UCC38084PWR [TI]

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION; 8引脚的电流模式推挽PWM具有可编程斜率补偿CONTROLLERS
UCC38084PWR
型号: UCC38084PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION
8引脚的电流模式推挽PWM具有可编程斜率补偿CONTROLLERS

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 信息通信管理
文件: 总27页 (文件大小:918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
FEATURES  
APPLICATIONS  
D
D
D
D
Programmable Slope Compensation  
D
D
D
D
High-Efficiency Switch-Mode Power Supplies  
Telecom dc-to-dc Converters  
Internal Soft-Start on the UCC38083/4  
Cycle-by-Cycle Current Limiting  
Point-of-Load or Point-of-Use Power Modules  
Low Start-Up Current of 120 µA and 1.5 mA  
Typical Run Current  
Low-Cost Push-Pull and Half-Bridge  
Applications  
D
D
Single External Component Oscillator  
Programmable from 50 kHz to 1 MHz  
DESCRIPTION  
The UCC38083/4/5/6 is a family of BiCMOS pulse width  
modulation (PWM) controllers for dc-to-dc or off-line  
fixed-frequency current-mode switching power  
supplies. The dual output stages are configured for the  
push-pull topology. Both outputs switch at half the  
oscillator frequency using a toggle flip-flop. The dead  
time between the two outputs is typically 110 ns, limiting  
each output’s duty cycle to less than 50%.  
High-Current Totem-Pole Dual Output Stage  
Drives Push-Pull Configuration with 1-A Sink  
and 0.5-A Source Capability  
D
Current Sense Discharge Transistor to  
Improve Dynamic Response  
D
Internally Trimmed Bandgap Reference  
Undervoltage Lockout with Hysteresis  
D
The new UCC3808x family is based on the UCC3808A  
architecture. The major differences include the addition  
of a programmable slope compensation ramp to the CS  
signal and the removal of the error amplifier. The current  
flowing out of the ISET pin through an external resistor  
is monitored internally to set the magnitude of the slope  
compensation function. This device also includes an  
OUT internal discharge transistor from the CS pin to ground,  
which is activated at each clock cycle after the pulse is  
terminated. This discharges any filter capacitance on  
the CS pin during each cycle and helps minimize filter  
capacitor values and current sense delay.  
BASIC APPLICATION  
V
IN  
POWER  
TRANSFORMER  
V
VDD  
UCC3808x  
CTRL OUTA  
The UCC38083 and the UCC38084 devices have a  
typical soft-start interval time of 3.5 ms while the  
UCC38085 and the UCC38086 has less than 100 µs for  
applications where internal soft-start is not desired.  
RT  
OUTB  
CS  
R
F
ISET  
The UCC38083 and the UCC38085 devices have the  
turn-on/off thresholds of 12.5 V / 8.3 V, while the  
UCC38084 and the UCC38086 has the turn-on/off  
thresholds of 4.3 V / 4.1 V. Each device is offered in 8-pin  
TSSOP (PW), 8-pin SOIC (D) and 8-pin PDIP (P)  
packages.  
GND  
R
T
R
S
R
SET  
C
F
FEEDBACK  
UDG−01080  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2002−2009, Texas Instruments Incorporated  
ꢋꢟ ꢞ ꢪꢥꢤ ꢢ ꢣ ꢤ ꢞꢜ ꢝꢞ ꢟ ꢠ ꢢ ꢞ ꢣ ꢧꢦ ꢤ ꢛꢝ ꢛꢤꢡ ꢢꢛ ꢞꢜꢣ ꢧꢦ ꢟ ꢢꢬ ꢦ ꢢꢦ ꢟ ꢠꢣ ꢞꢝ ꢐꢦꢭ ꢡꢣ ꢌꢜꢣ ꢢꢟ ꢥꢠ ꢦꢜꢢ ꢣ  
ꢣ ꢢ ꢡ ꢜꢪ ꢡ ꢟꢪ ꢮ ꢡ ꢟꢟ ꢡ ꢜ ꢢꢯꢫ ꢋꢟ ꢞ ꢪꢥꢤ ꢢꢛꢞꢜ ꢧꢟ ꢞꢤ ꢦꢣ ꢣꢛ ꢜꢰ ꢪꢞꢦ ꢣ ꢜꢞꢢ ꢜꢦ ꢤꢦ ꢣꢣ ꢡꢟ ꢛꢩ ꢯ ꢛꢜꢤ ꢩꢥꢪ ꢦ  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
1
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
ORDERING INFORMATION  
THERMAL RESISTANCE TABLE  
PACKAGE  
SOIC−8 (D)  
θjc(°C/W)  
θja(°C/W)  
(1)  
84 to 160  
(1)  
42  
50  
PDIP−8 (P)  
110  
(2)  
32  
(2)  
TSSOP−8 (PW)  
232 to 257  
2
NOTES: (1) Specified θja (junction to ambient) is for devices mounted to 5-inch FR4 PC board  
with one ounce copper where noted. When resistance range is given, lower values  
are for 5 inch aluminum PC board. Test PWB was 0.062 inch thick and typically  
2
used 0.635-mm trace widths for power packages and 1.3-mm trace widths for  
non-power packages with a 100-mil x 100-mil probe land area at the end of each  
trace.  
(2). Modeled data. If value range given for θja, lower value is for 3x3 inch. 1 oz internal  
copper ground plane, higher value is for 1x1-inch. ground plane. All model data  
assumes only one trace for each non-fused lead.  
AVAILABLE OPTIONS  
UVLO  
PACKAGES  
PDIP-8 (P)  
INTERNAL  
SOFT START  
T
A
ON  
OFF  
8.3 V  
4.1 V  
8.3 V  
4.1 V  
8.3 V  
4.1 V  
8.3 V  
4.1 V  
SOIC-8 (D)  
UCC28083D  
UCC28084D  
UCC28085D  
UCC28086D  
UCC38083D  
UCC38084D  
UCC38085D  
UCC38086D  
TSSOP-8 (PW)  
UCC28083PW  
UCC28084PW  
UCC28085PW  
UCC28086PW  
UCC38083PW  
UCC38084PW  
UCC38085PW  
UCC38086PW  
12.5 V  
4.3 V  
UCC28083P  
UCC28084P  
UCC28085P  
UCC28086P  
UCC38083P  
UCC38084P  
UCC38085P  
UCC38086P  
3.5 ms  
75 µs  
−40°C to 85°C  
0°C to 70°C  
12.5 V  
4.3 V  
12.5 V  
4.3 V  
3.5 ms  
12.5 V  
4.3 V  
75 µs  
The D and PW packages are available taped and reeled. Add R suffix to device type, e.g. UCC28083DR (2500 devices  
per reel) or UCC38083PWR (2000 devices per reel).  
PW PACKAGE  
(TOP VIEW)  
D OR P PACKAGE  
(TOP VIEW)  
1
2
3
4
8
7
6
5
OUTA  
VDD  
OUTB  
GND  
RT  
CTRL  
ISET  
CS  
VDD  
1
2
3
4
8
7
6
5
OUTA  
OUTB  
GND  
CTRL  
ISET  
CS  
RT  
2
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage, V  
(I  
< 10 mA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
DD DD  
Supply current, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
OUTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A  
OUTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 A  
DD  
Sink current (peak):  
Source current (peak): OUTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 A  
OUTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 A  
Analog inputs:  
CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
+0.3 V  
DD  
CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
+0.3 V, not to exceed 6 V  
DD  
R
(minimum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >5 kΩ  
SET  
R (−100 µA < I < 100 µA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 2.0 V  
T
RT  
Power dissipation at T = 25°C (P package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
A
A
A
Power dissipation at T = 25°C (D package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 mW  
Power dissipation at T = 25°C (PW package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 mW  
Junction operating temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
J
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature (soldering 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to GND.  
Currents are positive into, and negative out of the specified terminal.  
electrical characteristics over recommended operating virtual junction temperature range,  
= 10 V (See Note 1),1-µF capacitor from VDD to GND, R = 165 k, R = 1 k, C = 220 pF,  
V
R
DD  
SET  
T
F
F
= 50 k, T = −40°C to 85°C for UCC2808x, T = 0°C to 70°C for UCC3808x, T = T  
A
A
A
J
(unless otherwise noted)  
overall  
PARAMETER  
Start-up current  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
VDD < UVLO start threshold voltage  
120  
1.5  
200  
2.5  
µA  
Supply current  
CTRL = 0 V,  
See Note 1  
CS = 0 V,  
mA  
undervoltage lockout  
PARAMETER  
TEST CONDITIONS  
MIN  
11.5  
4.1  
7.6  
3.9  
3.5  
0.1  
TYP  
12.5  
4.3  
MAX UNITS  
UCC38083/5  
UCC38084/6  
UCC38083/5  
UCC38084/6  
UCC38083/5  
UCC38084/6  
See Note 1  
13.5  
4.5  
Start threshold voltage  
8.3  
9.0  
Minimum operating voltage  
after start  
V
4.1  
4.3  
4.2  
5.1  
0.3  
Hysteresis voltage  
0.2  
oscillator  
PARAMETER  
Frequency  
TEST CONDITIONS  
MIN  
180  
1.4  
TYP  
200  
1.5  
MAX UNITS  
2 x f(OUTA)  
See Note 2  
220  
1.6  
220  
1.6  
kHz  
V
Voltage amplitude  
Oscillator fall time (dead time)  
RT pin voltage  
110  
1.5  
ns  
V
1.2  
3
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
electrical characteristics over recommended operating virtual junction temperature range,  
= 10 V (See Note 1),1-µF capacitor from VDD to GND, R = 165 k, R = 1 k, C = 220 pF,  
V
R
DD  
SET  
T
F
F
= 50 k, T = −40°C to 85°C for UCC2808x, T = 0°C to 70°C for UCC3808x, T = T  
A
A
A
J
(unless otherwise noted)  
current sense  
PARAMETER  
Gain  
TEST CONDITIONS  
MIN  
1.9  
TYP  
MAX UNITS  
See Note 3  
2.2  
0.52  
100  
2.5  
0.57  
200  
V/V  
V
Maximum input signal voltage  
CS to output delay time  
Source current  
CTRL = 5 V,  
CTRL = 3.5 V,  
See Note 4  
0.47  
0 mV CS 600 mV  
ns  
nA  
−200  
3
CS = 0.5 V,  
See Note 5  
RT = 2.0 V,  
Sink current  
7
12  
mA  
Overcurrent threshold voltage  
0.70  
0.55  
0.37  
0.75  
0.70  
0.70  
0.80  
0.90  
1.10  
V
V
V
CS = 0 V, 25°C  
CTRL to CS offset voltage  
CS = 0 V  
pulse width modulation  
PARAMETER  
Maximum duty cycle  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
Measured at OUTA or OUTB, See Note 7  
CTRL = 0 V  
48%  
49%  
50%  
0%  
Minimum duty cycle  
output  
PARAMETER  
Low-level output voltage (OUTA or OUTB)  
High-level output voltage (OUTA or OUTB)  
Rise time  
TEST CONDITIONS  
MIN  
TYP  
0.5  
0.5  
25  
MAX UNITS  
I
I
= 100 mA  
= −50 mA,  
1.0  
OUT  
V
(VDD − VOUT), See Note 6  
1.0  
OUT  
C
C
= 1 nF  
= 1 nF  
60  
LOAD  
LOAD  
ns  
Fall time  
25  
60  
soft-start  
PARAMETER  
TEST CONDITIONS  
CS = 0 V,  
Duty cycle from 0 to full, See Note 8  
CTRL = 1.8 V, CS = 0 V,  
MIN  
TYP  
MAX UNITS  
OUTA/OUTB soft-start interval time,  
UCC38083/4  
CTRL = 1.8 V,  
1.3  
3.5  
8.5  
ms  
OUTA/OUTB soft-start interval time,  
UCC38085/6  
30  
75  
110  
µs  
Duty cycle from 0 to full, See Note 8  
slope compensation  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
175 µA  
I , peak  
RAMP  
I
, peak = 30 µA, Full duty cycle  
125  
150  
SET  
NOTE 1: For UCCx8083/5, set VDD above the start threshold before setting to 10 V.  
NOTE 2: Measured at ISET pin.  
DV  
NOTE 3: Gain is defined by A +  
CTRL, 0 V  
0.4 V.  
CS  
DVCS  
NOTE 4: Measured at trip point of latch with CS ramped from 0.4 V to 0.6 V.  
NOTE 5: This internal current sink on the CS pin is designed to discharge and external filter capacitor. It is not intended to be a dc sink path.  
NOTE 6: Not 100% production tested. Ensured by design and also by the rise time test.  
NOTE 7: For devices in PW package, parameter tested at wafer probe.  
NOTE 8: Ensured by design.  
4
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
functional block diagram  
Soft Start and Fault Latch  
S
Bias/UVLO  
VREF  
Q
Q
CTRL  
1
Iss  
0.5V  
Slope Circuit  
I
8
R
S
R
SLOPE  
Vdd−1  
VDD  
+
C
T
Css  
I
=
SLOPE  
ISET  
2
5 x I  
SET  
CS Circuitry  
0.75V  
PWM Comparator/Latch  
Output Driver  
7
OUTA  
80 k  
S
Q
Q
T
60 k  
0.5V  
R
Q
0.3 V  
CS  
3
6
OUTB  
Oscillator  
1.5V  
S
R
Q
1.5V  
I
CT  
RT  
4
5
0.2V  
C
T
GND  
UDG−01081  
Terminal Functions  
TERMINAL  
NAME  
PACKAGE  
I/O  
DESCRIPTION  
D OR P  
CS  
3
I
The current-sense input to the PWM comparator, the cycle-by-cycle peak current comparator, and the  
overcurrent comparator. The overcurrent comparator is only intended for fault sensing. Exceeding the  
overcurrent threshold causes a soft-start cycle. An internal MOSFET discharges the current-sense filter  
capacitor to improve dynamic performance of the power converter.  
CTRL  
GND  
1
5
I
Error voltage input to PWM comparator.  
Reference ground and power ground for all functions. Due to high currents, and high-frequency operation  
of the IC, a low-impedance circuit board ground plane is highly recommended.  
ISET  
OUTA  
OUTB  
RT  
2
7
6
4
8
I
O
O
I
Current selection for slope compensation.  
Alternating high-current output stages.  
Programs the oscillator.  
Power input connection.  
VDD  
I
5
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
detailed pin descriptions  
CTRL: The error voltage is typically generated by a secondary-side error amplifier and transmitted to the  
primary-side referenced UCC3808x by means of an opto-coupler. CTRL has an internal divider ratio of 0.45 to  
maintain a usable range with the minimum V  
full-cycle soft start while the UCC38085/6 does not.  
of 4.1 V. The UCC38083/UCC38084 family features a built-in  
DD  
For the UCC38083/4, soft-start is implemented as a clamp at the input to the PWM comparator. This causes  
the output pulses to start near 0% duty cycle and increase until the clamp exceeds the CTRL voltage.  
ISET: Program the slope compensation current ramp by connecting a resistor, RSET, from ISET to ground. The  
voltage of the ISET pin tracks the 1.5-V internal oscillator ramp, as shown in Figure 1.  
VCS  
VDD  
10 k  
I
= 5 x ISET, peak  
RAMP, peak  
IRAMP  
UCC38083  
R
I
F
1
2
3
4
CTRL VDD 8  
RAMP  
1 k  
ISET  
ISET OUTA 7  
1
F
CS  
RT  
OUTB 6  
GND  
OUTA  
220  
F
5
RT  
OUTB  
165 k  
Figure 1. Full Duty Cycle Output  
The compensating current source, I  
relation:  
, at the CS pin is proportional to the ISET current, according to the  
SLOPE  
I
+ 5   I  
SLOPE  
SET  
(1)  
The ramping current due to I  
develops a voltage across the effective filter impedance that is normally  
SLOPE  
connected from the current sense resistor to the CS input. In order to program a desired compensating slope  
with a specific peak compensating ramp voltage at the CS pin, use the RSET value in the following equation:  
5   RF  
ǒ
Ǔ
RSET + V  
 
OSC(peak)  
RAMP VOLTAGE HEIGHT  
(2)  
Where V  
+ 1.5 V  
OSC(peak)  
Notice that the PWM Latch drives an internal MOSFET that will discharge an external filtering capacitor on the  
CS pin. Thus, I will appear to terminate when the PWM comparator or the cycle-by-cycle current limit  
SLOPE  
comparator sets the PWM latch. The actual compensating slope is not affected by premature termination of the  
switching cycle.  
6
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
detailed pin descriptions (continued)  
OUTA and OUTB: Alternating high-current output stages. Both stages are capable of driving the gate of a power  
MOSFET. Each stage is capable of 500-mA peak-source current, and 1-A peak-sink current.  
The output stages switch at half the oscillator frequency, in a push-pull configuration. When the voltage on the  
internal oscillator capacitor is rising, one of the two outputs is high, but during fall time, both outputs are off. This  
dead time between the two outputs, along with a slower output rise time than fall time, ensures that the two  
outputs cannot be on at the same time. This dead time is typically 110 ns.  
The high-current output drivers consist of MOSFET output devices, which switch from VDD to GND. Each output  
stage also provides a very low impedance to overshoot and undershoot. This means that in many cases,  
external Schottky clamp diodes are not required.  
RT: The oscillator programming pin. The oscillator features an internal timing capacitor. An external resistor,  
R , sets a current from the RT pin to ground. Due to variations in the internal C , nominal V of 1.5 V can vary  
T
T
RT  
from 1.2 V to 1.6 V  
Selecting RT as shown programs the oscillator frequency:  
1
1
−7  
ǒ
Ǔ
RT +  
* 2.0   10  
−12  
f
28.7   10  
OSC  
(3)  
where f  
is in Hz, resistance in . The recommended range of timing resistors is between 25 kand 698 k.  
OSC  
For best performance, keep the timing resistor lead from the RT pin to GND (pin 5) as short as possible.  
1.5 V  
S
R
Q
I
I
1.5 V  
RT  
CT  
OSCILLATOR  
OUTPUT  
4
0.2 V  
C
T
R
T
1
Approximate Frequency +  
−7  
28.7   10−12   RT ) 2.0   10  
ǒ
Ǔ
UDG−01083  
Figure 2. Block Diagram for Oscillator  
VDD: The power input connection for this device. Although quiescent VDD current is very low, total supply  
current may be higher, depending on OUTA and OUTB current, and the programmed oscillator frequency. Total  
VDD current is the sum of quiescent VDD current and the average OUT current. Knowing the operating  
frequency and the MOSFET gate charge (Q ), average OUT current can be calculated from:  
G
I
+ Q   f  
OSC  
OUT  
G
(4)  
where f is the oscillator frequency.  
To prevent noise problems, bypass VDD to GND with a ceramic capacitor as close to the chip as possible along  
with an electrolytic capacitor. A 1-µF decoupling capacitor is recommended.  
7
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
APPLICATION INFORMATION  
The following application circuit shows an isolated 12-V to 2.5 V  
power (20 W to 200 W). Note that the pinout shown is for SOIC-8 and PDIP-8 packages.  
push-pull converter with scalable output  
IN  
OUT  
typical application  
V
O
= 2.2 V TO 3.3 V  
ADJUSTABLE  
V
= 12 V  
IN  
+/−20%V  
SR  
DRIVE  
F
1
µ
8
VDD  
4.7  
7
OUTA  
RT 4  
UCC3808x  
4.7  
6
5
6
3
OUTB  
R
1 kΩ  
CTRL 1  
F
1
CS  
GND  
5
165  
ISET  
2
2
3
k
4
R
S
C
F
TL431  
220 pF  
R
SET  
UDG−01084  
8
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
APPLICATION INFORMATION  
operational waveforms  
Figure 3 illustrates how the voltage ramp is effectively added to the voltage across the current sense element  
V
, to implement slope compensation.  
CS  
OUTA  
OUTB  
V
RS  
ADDED  
RAMP  
VOLTAGE  
V , Pin 3  
CS  
UDG−01085  
Figure 3. Typical Slope Compensation Waveforms at 80% Duty Cycle  
In Figure 3, OUTA and OUTB are shown at a duty cycle of 80%, with the associated voltage VRS across the  
current sense resistor of the primary push-pull power MOSFETs. The current flowing out of CS generates the  
ramp voltage across the filter resistor R that is positioned between the power current sense resistor and the  
F
CS pin. This voltage is effectively added to VRS to provide slope compensation at VCS, pin 3. A capacitor C  
is also recommended to filter the waveform at CS.  
F
9
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
layout considerations  
To prevent noise problems, bypass VDD to GND with a ceramic capacitor as close to the chip as possible along  
with an electrolytic capacitor. A 1-µF decoupling capacitor is recommended.  
Use a local ground plane near the small signal pins (CTRL, ISET, CS and RT) of the IC for shielding. Connect  
the local ground plane to the GND pin with a single trace. Do not extend the local ground plane under the power  
pins (VDD, OUTA, OUTB and GND). Instead, use signal return traces to the GND pin for ground returns on the  
side of the integrated circuit with the power pins.  
For best performance, keep the timing resistor lead from RT pin (pin 4) to GND (pin 5) as short as possible.  
special layout considerations for the TSSOP package  
Due to the different pinout and smaller lead pitch of the TSSOP package, special attention must be paid to  
minimize noise problems. The pinout is different because the device had to be rotated 90° to fit into the smaller  
TSSOP package.  
For example, the two output pins are now on opposite sides of the package. The traces should not run under  
the package together as they will couple switching noise into analog pins.  
Another common problem is when RT and OUTB (pins 6 and 8) are routed together for some distance even  
though they are not immediate side by side pins. Because of this, when OUTB rises, a voltage spike of upto  
400 mV can couple into the RT. This spike causes the internal charge current into CT to be turned off  
momentarily resulting in lower duty cycle. It is also important that note that the RT pin voltage cannot be  
stabilized with a capacitor. The RT pin is just a dc voltage to program the internal CT. Instead, keep the OUTB  
and RT runs short and far from each other and follow the printed wiring board layout suggestions above to fix  
the problem.  
reference design  
A reference design is discussed in 50-W Push-Pull Converter Reference Design Using the UCC38083, TI  
Literature Number SLUU135. This design controls a push-pull synchronous rectified topology with input range  
of 18 V to 35 V (24 nominal) and 3.3-V output at 15 A. The schematic is shown in Figure 5 and the board layout  
for the reference design is shown in Figure 4. Refer to the document for further details.  
Figure 4. Reference Design Layout  
10  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
APPLICATION INFORMATION  
Figure 5. Reference Design Schematic  
11  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
TYPICAL CHARACTERISTICS  
OSCILLATOR FREQUENCY  
OSCILLATOR FREQUENCY  
vs  
vs  
TEMPERATURE  
TIMING RESISTANCE  
220  
215  
210  
205  
1200  
1000  
800  
600  
400  
200  
0
R
= 165 kΩ″  
T
F
F
R = 1 kΩ  
C
R
= 220 kΩ  
= 50 kΩ  
T = 85°C  
V
= 15 V  
SET  
DD  
T = 25°C  
= 10 V  
V
DD  
200  
195  
190  
185  
180  
T = 40°C  
= 6 V  
V
DD  
−50  
−25  
0
25  
50  
75  
100  
125  
10  
100  
1000  
RT − Timing Resistance − kΩ  
°C  
Temperature −  
Figure 6  
Figure 7  
IDD  
vs  
IDD  
vs  
OSCILLATOR FREQUENCY, (NO LOAD)  
OSCILLATOR FREQUENCY, 1 nF LOAD  
25  
20  
15  
12  
10  
V
DD  
= 14 V  
V
= 14 V  
DD  
8
6
4
V
= 10 V  
DD  
V
DD  
= 10 V  
V
= 6 V  
DD  
10  
5
V
DD  
= 6 V  
2
0
0
10  
100  
1000  
10  
100  
1000  
Frequency − kHz  
Frequency − kHz  
Figure 8  
Figure 9  
12  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
TYPICAL CHARACTERISTICS  
DEAD TIME  
vs  
TIMING RESISTANCE OVER VDD  
DEAD TIME  
vs  
TEMPERATURE  
200  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
R
= 165 kΩ″  
T
F
F
R = 1 kΩ  
C
R
V
= 6 V*  
DD  
T = 85°C  
= 220 kΩ  
= 50 kΩ  
T = 25°C  
SET  
V
DD  
= 6 V*  
V
DD  
= 10 V  
V
DD  
= 14 V  
60  
60  
V
= 14 V  
DD  
T = −40°C  
40  
40  
20  
20  
* UCCx8084/6, only  
0
0
10  
100  
1000  
−50  
−25  
0
25  
50  
75  
100  
125  
RT − Timing Resistance − kΩ  
Temperature −  
°C  
Figure 10  
Figure 11  
CONTROL TO CS OFFSET  
RAMP HEIGHT  
vs  
vs  
VDD  
TEMPERATURE  
0.6  
0.5  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
T
= 25°C  
A
(OC Clamped)  
R
= 10 kΩ  
SET  
R
= 18 kΩ  
V
= 0.40 V  
SET  
CS  
0.4  
0.3  
0.2  
0.6  
0.4  
R
= 50 kΩ  
SET  
V
CS  
= 0 V  
0.1  
0
R
= 100 kΩ  
SET  
0.2  
0.0  
0
5
10  
VDD − Volts  
15  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature − °C  
Figure 12  
Figure 13  
13  
www.ti.com  
ꢀ ꢁꢁꢂ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢇꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢂ ꢃ ꢄ ꢃ ꢉ  
ꢀ ꢁꢁꢅ ꢃ ꢄ ꢃ ꢅꢆ ꢀ ꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢈꢆ ꢀꢁ ꢁꢅ ꢃ ꢄ ꢃ ꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
TYPICAL CHARACTERISTICS  
RAMP HEIGHT  
vs  
RAMP HEIGHT  
vs  
TEMPERATURE  
RT  
0.7  
0.6  
T
A
= 25°C  
R
= 10 kΩ  
(OC Clamped)  
SET  
0.6  
0.5  
0.4  
0.5  
0.4  
(OC Clamped)  
R
= 10 kΩ  
SET  
R
= 18 kΩ  
SET  
R
= 18 kΩ  
SET  
0.3  
0.3  
0.2  
0.1  
0
0.2  
0.1  
R
= 50 kΩ  
SET  
R
= 50 kΩ  
SET  
R
= 100 kΩ  
R
= 100 kΩ  
SET  
SET  
0.0  
10  
100  
1000  
−50  
−25  
0
25  
50  
75  
100  
125  
RT − k  
Temperature °C  
Figure 14  
Figure 15  
SOFT START  
vs  
TEMPERATURE  
SOFT START  
vs  
TEMPERATURE  
6
100  
95  
90  
85  
80  
75  
UCCx8085 AND UCCx8086  
UCCx8083 AND UCCx8084  
5
4
3
2
70  
65  
60  
55  
50  
1
0
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
°C  
Temperature −  
Temperature −  
°C  
Figure 16  
Figure 17  
14  
www.ti.com  
ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢂ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢂ ꢃꢄ ꢃꢉ  
ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢅ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢇ ꢆ ꢀꢁꢁ ꢅ ꢃꢄ ꢃ ꢈ ꢆ ꢀꢁ ꢁꢅ ꢃꢄ ꢃꢉ  
SLUS488E − SEPTEMBER 2002 − REVISED JULY 2009  
TYPICAL CHARACTERISTICS  
CS TO OUTX DELAY TIME  
vs  
TEMPERATURE  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
−50  
−25  
0
25  
50  
75  
100  
125  
Temperature −  
°C  
Figure 18  
RELATED PRODUCTS  
UCC3808, 8-Pin Low Power Current Mode Push-Pull PWM, (SLUS168)  
UCC3808A, 8-Pin Low-Power Current-Mode Push-Pull PWM, (SLUS456)  
UCC3806, Low Power, Dual Output, Current Mode PWM Controller, (SLUS272)  
Table 1. 8-Pin Push-Pull PWM Controller Family Feature Comparison  
Programmable  
Slope  
Compensation  
CS  
Error  
Amplifier  
Internal  
Softstart  
Part Number  
UVLO On  
UVLO Off  
Discharge FET  
UCC38083  
UCC38084  
UCC38085  
UCC38086  
UCC3808A−1  
UCC3808A−2  
UCC3808−1  
UCC3808−2  
12.5 V  
4.3 V  
8.3 V  
4.1 V  
8.3 V  
4.1 V  
8.3 V  
4.1 V  
8.3 V  
4.1 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
12.5 V  
4.3 V  
No  
No  
No  
12.5 V  
4.3 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
12.5 V  
4.3 V  
No  
No  
No  
15  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2011  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
UCC28083D  
UCC28083DG4  
UCC28083DR  
UCC28083DRG4  
UCC28083P  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
P
Green (RoHS  
& no Sb/Br)  
UCC28083PG4  
UCC28083PW  
UCC28083PWG4  
UCC28084D  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
150  
150  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
UCC28084DG4  
UCC28084DR  
UCC28084DRG4  
UCC28084P  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
P
Green (RoHS  
& no Sb/Br)  
UCC28084PG4  
UCC28084PW  
UCC28084PWG4  
UCC28084PWR  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
150  
150  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
UCC28084PWRG4  
UCC28085D  
TSSOP  
SOIC  
PW  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2000  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
UCC28085DG4  
UCC28085DR  
UCC28085DRG4  
UCC28085P  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
P
Green (RoHS  
& no Sb/Br)  
UCC28085PG4  
UCC28085PW  
UCC28085PWG4  
UCC28086D  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
150  
150  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
UCC28086DG4  
UCC28086DR  
UCC28086DRG4  
UCC28086P  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
PDIP  
P
Green (RoHS  
& no Sb/Br)  
UCC28086PG4  
UCC28086PW  
UCC28086PWG4  
UCC28086PWR  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
150  
150  
2000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
UCC28086PWRG4  
UCC38083D  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PW  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2000  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-2-260C-1 YEAR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU Level-1-260C-UNLIM  
UCC38083DG4  
UCC38083DR  
UCC38083DRG4  
UCC38083P  
D
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
P
Green (RoHS  
& no Sb/Br)  
UCC38083PG4  
UCC38084D  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
D
75  
Green (RoHS  
& no Sb/Br)  
UCC38084DG4  
UCC38084DR  
UCC38084DRG4  
UCC38084P  
D
75  
Green (RoHS  
& no Sb/Br)  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
D
Green (RoHS  
& no Sb/Br)  
P
Green (RoHS  
& no Sb/Br)  
UCC38084PG4  
UCC38084PW  
UCC38084PWG4  
UCC38084PWR  
UCC38084PWRG4  
UCC38085D  
PDIP  
P
50  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
150  
150  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2011  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
UCC38085DG4  
UCC38085P  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
P
P
D
D
D
D
P
P
8
8
8
8
8
8
8
8
8
75  
50  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
UCC38085PG4  
UCC38086D  
50  
Green (RoHS  
& no Sb/Br)  
75  
Green (RoHS  
& no Sb/Br)  
UCC38086DG4  
UCC38086DR  
UCC38086DRG4  
UCC38086P  
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
UCC38086PG4  
50  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jul-2011  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
UCC28083DR  
UCC28084DR  
UCC28084PWR  
UCC28085DR  
UCC28086DR  
UCC28086PWR  
UCC38083DR  
UCC38084DR  
UCC38084PWR  
UCC38086DR  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2500  
2000  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
7.0  
6.4  
6.4  
7.0  
6.4  
6.4  
7.0  
6.4  
5.2  
5.2  
3.6  
5.2  
5.2  
3.6  
5.2  
5.2  
3.6  
5.2  
2.1  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
2.1  
1.6  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
UCC28083DR  
UCC28084DR  
UCC28084PWR  
UCC28085DR  
UCC28086DR  
UCC28086PWR  
UCC38083DR  
UCC38084DR  
UCC38084PWR  
UCC38086DR  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2000  
2500  
2500  
2000  
2500  
2500  
2000  
2500  
340.5  
340.5  
367.0  
340.5  
340.5  
367.0  
340.5  
340.5  
367.0  
340.5  
338.1  
338.1  
367.0  
338.1  
338.1  
367.0  
338.1  
338.1  
367.0  
338.1  
20.6  
20.6  
35.0  
20.6  
20.6  
35.0  
20.6  
20.6  
35.0  
20.6  
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
TSSOP  
SOIC  
PW  
D
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

UCC38084PWRG4

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085D

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085DG4

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085DRG4

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085P

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085PG4

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085PW

IC 1 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO8, GREEN, PLASTIC, TSSOP-8, Switching Regulator or Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085PWG4

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO8, GREEN, PLASTIC, TSSOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38085PWR

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO8, GREEN, PLASTIC, TSSOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38086

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC38086D

8-PIN CURRENT MODE PUSH-PULL PWM CONTROLLERS WITH PROGRAMMABLE SLOPE COMPENSATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI