown current  
4.5  
LO GATE DRIVER, VDD = VHB = 6.8 V  
VLOL  
VLOH  
Low-level output voltage  
High level output voltage  
Peak pullup current  
ILO = 100 mA  
0.04  
0.12  
0.13  
0.23  
1.3  
0.35  
0.42  
V
V
A
A
ILO = –100 mA, VLOH = VDD – VLO  
VLO = 0 V  
Peak pulldown current  
VLO = 12 V for VDD = 6.8V  
1.7  
HO GATE DRIVER, VDD = VHB = 12 V  
VHOL  
VHOH  
Low-level output voltage  
0.05  
0.1  
0.1  
0.16  
3.7  
0.19  
0.29  
V
V
A
A
High-level output voltage  
(1)  
Peak pullup current  
(1)  
Peak pulldown current  
4.5  
HO GATE DRIVER, VDD = VHB = 6.8 V  
VLOL  
VLOH  
Low-level output voltage  
High level output voltage  
Peak pullup current  
IHO = 100 mA  
0.04  
0.12  
0.13  
0.23  
1.3  
0.35  
0.42  
V
V
A
A
IHO = –100 mA, VHOH = VHB – VHO  
VHO = 0 V  
Peak pulldown current  
VHO = 12 V for VDD = 6.8V  
1.7  
(1) Ensured by design.  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PROPAGATION DELAYS, VDD = VHB = 12 V  
TDLFF  
TDHFF  
TDLRR  
VLI falling to VLO falling  
VHI falling to VHO falling  
VLI rising to VLO rising  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
10  
10  
10  
16  
16  
20  
30  
30  
42  
ns  
ns  
ns  
8
Copyright © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TDHRR  
VHI rising to VHO rising  
CLOAD = 0  
10  
20  
42  
ns  
PROPAGATION DELAYS, VDD = VHB = 6.8 V  
TDLFF  
TDHFF  
TDLRR  
TDHRR  
VLI falling to VLO falling  
VHI falling to VHO falling  
VLI rising to VLO rising  
VHI rising to VHO rising  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
CLOAD = 0  
10  
10  
13  
13  
24  
24  
28  
28  
50  
50  
57  
57  
ns  
ns  
ns  
ns  
DELAY MATCHING, VDD = VHB = 12 V  
TJ = 25°C  
4
4
4
4
9.5  
17  
ns  
ns  
ns  
ns  
TMON  
From HO OFF to LO ON  
From LO OFF to HO ON  
TJ = –40°C to +140°C  
TJ = 25°C  
9.5  
17  
TMOFF  
TJ = –40°C to +140°C  
DELAY MATCHING, VDD = VHB = 6.8 V  
TJ = 25°C  
8
8
6
6
ns  
ns  
ns  
ns  
TMON  
From HO OFF to LO ON  
From LO OFF to HO ON  
TJ = –40°C to +140°C  
TJ = 25°C  
18  
18  
TMOFF  
TJ = –40°C to +140°C  
OUTPUT RISE AND FALL TIME, VDD = VHB = 12 V  
tR  
tR  
tF  
tF  
tR  
tF  
LO rise time  
HO rise time  
LO fall time  
HO fall time  
LO, HO  
CLOAD = 1000 pF, from 10% to 90%  
CLOAD = 1000 pF, from 10% to 90%  
CLOAD = 1000 pF, from 90% to 10%  
CLOAD = 1000 pF, from 90% to 10%  
CLOAD = 0.1 µF, (3 V to 9 V)  
7.8  
7.8  
ns  
ns  
ns  
ns  
µs  
µs  
6.0  
6.0  
0.36  
0.20  
0.6  
0.4  
LO, HO  
CLOAD = 0.1 µF, (9 V to 3 V)  
OUTPUT RISE AND FALL TIME, VDD = VHB = 6.8 V  
tR  
tR  
tF  
tF  
tR  
tF  
LO rise time  
HO rise time  
LO fall time  
HO fall time  
LO, HO  
CLOAD = 1000 pF, from 10% to 90%  
CLOAD = 1000 pF, from 10% to 90%  
CLOAD = 1000 pF, from 90% to 10%  
CLOAD = 1000 pF, from 90% to 10%  
CLOAD = 0.1 µF, (30% to 70%)  
9.5  
13.0  
9.5  
ns  
ns  
ns  
ns  
µs  
µs  
13.0  
0.45  
0.2  
0.7  
0.5  
LO, HO  
CLOAD = 0.1 µF, (70% to 30%)  
MISCELLANEOUS  
Minimum input pulse width that changes the  
output  
100  
ns  
ns  
(1)(2)  
(3)  
Bootstrap diode turnoff time  
IF = 20 mA, IREV = 0.5 A  
20  
when VDD = VHB = 6.8 V, VHS =  
100 V, and input pulse width is 100  
ns  
Extended output pulse  
250  
ns  
(1) Ensured by design.  
(2) IF: Forward current applied to bootstrap diode, IREV: Reverse current applied to bootstrap diode.  
(3) Typical values for TA = 25°C.  
版权 © 2017, Texas Instruments Incorporated  
9
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
LI  
Input  
(HI, LI)  
HI  
TDLRR, TDHRR  
LO  
Output  
(HO, LO)  
TDLFF, TDHFF  
HO  
1. Timing Diagram  
10  
版权 © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
6.7 Typical Characteristics  
100  
80  
60  
40  
20  
0
100  
10  
1
CL = 0 pF, T = 40°C  
CL = 0 pF, T = 25°C  
0.1  
0.01  
CL = 0 pF, T = 140°C  
CL = 1000 pF, T = 25°C  
CL = 1000 pF, T = 140°C  
CL = 4700 pF, T = 140°C  
IDD  
IHB  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
Frequency (kHz)  
1000  
Supply Voltage (V)  
G002  
T = 25°C  
VDD = 12 V  
2. Quiescent Current vs Supply Voltage  
3. IDD Operating Current vs Frequency  
100  
10  
100  
10  
1
1
CL = 0 pF, T = 40°C  
CL = 0 pF, T = 25°C  
CL = 0 pF, T = 40°C  
CL = 0 pF, T = 25°C  
0.1  
0.01  
CL = 0 pF, T = 140°C  
CL = 1000 pF, T = 25°C  
CL = 1000 pF, T = 140°C  
CL = 4700 pF, T = 140°C  
0.1  
0.01  
CL = 0 pF, T = 140°C  
CL = 1000 pF, T = 25°C  
CL = 1000 pF, T = 140°C  
CL = 4700 pF, T = 140°C  
10  
100  
Frequency (kHz)  
1000  
10  
100  
Frequency (kHz)  
1000  
VDD = 12 V  
VHB – VHS = 12 V  
4. IDD Operating Current vs Frequency  
5. Boot Voltage Operating Current vs  
Frequency (HB To HS)  
6
5
6
5
4
4
3
3
2
2
1
1
0
0
Rising  
Falling  
Rising  
Falling  
−1  
−1  
−40 −20  
0
20  
40  
60  
Temperature (°C)  
80  
100 120 140  
8
12  
16  
20  
Supply Voltage (V)  
VDD = 12 V  
7. Input Thresholds vs Temperature  
T = 25°C  
6. Input Threshold vs Supply Voltage  
版权 © 2017, Texas Instruments Incorporated  
11  
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
0.32  
0.28  
0.24  
0.2  
0.2  
0.16  
0.12  
0.08  
0.04  
0
0.16  
0.12  
0.08  
0.04  
0
VDD = VHB = 8 V  
VDD = VHB = 12 V  
VDD = VHB = 16 V  
VDD = VHB = 20 V  
VDD = VHB = 8 V  
VDD = VHB = 12 V  
VDD = VHB = 16 V  
VDD = VHB = 20 V  
−40 −20  
0
20  
40  
Temperature (°C)  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
Temperature (°C)  
60  
80  
100 120 140  
IHO = ILO = 100 mA  
IHO = ILO = 100 mA  
8. LO and HO High-Level Output Voltage  
9. LO and HO Low-Level Output Voltage  
vs Temperature  
vs Temperature  
8
7.6  
7.2  
6.8  
6.4  
6
1.5  
1.2  
0.9  
0.6  
0.3  
0
5.6  
5.2  
VDD Rising Threshold  
HB Rising Threshold  
VDD UVLO Hysteresis  
HB UVLO Hysteresis  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
G009  
G010  
10. Undervoltage Lockout Threshold  
11. Undervoltage Lockout Threshold Hysteresis  
vs Temperature  
vs Temperature  
40  
36  
32  
28  
24  
20  
16  
12  
8
32  
24  
16  
8
TDLRR  
TDLRR  
TDLFF  
TDHRR  
TDHFF  
TDLFF  
TDHRR  
TDHFF  
4
0
0
−40 −20  
0
20  
40  
Temperature (°C)  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
Temperature (°C)  
60  
80  
100 120 140  
VDD = VHB = 12 V  
12. Propagation Delays vs Temperature  
VDD = VHB = 12 V  
13. Propagation Delays vs Temperature  
12  
版权 © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
Typical Characteristics (接下页)  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
TDLRR  
TDLFF  
TDHRR  
TDHFF  
TDLRR  
TDLFF  
TDHRR  
TDHFF  
4
4
0
0
8
12  
16  
Supply Voltage (V)  
20  
8
12  
16  
20  
Supply Voltage (V)  
T = 25°C  
T = 25°C  
14. Propagation Delays vs Supply Voltage  
(VDD = VHB  
15. Propagation Delays vs Supply Voltage  
(VDD = VHB  
)
)
10  
8
5
4
3
2
1
0
Pulldown Current  
Pullup Current  
6
4
2
0
TMON  
TMOFF  
−2  
−40 −20  
0
20  
40  
60  
Temperature (°C)  
80  
100 120 140  
0
2
4
6
8
10  
12  
Output Voltage (V)  
G016  
VDD = VHB = 12 V  
VDD = VHB = 12 V  
16. Delay Matching vs Temperature  
17. Output Current vs Output Voltage  
100  
10  
1
0.1  
0.01  
0.001  
500  
550  
600  
650  
700  
750  
800  
850  
Diode Voltage (mV)  
G017  
18. Diode Current vs Diode Voltage  
版权 © 2017, Texas Instruments Incorporated  
13  
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The UCC27212A-Q1 device represents Texas Instruments’ latest generation of high-voltage gate drivers, which  
are designed to drive both the high-side and low-side of N-Channel MOSFETs in a half- and full-bridge or  
synchronous-buck configuration. The floating high-side driver can operate with supply voltages of up to 120 V,  
which allows for N-Channel MOSFET control in half-bridge, full-bridge, push-pull, two-switch forward, and active  
clamp forward converters.  
The UCC27212A-Q1 device feature 4-A source and sink capability, industry best-in-class switching  
characteristics and a host of other features listed in 1. These features combine to ensure efficient, robust and  
reliable operation in high-frequency switching power circuits.  
1. UCC27212A-Q1 Highlights  
FEATURE  
BENEFIT  
High peak current ideal for driving large power MOSFETs with  
minimal power loss (fast-drive capability at Miller plateau)  
4-A source and sink current with 0.9-Ω output resistance  
Increased robustness and ability to handle undershoot and  
overshoot can interface directly to gate-drive transformers without  
having to use rectification diodes.  
Input pins (HI and LI) can directly handle –10 VDC up to 20 VDC  
120-V internal boot diode  
Provides voltage margin to meet telecom 100-V surge requirements  
Allows the high-side channel to have extra protection from inherent  
negative voltages caused by parasitic inductance and stray  
capacitance  
Switch node (HS pin) able to handle –18 V maximum for 100 ns  
Robust ESD circuitry to handle voltage spikes  
Excellent immunity to large dV/dT conditions  
Best-in-class switching characteristics and extremely low-pulse  
transmission distortion  
18-ns propagation delay with 7.2-ns rise time and 5.5-ns fall time  
2-ns (typical) delay matching between channels  
Symmetrical UVLO circuit  
Avoids transformer volt-second offset in bridge  
Ensures high-side and low-side shut down at the same time  
Complementary to analog or digital PWM controllers; increased  
hysteresis offers added noise immunity  
TTL optimized thresholds with increased hysteresis  
In the UCC27212A-Q1 device, the high side and low side each have independent inputs that allow maximum  
flexibility of input control signals in the application. The boot diode for the high-side driver bias supply is internal  
to the UCC27212A-Q1. The UCC27212A-Q1 is the TTL or logic compatible version. The high-side driver is  
referenced to the switch node (HS), which is typically the source pin of the high-side MOSFET and drain pin of  
the low-side MOSFET. The low-side driver is referenced to VSS, which is typically ground. The UCC27212A-Q1  
functions are divided into the input stages, UVLO protection, level shift, boot diode, and output driver stages.  
14  
版权 © 2017, Texas Instruments Incorporated  
 
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
7.2 Functional Block Diagram  
2
I.  
UVLO  
3
4
Ih  
I{  
LEVEL  
SHIFT  
5
IL  
1
6
ëꢀꢀ  
UVLO  
[h  
8
7
ë{{  
[L  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Input Stages  
The input stages provide the interface to the PWM output signals. The input stages of the UCC27212A-Q1  
device have impedance of 70-kΩ nominal and input capacitance is approximately 2 pF. Pulldown resistance to  
VSS (ground) is 70 kΩ. The logic level compatible input provides a rising threshold of 2.3 V and a falling threshold  
of 1.6 V. There is enough input hysteresis to avoid noise related jitter issues on the input.  
7.3.2 Undervoltage Lockout (UVLO)  
The bias supplies for the high-side and low-side drivers have UVLO protection. VDD as well as VHB to VHS  
differential voltages are monitored. The VDD UVLO disables both drivers when VDD is below the specified  
threshold. The rising VDD threshold is 5.7 V with 0.4-V hysteresis. The VHB UVLO disables only the high-side  
driver when the VHB to VHS differential voltage is below the specified threshold. The VHB UVLO rising threshold is  
5.3 V with 0.4 V hysteresis.  
版权 © 2017, Texas Instruments Incorporated  
15  
 
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Level Shift  
The level shift circuit is the interface from the high-side input to the high-side driver stage which is referenced to  
the switch node (HS). The level shift allows control of the HO output referenced to the HS pin and provides  
excellent delay matching with the low-side driver.  
7.3.4 Boot Diode  
The boot diode necessary to generate the high-side bias is included in the UCC27212A-Q1 family of drivers. The  
diode anode is connected to VDD and cathode connected to VHB. With the VHB capacitor connected to HB and the  
HS pins, the VHB capacitor charge is refreshed every switching cycle when HS transitions to ground. The boot  
diode provides fast recovery times, low diode resistance, and voltage rating margin to allow for efficient and  
reliable operation.  
7.3.5 Output Stages  
The output stages are the interface to the power MOSFETs in the power train. High slew rate, low resistance and  
high peak current capability of both output drivers allow for efficient switching of the power MOSFETs. The low-  
side output stage is referenced from VDD to VSS and the high side is referenced from VHB to VHS  
.
7.4 Device Functional Modes  
The device operates in normal mode and UVLO mode. See the Undervoltage Lockout (UVLO) section for  
information on UVLO operation mode. In the normal mode the output state is dependent on states of the HI and  
LI pins. 2 lists the output states for different input pin combinations.  
2. Device Logic Table  
HI PIN  
LI PIN  
HO(1)  
LO(2)  
L
L
L
H
L
L
L
L
H
L
H
H
H
H
H
H
(1) HO is measured with respect to HS.  
(2) LO is measured with respect to VSS.  
16  
版权 © 2017, Texas Instruments Incorporated  
 
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
To affect fast switching of power devices and reduce associated switching power losses, a powerful gate driver is  
employed between the PWM output of controllers and the gates of the power semiconductor devices. Also, gate  
drivers are indispensable when it is impossible for the PWM controller to directly drive the gates of the switching  
devices. With the advent of digital power, this situation will be often encountered because the PWM signal from  
the digital controller is often a 3.3-V logic signal which cannot effectively turn on a power switch. Level shifting  
circuitry is needed to boost the 3.3-V signal to the gate-drive voltage (such as 12 V) in order to fully turn on the  
power device and minimize conduction losses. Traditional buffer drive circuits based on NPN/PNP bipolar  
transistors in totem-pole arrangement, being emitter follower configurations, prove inadequate with digital power  
because they lack level-shifting capability. Gate drivers effectively combine both the level-shifting and buffer-drive  
functions. Gate drivers also find other needs such as minimizing the effect of high-frequency switching noise by  
locating the high-current driver physically close to the power switch, driving gate-drive transformers, and  
controlling floating power-device gates, reducing power dissipation and thermal stress in controllers by moving  
gate charge power losses from the controller into the driver.  
Finally, emerging wide band-gap power device technologies such as GaN based switches, which are capable of  
supporting very high switching frequency operation, are driving very special requirements in terms of gate drive  
capability. These requirements include operation at low VDD voltages (5 V or lower), low propagation delays and  
availability in compact, low-inductance packages with good thermal capability. Gate-driver devices are extremely  
important components in switching power, and they combine the benefits of high-performance, low-cost  
component count and board-space reduction as well as simplified system design.  
8.2 Typical Application  
12 V  
100 V  
VDD  
HB  
SECONDARY  
SIDE  
CIRCUIT  
HO  
HI  
LI  
DRIVE  
HI  
HS  
LO  
PWM  
CONTROLLER  
DRIVE  
LO  
UCC27212-Q1  
ISOLATION  
AND  
FEEDBACK  
Copyright © 2017, Texas Instruments Incorporated  
19. UCC27212A-Q1 Typical Application  
版权 © 2017, Texas Instruments Incorporated  
17  
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 3.  
3. Design Specifications  
DESIGN PARAMETER  
Supply voltage, VDD  
Voltage on HS, VHS  
Voltage on HB, VHB  
Output current rating, IO  
Operating frequency  
EXAMPLE VALUE  
12 V  
0 V to 100 V  
12 V to 112 V  
–4 A to 4 A  
500 kHz  
18  
版权 © 2017, Texas Instruments Incorporated  
 
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
8.2.2 Detailed Design Procedure  
8.2.2.1 Power Dissipation  
Power dissipation of the gate driver has two portions as shown in 公式 1.  
PDISS = PDC + PSW  
(1)  
(2)  
Use 公式 2 to calculate the DC portion of the power dissipation (PDC).  
PDC = IQ × VDD  
where  
IQ is the quiescent current for the driver.  
The quiescent current is the current consumed by the device to bias all internal circuits such as input stage,  
reference voltage, logic circuits, protections, and also any current associated with switching of internal devices  
when the driver output changes state (such as charging and discharging of parasitic capacitances, parasitic  
shoot-through, and so forth). The UCC27212A-Q1 features very low quiescent currents (less than 0.17 mA, refer  
to the table and contain internal logic to eliminate any shoot-through in the output driver stage. Thus the effect of  
the PDC on the total power dissipation within the gate driver can be safely assumed to be negligible. The power  
dissipated in the gate-driver package during switching (PSW) depends on the following factors:  
Gate charge required of the power device (usually a function of the drive voltage VG, which is very close to  
input bias supply voltage VDD)  
Switching frequency  
Use of external gate resistors. When a driver device is tested with a discrete, capacitive load calculating the  
power that is required from the bias supply is fairly simple. The energy that must be transferred from the bias  
supply to charge the capacitor is given by 公式 3.  
2
EG = ½CLOAD × VDD  
where  
CLOAD is load capacitor  
VDD is bias voltage feeding the driver  
(3)  
There is an equal amount of energy dissipated when the capacitor is charged and when it is discharged. This  
leads to a total power loss given by 公式 4.  
PG = CLOAD × VDD2 × fSW  
where  
fSW is the switching frequency  
(4)  
The switching load presented by a power MOSFET/IGBT is converted to an equivalent capacitance by examining  
the gate charge required to switch the device. This gate charge includes the effects of the input capacitance plus  
the added charge needed to swing the drain voltage of the power device as it switches between the ON and OFF  
states. Most manufacturers provide specifications of typical and maximum gate charge, in nC, to switch the  
device under specified conditions. Using the gate charge Qg, determine the power that must be dissipated when  
switching a capacitor which is calculated using the equation QG = CLOAD × VDD to provide 公式 5 for power.  
PG = CLOAD × VDD2 × fSW = QG × VDD × fSW  
(5)  
This power PG is dissipated in the resistive elements of the circuit when the MOSFET/IGBT is being turned on  
and off. Half of the total power is dissipated when the load capacitor is charged during turnon, and the other half  
is dissipated when the load capacitor is discharged during turnoff. When no external gate resistor is employed  
between the driver and MOSFET/IGBT, this power is completely dissipated inside the driver package. With the  
use of external gate-drive resistors, the power dissipation is shared between the internal resistance of driver and  
external gate resistor.  
版权 © 2017, Texas Instruments Incorporated  
19  
 
 
 
 
 
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
8.2.3 Application Curves  
20. Negative 10-V Input  
21. Step Input  
22. Symmetrical UVLO  
20  
版权 © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
9 Power Supply Recommendations  
The bias supply voltage range for which the UCC27212A-Q1 device is recommended to operate is from 7 V to  
17 V. The lower end of this range is governed by the internal undervoltage-lockout (UVLO) protection feature on  
the VDD pin supply circuit blocks. Whenever the driver is in UVLO condition when the VDD pin voltage is below  
the V(ON) supply start threshold, this feature holds the output low, regardless of the status of the inputs. The  
upper end of this range is driven by the 20-V absolute maximum voltage rating of the VDD pin of the device  
(which is a stress rating). Keeping a 3-V margin to allow for transient voltage spikes, the maximum  
recommended voltage for the VDD pin is 17 V. The UVLO protection feature also involves a hysteresis function,  
which means that when the VDD pin bias voltage has exceeded the threshold voltage and device begins to  
operate, and if the voltage drops, then the device continues to deliver normal functionality unless the voltage  
drop exceeds the hysteresis specification VDD(hys). Therefore, ensuring that, while operating at or near the 7 V  
range, the voltage ripple on the auxiliary power supply output is smaller than the hysteresis specification of the  
device is important to avoid triggering device shutdown. During system shutdown, the device operation continues  
until the VDD pin voltage has dropped below the V(OFF) threshold, which must be accounted for while evaluating  
system shutdown timing design requirements. Likewise, at system start-up the device does not begin operation  
until the VDD pin voltage has exceeded the V(ON) threshold.  
The quiescent current consumed by the internal circuit blocks of the device is supplied through the VDD pin.  
Although this fact is well known, it is important to recognize that the charge for source current pulses delivered by  
the HO pin is also supplied through the same VDD pin. As a result, every time a current is sourced out of the HO  
pin, a corresponding current pulse is delivered into the device through the VDD pin. Thus, ensure that a local  
bypass capacitor is provided between the VDD and GND pins and located as close to the device as possible for  
the purpose of decoupling is important. A low-ESR, ceramic surface-mount capacitor is required. TI recommends  
using a capacitor in the range 0.22 µF to 4.7 µF between VDD and GND. In a similar manner, the current pulses  
delivered by the HO pin are sourced from the HB pin. Therefore a 0.022-µF to 0.1-µF local decoupling capacitor  
is recommended between the HB and HS pins.  
版权 © 2017, Texas Instruments Incorporated  
21  
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
To improve the switching characteristics and efficiency of a design, the following layout rules must be followed.  
Locate the driver as close as possible to the MOSFETs.  
Locate the VDD – VSS and VHB-VHS (bootstrap) capacitors as close as possible to the device (see ).  
Pay close attention to the GND trace. Use the thermal pad of the package as GND by connecting it to the  
VSS pin (GND). The GND trace from the driver goes directly to the source of the MOSFET, but must not be  
in the high current path of the MOSFET drain or source current.  
Use similar rules for the HS node as for GND for the high-side driver.  
For systems using multiple UCC27212A-Q1 devices, TI recommends that dedicated decoupling capacitors be  
located at VDD–VSS for each device.  
Care must be taken to avoid placing VDD traces close to LO, HS, and HO signals.  
Use wide traces for LO and HO closely following the associated GND or HS traces. A width of 60 to 100 mils  
is preferable where possible.  
Use as least two or more vias if the driver outputs or SW node must be routed from one layer to another. For  
GND, the number of vias must be a consideration of the thermal pad requirements as well as parasitic  
inductance.  
Avoid LI and HI (driver input) going close to the HS node or any other high dV/dT traces that can induce  
significant noise into the relatively high impedance leads.  
A poor layout can cause a significant drop in efficiency or system malfunction, and it can even lead to decreased  
reliability of the whole system.  
22  
版权 © 2017, Texas Instruments Incorporated  
UCC27212A-Q1  
www.ti.com.cn  
ZHCSGD6 JULY 2017  
10.2 Layout Example  
HB Bypassing Cap  
(Bottom Layer)  
Ground plane  
(Bottom Layer)  
VDD Bypassing Cap  
Ext. Gate  
Resistance  
(LO)  
Ext. Gate  
Resistance  
(HO)  
To LO  
Load  
To HO  
Load  
23. UCC27212A-Q1 Layout Example  
10.2.1 Thermal Considerations  
The useful range of a driver is greatly affected by the drive-power requirements of the load and the thermal  
characteristics of the package. For a gate driver to be useful over a particular temperature range, the package  
must allow for efficient removal of the heat produced while keeping the junction temperature within rated limits.  
The thermal metrics for the driver package are listed in . For detailed information regarding the table, refer to the  
Application Note from Texas Instruments entitled Semiconductor and IC Package Thermal Metrics (SPRA953).  
The UCC27212A-Q1 device is offered in SOIC (8) and VSON (8). The section lists the thermal performance  
metrics related to the SOT-23 package.  
版权 © 2017, Texas Instruments Incorporated  
23  
UCC27212A-Q1  
ZHCSGD6 JULY 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
PowerPAD™ 散热增强型封装》,应用报告  
PowerPAD™ 速成》,应用报告  
11.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
24  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC27212AQDDARQ1  
ACTIVE SO PowerPAD  
DDA  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 140  
27212Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UCC27212AQDDARQ1

具有 5V UVLO 的汽车类 4A、120V 半桥栅极驱动器 | DDA | 8 | -40 to 140
TI

UCC27212DPRR

具有 5V UVLO 和负电压处理能力的 4A、120V 半桥栅极驱动器 | DPR | 10 | -40 to 140
TI

UCC27212DPRT

具有 5V UVLO 和负电压处理能力的 4A、120V 半桥栅极驱动器 | DPR | 10 | -40 to 140
TI

UCC27221

HIGH EFFICIENCY PREDICTIVE SYNCHRONOUS BUCK DRIVER
TI

UCC27221PWP

HIGH EFFICIENCY PREDICTIVE SYNCHRONOUS BUCK DRIVER
TI

UCC27221PWPR

3.3A HALF BRDG BASED MOSFET DRIVER, PDSO14, GREEN, PLASTIC, HTSSOP-14
TI

UCC27221PWPRG4

3.3A HALF BRDG BASED MOSFET DRIVER, PDSO14, GREEN, PLASTIC, HTSSOP-14
TI

UCC27222

HIGH EFFICIENCY PREDICTIVE SYNCHRONOUS BUCK DRIVER
TI

UCC27222PWP

HIGH EFFICIENCY PREDICTIVE SYNCHRONOUS BUCK DRIVER
TI

UCC27222PWPG4

高效 Predictive 技术同步降压驱动器 | PWP | 14 | -40 to 105
TI

UCC27222PWPR

高效 Predictive 技术同步降压驱动器 | PWP | 14 | -40 to 105
TI

UCC27222PWPRG4

3.3A HALF BRDG BASED MOSFET DRIVER, PDSO14, GREEN, PLASTIC, HTSSOP-14
TI