UCC5350MCDWV [TI]

具有米勒钳位或分离输出以及 8V 或 12V UVLO 的 3kVrms、5A/5A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125;
UCC5350MCDWV
型号: UCC5350MCDWV
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有米勒钳位或分离输出以及 8V 或 12V UVLO 的 3kVrms、5A/5A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125

栅极驱动 驱动器
文件: 总60页 (文件大小:1975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
UCC53x0 单通道隔离式栅极驱动器  
1 特性  
3 说明  
1
特性选项  
UCC53x0 是一系列 单通道隔离式栅极驱动器,用于驱  
MOSFETIGBTSiC MOSFET GaN FET  
(UCC5350SBD)UCC53x0S 提供分离输出,可分别  
控制上升和下降时间。UCC53x0M 将晶体管的栅极连  
接到内部钳位,以防止米勒电流造成假接通。  
UCC53x0E UVLO2 GND2 为基准,以获取真实  
UVLO 读数。  
分离输出 (UCC53x0S)  
GND2 为基准的 UVLO (UCC53x0E)  
米勒钳位选项 (UCC53x0M)  
8 引脚 D4mm 爬电)和  
DWV8.5mm 爬电)封装  
60ns(典型值)传播延迟  
100kV/μs 最低 CMTI  
UCC53x0 采用 4mm SOIC-8 (D) 8.5mm SOIC-8  
(DWV) 封装,可分别支持高达 3kVRMS 5kVRMS 的  
隔离电压。凭借这些各种不同的选项,UCC53x0 系列  
非常适合电机驱动器和工业电源。  
隔离层寿命达 40 年以上  
3V 15V 输入电源电压  
高达 33V 的驱动器电源电压  
8V 12V UVLO 选项  
与光耦合器相比,UCC53x0 系列的部件间偏移更低,  
传播延迟更小,工作温度更高,并且 CMTI 更高。  
输入引脚具有负 5V 电压处理能力  
安全相关认证:  
7000VPK 隔离 DWV(计划)和 4242VPK 隔离  
D(符合 DIN V VDE V 0884-11:2017-01 和  
DIN EN 61010-1 标准)  
器件信息(1)  
最低拉电流和灌  
电流  
可订购部件号  
说明  
5000VRMS DWV 3000VRMS D  
隔离等级长达 1 分钟(符合 UL 1577 标准)  
UCC5310MC  
UCC5320SC  
2.4A 1.1A  
2.4A 2.2A  
米勒钳位  
分离输出  
符合 GB4943.1-2011  
D DWV 标准的 CQC 认证(计划)  
UVLO IGBT 发射极为基  
UCC5320EC  
2.4A 2.2A  
UCC5350MC  
UCC5350SB  
UCC5390SC  
5A 5A  
5A 5A  
10A 10A  
米勒钳位  
CMOS 输入  
具有 8V UVLO 的分离输出  
分离输出  
工作温度范围:–40°C +125°C  
UVLO IGBT 发射极为基  
2 应用  
UCC5390EC  
10A 10A  
电机驱动器  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
高压直流到直流转换器  
UPS PSU  
(2) 有关器件的详细比较,请参见  
器件比较表  
混合动力汽车 (HEV) 和电动车 (EV) 电源模块  
光伏逆变器  
4
功能框图(SE M 版本)  
VCC2  
VCC1  
VCC2  
VCC2  
VCC1  
VCC1  
UVLO2  
VCC2  
VCC2  
VCC2  
UVLO,  
Level  
Shift  
UVLO,  
Level  
Shift  
UVLO,  
Level  
Shift  
UVLO  
and  
Input  
Logic  
UVLO  
and  
Input  
Logic  
UVLO  
and  
Input  
Logic  
IN+  
IN+  
INœ  
IN+  
VOUTH  
VOUTL  
VOUT  
VOUT  
and  
and  
t
t
and  
t
Ctrl  
Logic  
Ctrl  
Logic  
Ctrl  
Logic  
CLAMP  
INœ  
INœ  
2V  
GND2  
VEE2  
VEE2  
GND1  
GND1  
VEE2  
GND1  
S Version  
M Version  
E Version  
Copyright © 2018, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSER8  
 
 
 
 
 
 
 
 
 
 
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
目录  
Configuration............................................................ 22  
10 Detailed Description ........................................... 25  
10.1 Overview ............................................................... 25  
10.2 Functional Block Diagram ..................................... 25  
10.3 Feature Description............................................... 27  
10.4 Device Functional Modes...................................... 31  
11 Application and Implementation........................ 33  
11.1 Application Information.......................................... 33  
11.2 Typical Application ............................................... 33  
12 Power Supply Recommendations ..................... 39  
13 Layout................................................................... 40  
13.1 Layout Guidelines ................................................. 40  
13.2 Layout Example .................................................... 41  
13.3 PCB Material......................................................... 43  
14 器件和文档支持 ..................................................... 44  
14.1 文档支持................................................................ 44  
14.2 ....................................................................... 44  
14.3 相关链接................................................................ 44  
14.4 接收文档更新通知 ................................................. 44  
14.5 社区资源................................................................ 44  
14.6 ....................................................................... 44  
14.7 静电放电警告......................................................... 44  
14.8 术语表 ................................................................... 44  
15 机械、封装和可订购信息....................................... 45  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
功能框图(SE M 版本.................................. 1  
修订历史记录 ........................................................... 3  
Device Comparison Table..................................... 4  
Pin Configuration and Function........................... 5  
Specifications......................................................... 6  
8.1 Absolute Maximum Ratings ...................................... 6  
8.2 ESD Ratings.............................................................. 6  
8.3 Recommended Operating Conditions....................... 6  
8.4 Thermal Information.................................................. 7  
8.5 Power Ratings........................................................... 7  
8.6 Insulation Specifications for D Package.................... 8  
8.7 Insulation Specifications for DWV Package.............. 9  
8.8 Safety-Related Certifications For D Package ......... 10  
8.9 Safety-Related Certifications For DWV Package.... 10  
8.10 Safety Limiting Values .......................................... 10  
8.11 Electrical Characteristics....................................... 11  
8.12 Switching Characteristics...................................... 13  
8.13 Insulation Characteristics Curves ......................... 14  
8.14 Typical Characteristics.......................................... 15  
Parameter Measurement Information ................ 22  
9.1 Propagation Delay, Inverting, and Noninverting  
9
2
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
5 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (October 2018) to Revision F  
Page  
已删除 从第 2 个项目中删除了“(UCC5390EC)”。现在有三个已发行的宽体器件 ................................................................... 1  
已添加 在安全相关认证中添加了“DIN EN 61010-1............................................................................................................. 1  
已添加 在整个安全相关认证项目中添加了(计划)”........................................................................................................... 1  
已更改 在说明中使用开关类型信息更改了引脚配置和驱动强度 型号”................................................................................. 1  
Changed creepage and clearance from 9 mm to 8.5 mm in Insulation Specifications and throughout datasheet................ 9  
Added VDE and CQC certification for D package and UL file number for DWV package .................................................. 10  
Changed test condition for VOH............................................................................................................................................. 11  
已更改 a minor detail to the UCC53x0M figures................................................................................................................... 29  
已更改 typical application circuit for E Version to include capacitors on negative bias ...................................................... 34  
Changes from Revision D (May 2018) to Revision E  
Page  
Changed UCC5310 DWV package from Preview to Final. .................................................................................................... 4  
Changed UCC5320 DWV package from Preview to Final. .................................................................................................... 4  
Changes from Revision C (February 2018) to Revision D  
Page  
已更改 将 UCC5390EC 的销售状态从预览更改成了生产............................................................................................... 1  
Changes from Revision B (August 2017) to Revision C  
Page  
已添加 将 UCC5350SBDUCC5320SCDWVUCC5310MCDWV UCC5390ECDWV 器件添加至数据表 .................... 1  
已更改 特性、 应用、 说明和功能框图,以包括 E M 版本,以及 DWV 封装信息。......................................................... 1  
Added UCC5350SB to the pin configuration and function .................................................................................................... 5  
Added Minimum Storage Temperature .................................................................................................................................. 6  
Changed from VDE V 0884-10 to VDE V 0884-11 in insulation specification and safety-related certification table ............. 8  
Changed Safety Limiting Values ......................................................................................................................................... 10  
Deleted test conditions for Supply Currents......................................................................................................................... 11  
已添加 Typical Curves and Test Conditions to include UCC5390 and UCC5350 information............................................. 15  
已删除 Device I/O Figure ..................................................................................................................................................... 32  
已更改 ESD Figure .............................................................................................................................................................. 32  
已添加 在认证部分添加 UL 在线认证目录 ............................................................................................................................ 44  
Changes from Revision A (June 2017) to Revision B  
Page  
已更改 最低环境工作温度为 –55°C –40°C ........................................................................................................................ 1  
Changes from Original (June 2017) to Revision A  
Page  
已删除 从标题中删除了可用于未来 10A 器件的 17A 规格...................................................................................................... 1  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
6 Device Comparison Table  
MINIMUM  
DEVICE  
MINIMUM  
SINK  
CURRENT  
PIN  
PACKAGE  
SOURCE  
UVLO  
ISOLATION RATING  
OPTION(1)  
UCC5310MC  
UCC5320EC  
UCC5320SC  
CONFIGURATION  
CURRENT  
D
3-kVRMS  
5-kVRMS  
2.4 A  
2.4 A  
2.4 A  
1.1 A  
2.2 A  
2.2 A  
Miller clamp  
12 V  
12 V  
12 V  
DWV  
UVLO with reference  
to GND2  
D
3-kVRMS  
D
DWV  
D
3-kVRMS  
5-kVRMS  
3-kVRMS  
3-kVRMS  
3-kVRMS  
5-kVRMS  
3-kVRMS  
Split output  
UCC5350MC  
UCC5350SB  
5 A  
5 A  
5 A  
5 A  
Miller clamp  
Split Output  
12 V  
8 V  
D
D
UVLO with reference  
to GND2  
UCC5390EC  
UCC5390SC  
10 A  
10 A  
10 A  
10 A  
12 V  
12 V  
DWV  
D
Split output  
(1) The S, E, and M suffixes are part of the orderable part number. See the 机械、封装和可订购信息 section for the full orderable part  
number.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
7 Pin Configuration and Function  
UCC5320S, UCC5350SB, and UCC5390S  
UCC5310M and UCC5350M  
8-Pin SOIC  
8-Pin SOIC  
Top View  
Top View  
VCC1  
IN+  
1
2
3
4
8
7
6
5
VEE2  
VCC1  
IN+  
1
2
3
4
8
7
6
5
VEE2  
CLAMP  
OUT  
OUTL  
OUTH  
VCC2  
INœ  
INœ  
GND1  
VCC2  
GND1  
Not to scale  
Not to scale  
UCC5320E and UCC5390E  
8-Pin SOIC  
Top View  
VCC1  
1
2
3
4
8
7
6
5
VEE2  
IN+  
INœ  
GND2  
OUT  
VCC2  
GND1  
Not to scale  
Pin Functions  
PIN  
NO.  
TYPE  
DESCRIPTION  
NAME  
UCC53x0S UCC53x0M UCC53x0E  
Active Miller-clamp input found on the UCC53x0M used to prevent false  
turnon of the power switches.  
CLAMP  
GND1  
GND2  
4
7
4
4
I
G
G
Input ground. All signals on the input side are referenced to this ground.  
Gate-drive common pin. Connect this pin to the IGBT emitter. UVLO  
referenced to GND2 in the UCC53x0E.  
7
Noninverting gate-drive voltage-control input. The IN+ pin has a CMOS  
input threshold. This pin is pulled low internally if left open. Use 4 to  
understand the input and output logic of these devices.  
IN+  
IN–  
2
3
2
3
2
3
I
I
Inverting gate-drive voltage control input. The IN– pin has a CMOS input  
threshold. This pin is pulled high internally if left open. Use 4 to  
understand the input and output logic of these devices.  
OUT  
6
6
6
O
O
O
Gate-drive output for UCC53x0E and UCC53x0M versions.  
Gate-drive pullup output found on the UCC53x0S.  
Gate-drive pulldown output found on the UCC53x0S.  
OUTH  
OUTL  
7
Input supply voltage. Connect a locally decoupled capacitor to GND. Use a  
low-ESR or ESL capacitor located as close to the device as possible.  
VCC1  
VCC2  
1
5
1
5
1
5
P
P
Positive output supply rail. Connect a locally decoupled capacitor to VEE2  
.
Use a low-ESR or ESL capacitor located as close to the device as possible.  
Negative output supply rail for E version, and GND for S and M versions.  
Connect a locally decoupled capacitor to GND2 for E version. Use a low-  
ESR or ESL capacitor located as close to the device as possible.  
VEE2  
8
8
8
P
Copyright © 2017–2019, Texas Instruments Incorporated  
5
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over operating free air temperature range (unless otherwise noted)(1)  
MIN  
GND1 – 0.3  
–0.3  
MAX  
18  
UNIT  
V
Input bias pin supply voltage  
Driver bias supply  
VCC1 – GND1  
VCC2 – VEE2  
35  
V
VEE2 bipolar supply voltage for  
E version  
VEE2 – GND2  
–17.5  
0.3  
V
Output signal voltage  
Input signal voltage  
VOUTH – VEE2, VOUTL – VEE2, VOUT – VEE2, VCLAMP – VEE2  
VIN+ – GND1, VIN– – GND1  
VEE2 – 0.3  
GND1 – 5  
–40  
VCC2 + 0.3  
VCC1 + 0.3  
150  
V
V
(2)  
Junction temperature, TJ  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) To maintain the recommended operating conditions for TJ, see the Thermal Information.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS–001(1)  
±4000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
15  
UNIT  
VCC1  
VCC2  
VCC2  
VEE2  
VSUP2  
TA  
Supply voltage, input side  
V
V
Positive supply voltage output side (VCC2 – VEE2), UCC53x0  
Positive supply voltage output side (VCC2 – VEE2), UCC5350SBD  
Bipolar supply voltage for E version (VEE2 – GND2), UCC53x0  
Total supply voltage output side (VCC2 – VEE2), UCC53x0  
Ambient temperature  
13.2  
9.5  
33  
33  
V
–16  
13.2  
–40  
0
V
33  
V
125  
°C  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
8.4 Thermal Information  
UCC53x0  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
109.5  
43.1  
DWV (SOIC)  
8 PINS  
119.8  
64.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction–to-ambient thermal resistance  
Junction–to-case (top) thermal resistance  
Junction–to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
51.2  
65.4  
Junction–to-top characterization parameter  
Junction–to-board characterization parameter  
18.3  
37.6  
ΨJB  
50.7  
63.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
D Package  
Maximum power dissipation on input and  
output  
PD  
1.14  
W
VCC1 = 15 V, VCC2 = 15 V, f = 2.1-MHz,  
50% duty cycle, square wave, 2.2-nF  
load  
PD1  
PD2  
Maximum input power dissipation  
Maximum output power dissipation  
0.05  
1.09  
W
W
DWV Package  
Maximum power dissipation on input and  
output  
PD  
1.04  
W
VCC1 = 15 V, VCC2 = 15 V, f = 1.9-MHz,  
50% duty cycle, square wave, 2.2-nF  
load  
PD1  
PD2  
Maximum input power dissipation  
Maximum output power dissipation  
0.05  
0.99  
W
W
Copyright © 2017–2019, Texas Instruments Incorporated  
7
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
UNIT  
8.6 Insulation Specifications for D Package  
VALUE  
D
PARAMETER  
TEST CONDITIONS  
CLR  
CPG  
External Clearance(1)  
External Creepage(1)  
Shortest pin–to-pin distance through air  
4  
mm  
mm  
Shortest pin–to-pin distance across the package  
surface  
4  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303–11); IEC 60112  
According to IEC 60664–1  
> 21  
> 600  
I
µm  
V
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I-IV  
I-III  
Overvoltage category per IEC 60664-1  
DIN V VDE 0884–11: 2017–01(2)  
Maximum repetitive peak  
isolation voltage  
VIORM  
AC voltage (bipolar)  
990  
700  
VPK  
VRMS  
VPK  
Maximum isolation working  
voltage  
AC voltage (sine wave); time dependent dielectric  
breakdown (TDDB) test;  
VIOWM  
Maximum transient isolation  
voltage  
VTEST = VIOTM, t = 60 s (qualification) ;  
VTEST = 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
4242  
4242  
Maximum surge isolation  
Test method per IEC 62368-1, 1.2/50-µs waveform,  
VTEST = 1.3 × VIOSM (qualification)  
VIOSM  
VPK  
voltage(3)  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
5  
5  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
qpd  
Apparent charge(4)  
pC  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method b1: At routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 x VIOTM, tini = 1 s;  
5  
Vpd(m) = 1.5 × VIORM, tm = 1 s  
Barrier capacitance, input to  
output(5)  
CIO  
RIO  
VIO = 0.4 × sin (2πft), f = 1 MHz  
1.2  
pF  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
Isolation resistance, input to  
output(5)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO, t = 60 s (qualification); VTEST = 1.2 ×  
VISO, t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall  
be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
8.7 Insulation Specifications for DWV Package  
VALUE  
UNIT  
PARAMETER  
TEST CONDITIONS  
DWV  
CLR  
CPG  
External Clearance(1)  
External Creepage(1)  
Shortest pin–to-pin distance through air  
8.5  
mm  
mm  
Shortest pin–to-pin distance across the package  
surface  
8.5  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303–11); IEC 60112  
According to IEC 60664–1  
> 21  
> 600  
I
µm  
V
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-III  
I-II  
Overvoltage category per IEC 60664-1  
DIN V VDE 0884–11: 2017–01(2)  
Maximum repetitive peak  
isolation voltage  
VIORM  
AC voltage (bipolar)  
2121  
VPK  
AC voltage (sine wave); time dependent dielectric  
breakdown (TDDB) test  
1500  
2121  
7000  
VRMS  
VDC  
VPK  
Maximum isolation working  
voltage  
VIOWM  
DC Voltage  
Maximum transient isolation  
voltage  
VTEST = VIOTM, t = 60 s (qualification) ;  
VTEST = 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
Maximum surge isolation  
Test method per IEC 62368-1, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM (qualification)  
VIOSM  
8000  
VPK  
voltage(3)  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s  
5  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
(4)  
qpd  
Apparent charge  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 x VIOTM, tini = 1 s;  
5  
Vpd(m) = 1.875 × VIORM, tm = 1 s  
Barrier capacitance, input to  
output(5)  
CIO  
RIO  
VIO = 0.4 × sin (2πft), f = 1 MHz  
1.2  
pF  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
Isolation resistance, input to  
output(5)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO, t = 60 s (qualification); VTEST = 1.2 ×  
VISO, t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.8 Safety-Related Certifications For D Package  
VDE  
UL  
CQC  
Certified according to DIN V VDE V 0884–11:2017–01  
and DIN EN 61010-1 (VDE 0411-1):2011-07  
Recognized under UL 1577  
Component Recognition Program  
Certified according to GB 4943.1–2011  
Basic Insulation  
Maximum Transient Isolation Overvoltage, 4242 VPK  
Basic Insulation,  
Altitude 5000m,  
Tropical Climate,  
;
Single protection, 3000 VRMS  
File Number: E181974  
Maximum Repetitive Peak Voltage, 990 VPK  
Maximum Surge Isolation Voltage, 4242 VPK  
;
700 VRMS Maximum Working Voltage  
Certificate Number: 40047657  
Certification number: CQC18001199354  
8.9 Safety-Related Certifications For DWV Package  
VDE  
UL  
CQC  
Plan to certify according to DIN V VDE V  
0884–11:2017–01 and DIN EN 61010-1  
Recognized under UL 1577  
Component Recognition Program  
Plan to certify according to GB  
4943.1–2011  
Reinforced Insulation  
Maximum Transient isolation Overvoltage, 7000 VPK  
Maximum Repetitive Peak Isolation Voltage, 2121 VPK  
Reinforced Insulation,  
Altitude 5000 m,  
Tropical Climate  
;
Single protection, 5000 VRMS  
File Number: E181974  
;
Maximum Surge Isolation Voltage, 8000 VPK  
Certification planned  
Certification planned  
8.10 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
D PACKAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R
θJA = 109.5°C/W, VCC2 = 15 V, TJ = 150°C, TA = 25°C,  
Output side  
Output side  
73  
see 1  
θJA = 109.5°C/W, VCC2 = 30 V, TJ = 150°C, TA = 25°C,  
see 1  
Safety output supply  
current  
IS  
mA  
36  
R
Input side  
Output side  
Total  
0.05  
Safety output supply  
power  
PS  
TS  
RθJA = 109.5°C/W, TJ = 150°C, TA = 25°C, see 3  
1.09  
1.14  
W
Maximum safety  
temperature(1)  
150  
°C  
DWV PACKAGE  
R
2  
θJA = 119.8°C/W, VI = 15 V, TJ = 150°C, TA = 25°C, see  
Output side  
Output side  
66  
33  
Safety input, output,  
or supply current  
IS  
mA  
RθJA = 119.8°C/W, VI = 30 V, TJ = 150°C, TA = 25°C, see  
2  
Input side  
Output side  
Total  
0.05  
0.99  
1.04  
Safety input, output,  
or total power  
PS  
TS  
RθJA = 119.8°C/W, TJ = 150°C, TA = 25°C, see 4  
W
Maximum safety  
temperature(1)  
150  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
8.11 Electrical Characteristics  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CL = 100-pF, TA =  
–40°C to +125°C, (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IVCC1  
Input supply quiescent current  
1.67  
1.1  
2.4  
1.8  
mA  
mA  
Output supply quiescent  
current  
IVCC2  
SUPPLY VOLTAGE UNDERVOLTAGE THRESHOLDS  
VCC1 Positive-going UVLO  
VIT+(UVLO1)  
2.6  
2.5  
0.1  
2.8  
V
V
V
threshold voltage  
VCC1 Negative-going UVLO  
VIT– (UVLO1)  
2.4  
threshold voltage  
VCC1 UVLO threshold  
Vhys(UVLO1)  
hysteresis  
UCC5310MC, UCC5320SC,UCC5320EC,UCC5390SC,UCC5390EC, and UCC5350MC UVLO THRESHOLDS (12-V UVLO Version)  
VCC2 Positive-going UVLO  
threshold voltage  
VIT+(UVLO2)  
VIT–(UVLO2)  
Vhys(UVLO2)  
12  
11  
1
13  
V
V
V
VCC2 Negative-going UVLO  
threshold voltage  
10.3  
VCC2 UVLO threshold voltage  
hysteresis  
UCC5350SB UVLO THRESHOLD (8-V UVLO Version)  
VCC2 Positive-going UVLO  
VIT+(UVLO2)  
8.7  
8.0  
0.7  
9.4  
V
V
V
threshold voltage  
VCC2 Negative-going UVLO  
VIT–(UVLO2)  
7.3  
threshold voltage  
VCC2 UVLO threshold voltage  
Vhys(UVLO2)  
hysteresis  
LOGIC I/O  
Positive-going input threshold  
voltage (IN+, IN–)  
VIT+(IN)  
0.55 × VCC1 0.7 × VCC1  
V
V
Negative-going input threshold  
voltage (IN+, IN–)  
VIT–(IN)  
0.3 × VCC1 0.45 × VCC1  
Input hysteresis voltage (IN+,  
IN–)  
Vhys(IN)  
IIH  
IIL  
0.1 × VCC1  
40  
V
High-level input leakage at IN+ IN+ = VCC1  
240  
µA  
IN– = GND1  
–240  
–310  
–40  
–80  
Low-level input leakage at IN–  
µA  
IN– = GND1 – 5 V  
GATE DRIVER STAGE  
High-level output voltage  
VOH  
(VCC2 - OUT) and  
(VCC2 - OUTH)  
IOUT = –20 mA  
100  
240  
mV  
UCC5320SC and UCC5320EC,  
IN+ = low, IN– = high; IO = 20 mA  
9.4  
17  
2
13  
26  
3
UCC5310MC,  
IN+ = low, IN– = high; IO = 20 mA  
Low level output voltage (OUT  
and OUTL)  
VOL  
mV  
UCC5390SC and UCC5390EC,  
IN+ = low, IN– = high; IO = 20 mA  
UCC5350MC and UCC5350SB,  
IN+ = low, IN– = high; IO = 20 mA  
5
7
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CL = 100-pF, TA =  
–40°C to +125°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.4  
2.4  
10  
TYP  
4.3  
4.3  
17  
MAX UNIT  
UCC5320SC and UCC5320EC,  
IN+ = high, IN– = low  
UCC5310MC, IN+ = high, IN– = low  
A
UCC5390SC and UCC5390EC,  
IN+ = high, IN– = low  
IOH  
Peak source current  
UCC5350MC,  
IN+ = high, IN– = low  
5
5
10  
UCC5350SB  
IN+ = high, IN– = low  
8.5  
UCC5320SC and UCC5320EC,  
IN+ = low, IN– = high  
2.2  
1.1  
10  
4.4  
2.2  
17  
UCC5310MC, IN+ = low, IN– = high  
A
UCC5390SC and UCC5390EC,  
IN+ = low, IN– = high  
IOL  
Peak sink current  
UCC5350MC,  
IN+ = low, IN– = high  
5
5
10  
10  
UCC5350SB  
IN+ = low, IN– = high  
ACTIVE MILLER CLAMP (UCC53xxM only)  
UCC5310MC, ICLAMP = 20 mA  
26  
7
50  
VCLAMP  
Low-level clamp voltage  
Clamp low-level current  
mV  
10  
UCC5350MC, ICLAMP = 20 mA  
UCC5310MC, VCLAMP = VEE2 + 15 V  
UCC5350MC, VCLAMP = VEE2 + 15 V  
UCC5310MC, VCLAMP = VEE2 + 2 V  
UCC5350MC, VCLAMP = VEE2 + 2 V  
UCC5310MC and UCC5350MC  
1.1  
5
2.2  
10  
1.5  
10  
2.1  
ICLAMP  
A
A
0.7  
5
Clamp low-level current for  
low output voltage  
ICLAMP(L)  
VCLAMP-TH  
Clamp threshold voltage  
2.3  
1.3  
V
SHORT CIRCUIT CLAMPING  
IN+ = high, IN– = low, tCLAMP = 10 µs,  
IOUTH or IOUT= 500 mA  
Clamping voltage  
VCLP-OUT  
1
1.5  
0.9  
V
(VOUTH – VCC2 or VOUT –VCC2  
)
IN+ = low, IN– = high, tCLAMP = 10 µs,  
ICLAMP or IOUTL = –500 mA  
Clamping voltage  
VCLP-OUT  
(VEE2 – VOUTL or VEE2  
V
V
IN+ = low, IN– = high,  
ICLAMP or IOUTL = –20 mA  
VCLAMP or VEE2 – VOUT  
)
1
ACTIVE PULLDOWN  
Active pulldown voltage on  
OUTL, CLAMP, OUT  
IOUTL or IOUT = 0.1 × IOUTL(typ), VCC2  
open  
=
VOUTSD  
1.8  
2.5  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
8.12 Switching Characteristics  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, TA = –40°C to  
+125°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
UCC5320SC, UCC5320EC, and UCC5310MC,  
CLOAD = 1 nF  
12  
28  
26  
ns  
ns  
tr  
Output-signal rise time  
UCC5390SC, UCC5350SB, UCC5390EC, and  
UCC5350MC, CLOAD = 1 nF  
10  
UCC5320SC and UCC5320EC, CLOAD = 1 nF  
UCC5310MC, CLOAD = 1 nF  
10  
10  
25  
26  
ns  
ns  
tf  
Output-signal fall time  
UCC5390SC, UCC5350SB, UCC5390EC, and  
UCC5350MC, CLOAD = 1 nF  
10  
22  
ns  
UCC5320SC and UCC5320EC, CLOAD = 100  
pF  
60  
60  
65  
72  
75  
ns  
ns  
ns  
Propagation delay  
(default versions), high  
tPLH  
UCC5310MC, CLOAD = 100 pF  
UCC5390SC, UCC5350SB, UCC5390EC, and  
UCC5350MC, CLOAD = 100 pF  
100  
UCC5320CS and UCC5320EC, CLOAD = 100  
pF  
60  
60  
65  
75  
75  
ns  
ns  
ns  
Propagation delay  
(default versions), low  
tPHL  
UCC5310MC, CLOAD = 100 pF  
UCC5390SC, UCC5350SB, UCC5390EC, and  
UCC5350MC, CLOAD = 100 pF  
100  
tUVLO1_rec  
tUVLO2_rec  
UVLO recovery delay of VCC1  
UVLO recovery delay of VCC2  
See 55  
See 55  
30  
50  
µs  
µs  
UCC5320SC and UCC5320EC, CLOAD = 100  
pF  
1
1
20  
20  
20  
20  
25  
25  
25  
25  
ns  
ns  
UCC5310MC, CLOAD = 100 pF  
Pulse width distortion  
tPWD  
|tPHL – tPLH  
|
UCC5390SC, UCC5350SB, and UCC5390EC,  
CLOAD = 100 pF  
1
ns  
UCC5350MC, CLOAD = 100 pF  
1
ns  
UCC5320SC and UCC5320EC, CLOAD = 100  
pF  
1
ns  
UCC5310MC, CLOAD = 100 pF  
1
ns  
tsk(pp)  
Part-to-part skew(1)  
UCC5390SC, UCC5350SB, and UCC5390EC,  
CLOAD = 100 pF  
1
ns  
UCC5350MC, CLOAD = 100 pF  
1
ns  
Common-mode transient  
immunity  
CMTI  
PWM is tied to GND or VCC1, VCM = 1200 V  
100  
120  
kV/µs  
(1) tsk(pp) is the magnitude of the difference in propagation delay times between the output of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads guaranteed by characterization.  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.13 Insulation Characteristics Curves  
80  
80  
60  
40  
20  
0
VCC2=15V  
VCC2=30V  
VCC2=15V  
VCC2=30V  
60  
40  
20  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
DT0h0e1r  
DT0h0e1r  
1. Thermal Derating Curve for Limiting Current per VDE  
2. Thermal Derating Curve for Limiting Current per VDE  
for D Package  
for DWV Package  
1500  
1200  
900  
600  
300  
0
1500  
1200  
900  
600  
300  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
DT0h0e1r  
Ambient Temperature (èC)  
DT0h0e1r  
3. Thermal Derating Curve for Limiting Power per VDE for  
4. Thermal Derating Curve for Limiting Power per VDE for  
D Package  
DWV Package  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
8.14 Typical Characteristics  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
8
7.6  
7.2  
6.8  
6.4  
6
24  
22  
20  
18  
16  
14  
12  
10  
8
UCC5320SC  
UCC5310MC  
UCC5320EC  
UCC5390SC  
UCC5350MC  
UCC5390EC  
5.6  
5.2  
4.8  
4.4  
4
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
VCC2 (V)  
VCC2 (V)  
D010  
D019  
CLOAD = 150 nF  
CLOAD = 150 nF  
5. Output-High Drive Current vs Output Voltage  
6. Output-High Drive Current vs Output Voltage  
20  
18  
16  
14  
12  
10  
8
8.5  
8
IOH  
IOL  
UCC5320SC  
UCC5310MC  
UCC5320EC  
7.5  
7
6.5  
6
5.5  
5
6
4.5  
4
4
2
3.5  
3
0
14  
16  
18  
20  
22  
24  
VCC2 (V)  
26  
28  
30  
32  
34  
10  
12  
14  
16  
18  
20  
VCC2 (V)  
22  
24  
26  
28  
30  
D011  
D010  
CLOAD = 150 nF  
CLOAD = 150 nF  
8. Output-Low Drive Current vs Output Voltage  
7. UCC5350SBD Output-High Drive Current vs Output  
Voltage  
24  
1.24  
1.22  
1.2  
UCC5390SC  
UCC5350MC  
UCC5320SC  
UCC5320EC  
UCC5310MC  
22  
UCC5390EC  
20  
1.18  
1.16  
1.14  
1.12  
1.1  
18  
16  
14  
12  
10  
1.08  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
VCC2 (V)  
Temperature (èC)  
D020  
D004  
CLOAD = 150 nF  
9. Output-Low Drive Current vs Output Voltage  
IN+ = L  
IN– = H  
10. ICC1 Supply Current vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
2.3  
2.275  
2.25  
1.26  
1.24  
1.22  
1.2  
UCC5320SC  
UCC5320EC  
UCC5310MC  
UCC5390SC  
UCC5390EC  
UCC5350MC  
UCC5350SB  
2.225  
2.2  
1.18  
1.16  
1.14  
1.12  
1.1  
2.175  
2.15  
2.125  
2.1  
2.075  
2.05  
1.08  
1.06  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D005  
D046  
IN+ = L  
IN– = H  
D005_Icc1_vs_temperature_SLLSER8.grf  
IN+ = H  
IN– = L  
11. ICC1 Supply Current vs Temperature  
12. ICC1 Supply Current vs Temperature  
1.685  
1.68  
2.34  
2.31  
2.28  
2.25  
2.22  
2.19  
2.16  
2.13  
2.1  
UCC5390SC  
UCC5390EC  
UCC5350MC  
UCC5350SB  
1.675  
1.67  
UCC5320SC  
UCC5320EC  
UCC5310MC  
1.665  
1.66  
1.655  
1.65  
1.645  
1.64  
2.07  
2.04  
2.01  
1.98  
1.635  
1.63  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Frequency (MHz)  
Temperature (èC)  
D006  
D047  
IN+ = H  
IN– = L  
D006_Icc1_vs_frequency_SLLSER8.grf  
Duty Cycle = 50%  
T = 25°C  
13. ICC1 Supply Current vs Temperature  
14. ICC1 Supply Current vs Input Frequency  
1.68  
1.675  
1.67  
1.25  
1.2  
UCC5320SC  
UCC5320EC  
UCC5310MC  
1.665  
1.66  
1.15  
1.1  
UCC5390SC  
UCC5390EC  
UCC5350MC  
UCC5350SB  
1.655  
1.65  
1.645  
1.64  
1.05  
1
1.635  
1.63  
0.95  
0.9  
1.625  
1.62  
1.615  
1.61  
0.85  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Frequency (MHz)  
Temperature (èC)  
D048  
D007  
Duty Cycle = 50%  
T = 25°C  
IN+ = L  
IN– = H  
15. ICC1 Supply Current vs Input Frequency  
16. ICC2 Supply Current vs Temperature  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
1.4  
1.35  
1.3  
1.45  
UCC5390SC  
UCC5390EC  
UCC5350MC  
UCC5350SB  
UCC5320SC  
UCC5320EC  
UCC5310MC  
1.4  
1.35  
1.3  
1.25  
1.2  
1.25  
1.2  
1.15  
1.1  
1.15  
1.1  
1.05  
1
1.05  
0.95  
0.9  
1
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D049  
D008  
IN+ = L  
IN– = H  
IN+ = H  
IN– = L  
17. ICC2 Supply Current vs Temperature  
18. ICC2 Supply Current vs Temperature  
1.7  
1.65  
1.6  
1.14  
1.12  
1.1  
UCC5390SC  
UCC5390EC  
UCC5350MC  
UCC5350SB  
UCC5320SC  
UCC5320EC  
UCC5310MC  
1.55  
1.5  
1.45  
1.4  
1.35  
1.3  
1.08  
1.06  
1.04  
1.25  
1.2  
1.15  
1.1  
1.05  
1
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Temperature (èC)  
Frequency (MHz)  
D050  
D009  
IN+ = H  
IN– = L  
Duty Cycle = 50%  
T = 25°C  
19. ICC2 Supply Current vs Temperature  
20. ICC2 Supply Current vs Input Frequency  
1.68  
1.675  
1.67  
1.375  
1.35  
1.325  
1.3  
UCC5320SC  
UCC5310MC  
UCC5320EC  
1.665  
1.66  
1.275  
1.25  
1.225  
1.2  
1.655  
1.65  
UCC5390SC  
1.645  
1.64  
UCC5390EC  
UCC5350MC  
UCC5350SB  
1.635  
1.63  
1.175  
1.15  
1.125  
1.1  
1.625  
1.62  
1.615  
1.61  
1.075  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0
1
2
3
4
5
6
7
8
9
10  
Frequncy (MHz)  
LOAD (nF)  
D051  
D014  
Duty Cycle = 50%  
T = 25°C  
fSW = 1 kHz  
22. ICC2 Supply Current vs Load Capacitance  
21. ICC2 Supply Current vs Input Frequency  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
1.425  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
UCC5390SC  
UCC5390EC  
UCC5350MC  
0mA  
5mA  
10mA  
15mA  
20mA  
1.4  
1.375  
1.35  
1.325  
1.3  
1.275  
1.25  
1.225  
1.2  
0
-5  
-10  
1.175  
1.15  
0
1
2
3
4
5
6
7
8
9
10  
-60  
-30  
0
30  
60  
90  
120  
150  
180  
LOAD (nF)  
Temperature (èC)  
D045  
D025  
fSW = 1 kHz  
IClamp = 0mA~20mA  
24. UCC5310M VClamp vs Temperature  
23. ICC2 Supply Current vs Load Capacitance  
25  
22.5  
20  
5
4.5  
4
0mA  
5mA  
10mA  
15mA  
20mA  
UCC5350MC  
UCC5310MC  
17.5  
15  
3.5  
3
12.5  
10  
7.5  
5
2.5  
2
2.5  
0
1.5  
1
-2.5  
-5  
0.5  
0
-7.5  
-10  
-75  
-45  
-15  
15  
45  
75  
105  
135  
165  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D022  
D040  
IClamp = 0mA~20mA  
25. UCC5350M VClamp vs Temperature  
26. VClamp-TH vs Temperature  
10  
9.75  
9.5  
11  
10.5  
10  
UCC5350MC  
UCC5390EC  
UCC5390SC  
9.25  
9
9.5  
9
UCC5310MC  
UCC5320EC  
UCC5320SC  
8.75  
8.5  
8.5  
8
8.25  
8
7.5  
7
7.75  
7.5  
7.25  
6.5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D027  
D028  
27. Rise Time vs Temperature  
28. Rise Time vs Temperature  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
10  
9.5  
9
11.5  
UCC5310MC  
UCC5320EC  
UCC5320SC  
11  
UCC5350MC  
UCC5390EC  
UCC5390SC  
10.5  
10  
8.5  
8
9.5  
9
8.5  
8
7.5  
7
7.5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
D029  
D030  
29. Fall Time Vs Temperature  
30. Fall Time vs Temperature  
53.25  
53  
54  
53.5  
53  
UCC5310MC  
UCC5320EC  
UCC5320SC  
UCC5350MC  
UCC5390EC  
UCC5390SC  
52.75  
52.5  
52.25  
52  
52.5  
52  
51.5  
51  
51.75  
51.5  
51.25  
51  
50.5  
50  
49.5  
49  
50.75  
48.5  
48  
50.5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D031  
D032  
31. Propagation Delay tPLH vs Temperature  
32. Propagation Delay tPLH vs Temperature  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
53.5  
53  
TPLH INP  
TPHL INP  
TPLH INN  
TPHL INN  
UCC5310MC  
UCC5320EC  
UCC5320SC  
52.5  
52  
51.5  
51  
50.5  
50  
49.5  
49  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D033  
D016  
34. Propagation Delay tPHL vs Temperature  
33. UCC5350SBD Propagation Delay vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
57  
56.5  
56  
18  
16  
14  
12  
10  
8
55.5  
55  
UCC5350MC  
UCC5390EC  
UCC5390SC  
54.5  
54  
53.5  
53  
6
52.5  
52  
UCC5320SC  
UCC5310MC  
UCC5320EC  
4
51.5  
2
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
LOAD (nF)  
1
Temperature (èC)  
D034  
D012  
fSW = 1 kHz  
RGH = 0 Ω  
RGL = 0 Ω  
35. Propagation Delay tPHL vs Temperature  
36. Rise Time vs Load Capacitance  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
50  
UCC5390SC  
UCC5390EC  
UCC5350MC  
1-nF  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.2-nF  
5.6-nF  
10-nF  
6
4
0
1
2
3
4
5
6
7
8
9
10  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
Load Capacitance (nF)  
VCC2 (V)  
D039  
D011  
fSW = 1 kHz  
RGH = 0 Ω  
RGL = 0 Ω  
37. Rise Time vs Load Capacitance  
38. UCC5350SBD Rise Time vs CL and VCC2  
18  
16  
14  
12  
10  
8
39  
UCC5390SC  
UCC5390EC  
UCC5350MC  
36  
33  
30  
27  
24  
21  
18  
15  
12  
9
6
4
UCC5320SC  
2
UCC5310MC  
UCC5320EC  
6
0
3
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
LOAD (nF)  
1
0
1
2
3
4
5
6
7
8
9
10  
Load Capacitance (nF)  
D013  
D038  
fSW = 1 kHz  
RGH = 0 Ω  
RGL = 0 Ω  
fSW = 1 kHz  
RGH = 0 Ω  
RGL = 0 Ω  
39. Fall Time vs Load Capacitance  
40. Fall Time vs Load Capacitance  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TA =  
–40°C to +125°C, (unless otherwise noted)  
36  
1-nF  
2.2-nF  
33  
5.6-nF  
10-nF  
30  
27  
24  
21  
18  
15  
12  
9
6
3
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
VCC2 (V)  
D013  
41. UCC5350SBD Fall Time vs CL and VCC2  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
9 Parameter Measurement Information  
9.1 Propagation Delay, Inverting, and Noninverting Configuration  
42 shows the propagation delay OUTH and OUTL for noninverting configurations. 43 shows the  
propagation delay with the inverting configuration. These figures also demonstrate the method used to measure  
the rise (tr) and fall (tf) times.  
0 V  
INœ  
50%  
tf  
tr  
IN+  
90%  
50%  
OUTH  
OUTL  
10%  
tPLH  
tPHL  
42. OUTH and OUTL Propagation Delay, Noninverting Configuration  
INœ  
50%  
VCC2  
IN+  
tf  
tr  
90%  
50%  
OUTH  
10%  
OUTL  
tPLH  
tPHL  
43. OUTH and OUTL Propagation Delay, Inverting Configuration  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
Propagation Delay, Inverting, and Noninverting Configuration (接下页)  
9.1.1 CMTI Testing  
44, 45, and 46 are simplified diagrams of the CMTI testing configuration used for each device type.  
15 V  
5 V  
VCC2  
VCC1  
C1  
C2  
C3  
C4  
GND1  
OUTH  
PWM  
IN+  
OUTL  
VEE2  
INœ  
+
œ
VCM  
Copyright © 2017, Texas Instruments Incorporated  
44. CMTI Test Circuit for Split Output (UCC53x0S)  
15 V  
5 V  
VCC2  
VCC1  
C1  
C2  
C3  
C4  
GND1  
OUT  
PWM  
IN+  
CLAMP  
VEE2  
INœ  
+
œ
VCM  
Copyright © 2017, Texas Instruments Incorporated  
45. CMTI Test Circuit for Miller Clamp (UCC53x0M)  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Propagation Delay, Inverting, and Noninverting Configuration (接下页)  
15 V  
5 V  
VCC2  
VCC1  
C1  
C2  
C3  
C4  
GND1  
OUT  
PWM  
IN+  
GND2  
VEE2  
INœ  
+
œ
VCM  
Copyright © 2017, Texas Instruments Incorporated  
46. CMTI Test Circuit for UVLO2 with Respect to GND2 (UCC53x0E)  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
10 Detailed Description  
10.1 Overview  
The UCC53x0 family of isolated gate drivers has three variations: split output, Miller clamp, and UVLO2  
referenced to GND2 (see Device Comparison Table). The isolation inside the UCC53x0 family of devices is  
implemented with high-voltage SiO2-based capacitors. The signal across the isolation has an on-off keying  
(OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier (see 48).  
The transmitter sends a high-frequency carrier across the barrier to represent one digital state and sends no  
signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning  
and produces the output through a buffer stage. The UCC53x0 devices also incorporate advanced circuit  
techniques to maximize the CMTI performance and minimize the radiated emissions from the high frequency  
carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, 47, shows a  
functional block diagram of a typical channel. 48 shows a conceptual detail of how the OOK scheme works.  
47 shows how the input signal passes through the capacitive isolation barrier through modulation (OOK) and  
signal conditioning.  
10.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Oscillator  
Techniques  
Copyright © 2017, Texas Instruments Incorporated  
47. Conceptual Block Diagram of a Capacitive Data Channel  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
48. On-Off Keying (OOK) Based Modulation Scheme  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VCC2  
UVLO2  
VCC1  
UVLO1  
VCC2  
IN+  
Level  
Shifting  
and  
Control  
Logic  
OUTH  
OUTL  
INœ  
GND1  
VEE2  
49. Functional Block Diagram — Split Output (UCC53x0S)  
VCC2  
UVLO2  
VCC1  
UVLO1  
VCC2  
IN+  
Level  
Shifting  
and  
Control  
Logic  
OUT  
INœ  
CLAMP  
2 V  
GND1  
VEE2  
50. Functional Block Diagram — Miller Clamp (UCC53x0M)  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
Functional Block Diagram (接下页)  
VCC2  
UVLO2  
VCC1  
UVLO1  
VCC2  
IN+  
Level  
Shifting  
and  
Control  
Logic  
OUT  
INœ  
GND2  
VEE2  
GND1  
51. Functional Block Diagram — UVLO With Respect to GND2 (UCC53x0E)  
10.3 Feature Description  
10.3.1 Power Supply  
The VCC1 input power supply supports a wide voltage range from 3 V to 15 V and the VCC2 output supply  
supports a voltage range from 9.5 V to 33 V. For operation with bipolar supplies, the power device is turned off  
with a negative voltage on the gate with respect to the emitter or source. This configuration prevents the power  
device from unintentionally turning on because of current induced from the Miller effect. The typical values of the  
VCC2 and VEE2 output supplies for bipolar operation are 15 V and –8 V with respect to GND2 for IGBTs and 20 V  
and –5 V for SiC MOSFETs.  
For operation with unipolar supply, the VCC2 supply is connected to 15 V with respect to VEE2 for IGBTs, and 20  
V for SiC MOSFETs. The VEE2 supply is connected to 0 V. In this use case, the UCC53x0 device with Miller  
clamping function (UCC53x0M) can be used. The Miller clamping function is implemented by adding a low  
impedance path between the gate of the power device and the VEE2 supply. Miller current sinks through the  
clamp pin, which clamps the gate voltage to be lower than the turnon threshold value for the gate.  
10.3.2 Input Stage  
The input pins (IN+ and IN–) of the UCC53x0 family are based on CMOS-compatible input-threshold logic that is  
completely isolated from the VCC2 supply voltage. The input pins are easy to drive with logic-level control signals  
(such as those from 3.3-V microcontrollers), because the UCC53x0 family has a typical high threshold (VIT+(IN)) of  
0.55 × VCC1 and a typical low threshold of 0.45 × VCC1. A wide hysteresis (Vhys(IN)) of 0.1 × VCC1 makes for good  
noise immunity and stable operation. If any of the inputs are left open, 128 kΩ of internal pulldown resistance  
forces the IN+ pin low and 128 kΩ of internal resistance pulls IN– high. However, TI still recommends grounding  
an input or tying to VCC1 if it is not being used for improved noise immunity.  
Because the input side of the UCC53x0 family is isolated from the output driver, the input signal amplitude can  
be larger or smaller than VCC2 provided that it does not exceed the recommended limit. This feature allows  
greater flexibility when integrating the gate-driver with control signal sources and allows the user to choose the  
most efficient VCC2 for any gate. However, the amplitude of any signal applied to IN+ or IN– must never be at a  
voltage higher than VCC1  
.
版权 © 2017–2019, Texas Instruments Incorporated  
27  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
10.3.3 Output Stage  
The output stages of the UCC53x0 family feature a pullup structure that delivers the highest peak-source current  
when it is most needed which is during the Miller plateau region of the power-switch turnon transition (when the  
power-switch drain or collector voltage experiences dV/dt). The output stage pullup structure features a P-  
channel MOSFET and an additional pullup N-channel MOSFET in parallel. The function of the N-channel  
MOSFET is to provide a brief boost in the peak-sourcing current, which enables fast turn-on. Fast turn-on is  
accomplished by briefly turning on the N-channel MOSFET during a narrow instant when the output is changing  
states from low to high. 1 lists the typical internal resistance values of the pullup and pulldown structure.  
1. UCC53x0 On-Resistance  
DEVICE OPTION  
UCC5320SC and UCC5320EC  
UCC5310MC  
RNMOS  
4.5  
ROH  
12  
ROL  
0.65  
1.3  
RCLAMP  
Not applicable  
1.3  
UNIT  
Ω
4.5  
12  
Ω
UCC5390SC and UCC5390EC  
UCC5350MC  
0.76  
1.54  
1.54  
12  
0.13  
0.26  
0.26  
Not applicable  
0.26  
Ω
12  
Ω
UCC5350SB  
12  
Not applicable  
Ω
The ROH parameter is a DC measurement and is representative of the on-resistance of the P-channel device  
only. This parameter is only for the P-channel device, because the pullup N-channel device is held in the OFF  
state in DC condition and is turned on only for a brief instant when the output is changing states from low to high.  
Therefore, the effective resistance of the UCC53x0 pullup stage during this brief turnon phase is much lower than  
what is represented by the ROH parameter, which yields a faster turnon. The turnon-phase output resistance is  
the parallel combination ROH || RNMOS  
.
The pulldown structure in the UCC53x0 S and E versions is simply composed of an N-channel MOSFET. For the  
M version, an additional FET is connected in parallel with the pulldown structure when the CLAMP and OUT pins  
are connected to the gate of the IGBT or MOSFET. The output voltage swing between VCC2 and VEE2 provides  
rail-to-rail operation.  
UVLO2  
VCC2  
ROH  
Level  
Shifting  
and  
Control  
Logic  
RNMOS  
OUTH  
OUTL  
ROL  
VEE2  
52. Output Stage—S Version  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
UVLO2  
VCC2  
ROH  
Level  
Shifting  
and  
RNMOS  
OUT  
Control  
Logic  
ROL  
GND2  
VEE2  
53. Output Stage—E Version  
UVLO2  
VCC2  
ROH  
Level  
Shifting  
and  
RNMOS  
OUT  
Control  
Logic  
ROL  
CLAMP  
VEE2  
2 V  
54. Output Stage—M Version  
10.3.4 Protection Features  
10.3.4.1 Undervoltage Lockout (UVLO)  
UVLO functions are implemented for both the VCC1 and VCC2 supplies between the VCC1 and GND1, and VCC2  
and VEE2 pins to prevent an underdriven condition on IGBTs and MOSFETs. When VCC is lower than VIT+ (UVLO)  
at device start-up or lower than VIT–(UVLO) after start-up, the voltage-supply UVLO feature holds the effected  
output low, regardless of the input pins (IN+ and IN–) as shown in 4. The VCC UVLO protection has a  
hysteresis feature (Vhys(UVLO)). This hysteresis prevents chatter when the power supply produces ground noise;  
this allows the device to permit small drops in bias voltage, which occurs when the device starts switching and  
operating current consumption increases suddenly. 55 shows the UVLO functions.  
2. UCC53x0 VCC1 UVLO Logic  
INPUTS  
OUTPUTS  
OUT, OUTL  
CONDITION  
IN+  
H
IN–  
L
OUTH  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
L
L
L
L
H
VCC1 – GND1 < VIT+(UVLO1) during device start-up  
H
H
L
L
版权 © 2017–2019, Texas Instruments Incorporated  
29  
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
2. UCC53x0 VCC1 UVLO Logic (接下页)  
INPUTS  
OUTPUTS  
CONDITION  
IN+  
H
IN–  
L
OUTH  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
OUT, OUTL  
L
L
L
L
L
H
VCC1 – GND1 < VIT–(UVLO1) after device start-up  
H
H
L
L
3. UCC53x0 VCC2 UVLO Logic  
INPUTS  
OUTPUTS  
CONDITION  
IN+  
H
IN–  
L
OUTH  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
OUT, OUTL  
L
L
L
L
L
L
L
L
L
H
H
L
VCC2 – VEE2 < VIT+(UVLO2) during device start-up  
H
L
H
L
L
H
H
L
VCC2 – VEE2 < VIT–(UVLO2) after device start-up  
H
L
When VCC1 or VCC2 drops below the UVLO1 or UVLO2 threshold, a delay, tUVLO1_rec or tUVLO2_rec, occurs on the  
output when the supply voltage rises above VIT+(UVLO) or VIT+(UVLO2) again. 55 shows this delay.  
IN+  
IN+  
VIT+ (UVLO1)  
VIT (UVLO1)  
œ
VCC1  
VCC1  
VCC2  
VCC2  
VIT+ (UVLO2)  
VIT  
œ
(UVLO2)  
tUVLO2_rec  
tUVLO1_rec  
VOUT  
VOUT  
55. UVLO Functions  
10.3.4.2 Active Pulldown  
The active pulldown function is used to pull the IGBT or MOSFET gate to the low state when no power is  
connected to the VCC2 supply. This feature prevents false IGBT and MOSFET turnon on the OUT, OUTL, and  
CLAMP pins by clamping the output to approximately 2 V.  
When the output stages of the driver are in an unbiased or UVLO condition, the driver outputs are held low by an  
active clamp circuit that limits the voltage rise on the driver outputs. In this condition, the upper PMOS is  
resistively held off by a pullup resistor while the lower NMOS gate is tied to the driver output through a 500-kΩ  
resistor. In this configuration, the output is effectively clamped to the threshold voltage of the lower NMOS  
device, which is approximately 1.5 V when no bias power is available.  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
10.3.4.3 Short-Circuit Clamping  
The short-circuit clamping function is used to clamp voltages at the driver output and pull the active Miller clamp  
pins slightly higher than the VCC2 voltage during short-circuit conditions. The short-circuit clamping function helps  
protect the IGBT or MOSFET gate from overvoltage breakdown or degradation. The short-circuit clamping  
function is implemented by adding a diode connection between the dedicated pins and the VCC2 pin inside the  
driver. The internal diodes can conduct up to 500-mA current for a duration of 10 µs and a continuous current of  
20 mA. Use external Schottky diodes to improve current conduction capability as needed.  
10.3.4.4 Active Miller Clamp (UCC53x0M)  
The active Miller-clamp function is used to prevent false turn-on of the power switches caused by Miller current in  
applications where a unipolar power supply is used. The active Miller-clamp function is implemented by adding a  
low impedance path between the power-switch gate terminal and ground (VEE2) to sink the Miller current. With  
the Miller-clamp function, the power-switch gate voltage is clamped to less than 2 V during the off state. 58  
shows a typical application circuit of UCC5310M and UCC5350M.  
10.4 Device Functional Modes  
4 lists the functional modes for the UCC53x0 devices assuming VCC1 and VCC2 are in the recommended  
range.  
4. Function Table for UCC53x0S  
IN+  
Low  
X
IN–  
X
OUTH  
Hi-Z  
OUTL  
Low  
High  
Low  
Hi-Z  
Low  
High  
High  
High-Z  
5. Function Table for UCC53x0M and UCC53x0E  
IN+  
Low  
X
IN–  
X
OUT  
Low  
Low  
High  
High  
Low  
High  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
10.4.1 ESD Structure  
56 shows the multiple diodes involved in the ESD protection components of the UCC53x0 devices . This  
provides pictorial representation of the absolute maximum rating for the device.  
VCC1  
1
VCC2  
5
2
3
6
7
IN+  
OUTH  
OUTL  
18 V  
35 V  
INœ  
5.5 V  
4
8
GND1  
VEE2  
56. ESD Structure  
32  
版权 © 2017–2019, Texas Instruments Incorporated  
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
11 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Application Information  
The UCC53x0 is a family of simple, isolated gate drivers for power semiconductor devices, such as MOSFETs,  
IGBTs, or SiC MOSFETs. The family of devices is intended for use in applications such as motor control, solar  
inverters, switched-mode power supplies, and industrial inverters.  
The UCC53x0 family of devices has three pinout configurations, featuring split outputs, Miller clamp, and UVLO  
with reference to GND2. The UCC5320SC, UCC5350SB, and UCC5390SC have a split output, OUTH and  
OUTL. The two pins can be used to separately decouple the power transistor turnon and turnoff commutations.  
The UCC5310MC and UCC5350MC feature active Miller clamping, which can be used to prevent false turn-on of  
the power transistors induced by the Miller current. The UCC5320EC and UCC5390EC offer true UVLO  
protection by monitoring the voltage between the VCC2 and GND2 pins to prevent the power transistors from  
operating in a saturation region. The UCC53x0 family of devices comes in an 8-pin D and 8-pin DWV package  
options and have a creepage, or clearance, of 4 mm and 8.5 mm respectively, which are suitable for applications  
where basic or reinforced isolation is required. Different drive strengths enable a simple driver platform to be  
used for applications demanding power transistors with different power ratings. Specifically, the UCC5390 device  
offers a 10-A minimum drive current which can help remove the external current buffer used to drive high power  
transistors.  
11.2 Typical Application  
The circuits in 57, 58, and 59 show a typical application for driving IGBTs.  
15 V  
VCC2  
5 V  
C3  
C4  
VCC1  
C1  
C2  
GND1  
RGON  
OUTH  
OUTL  
RGOFF  
Signal Emitter  
Power Emitter  
Rin  
PWM  
IN+  
Cin  
INœ  
VEE2  
Copyright © 2017, Texas Instruments Incorporated  
57. Typical Application Circuit for UCC53x0S to Drive IGBT  
版权 © 2017–2019, Texas Instruments Incorporated  
33  
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Application (接下页)  
15 V  
VCC2  
5 V  
VCC1  
C3  
C4  
C1  
C2  
GND1  
RG  
OUT  
Rin  
Signal Emitter  
Power Emitter  
PWM  
CLAMP  
IN+  
Cin  
INœ  
VEE2  
Copyright © 2017, Texas Instruments Incorporated  
58. Typical Application Circuit for UCC5310M and UCC5350M to Drive IGBT  
15 V  
VCC2  
5 V  
VCC1  
C3  
C4  
C1  
C2  
GND1  
RG  
OUT  
Rin  
Signal Emitter  
Power Emitter  
PWM  
IN+  
Cin  
GND2  
VEE2  
INœ  
C5  
C3  
œ 8 V  
Copyright © 2018, Texas Instruments Incorporated  
59. Typical Application Circuit for UCC5320E and UCC5390E to Drive IGBT  
11.2.1 Design Requirements  
6 lists the recommended conditions to observe the input and output of the UCC5320S split-output gate driver  
with the IN– pin tied to the GND1 pin.  
6. UCC5320S Design Requirements  
PARAMETER  
VALUE  
UNIT  
VCC1  
3.3  
V
V
VCC2  
15  
3.3  
IN+  
V
IN–  
GND1  
10  
-
Switching frequency  
IGBT  
kHz  
-
IKW50N65H5  
34  
版权 © 2017–2019, Texas Instruments Incorporated  
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
11.2.2 Detailed Design Procedure  
11.2.2.1 Designing IN+ and IN– Input Filter  
TI recommends that users avoid shaping the signals to the gate driver in an attempt to slow down (or delay) the  
signal at the output. However, a small input filter, RIN-CIN, can be used to filter out the ringing introduced by  
nonideal layout or long PCB traces.  
Such a filter should use an RIN resistor with a value from 0 Ω to 100 Ω and a CIN capacitor with a value from 10  
pF to 1000 pF. In the example, the selected value for RIN is 51 Ω and CIN is 33 pF, with a corner frequency of  
approximately 100 MHz.  
When selecting these components, pay attention to the trade-off between good noise immunity and propagation  
delay.  
11.2.2.2 Gate-Driver Output Resistor  
The external gate-driver resistors, RG(ON) and RG(OFF) are used to:  
1. Limit ringing caused by parasitic inductances and capacitances  
2. Limit ringing caused by high voltage or high current switching dv/dt, di/dt, and body-diode reverse recovery  
3. Fine-tune gate drive strength, specifically peak sink and source current to optimize the switching loss  
4. Reduce electromagnetic interference (EMI)  
The output stage has a pullup structure consisting of a P-channel MOSFET and an N-channel MOSFET in  
parallel. The combined peak source current is 4.3 A for the UCC5320 family and 17 A for the UCC5390 family.  
Use 公式 1 to estimate the peak source current using the UCC5320S as an example.  
VCC2  
IOH = min4.3 A,  
÷
÷
RNMOS || ROH + RON + RGFET _Int  
«
where  
RON is the external turnon resistance.  
RGFET_Int is the power transistor internal gate resistance, found in the power transistor data sheet. We will  
assume 0Ω for our example  
IOH is the peak source current which is the minimum value between 4.3 A, the gate-driver peak source current,  
and the calculated value based on the gate-drive loop resistance.  
(1)  
In this example, the peak source current is approximately 1.8 A as calculated in 公式 2.  
VCC2  
RNMOS ||ROH + RON + RGFET _Int 4.5 W ||12 W + 5.1W + 0 W  
15 V  
IOH  
=
=
ö 1.8 A  
(2)  
Similarly, use 公式 3 to calculate the peak sink current.  
VCC2  
IOL = min4.4 A,  
÷
÷
ROL + ROFF+RGFET _Int  
«
where  
ROFF is the external turnoff resistance.  
IOL is the peak sink current which is the minimum value between 4.4 A, the gate-driver peak sink current, and  
the calculated value based on the gate-drive loop resistance. (3)  
In this example, the peak sink current is the minimum of 公式 4 and 4.4 A.  
VCC2  
ROL + ROFF + RGFET _Int 0.65 W +10 W + 0 W  
15 V  
IOL  
=
=
ö 1.4 A  
(4)  
版权 © 2017–2019, Texas Instruments Incorporated  
35  
 
 
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
The estimated peak current is also influenced by PCB layout and load capacitance.  
Parasitic inductance in the gate-driver loop can slow down the peak gate-drive current and  
introduce overshoot and undershoot. Therefore, TI strongly recommends that the gate-  
driver loop should be minimized. Conversely, the peak source and sink current is  
dominated by loop parasitics when the load capacitance (CISS) of the power transistor is  
very small (typically less than 1 nF) because the rising and falling time is too small and  
close to the parasitic ringing period.  
11.2.2.3 Estimate Gate-Driver Power Loss  
The total loss, PG, in the gate-driver subsystem includes the power losses (PGD) of the UCC53x0 device and the  
power losses in the peripheral circuitry, such as the external gate-drive resistor.  
The PGD value is the key power loss which determines the thermal safety-related limits of the UCC53x0 device,  
and it can be estimated by calculating losses from several components.  
The first component is the static power loss, PGDQ, which includes quiescent power loss on the driver as well as  
driver self-power consumption when operating with a certain switching frequency. The PGDQ parameter is  
measured on the bench with no load connected to the OUT or OUTH and OUTL pins at a given VCC1, VCC2  
,
switching frequency, and ambient temperature. In this example, VCC1 is 3.3V and VCC2 is 15 V. The current on  
each power supply, with PWM switching from 0 V to 3.3 V at 10 kHz, is measured to be ICC1 = 1.67 mA and ICC2  
= 1.11 mA. Therefore, use 公式 5 to calculate PGDQ  
.
PGDQ = VCC1 ì IVCC1 + VCC2 ì ICC2 ö22mW  
(5)  
The second component is the switching operation loss, PGDO, with a given load capacitance which the driver  
charges and discharges the load during each switching cycle. Use 公式 6 to calculate the total dynamic loss from  
load switching, PGSW  
.
PGSW = VCC2 ìQG ì fSW  
where  
QG is the gate charge of the power transistor at VCC2  
.
(6)  
So, for this example application the total dynamic loss from load switching is approximately 18 mW as calculated  
in 公式 7.  
PGSW = 15 V ì120 nC ì10 kHz = 18 mW  
(7)  
QG represents the total gate charge of the power transistor switching 520 V at 50 A, and is subject to change  
with different testing conditions. The UCC5320S gate-driver loss on the output stage, PGDO, is part of PGSW. PGDO  
is equal to PGSW if the external gate-driver resistance and power-transistor internal resistance are 0 Ω, and all the  
gate driver-loss will be dissipated inside the UCC5320S. If an external turn-on and turn-off resistance exists, the  
total loss is distributed between the gate driver pull-up/down resistance, external gate resistance, and power-  
transistor internal resistance. Importantly, the pull-up/down resistance is a linear and fixed resistance if the  
source/sink current is not saturated to 4.3 A/4.4 A, however, it will be non-linear if the source/sink current is  
saturated. Therefore, PGDO is different in these two scenarios.  
Case 1 - Linear Pull-Up/Down Resistor:  
PGSW  
2
ROH ||RNMOS  
ROL  
PGDO  
=
«
+
÷
÷
ROH ||RNMOS +RON +RGFET _Int ROL +ROFF +RGFET _Int  
(8)  
In this design example, all the predicted source and sink currents are less than 4.3 A and 4.4 A, therefore, use 公  
9 to estimate the UCC53x0 gate-driver loss.  
«
÷
18 mW  
2
12 W || 4.5 W  
12 W || 4.5 W + 5.1W + 0 W 0.65 W +10 W + 0 W  
0.65 W  
PGDO  
=
+
ö4.1mW  
(9)  
Case 2 - Nonlinear Pull-Up/Down Resistor:  
36  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
TR _ Sys  
TF_ Sys  
»
ÿ
Ÿ
PGDO =fSW ì 4.3 A ì  
V
CC2 - VOUTH(t) dt + 4.4 A ì  
VOUTL(t)dt  
(
)
Ÿ
0
0
Ÿ
where  
VOUTH/L(t) is the gate-driver OUTH and OUTL pin voltage during the turnon and turnoff period. In cases where  
the output is saturated for some time, this value can be simplified as a constant-current source (4.3 A at turnon  
and 4.4 A at turnoff) charging or discharging a load capacitor. Then, the VOUTH/L(t) waveform will be linear and  
the TR_Sys and TF_Sys can be easily predicted.  
(10)  
For some scenarios, if only one of the pullup or pulldown circuits is saturated and another one is not, the PGDO is  
a combination of case 1 and case 2, and the equations can be easily identified for the pullup and pulldown based  
on this discussion.  
Use 公式 11 to calculate the total gate-driver loss dissipated in the UCC53x0 gate driver, PGD  
.
PGD = PGDQ +PGDO = 22mW + 4.1mW = 26.1mW  
(11)  
11.2.2.4 Estimating Junction Temperature  
Use 公式 12 to estimate the junction temperature (TJ) of the UCC53x0 family.  
TJ = TC + YJT ìPGD  
where  
TC is the UCC53x0 case-top temperature measured with a thermocouple or some other instrument.  
ΨJT is the junction-to-top characterization parameter from the Thermal Information table.  
(12)  
Using the junction-to-top characterization parameter (ΨJT) instead of the junction-to-case thermal resistance  
(RθJC) can greatly improve the accuracy of the junction temperature estimation. The majority of the thermal  
energy of most ICs is released into the PCB through the package leads, whereas only a small percentage of the  
total energy is released through the top of the case (where thermocouple measurements are usually conducted).  
The RθJC resistance can only be used effectively when most of the thermal energy is released through the case,  
such as with metal packages or when a heat sink is applied to an IC package. In all other cases, use of RθJC will  
inaccurately estimate the true junction temperature. The ΨJT parameter is experimentally derived by assuming  
that the dominant energy leaving through the top of the IC will be similar in both the testing environment and the  
application environment. As long as the recommended layout guidelines are observed, junction temperature  
estimations can be made accurately to within a few degrees Celsius.  
11.2.3 Selecting VCC1 and VCC2 Capacitors  
Bypass capacitors for the VCC1 and VCC2 supplies are essential for achieving reliable performance. TI  
recommends choosing low-ESR and low-ESL, surface-mount, multi-layer ceramic capacitors (MLCC) with  
sufficient voltage ratings, temperature coefficients, and capacitance tolerances.  
DC bias on some MLCCs will impact the actual capacitance value. For example, a 25-V,  
1-μF X7R capacitor is measured to be only 500 nF when a DC bias of 15-VDC is applied.  
11.2.3.1 Selecting a VCC1 Capacitor  
A bypass capacitor connected to the VCC1 pin supports the transient current required for the primary logic and the  
total current consumption, which is only a few milliamperes. Therefore, a 50-V MLCC with over 100 nF is  
recommended for this application. If the bias power-supply output is located a relatively long distance from the  
VCC1 pin, a tantalum or electrolytic capacitor with a value greater than 1 μF should be placed in parallel with the  
MLCC.  
11.2.3.2 Selecting a VCC2 Capacitor  
A 50-V, 10-μF MLCC and a 50-V, 0.22-μF MLCC are selected for the CVCC2 capacitor. If the bias power supply  
output is located a relatively long distance from the VCC2 pin, a tantalum or electrolytic capacitor with a value  
greater than 10 μF should be used in parallel with CVCC2  
.
版权 © 2017–2019, Texas Instruments Incorporated  
37  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
11.2.3.3 Application Circuits With Output Stage Negative Bias  
When parasitic inductances are introduced by nonideal PCB layout and long package leads (such as TO-220  
and TO-247 type packages), ringing in the gate-source drive voltage of the power transistor could occur during  
high di/dt and dv/dt switching. If the ringing is over the threshold voltage, unintended turnon and shoot-through  
could occur. Applying a negative bias on the gate drive is a popular way to keep such ringing below the  
threshold. A few examples of implementing negative gate-drive bias follow.  
60 shows the first example with negative bias turnoff on the output using a Zener diode on the isolated power-  
supply output stage. The negative bias is set by the Zener diode voltage. If the isolated power supply is equal to  
20 V, the turnoff voltage is –5.1 V and the turnon voltage is 20 V – 5.1 V 15 V.  
20 V  
VCC2  
C3  
VCC1  
CA1  
GND1  
RGON  
OUTH  
RGOFF  
Signal Emitter  
OUTL  
VEE2  
IN+  
INœ  
CA2  
Copyright © 2017, Texas Instruments Incorporated  
60. Negative Bias With Zener Diode on Iso-Bias Power-Supply Output  
61 shows another example which uses two supplies (or single-input, double-output power supply). The power  
supply across VCC2 and GND2 determines the positive drive output voltage and the power supply across VEE2  
and GND2 determines the negative turnoff voltage. This solution requires more power supplies than the first  
example, however, it provides more flexibility when setting the positive and negative rail voltages.  
VCC2  
VCC1  
CA1  
+
œ
GND1  
RG  
OUT  
Signal Emitter  
GND2  
IN+  
CA2  
+
œ
INœ  
VEE2  
Copyright © 2017, Texas Instruments Incorporated  
61. Negative Bias With Two Iso-Bias Power Supplies (UCC5320E and UCC5390E)  
38  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
11.2.4 Application Curve  
VCC2 = 20 V  
VEE2 = GND fSW = 10 kHz  
62. PWM Input And Gate Voltage Waveform  
12 Power Supply Recommendations  
The recommended input supply voltage (VCC1) for the UCC53x0 device is from 3 V to 15 V. The lower limit of the  
range of output bias-supply voltage (VCC2) is determined by the internal UVLO protection feature of the device.  
The VCC1 and VCC2 voltages should not fall below their respective UVLO thresholds for normal operation, or else  
the gate-driver outputs can become clamped low for more than 50 μs by the UVLO protection feature. For more  
information on UVLO, see the Undervoltage Lockout (UVLO) section. The higher limit of the VCC2 range depends  
on the maximum gate voltage of the power device that is driven by the UCC53x0 device, and should not exceed  
the recommended maximum VCC2 of 33 V. A local bypass capacitor should be placed between the VCC2 and VEE2  
pins, with a value of 220-nF to 10-μF for device biasing. TI recommends placing an additional 100-nF capacitor in  
parallel with the device biasing capacitor for high frequency filtering. Both capacitors should be positioned as  
close to the device as possible. Low-ESR, ceramic surface-mount capacitors are recommended. Similarly, a  
bypass capacitor should also be placed between the VCC1 and GND1 pins. Given the small amount of current  
drawn by the logic circuitry within the input side of the UCC53x0 device, this bypass capacitor has a minimum  
recommended value of 100 nF.  
If only a single, primary-side power supply is available in an application, isolated power can be generated for the  
secondary side with the help of a transformer driver such as Texas Instruments' SN6501 or SN6505A. For such  
applications, detailed power supply design and transformer selection recommendations are available in SN6501  
Transformer Driver for Isolated Power Supplies data sheet and SN6505A Low-Noise 1-A Transformer Drivers for  
Isolated Power Supplies data sheet.  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
13 Layout  
13.1 Layout Guidelines  
Designers must pay close attention to PCB layout to achieve optimum performance for the UCC53x0. Some key  
guidelines are:  
Component placement:  
Low-ESR and low-ESL capacitors must be connected close to the device between the VCC1 and GND1  
pins and between the VCC2 and VEE2 pins to bypass noise and to support high peak currents when turning  
on the external power transistor.  
To avoid large negative transients on the VEE2 pins connected to the switch node, the parasitic  
inductances between the source of the top transistor and the source of the bottom transistor must be  
minimized.  
Grounding considerations:  
Limiting the high peak currents that charge and discharge the transistor gates to a minimal physical area  
is essential. This limitation decreases the loop inductance and minimizes noise on the gate terminals of  
the transistors. The gate driver must be placed as close as possible to the transistors.  
High-voltage considerations:  
To ensure isolation performance between the primary and secondary side, avoid placing any PCB traces  
or copper below the driver device. A PCB cutout or groove is recommended in order to prevent  
contamination that may compromise the isolation performance.  
Thermal considerations:  
A large amount of power may be dissipated by the UCC53x0 if the driving voltage is high, the load is  
heavy, or the switching frequency is high (for more information, see the Estimate Gate-Driver Power Loss  
section). Proper PCB layout can help dissipate heat from the device to the PCB and minimize junction-to-  
board thermal impedance (θJB).  
Increasing the PCB copper connecting to the VCC2 and VEE2 pins is recommended, with priority on  
maximizing the connection to VEE2. However, the previously mentioned high-voltage PCB considerations  
must be maintained.  
If the system has multiple layers, TI also recommends connecting the VCC2 and VEE2 pins to internal  
ground or power planes through multiple vias of adequate size. These vias should be located close to the  
IC pins to maximize thermal conductivity. However, keep in mind that no traces or coppers from different  
high voltage planes are overlapping.  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
13.2 Layout Example  
63 shows a PCB layout example with the signals and key components labeled.  
(1) No PCB traces or copper are located between the primary and secondary side, which ensures isolation performance.  
63. Layout Example  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
Layout Example (接下页)  
64 and 65 show the top and bottom layer traces and copper.  
64. Top-Layer Traces and Copper  
65. Bottom-Layer Traces and Copper (Flipped)  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
Layout Example (接下页)  
66 shows the 3D layout of the top view of the PCB.  
(1) The location of the PCB cutout between primary side and secondary sides ensures isolation performance.  
66. 3-D PCB View  
13.3 PCB Material  
Use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of  
lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-  
extinguishing flammability-characteristics.  
67 shows the recommended layer stack.  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
40 mils  
10 mils  
0r ~ 4.5  
traces, pads, and  
vias  
Power plane  
Low-speed traces  
67. Recommended Layer Stack  
版权 © 2017–2019, Texas Instruments Incorporated  
43  
 
 
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)隔离相关术语  
德州仪器 (TI)SN6501 用于隔离式电源的变压器驱动器》数据表  
德州仪器 (TI)SN6505A 用于隔离式电源的低噪声 1A 变压器驱动器》数据表  
德州仪器 (TI)UCC53x0xD 评估模块用户指南  
14.2 认证  
UL 在线认证目录,“FPPT2.E181974 非光学隔离器件 - 组件证书编号:20170718-E181974,  
14.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
7. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
UCC5310  
UCC5320  
UCC5350  
UCC5390  
14.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
14.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
14.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
14.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
44  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
45  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SOIC  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/B 04/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
46  
版权 © 2017–2019, Texas Instruments Incorporated  
UCC5310, UCC5320, UCC5350, UCC5390  
www.ti.com.cn  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.0028 MAX  
[0.07]  
ALL AROUND  
.0028 MIN  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/B 04/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
版权 © 2017–2019, Texas Instruments Incorporated  
47  
UCC5310, UCC5320, UCC5350, UCC5390  
ZHCSGC2F JUNE 2017REVISED JANUARY 2019  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SOIC  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/B 04/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
48  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC5310MCD  
UCC5310MCDR  
UCC5310MCDWV  
UCC5310MCDWVR  
UCC5320ECD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
5310M  
2500 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
5310M  
5310MC  
5310MC  
5320E  
DWV  
DWV  
D
UCC5320ECDR  
UCC5320SCD  
D
5320E  
D
5320S  
UCC5320SCDR  
UCC5320SCDWV  
UCC5320SCDWVR  
UCC5350MCD  
D
5320S  
DWV  
DWV  
D
5320SC  
5320SC  
5350M  
5350M  
5350MC  
5350MC  
5350SB  
5350SB  
53X0E  
UCC5350MCDR  
UCC5350MCDWV  
UCC5350MCDWVR  
UCC5350SBD  
D
DWV  
DWV  
D
UCC5350SBDR  
UCC5390ECD  
D
D
UCC5390ECDR  
UCC5390ECDWV  
UCC5390ECDWVR  
D
53X0E  
DWV  
DWV  
5390EC  
5390EC  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC5390SCD  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
53X0S  
53X0S  
UCC5390SCDR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
UCC5310MCDR  
UCC5310MCDR  
UCC5310MCDWVR  
UCC5320ECDR  
UCC5320SCDR  
UCC5320SCDWVR  
UCC5350MCDR  
UCC5350MCDR  
UCC5350MCDWVR  
UCC5350SBDR  
UCC5390ECDR  
UCC5390ECDWVR  
UCC5390SCDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
1000  
2500  
2500  
1000  
2500  
2500  
1000  
2500  
2500  
1000  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
16.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
3.3  
2.1  
2.1  
3.3  
2.1  
2.1  
3.3  
2.1  
2.1  
3.3  
2.1  
8.0  
8.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DWV  
D
12.05 6.15  
16.0  
8.0  
6.4  
6.4  
5.2  
5.2  
D
8.0  
DWV  
D
12.05 6.15  
16.0  
8.0  
6.4  
6.4  
5.2  
5.2  
D
8.0  
DWV  
D
12.05 6.15  
16.0  
8.0  
6.4  
6.4  
5.2  
5.2  
D
8.0  
DWV  
D
12.05 6.15  
6.4 5.2  
16.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
UCC5310MCDR  
UCC5310MCDR  
UCC5310MCDWVR  
UCC5320ECDR  
UCC5320SCDR  
UCC5320SCDWVR  
UCC5350MCDR  
UCC5350MCDR  
UCC5350MCDWVR  
UCC5350SBDR  
UCC5390ECDR  
UCC5390ECDWVR  
UCC5390SCDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
1000  
2500  
2500  
1000  
2500  
2500  
1000  
2500  
2500  
1000  
2500  
356.0  
350.0  
350.0  
350.0  
350.0  
350.0  
356.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
356.0  
350.0  
350.0  
350.0  
350.0  
350.0  
356.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
35.0  
43.0  
43.0  
43.0  
43.0  
43.0  
35.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
DWV  
D
D
DWV  
D
D
DWV  
D
D
DWV  
D
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
UCC5310MCD  
UCC5310MCD  
UCC5310MCDWV  
UCC5320ECD  
UCC5320SCD  
UCC5320SCDWV  
UCC5350MCD  
UCC5350MCD  
UCC5350MCDWV  
UCC5350SBD  
UCC5350SBD  
UCC5390ECD  
UCC5390ECDWV  
UCC5390SCD  
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
75  
64  
75  
75  
64  
75  
75  
64  
75  
75  
75  
64  
75  
506.6  
505.46  
505.46  
505.46  
505.46  
505.46  
505.46  
506.6  
8
3940  
3810  
4826  
3810  
3810  
4826  
3810  
3940  
4826  
3810  
3940  
3810  
4826  
3810  
4.32  
4
6.76  
13.94  
6.76  
6.76  
13.94  
6.76  
8
DWV  
D
6.6  
4
D
4
DWV  
D
6.6  
4
D
4.32  
6.6  
4
DWV  
D
505.46  
505.46  
506.6  
13.94  
6.76  
8
D
4.32  
4
D
505.46  
505.46  
505.46  
6.76  
13.94  
6.76  
DWV  
D
6.6  
4
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UCC5350MCDWVR

具有米勒钳位或分离输出以及 8V 或 12V UVLO 的 3kVrms、5A/5A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350MCQDQ1

适用于 IGBT/SiC 且具有米勒钳位或分离输出的汽车类 ±5A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350MCQDRQ1

适用于 IGBT/SiC 且具有米勒钳位或分离输出的汽车类 ±5A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350MCQDWVQ1

适用于 IGBT/SiC 且具有米勒钳位或分离输出的汽车类 ±5A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350MCQDWVRQ1

适用于 IGBT/SiC 且具有米勒钳位或分离输出的汽车类 ±5A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350SBD

具有米勒钳位或分离输出以及 8V 或 12V UVLO 的 3kVrms、5A/5A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350SBDR

具有米勒钳位或分离输出以及 8V 或 12V UVLO 的 3kVrms、5A/5A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5350SBQDRQ1

适用于 IGBT/SiC 且具有米勒钳位或分离输出的汽车类 ±5A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5390

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5390-Q1

适用于 IGBT/SiC MOSFET 且具有 UVLO(以 GND 为基准)的汽车类 5kVrms、17A 单通道隔离式栅极驱动器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5390ECD

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC5390ECDR

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI