UCC5390-Q1 [TI]

适用于 IGBT/SiC MOSFET 且具有 UVLO(以 GND 为基准)的汽车类 5kVrms、17A 单通道隔离式栅极驱动器;
UCC5390-Q1
型号: UCC5390-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 IGBT/SiC MOSFET 且具有 UVLO(以 GND 为基准)的汽车类 5kVrms、17A 单通道隔离式栅极驱动器

栅极驱动 双极性晶体管 驱动器
文件: 总37页 (文件大小:1346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
适用于 SiC/IGBT 和汽车应用的 UCC5390-Q1 单通道隔离式栅极驱动器  
1 特性  
工作结温范围:–40°C +150°C  
1
5kVRMS 单通道隔离式栅极驱动器  
符合面向汽车应用的 AEC-Q100 标准  
2 应用  
车载充电器  
温度等级 1  
适用于电动汽车的牵引逆变器  
直流充电站  
HBM ESD 分类等级 H2  
CDM ESD 分类等级 C6  
GND2 为基准的 12V UVLO  
8 引脚 DWV8.5mm 爬电)封装  
60ns(典型)传播延迟  
较小的部件间传播延迟偏移  
100V/ns 最小 CMTI  
3 说明  
UCC5390-Q1 是一款单通道隔离式栅极驱动器,具有  
10A 峰值拉电流和 10A 峰值灌电流旨在驱动  
MOSFETIGBT SiC MOSFETUCC5390-Q1 的  
UVLO2 GND2 为基准,从而有利于使用双极电源并  
优化 SiC IGBT 开关行为和稳健性。  
10A 最小峰值电流  
3V 15V 输入电源电压  
驱动器电源电压高达 33V  
输入引脚具有负 5V 电压处理能力  
安全相关认证:  
UCC5390-Q1 采用 8.5mm SOIC-8 (DWV) 封装,可支  
持高达 5kVRMS 的隔离电压。输入侧通过 SiO2 电容隔  
离技术与输出侧相隔离,隔离层寿命超过 40 年。凭借  
高驱动强度和真正的 UVLO 检测,该器件非常适用于  
在车载充电器和牵引逆变器等 应用 中驱动 IGBT 和  
SiC MOSFET。  
符合 DIN V VDE V 0884-11:2017-01 标准的  
7000VPK 隔离 (DWV)(计划)  
5000VRMS (DWV) 隔离等级长达 1 分钟(符合  
UL 1577 标准)  
与光耦合器相比,UCC5390-Q1 的部件间偏移更低,  
传播延迟更小,工作温度更高,并且 CMTI 更高。  
符合 GB4943.1-2011 CQC 认证  
CMOS 输入  
4 功能方框图  
5 V  
15V  
VCC2  
VCC1  
UVLO2  
VCC2  
Rest of  
Circuit  
UVLO,  
Level  
Shift  
UVLO  
and  
IN+  
OUT  
and  
t
Control  
Logic  
Input  
Logic  
INœ  
GND2  
GND1  
VEE2  
-8V  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDR3  
 
 
 
 
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
功能方框............................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Function........................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Power Ratings........................................................... 5  
7.6 Insulation Specifications for DWV Package.............. 6  
7.7 Safety-Related Certifications For DWV Package...... 6  
7.8 Safety Limiting Values .............................................. 7  
7.9 Electrical Characteristics........................................... 8  
7.10 Switching Characteristics........................................ 9  
7.11 Insulation Characteristics Curves ........................... 9  
7.12 Typical Characteristics.......................................... 10  
Parameter Measurement Information ................ 12  
9
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
9.2 Functional Block Diagram ....................................... 14  
9.3 Feature Description................................................. 15  
9.4 Device Functional Modes........................................ 18  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ............................................... 20  
11 Power Supply Recommendations ..................... 24  
12 Layout................................................................... 26  
12.1 Layout Guidelines ................................................. 26  
12.2 Layout Example .................................................... 27  
12.3 PCB Material......................................................... 29  
13 器件和文档支持 ..................................................... 30  
13.1 文档支持................................................................ 30  
13.2 ....................................................................... 30  
13.3 相关链接................................................................ 30  
13.4 接收文档更新通知 ................................................. 30  
13.5 社区资源................................................................ 30  
13.6 ....................................................................... 30  
13.7 静电放电警告......................................................... 30  
13.8 Glossary................................................................ 30  
8
8.1 Propagation Delay, Inverting, and Noninverting  
Configuration............................................................ 12  
5 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2019) to Revision A  
Page  
已更改 将销售状态从预告信息更改为生产数据.................................................................................................................. 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
6 Pin Configuration and Function  
UCC5390-Q1  
8-Pin SOIC  
Top View  
VCC1  
IN+  
1
2
3
4
8
7
6
5
VEE2  
GND2  
OUT  
VCC2  
INœ  
GND1  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
GND1  
4
G
G
Input ground. All signals on the input side are referenced to this ground.  
Gate-drive common pin. Connect this pin to the IGBT emitter or MOSFET source. UVLO  
referenced to GND2.  
GND2  
7
Noninverting gate-drive voltage-control input. The IN+ pin has a CMOS input threshold. This pin  
is pulled low internally if left open. Use 4 to understand the input and output logic of these  
devices.  
IN+  
2
I
I
Inverting gate-drive voltage control input. The IN– pin has a CMOS input threshold. This pin is  
pulled high internally if left open. Use 4 to understand the input and output logic of these  
devices.  
IN–  
3
OUT  
VCC1  
6
1
O
P
Gate-drive output.  
Input supply voltage. Connect a locally decoupled capacitor to GND1. Use a low-ESR or ESL  
capacitor located as close to the device as possible.  
Positive output supply rail. Connect a locally decoupled capacitor to VEE2. Use a low-ESR or  
ESL capacitor located as close to the device as possible.  
VCC2  
VEE2  
5
8
P
P
Negative output supply rail. Connect a locally decoupled capacitor to GND2. Use a low-ESR or  
ESL capacitor located as close to the device as possible.  
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2019, Texas Instruments Incorporated  
3
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free air temperature range (unless otherwise noted)(1)  
MIN  
GND1 – 0.3  
–0.3  
MAX  
18  
UNIT  
V
Input bias pin supply voltage  
Driver bias supply  
VCC1 – GND1  
VCC2 – VEE2  
35  
V
VEE2 bipolar supply voltage  
Output signal voltage  
Input signal voltage  
VEE2 – GND2  
–17.5  
0.3  
V
VOUT – VEE2  
VEE2 – 0.3  
GND1 – 5  
–40  
VCC2 + 0.3  
VCC1 + 0.3  
150  
V
VIN+ – GND1, VIN– – GND1  
V
(2)  
Junction temperature, TJ  
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) To maintain the recommended operating conditions for TJ, see the Thermal Information.  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
15  
UNIT  
VCC1  
VCC2  
VEE2  
VSUP2  
TJ  
Supply voltage, input side  
V
V
Positive supply voltage output side (VCC2 – GND2)  
Negative supply voltage output side (VEE2 – GND2)  
13.2  
–16  
13.2  
-40  
33  
0
V
Total supply voltage output side (VCC2 – VEE2  
Junction Temperature  
)
33  
V
150  
°C  
4
Copyright © 2019, Texas Instruments Incorporated  
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
7.4 Thermal Information  
UCC5390-Q1  
THERMAL METRIC(1)  
DWV (SOIC)  
8 PINS  
119.8  
64.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction–to-ambient thermal resistance  
Junction–to-case (top) thermal resistance  
Junction–to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
65.4  
Junction–to-top characterization parameter  
Junction–to-board characterization parameter  
37.6  
ΨJB  
63.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DWV Package  
Maximum power dissipation on input and  
output  
PD  
1.04  
W
VCC1 = 15 V, VCC2 = 15 V, f = 1.9-MHz,  
50% duty cycle, square wave, 2.2-nF  
load  
PD1  
PD2  
Maximum input power dissipation  
Maximum output power dissipation  
0.05  
0.99  
W
W
Copyright © 2019, Texas Instruments Incorporated  
5
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
UNIT  
7.6 Insulation Specifications for DWV Package  
VALUE  
DWV  
PARAMETER  
TEST CONDITIONS  
CLR  
CPG  
External Clearance(1)  
External Creepage(1)  
Shortest pin–to-pin distance through air  
8.5  
mm  
mm  
Shortest pin–to-pin distance across the package  
surface  
8.5  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303–11); IEC 60112  
According to IEC 60664–1  
> 21  
> 600  
I
µm  
V
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-III  
I-II  
Overvoltage category per IEC 60664-1  
DIN V VDE 0884–11: 2017–01(2)  
Maximum repetitive peak  
isolation voltage  
VIORM  
AC voltage (bipolar)  
2121  
VPK  
AC voltage (sine wave); time dependent dielectric  
breakdown (TDDB) test  
1500  
2121  
7000  
VRMS  
VDC  
VPK  
Maximum isolation working  
voltage  
VIOWM  
DC Voltage  
Maximum transient isolation  
voltage  
VTEST = VIOTM, t = 60 s (qualification) ;  
VTEST = 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
Maximum surge isolation  
Test method per IEC 62368-1, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM (qualification)  
VIOSM  
8000  
VPK  
voltage(3)  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s  
5  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM, tm = 10 s  
5  
(4)  
qpd  
Apparent charge  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 x VIOTM, tini = 1 s;  
5  
Vpd(m) = 1.875 × VIORM, tm = 1 s  
Barrier capacitance, input to  
output(5)  
CIO  
RIO  
VIO = 0.4 × sin (2πft), f = 1 MHz  
1.2  
pF  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
Isolation resistance, input to  
output(5)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO, t = 60 s (qualification); VTEST = 1.2 ×  
VISO, t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
7.7 Safety-Related Certifications For DWV Package  
VDE  
UL  
CQC  
Plan to certify according to DIN V VDE V  
0884–11:2017–01 and DIN EN 61010-1  
Recognized under UL 1577  
Component Recognition Program  
Certified according to GB 4943.1–2011  
6
Copyright © 2019, Texas Instruments Incorporated  
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
Safety-Related Certifications For DWV Package (continued)  
VDE  
UL  
CQC  
Reinforced Insulation  
Maximum Transient Isolation Overvoltage, 7000 VPK  
Maximum Repetitive Peak Isolation Voltage, 2121 VPK  
Reinforced Insulation,  
Altitude 5000 m,  
Tropical Climate  
;
Single protection, 5000 VRMS  
File Number: E181974  
;
Maximum Surge Isolation Voltage, 8000 VPK  
Certification planned  
Certification Number: CQC19001226950  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
DWV PACKAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R
1  
θJA = 119.8°C/W, VI = 15 V, TJ = 150°C, TA = 25°C, see  
Output side  
Output side  
66  
Safety input, output,  
or supply current  
IS  
mA  
33  
RθJA = 119.8°C/W, VI = 30 V, TJ = 150°C, TA = 25°C, see  
1  
Input side  
Output side  
Total  
0.05  
Safety input, output,  
or total power  
PS  
TS  
RθJA = 119.8°C/W, TJ = 150°C, TA = 25°C, see 2  
0.99  
1.04  
W
Maximum safety  
temperature(1)  
150  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2019, Texas Instruments Incorporated  
7
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7.9 Electrical Characteristics  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CL = 100-pF, TJ =  
–40°C to +125°C, (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IVCC1  
Input supply quiescent current  
1.67  
1.1  
2.4  
1.8  
mA  
mA  
Output supply quiescent  
current  
IVCC2  
SUPPLY VOLTAGE UNDERVOLTAGE THRESHOLDS  
VCC1 Positive-going UVLO  
VIT+(UVLO1)  
2.6  
2.5  
0.1  
2.8  
V
V
V
threshold voltage  
VCC1 Negative-going UVLO  
VIT– (UVLO1)  
2.4  
threshold voltage  
VCC1 UVLO threshold  
Vhys(UVLO1)  
hysteresis  
OUTPUT SUPPLY VOLTAGE UNDERVOLTAGE THRESHOLDS  
VCC2 Positive-going UVLO  
VIT+(UVLO2)  
12  
11  
1
13  
V
V
V
threshold voltage  
VCC2 Negative-going UVLO  
VIT–(UVLO2)  
10.3  
threshold voltage  
VCC2 UVLO threshold voltage  
Vhys(UVLO2)  
hysteresis  
LOGIC I/O  
Positive-going input threshold  
voltage (IN+, IN–)  
VIT+(IN)  
0.55 × VCC1 0.7 × VCC1  
V
V
Negative-going input threshold  
voltage (IN+, IN–)  
VIT–(IN)  
0.3 × VCC1 0.45 × VCC1  
Input hysteresis voltage (IN+,  
IN–)  
Vhys(IN)  
IIH  
IIL  
0.1 × VCC1  
40  
V
High-level input leakage at IN+ IN+ = VCC1  
240  
µA  
IN– = GND1  
–240  
–310  
–40  
–80  
Low-level input leakage at IN–  
µA  
IN– = GND1 – 5 V  
GATE DRIVER STAGE  
High-level output voltage  
(OUT)  
VOH  
VOL  
IOUT = –20 mA  
VCC2 – 0.1 VCC2 – 0.24  
V
Low level output voltage  
(OUT)  
IN+ = low, IN– = high; IO = 20 mA  
2
3
mV  
IOH  
IOL  
Peak source current  
Peak sink current  
IN+ = high, IN– = low  
IN+ = low, IN– = high  
10  
10  
17  
17  
A
A
SHORT CIRCUIT CLAMPING  
IN+ = high, IN– = low, tCLAMP = 10 µs,  
IOUT= 500 mA  
Clamping voltage  
VCLP-OUT  
1
1.5  
0.9  
1.3  
V
V
(VOUT –VCC2  
)
IN+ = low, IN– = high, tCLAMP = 10 µs,  
IOUT = –500 mA  
Clamping voltage  
( VEE2 – VOUT  
VCLP-OUT  
)
IN+ = low, IN– = high,  
IOUT = –20 mA  
1
ACTIVE PULLDOWN  
Active pulldown voltage on  
OUT  
VOUTSD  
IOUT = 0.1 × IOUT(typ), VCC2 = open  
1.8  
2.5  
V
8
Copyright © 2019, Texas Instruments Incorporated  
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
7.10 Switching Characteristics  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, TJ = –40°C to  
+125°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX UNIT  
tr  
Output-signal rise time  
Output-signal fall time  
Propagation delay, high  
Propagation delay, low  
UVLO recovery delay of VCC1  
UVLO recovery delay of VCC2  
Pulse width distortion  
CLOAD = 1 nF  
CLOAD = 1 nF  
26  
22  
ns  
ns  
ns  
ns  
µs  
µs  
tf  
10  
tPLH  
CLOAD = 100 pF  
CLOAD = 100 pF  
65  
100  
100  
tPHL  
65  
tUVLO1_rec  
tUVLO2_rec  
30  
50  
tPWD  
CLOAD = 100 pF  
1
1
20  
25  
ns  
ns  
|tPHL – tPLH  
|
tsk(pp)  
CMTI  
Part-to-part skew(1)  
CLOAD = 100 pF  
Common-mode transient  
immunity  
PWM is tied to GND or VCC1, VCM = 1200 V  
100  
120  
kV/µs  
(1) tsk(pp) is the magnitude of the difference in propagation delay times between the output of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads guaranteed by characterization.  
7.11 Insulation Characteristics Curves  
80  
60  
40  
20  
0
1500  
1200  
900  
600  
300  
0
VCC2=15V  
VCC2=30V  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
1. Thermal Derating Curve for Limiting Current per VDE  
2. Thermal Derating Curve for Limiting Power per VDE for  
for DWV Package  
DWV Package  
版权 © 2019, Texas Instruments Incorporated  
9
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
7.12 Typical Characteristics  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TJ =  
–40°C to +125°C, (unless otherwise noted)  
25  
22  
19  
16  
13  
10  
24  
21  
18  
15  
12  
14  
17  
20  
23  
VCC2 (V)  
26  
29  
32  
34  
14  
17  
20  
23  
VCC2 (V)  
26  
29  
32  
34  
CLOAD = 150 nF  
CLOAD = 150 nF  
3. Output-High Drive Current vs Output Voltage  
2.7  
4. Output-Low Drive Current vs Output Voltage  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
IN+ = L  
IN– = H  
IN+ = H  
IN– = L  
5. ICC1 Supply Current vs Temperature  
1.82  
6. ICC1 Supply Current vs Temperature  
3
1.79  
1.76  
1.73  
1.7  
2.6  
2.2  
1.8  
1.4  
1
1.67  
1.64  
1.61  
0.6  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (MHz)  
0.6  
0.7  
0.8  
0.9  
1
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Duty Cycle = 50%  
T = 25°C  
IN+ = L  
IN– = H  
7. ICC1 Supply Current vs Input Frequency  
8. ICC2 Supply Current vs Temperature  
3
2.6  
2.2  
1.8  
1.4  
1
1.68  
1.56  
1.44  
1.32  
1.2  
0.6  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (MHz)  
0.6  
0.7  
0.8  
0.9  
1
Temperature (èC)  
IN+ = H  
9. ICC2 Supply Current vs Temperature  
IN– = L  
Duty Cycle = 50%  
T = 25°C  
10. ICC2 Supply Current vs Input Frequency  
10  
版权 © 2019, Texas Instruments Incorporated  
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
Typical Characteristics (接下页)  
VCC1 = 3.3 V or 5 V, 0.1-µF capacitor from VCC1 to GND1, VCC2= 15 V, 1-µF capacitor from VCC2 to VEE2, CLOAD = 1 nF, TJ =  
–40°C to +125°C, (unless otherwise noted)  
2.26  
2.08  
1.9  
12.5  
11.5  
10.5  
9.5  
1.72  
1.54  
1.36  
1.18  
1
8.5  
7.5  
6.5  
0
2
4
Load Capacitance (nF)  
6
8
10  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
fSW = 1 kHz  
11. ICC2 Supply Current vs Load Capacitance  
11.5  
12. Rise Time vs Temperature  
65  
61  
57  
53  
49  
45  
10.5  
9.5  
8.5  
7.5  
6.5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
14. Propagation Delay tPLH vs Temperature  
13. Fall Time vs Temperature  
56  
54.5  
53  
28  
24  
20  
16  
12  
8
51.5  
50  
4
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
0
2
4
Load Capacitance (nF)  
6
8
10  
Temperature (èC)  
fSW = 1 kHz  
RGH = 0 Ω  
RGL = 0 Ω  
15. Propagation Delay tPHL vs Temperature  
16. Rise Time vs Load Capacitance  
40  
36  
32  
28  
24  
20  
16  
12  
8
4
0
2
4 6  
Load Capacitance (nF)  
8
10  
fSW = 1 kHz  
RGH = 0 Ω  
RGL = 0 Ω  
17. Fall Time vs Load Capacitance  
版权 © 2019, Texas Instruments Incorporated  
11  
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Propagation Delay, Inverting, and Noninverting Configuration  
18 shows the propagation delay for noninverting configurations. 19 shows the propagation delay with the  
inverting configuration. These figures also demonstrate the method used to measure the rise (tr) and fall (tf)  
times.  
0 V  
INœ  
50%  
tf  
tr  
IN+  
90%  
50%  
10%  
OUT  
tPLH  
tPHL  
18. Propagation Delay, Noninverting Configuration  
INœ  
50%  
IN+  
tf  
tr  
90%  
50%  
OUT  
10%  
tPLH  
tPHL  
19. Propagation Delay, Inverting Configuration  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
Propagation Delay, Inverting, and Noninverting Configuration (接下页)  
8.1.1 CMTI Testing  
20 is a simplified diagram of the CMTI testing configuration.  
15 V  
5 V  
VCC2  
VCC1  
C3  
C4  
C1  
C2  
GND1  
OUT  
PWM  
IN+  
GND2  
VEE2  
INœ  
+
œ
VCM  
20. CMTI Test Circuit for UCC5390-Q1  
版权 © 2019, Texas Instruments Incorporated  
13  
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The isolation inside the UCC5390-Q1 is implemented with high-voltage SiO2-based capacitors. The signal across  
the isolation has an on-off keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide  
based isolation barrier (see 22). The transmitter sends a high-frequency carrier across the barrier to represent  
one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal  
after advanced signal conditioning and produces the output through a buffer stage. The UCC5390-Q1 also  
incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions from the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital  
capacitive isolator, 21, shows a functional block diagram of a typical channel. 22 shows a conceptual detail  
of how the OOK scheme works.  
21 shows how the input signal passes through the capacitive isolation barrier through modulation (OOK) and  
signal conditioning.  
9.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
21. Conceptual Block Diagram of a Capacitive Data Channel  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
22. On-Off Keying (OOK) Based Modulation Scheme  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
Functional Block Diagram (接下页)  
VCC2  
UVLO2  
VCC1  
UVLO1  
VCC2  
IN+  
Level  
Shifting  
and  
Control  
Logic  
OUT  
INœ  
GND2  
VEE2  
GND1  
23. Functional Block Diagram — UVLO With Respect to GND2 (UCC5390-Q1)  
9.3 Feature Description  
9.3.1 Power Supply  
The VCC1 input power supply supports a wide voltage range from 3 V to 15 V and the VCC2 output supply  
supports a voltage range from 9.5 V to 33 V. For operation with bipolar supplies, the power device is turned off  
with a negative voltage on the gate with respect to the emitter or source. This configuration prevents the power  
device from unintentionally turning on because of current induced from the Miller effect. The typical values of the  
VCC2 and VEE2 output supplies for bipolar operation are 15 V and –8 V with respect to GND2 for IGBTs and 20 V  
and –5 V for SiC MOSFETs.  
For operation with unipolar supply, the VCC2 supply is connected to 15 V with respect to VEE2 for IGBTs, and 20  
V for SiC MOSFETs. The VEE2 supply is connected to 0 V.  
9.3.2 Input Stage  
The input pins (IN+ and IN–) of the UCC5390-Q1 are based on CMOS-compatible input-threshold logic that is  
completely isolated from the VCC2 supply voltage. The input pins are easy to drive with logic-level control signals  
(such as those from 3.3-V microcontrollers), because the UCC5390-Q1 has a typical high threshold (VIT+(IN)) of  
0.55 × VCC1 and a typical low threshold of 0.45 × VCC1. A wide hysteresis (Vhys(IN)) of 0.1 × VCC1 makes for good  
noise immunity and stable operation. If any of the inputs are left open, 128 kΩ of internal pulldown resistance  
forces the IN+ pin low and 128 kΩ of internal resistance pulls IN– high. However, TI still recommends grounding  
an input or tying to VCC1 if it is not being used for improved noise immunity.  
Because the input side of the UCC5390-Q1 is isolated from the output driver, the input signal amplitude can be  
larger or smaller than VCC2 provided that it does not exceed the recommended limit. This feature allows greater  
flexibility when integrating the gate-driver with control signal sources and allows the user to choose the most  
efficient VCC2 for any gate. However, the amplitude of any signal applied to IN+ or IN– must never be at a voltage  
higher than VCC1  
.
版权 © 2019, Texas Instruments Incorporated  
15  
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
9.3.3 Output Stage  
The output stage of the UCC5390-Q1 features a pullup structure that delivers the highest peak-source current  
when it is most needed which is during the Miller plateau region of the power-switch turnon transition (when the  
power-switch drain or collector voltage experiences dV/dt). The output stage pullup structure features a P-  
channel MOSFET and an additional pullup N-channel MOSFET in parallel. The function of the N-channel  
MOSFET is to provide a brief boost in the peak-sourcing current, which enables fast turn-on. Fast turn-on is  
accomplished by briefly turning on the N-channel MOSFET during a narrow instant when the output is changing  
states from low to high. 1 lists the typical internal resistance values of the pullup and pulldown structure.  
1. UCC5390-Q1 On-Resistance  
DEVICE OPTION  
UCC5390-Q1  
RNMOS  
0.76  
ROH  
12  
ROL  
UNIT  
0.13  
Ω
The ROH parameter is a DC measurement and is representative of the on-resistance of the P-channel device  
only. This parameter is only for the P-channel device, because the pullup N-channel device is held in the OFF  
state in DC condition and is turned on only for a brief instant when the output is changing states from low to high.  
Therefore, the effective resistance of the UCC5390-Q1 pullup stage during this brief turnon phase is much lower  
than what is represented by the ROH parameter, which yields a faster turnon. The turnon-phase output resistance  
is the parallel combination ROH || RNMOS  
.
The pulldown structure in the UCC5390-Q1 is simply composed of an N-channel MOSFET. The output of the  
UCC5390-Q1 is capable of delivering, or sinking, 10-A peak current pulses. The output voltage swing between  
VCC2 and VEE2 provides rail-to-rail operation because of the MOS-out stage which delivers very low dropout.  
UVLO2  
VCC2  
ROH  
Level  
Shifting  
and  
RNMOS  
OUT  
Control  
Logic  
ROL  
GND2  
VEE2  
24. Output Stage  
9.3.4 Protection Features  
9.3.4.1 Undervoltage Lockout (UVLO)  
UVLO functions are implemented for both the VCC1 and VCC2 supplies between the VCC1 and GND1, and VCC2  
and VEE2 pins to prevent an underdriven condition on IGBTs and MOSFETs. When VCC is lower than VIT+ (UVLO)  
at device start-up or lower than VIT–(UVLO) after start-up, the voltage-supply UVLO feature holds the effected  
output low, regardless of the input pins (IN+ and IN–) as shown in 2. The VCC UVLO protection has a  
hysteresis feature (Vhys(UVLO)). This hysteresis prevents chatter when the power supply produces ground noise;  
this allows the device to permit small drops in bias voltage, which occurs when the device starts switching and  
operating current consumption increases suddenly. 25 shows the UVLO functions.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
2. UCC5390-Q1 VCC1 UVLO Logic  
INPUTS  
OUTPUT  
CONDITION  
IN+  
IN–  
L
OUT  
H
L
L
L
L
L
L
L
L
L
H
H
L
VCC1 – GND1 < VIT+(UVLO1) during device start-up  
H
L
H
L
L
H
H
L
VCC1 – GND1 < VIT–(UVLO1) after device start-up  
H
L
3. UCC5390-Q1 VCC2 UVLO Logic  
INPUTS  
OUTPUT  
CONDITION  
IN+  
IN–  
L
OUT  
H
L
L
L
L
L
L
L
L
L
H
H
L
VCC2 – VEE2 < VIT+(UVLO2) during device start-up  
H
L
H
L
L
H
H
L
VCC2 – VEE2 < VIT–(UVLO2) after device start-up  
H
L
When VCC1 or VCC2 drops below the UVLO1 or UVLO2 threshold, a delay, tUVLO1_rec or tUVLO2_rec, occurs on the  
output when the supply voltage rises above VIT+(UVLO) or VIT+(UVLO2) again. 25 shows this delay.  
IN+  
IN+  
VIT+ (UVLO1)  
VCC1  
VCC1  
VIT (UVLO1)  
œ
VCC2  
VCC2  
VIT+ (UVLO2)  
VIT  
œ
(UVLO2)  
tUVLO2_rec  
tUVLO1_rec  
VOUT  
VOUT  
25. UVLO Functions  
版权 © 2019, Texas Instruments Incorporated  
17  
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
9.3.4.2 Active Pulldown  
The active pulldown function is used to pull the IGBT or MOSFET gate to the low state when no power is  
connected to the VCC2 supply. This feature prevents false IGBT and MOSFET turnon on the OUT pin by  
clamping the output to approximately 2 V.  
When the output stages of the driver are in an unbiased or UVLO condition, the driver outputs are held low by an  
active clamp circuit that limits the voltage rise on the driver outputs. In this condition, the upper PMOS is  
resistively held off by a pullup resistor while the lower NMOS gate is tied to the driver output through a 500-kΩ  
resistor. In this configuration, the output is effectively clamped to the threshold voltage of the lower NMOS  
device, which is approximately 1.5 V when no bias power is available.  
9.3.4.3 Short-Circuit Clamping  
The short-circuit clamping function is used to clamp voltages at the driver output slightly higher than the VCC2  
voltage during short-circuit conditions. The short-circuit clamping function helps protect the IGBT or MOSFET  
gate from overvoltage breakdown or degradation. The short-circuit clamping function is implemented by adding a  
diode connection between the dedicated pins and the VCC2 pin inside the driver. The internal diodes can conduct  
up to 500-mA current for a duration of 10 µs and a continuous current of 20 mA. Use external Schottky diodes to  
improve current conduction capability as needed.  
9.4 Device Functional Modes  
lists the functional modes for the UCC5390-Q1 assuming VCC1 and VCC2 are in the recommended range.  
4. Function Table  
IN+  
Low  
X
IN–  
X
OUT  
Low  
Low  
High  
High  
Low  
High  
18  
版权 © 2019, Texas Instruments Incorporated  
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
9.4.1 ESD Structure  
26 shows the multiple diodes involved in the ESD protection components of the UCC5390-Q1. This provides  
pictorial representation of the absolute maximum rating for the device.  
VCC1  
VCC2  
1
5
2
3
6
IN+  
OUT  
20 V  
40 V  
INœ  
5.5 V  
4
8
GND1  
VEE2  
26. ESD Structure  
版权 © 2019, Texas Instruments Incorporated  
19  
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The UCC5390-Q1 is a simple, isolated gate driver for power semiconductor devices, such as MOSFETs, IGBTs,  
or SiC MOSFETs. The family of devices is intended for use in applications such as motor control, solar inverters,  
switched-mode power supplies, and industrial inverters.  
10.2 Typical Application  
The circuit in 27 show a typical application for driving IGBTs.  
15 V  
VCC2  
5 V  
VCC1  
C3  
C4  
C1  
C2  
GND1  
RG  
OUT  
Rin  
PWM  
IN+  
Cin  
GND2  
VEE2  
INœ  
C5  
C3  
œ 8 V  
27. Typical Application Circuit for UCC5390-Q1 to Drive IGBT  
10.2.1 Design Requirements  
5 lists the recommended conditions to observe the input and output of the UCC5390-Q1 gate driver with the  
IN– pin tied to the GND1 pin.  
5. UCC5390-Q1 Design Requirements  
PARAMETER  
VALUE  
3.3  
UNIT  
V
VCC1  
VCC2  
18  
V
VEE2  
-3  
V
IN+  
3.3  
V
IN–  
GND1  
300  
126  
-
Switching frequency  
Gate Charge of Power Device  
kHz  
nC  
10.2.2 Detailed Design Procedure  
10.2.2.1 Designing IN+ and IN– Input Filter  
TI recommends that users avoid shaping the signals to the gate driver in an attempt to slow down (or delay) the  
signal at the output. However, a small input filter, RIN-CIN, can be used to filter out the ringing introduced by  
nonideal layout or long PCB traces.  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
Such a filter should use an RIN resistor with a value from 0 Ω to 100 Ω and a CIN capacitor with a value from 10  
pF to 1000 pF. In the example, the selected value for RIN is 51 Ω and CIN is 33 pF, with a corner frequency of  
approximately 100 MHz.  
When selecting these components, pay attention to the trade-off between good noise immunity and propagation  
delay.  
10.2.2.2 Gate-Driver Output Resistor  
The external gate-driver resistors, RG(ON) and RG(OFF) are used to:  
1. Limit ringing caused by parasitic inductances and capacitances  
2. Limit ringing caused by high voltage or high current switching dv/dt, di/dt, and body-diode reverse recovery  
3. Fine-tune gate drive strength, specifically peak sink and source current to optimize the switching loss  
4. Reduce electromagnetic interference (EMI)  
The output stage has a pullup structure consisting of a P-channel MOSFET and an N-channel MOSFET in  
parallel. The combined peak source current is 17 A for UCC5390-Q1 . Use 公式 1 to estimate the peak source  
current.  
VCC2 - VEE2  
RNMOS || ROH + RON + RGFET _Int  
IOH = min17A,  
÷
÷
«
where  
RON is the external turnon resistance, which is 2.2 Ω in this example.  
RGFET_Int is the power transistor internal gate resistance, found in the power transistor data sheet. We will  
assume 1.8Ω for our example.  
IOH is the peak source current which is the minimum value between 17 A, the gate-driver peak source current,  
and the calculated value based on the gate-drive loop resistance.  
(1)  
In this example, the peak source current is approximately 4.45 A as calculated in 公式 2.  
VCC2 - VEE2  
RNMOS || ROH + RON + RGFET _Int 0.76 W ||12 W + 2.2 W +1.8 W  
21 V  
IOH  
=
=
ö 4.45 A  
(2)  
Similarly, use 公式 3 to calculate the peak sink current.  
VCC2 - VEE2  
ROL + ROFF+RGFET _Int  
IOL = min17 A,  
÷
÷
«
where  
ROFF is the external turnoff resistance, which is 2.2 Ω in this example.  
IOL is the peak sink current which is the minimum value between 17 A, the gate-driver peak sink current, and  
the calculated value based on the gate-drive loop resistance.  
(3)  
In this example, the peak sink current is the minimum of 公式 4 and 17 A.  
VCC2 - VEE2  
21 V  
IOL  
=
=
ö 5.08 A  
ROL + ROFF + RGFET _Int 0.13 W + 2.2 W +1.8 W  
(4)  
The estimated peak current is also influenced by PCB layout and load capacitance.  
Parasitic inductance in the gate-driver loop can slow down the peak gate-drive current and  
introduce overshoot and undershoot. Therefore, TI strongly recommends that the gate-  
driver loop should be minimized. Conversely, the peak source and sink current is  
dominated by loop parasitics when the load capacitance (CISS) of the power transistor is  
very small (typically less than 1 nF) because the rising and falling time is too small and  
close to the parasitic ringing period.  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
 
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
10.2.2.3 Estimate Gate-Driver Power Loss  
The total loss, PG, in the gate-driver subsystem includes the power losses (PGD) of the UCC5390-Q1 device and  
the power losses in the peripheral circuitry, such as the external gate-drive resistor.  
The PGD value is the key power loss which determines the thermal safety-related limits of the UCC5390-Q1  
device, and it can be estimated by calculating losses from several components.  
The first component is the static power loss, PGDQ, which includes quiescent power loss on the driver as well as  
driver self-power consumption when operating with a certain switching frequency. The PGDQ parameter is  
measured on the bench with no load connected to the OUT pins at a given VCC1, VCC2, switching frequency, and  
ambient temperature. In this example, VCC1 is 3.3V, VCC2 is 18 V and VEE2 is -3 V. The current on each power  
supply, with PWM switching from 0 V to 3.3 V at 300 kHz, is measured to be ICC1 = 1.67 mA and ICC2 = 1.28 mA.  
Therefore, use 公式 5 to calculate PGDQ  
.
PGDQ =VCC1 ì IVCC1 + (VCC2 - VEE2 )ì ICC2 ö32.4mW  
(5)  
The second component is the switching operation loss, PGDO, with a given load capacitance which the driver  
charges and discharges the load during each switching cycle. Use 公式 6 to calculate the total dynamic loss from  
load switching, PGSW  
.
PGSW = (VCC2 - VEE2)ìQG ì fSW  
where  
QG is the gate charge of the power transistor at VCC2  
.
(6)  
So, for this example application the total dynamic loss from load switching is approximately 793.8 mW as  
calculated in 公式 7.  
PGSW = 21 V ì126 nCì300 kHz = 793.8 mW  
(7)  
QG represents the total gate charge of the power transistor, and is subject to change with different testing  
conditions. The UCC5390-Q1 gate-driver loss on the output stage, PGDO, is part of PGSW. PGDO is equal to PGSW if  
the external gate-driver resistance and power-transistor internal resistance are 0 Ω, and all the gate driver-loss  
will be dissipated inside the UCC5390-Q1. If an external turn-on and turn-off resistance exists, the total loss is  
distributed between the gate driver pull-up/down resistance, external gate resistance, and power-transistor  
internal resistance. Importantly, the pull-up/down resistance is a linear and fixed resistance if the source/sink  
current is not saturated to 17 A, however, it will be non-linear if the source/sink current is saturated. Therefore,  
PGDO is different in these two scenarios.  
Case 1 - Linear Pull-Up/Down Resistor:  
PGSW  
2
ROH ||RNMOS  
ROL  
PGDO  
=
«
+
÷
÷
ROH ||RNMOS +RON +RGFET _Int ROL +ROFF +RGFET _Int  
(8)  
In this design example, all the predicted source and sink currents are less than 17 A, therefore, use 公式 9 to  
estimate the UCC5390-Q1 gate-driver loss.  
«
÷
793.8 mW  
2
12 W || 0.76 W  
12 W || 0.76 W + 2.2 W +1.8 W 0.13 W + 2.2 W +1.8 W  
0.13 W  
PGDO  
=
+
ö72.66 mW  
(9)  
Case 2 - Nonlinear Pull-Up/Down Resistor:  
TR_Sys  
TF_Sys  
»
ÿ
Ÿ
PGDO =fSW ì 17 A ì  
V
- VOUTH(t) dt +17 A ì  
(VOUTL(t) - VEE2)dt  
(
)
CC2  
Ÿ
0
0
Ÿ
where  
VOUTH/L(t) is the gate-driver OUT pin voltage during the turnon and turnoff period. In cases where the output is  
saturated for some time, this value can be simplified as a constant-current source (17 A at turnon and turnoff)  
charging or discharging a load capacitor. Then, the VOUTH/L(t) waveform will be linear and the TR_Sys and TF_Sys  
can be easily predicted.  
(10)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
For some scenarios, if only one of the pullup or pulldown circuits is saturated and another one is not, the PGDO is  
a combination of case 1 and case 2, and the equations can be easily identified for the pullup and pulldown based  
on this discussion.  
Use 公式 11 to calculate the total gate-driver loss dissipated in the UCC5390-Q1 gate driver, PGD  
.
PGD = PGDQ + PGDO = 32.4mW + 72.66mW = 105.06mW  
(11)  
10.2.2.4 Estimating Junction Temperature  
Use 公式 12 to estimate the junction temperature (TJ) of the UCC5390-Q1 family.  
TJ = TC + YJT ìPGD  
where  
TC is the UCC5390-Q1 case-top temperature measured with a thermocouple or some other instrument.  
ΨJT is the junction-to-top characterization parameter from the table.  
(12)  
Using the junction-to-top characterization parameter (ΨJT) instead of the junction-to-case thermal resistance  
(RθJC) can greatly improve the accuracy of the junction temperature estimation. The majority of the thermal  
energy of most ICs is released into the PCB through the package leads, whereas only a small percentage of the  
total energy is released through the top of the case (where thermocouple measurements are usually conducted).  
The RθJC resistance can only be used effectively when most of the thermal energy is released through the case,  
such as with metal packages or when a heat sink is applied to an IC package. In all other cases, use of RθJC will  
inaccurately estimate the true junction temperature. The ΨJT parameter is experimentally derived by assuming  
that the dominant energy leaving through the top of the IC will be similar in both the testing environment and the  
application environment. As long as the recommended layout guidelines are observed, junction temperature  
estimations can be made accurately to within a few degrees Celsius.  
10.2.3 Selecting VCC1 and VCC2 Capacitors  
Bypass capacitors for the VCC1 and VCC2 supplies are essential for achieving reliable performance. TI  
recommends choosing low-ESR and low-ESL, surface-mount, multi-layer ceramic capacitors (MLCC) with  
sufficient voltage ratings, temperature coefficients, and capacitance tolerances.  
DC bias on some MLCCs will impact the actual capacitance value. For example, a 25-V,  
1-μF X7R capacitor is measured to be only 500 nF when a DC bias of 15-VDC is applied.  
10.2.3.1 Selecting a VCC1 Capacitor  
A bypass capacitor connected to the VCC1 pin supports the transient current required for the primary logic and the  
total current consumption, which is only a few milliamperes. Therefore, a 50-V MLCC with over 100 nF is  
recommended for this application. If the bias power-supply output is located a relatively long distance from the  
VCC1 pin, a tantalum or electrolytic capacitor with a value greater than 1 μF should be placed in parallel with the  
MLCC.  
10.2.3.2 Selecting a VCC2 Capacitor  
A 50-V, 10-μF MLCC and a 50-V, 0.22-μF MLCC are selected for the CVCC2 capacitor. If the bias power supply  
output is located a relatively long distance from the VCC2 pin, a tantalum or electrolytic capacitor with a value  
greater than 10 μF should be used in parallel with CVCC2  
.
10.2.3.3 Application Circuits With Output Stage Negative Bias  
When parasitic inductances are introduced by nonideal PCB layout and long package leads (such as TO-220  
and TO-247 type packages), ringing in the gate-source drive voltage of the power transistor could occur during  
high di/dt and dv/dt switching. If the ringing is over the threshold voltage, unintended turnon and shoot-through  
could occur. Applying a negative bias on the gate drive is a popular way to keep such ringing below the  
threshold. A few examples of implementing negative gate-drive bias follow.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
28 shows another example which uses two supplies (or single-input, double-output power supply). The power  
supply across VCC2 and GND2 determines the positive drive output voltage and the power supply across VEE2  
and GND2 determines the negative turnoff voltage. This solution requires more power supplies than the first  
example, however, it provides more flexibility when setting the positive and negative rail voltages.  
VCC2  
VCC1  
CA1  
+
œ
GND1  
RG  
OUT  
GND2  
IN+  
CA2  
+
œ
INœ  
VEE2  
28. Negative Bias With Two Iso-Bias Power Supplies  
10.2.4 Application Curve  
VCC2 = 20 V  
VEE2 = GND fSW = 10 kHz  
29. PWM Input And Gate Voltage Waveform  
11 Power Supply Recommendations  
The recommended input supply voltage (VCC1) for the UCC5390-Q1 device is from 3 V to 15 V. The lower limit of  
the range of output bias-supply voltage (VCC2) is determined by the internal UVLO protection feature of the  
device. The VCC1 and VCC2 voltages should not fall below their respective UVLO thresholds for normal operation,  
or else the gate-driver outputs can become clamped low for more than 50 μs by the UVLO protection feature. For  
more information on UVLO, see the Undervoltage Lockout (UVLO) section. The higher limit of the VCC2 range  
depends on the maximum gate voltage of the power device that is driven by the UCC5390-Q1 device, and  
should not exceed the recommended maximum VCC2 of 33 V. A local bypass capacitor should be placed  
between the VCC2 and VEE2 pins, with a value of 220-nF to 10-μF for device biasing. TI recommends placing an  
additional 100-nF capacitor in parallel with the device biasing capacitor for high frequency filtering. Both  
capacitors should be positioned as close to the device as possible. Low-ESR, ceramic surface-mount capacitors  
are recommended. Similarly, a bypass capacitor should also be placed between the VCC1 and GND1 pins. Given  
the small amount of current drawn by the logic circuitry within the input side of the UCC5390-Q1 device, this  
bypass capacitor has a minimum recommended value of 100 nF.  
24  
版权 © 2019, Texas Instruments Incorporated  
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
If only a single, primary-side power supply is available in an application, isolated power can be generated for the  
secondary side with the help of a transformer driver such as Texas Instruments' SN6501 or SN6505A. For such  
applications, detailed power supply design and transformer selection recommendations are available in SN6501  
Transformer Driver for Isolated Power Supplies data sheet and SN6505A Low-Noise 1-A Transformer Drivers for  
Isolated Power Supplies data sheet.  
版权 © 2019, Texas Instruments Incorporated  
25  
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Designers must pay close attention to PCB layout to achieve optimum performance for the UCC5390-Q1. Some  
key guidelines are:  
Component placement:  
Low-ESR and low-ESL capacitors must be connected close to the device between the VCC1 and GND1  
pins and between the VCC2 and VEE2 pins to bypass noise and to support high peak currents when turning  
on the external power transistor.  
To avoid large negative transients on the VEE2 pins connected to the switch node, the parasitic  
inductances between the source of the top transistor and the source of the bottom transistor must be  
minimized.  
Grounding considerations:  
Limiting the high peak currents that charge and discharge the transistor gates to a minimal physical area  
is essential. This limitation decreases the loop inductance and minimizes noise on the gate terminals of  
the transistors. The gate driver must be placed as close as possible to the transistors.  
High-voltage considerations:  
To ensure isolation performance between the primary and secondary side, avoid placing any PCB traces  
or copper below the driver device. A PCB cutout or groove is recommended in order to prevent  
contamination that may compromise the isolation performance.  
Thermal considerations:  
A large amount of power may be dissipated by the UCC5390-Q1 if the driving voltage is high, the load is  
heavy, or the switching frequency is high (for more information, see the Estimate Gate-Driver Power Loss  
section). Proper PCB layout can help dissipate heat from the device to the PCB and minimize junction-to-  
board thermal impedance (θJB).  
Increasing the PCB copper connecting to the VCC2 and VEE2 pins is recommended, with priority on  
maximizing the connection to VEE2. However, the previously mentioned high-voltage PCB considerations  
must be maintained.  
If the system has multiple layers, TI also recommends connecting the VCC2 and VEE2 pins to internal  
ground or power planes through multiple vias of adequate size. These vias should be located close to the  
IC pins to maximize thermal conductivity. However, keep in mind that no traces or coppers from different  
high voltage planes are overlapping.  
26  
版权 © 2019, Texas Instruments Incorporated  
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
12.2 Layout Example  
30 shows a PCB layout example with the signals and key components labeled.  
(1) No PCB traces or copper are located between the primary and secondary side, which ensures isolation performance.  
30. Layout Example  
版权 © 2019, Texas Instruments Incorporated  
27  
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
Layout Example (接下页)  
31 and 32 show the top and bottom layer traces and copper.  
31. Top-Layer Traces and Copper  
32. Bottom-Layer Traces and Copper (Flipped)  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
UCC5390-Q1  
www.ti.com.cn  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
Layout Example (接下页)  
33 shows the 3D layout of the top view of the PCB.  
33. 3-D PCB View  
12.3 PCB Material  
Use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of  
lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-  
extinguishing flammability-characteristics.  
34 shows the recommended layer stack.  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
34. Recommended Layer Stack  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
UCC5390-Q1  
ZHCSKG7A OCTOBER 2019REVISED NOVEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)隔离相关术语  
德州仪器 (TI)SN6501 用于隔离式电源的变压器驱动器》数据表  
德州仪器 (TI)SN6505A 用于隔离式电源的低噪声 1A 变压器驱动器》数据表  
德州仪器 (TI)UCC53x0xD 评估模块用户指南  
13.2 认证  
UL 在线认证目录,“FPPT2.E181974 非光学隔离器件 - 组件证书编号:20170718-E181974,  
13.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.5 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
30  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC5390ECQDWVQ1  
UCC5390ECQDWVRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWV  
DWV  
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
5390ECQ  
5390ECQ  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UCC5390ECD

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125
TI

UCC5390ECDR

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125
TI

UCC5390ECDWV

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125
TI

UCC5390ECDWVR

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125
TI

UCC5390ECQDWVQ1

适用于 IGBT/SiC MOSFET 且具有 UVLO(以 GND 为基准)的汽车类 5kVrms、17A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125
TI

UCC5390ECQDWVRQ1

适用于 IGBT/SiC MOSFET 且具有 UVLO(以 GND 为基准)的汽车类 5kVrms、17A 单通道隔离式栅极驱动器 | DWV | 8 | -40 to 125
TI

UCC5390SCD

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125
TI

UCC5390SCDR

具有 UVLO(以 GND 为基准)或分离输出的 3kVrms/5kVrms、±10A 单通道隔离式栅极驱动器 | D | 8 | -40 to 125
TI

UCC5510

Low Voltage Differential LVD/SE SCSI 9 Line Terminator
TI

UCC5510MWP

9-LINE 105 ohm SCSI BUS TERMINATOR, PDSO36, SSOP-36
ROCHESTER

UCC5510MWP-TR

9-LINE 105ohm SCSI BUS TERMINATOR, PDSO36, SSOP-36
ROCHESTER

UCC5510MWPTR

9-LINE 105ohm SCSI BUS TERMINATOR, PDSO36, SSOP-36
ROCHESTER