UCD3138064ARGCR [TI]

适用于隔离电源的高集成度数字控制器 | RGC | 64 | -40 to 125;
UCD3138064ARGCR
型号: UCD3138064ARGCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于隔离电源的高集成度数字控制器 | RGC | 64 | -40 to 125

控制器
文件: 总89页 (文件大小:3324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
UCD3138064A 用于隔离电源的高度集成数字控制器  
1 器件概述  
1.1 特性  
1
突发模式  
理想的二极管仿真  
• UCD3138 系列的 64kB 程序闪存衍生器件  
– 2-32kB 程序闪存存储器组  
同步镇流器软启动/关闭  
低集成电路 (IC) 待机功率  
初级侧电压感应  
支持从组 1 执行,同时对其它组进行编程  
在不关闭电源的情况下,能够更新固件  
UCD3138 (+1 SPI+1 I2C) 相对的额外通信  
端口  
磁通和相位电流均衡  
UCD3138 (SLUSAP2B) 引脚到引脚兼容。  
可对多达 3 个独立式反馈环路的数字控制  
专用的基于 PID 的硬件  
电流共享(平均 & /从)  
特有丰富的故障保护选项  
– 7 个模拟比较器/4 个数字比较器  
逐周期电流限制  
支持双极点/双零点配置  
非线性控制  
带和不带预偏置电压的软启动/停止  
快速输入电压前馈硬件  
可编程消隐时间和故障计数  
外部故障输入  
多个 UCD3138064A 器件间的 DPWM 波形同步  
同步整流死区优化外设,可与 UCD7138 同步整流  
驱动器搭配使用  
• 14 通道,12 位,267ksps 通用 ADC,此 ADC 具  
有集成的  
高达 16MHz 误差数模 (A/D) 转换器 (EADC)  
可配置低至 1mV/LSB 的分辨率  
高达 8 倍过采样  
可编程平均滤波器  
双采样保持  
内部温度传感器  
基于硬件的取平均值操作(高达 8 倍)  
带有 4 位抖动值的 14 位有效数模转换器 (DAC)  
自适应触发定位  
完全可编程高性能 31.25MHz32 ARM7TDMI-S  
处理器  
– 64kB 程序闪存(2-32kB 组)  
具有纠错码 (ECC) 2kB 数据闪存  
– 4kB 数据 RAM  
高达 8 个高分辨率数字脉宽已调制 (DPWM) 输出  
脉宽分辨率为 250ps  
– 8kB 引导 ROM  
– 4ns 频率和相位分辨率  
输出间的可调相移  
配对间的可调死区  
逐周期占空比匹配  
可通过 I2C 或通用异步收发器 (UART) 实现现场  
固件引导加载  
通信外设  
– 1 - I2C/PMBus1 - I2C (只适用于主控模式)  
– 2 - UART  
高达 2MHz 开关频率  
可配置后缘/前缘/三角调制  
可配置的反馈控制  
– 1 - SPI  
• UART 自动波特率调整  
具有可选输入引脚的定时器捕捉  
内置安全装置:欠压检测 (BOD) 和加电复位 (POR)  
• 64 引脚四方扁平无引线 (QFN) 48 引脚 QFN 封  
电压、平均电流和峰值电流模式控制  
恒定电流、恒定功率  
可配置 FM,相移调制和脉宽调制 (PWM)  
快速,自动和平滑模式开关  
频率调制和 PWM  
相移调制和 PWM  
频率调制和相移调制  
高效和轻负载管理  
运行温度:-40°C 125°C  
调试接口  
– Code Composer StudioTMJTAG 接口)  
– Fusion Digital PowerTM Designer GUI 支持  
1.2 应用范围  
电源和电信整流器  
功率因数校正  
独立的 DC-DC 模块  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLUSCA5  
 
 
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
1.3 说明  
UCD3138064A 是一款德州仪器 (TI) 数字电源控制器,此控制器在一个单芯片解决方案内提供高集成度和优  
异的性能。相对于德州仪器 (TI) UCD3138 数字电源控制器 (Section 3)UCD3138064A 可提供 64kB 闪  
存程序存储器(UCD3138 可提供 32kB 闪存程序存储器),以及 SPI I2C 端口等附加通信选件。2-32kB  
组内的 64kB 程序闪存存储器的可用性使得设计人员能够在器件中执行固件的双镜像(例如,一个主镜像 +  
一个备份镜像),以及从任一使用适当算法的组中执行的灵活性。它还为处理器创造了独一无二的机会来载  
入一个新程序并随后执行那个程序,而不会中断电源传送。该特性使得最终用户能够现场为电源添加新 特  
性, 同时消除了载入新程序所需的任何停机时间。  
UCD3138064A 灵活的特性使得此器件适用于广泛的电源转换 应用。此外,器件内的多种外设已经过专门优  
化,用于提升 AC/DC 和隔离式 DC/DC 应用 性能并减少信息技术 (IT) 和网络基础设施空间内的解决方案组  
件数量。UCD3138064A 是完全可编程的解决方案,可以使用户对相关应用实现完全控制,并且能够在同类  
解决方案中脱颖而出。与此同时,德州仪器 (TI) 致力于通过提供一流的开发工具来简化用户的开发工作,其  
中包括应用固件、Code Composer StudioTM 软件开发环境和德州仪器 (TI) 的整合电源开发 GUI,这使得用  
户能够配置和监控关键系统参数。  
UCD3138064A 控制器的核心是数字电源外设 (DPP)。每个 DPP 实现一个高速数字控制环路,此环路由专  
用误差模数转换器 (EADC)、基于 PID 的双极点/双零点数字补偿器以及脉宽分辨率为 250ps DPWM 输出  
组成。此器件还包含一个 12 位、267ksps 通用 ADC,此 ADC 具有多达 14 个通道、定时器、中断控制、  
PMBusI2C 以及 UART 通信端口。此器件基于一个32 ARM7TDMI-S 精简指令集计算机 (RISC) 微控制  
器,该微控制器可执行实时监控、配置外设以及管理通信。ARM 微控制器从可编程闪存存储器以及片载  
RAM ROM 里执行它的程序。  
除了 DPP,特定电源管理外设已被添加以便在全部运行范围内启用高效、针对增加的功率密度的高集成度、  
可靠性、和最低总体系统成本以及支持最广泛控制体系和拓扑数量的高灵活性。此类外设包括:轻负载突发  
模式、同步整流、自动模式切换、输入电压前馈、铜走线电流感测、理想二极管仿真、恒定电流/恒定功率控  
制、同步整流软开启和关闭、峰值电流模式控制、磁通均衡、二次侧输入电压感测、高分辨率电流均流、带  
预偏置电压的硬件可配置软启动 等。已经针对电压模式和峰值电流模式受控相移全桥、单双相位功率因数校  
(PFC)、无桥 PFC、硬开关全桥和半桥、以及 LLC 半桥和全桥进行了拓扑支持优化。  
UCD3138064A UCD3138064 数字电源控制器的功能变型,相比 UCD3138064 具有显著改进。有关  
UCD3138064A 中的功能改进的完整说明,请参见UCD3138064A 迁移指南》。主要改进如下:  
提高了通用 ADC 在极低温度 (-40) 环境下的精度和性能。  
UART 外设新增了基于硬件的自动波特率调整功能。  
新增了同步整流死区优化硬件外设。优势包括:  
提高了效率  
减小了同步整流电压应力  
缩短了开发周期  
添加了占空比读取功能,以便改善器件在峰值电流模式下的使用。  
(1)  
器件信息  
产品型号  
封装  
封装尺寸(标称值)  
9.00mm x 9.00mm  
6.00mm x 6.00mm  
VQFN (64)  
WQFN (40)  
UCD3138064A  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2
器件概述  
版权 © 2015, Texas Instruments Incorporated  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
1.4 功能方框图  
Loop MUX  
DPWM0A  
EAP0  
EAN0  
EAP1  
EAN1  
PID Based  
Filter 0  
Front End 0  
Front End 1  
DPWM0  
DPWM0B  
DPWM1A  
PID Based  
Filter 1  
DPWM1  
DPWM2  
DPWM3  
DPWM1B  
DPWM2A  
DPWM2B  
DPWM3A  
PID Based  
Filter 2  
Front End 2  
AFE  
Constant Power Constant  
Current  
23-AFE  
DPWM3B  
SYNC  
EAP2  
EAN2  
Front End Averaging  
Digital Comparators  
EADC  
2AFE  
X
Avg()  
SAR/Prebias  
Ramp  
DAC0  
Input Voltage Feed Forward  
A0  
Filter x  
CPCC  
Value  
Dither  
Abs()  
Peak Current Mode  
Control Comparator  
Advanced Power Control  
Mode Switching, Burst Mode, IDE,  
Synchronous Rectification soft on & off  
PMBUS_ALERT  
PMBUS_CTRL  
PMBUS_DATA  
PMBUS_CLK  
PWM0  
ADC_EXT_TRIG  
AD[13:0]  
ADC12 Control  
Sequencing, Averaging,  
Digital Compare, Dual  
Sample and hold  
PMBus  
Timers  
ADC12  
AD00  
AD01  
Internal Temperature  
Sensor  
4 œ 16 bit (PWM)  
1 œ 24 bit  
PWM1  
AD02  
AD13  
Current Share  
Analog, Average, Master/Slave  
AGND  
Oscillator  
TCAP  
SCI_TX0  
SCI_RX0  
SCI_TX1  
SCI_RX1  
EXT_INT  
FAULT0  
UART0  
UART1  
ARM7TDMI-S  
32 bit, 31.25 MHz  
Analog  
Comparators  
AD02  
AD03  
Memory  
DFLASH 2 kB  
RAM 4 kB  
A
B
ROM 4 kB  
PFLASH 64 kB  
C
GPIO  
Control  
Bank 1  
32kB  
Bank 2  
32kB  
FAULT1  
AD04  
AD13  
AD06  
AD07  
Fault MUX &  
Control  
FAULT2  
D
Power On Reset  
V33D  
V33DIO  
VREG  
DGND  
V33A  
FAULT3  
Cycle by Cycle  
Current Limit  
E
/RESET  
Brown Out Detection  
Power and  
1.8 V Voltage  
Regulator  
Digital  
Comparators  
TCK  
JTAG  
F
TMS  
G
TDI(DTC0)  
TDO(DTC1)  
SPI_MISO  
SPI_MOSI  
SPI_CLK  
SPI_CS  
DTC  
AGND  
SPI  
I2C  
I2C_DATA  
I2C_CLK  
1-1. 功能框图  
版权 © 2015, Texas Instruments Incorporated  
器件概述  
3
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
UCD3138064A  
Rising edge  
optimization  
control  
UCD7138  
CTRL  
IN  
SR1 DPWM  
SR2 DPWM  
6
4
5
1
2
3
DPWM  
module  
Thermal Pad  
(GND)  
DTC  
VCC  
OUT  
VD  
SR1  
Dead Time  
Control  
Computation  
Engine  
Rising edge  
optimization  
control  
UCD7138  
IN  
CTRL  
OUT  
6
4
5
1
2
3
DTC0  
DTC1  
Thermal Pad  
(GND)  
SR2  
DTC  
VCC  
Decoder  
VD  
1-2. 同步整流外设与同步整流驱动器搭配使用  
4
器件概述  
版权 © 2015, Texas Instruments Incorporated  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
内容  
1
器件概.................................................... 1  
5.8 Parametric Measurement Information .............. 18  
5.9 Typical Characteristics ............................. 20  
Detailed Description ................................... 22  
6.1 Overview ............................................ 22  
6.2 ARM Processor ..................................... 22  
6.3 Memory.............................................. 22  
6.4 Feature Description ................................. 23  
6.5 Device Functional Modes ........................... 50  
6.6 Memory.............................................. 61  
Applications, Implementation, and Layout........ 65  
7.1 Application Information.............................. 65  
7.2 Typical Application .................................. 66  
器件和文档支持 .......................................... 79  
8.1 器件支............................................. 79  
8.2 文档支持 ............................................ 80  
8.3 社区资............................................. 81  
8.4 商标.................................................. 81  
8.5 静电放电警告 ........................................ 81  
8.6 Glossary ............................................. 81  
机械、封装和可订购信息................................ 81  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 1  
1.3 说明 ................................................... 2  
1.4 功能方框图............................................ 3  
修订历史记录............................................... 5  
Device Options ........................................... 6  
3.1 Device Comparison Table............................ 6  
3.2 Product Selection Matrix ............................. 7  
Pin Configuration and Functions..................... 8  
4.1 Pin Diagrams ......................................... 8  
4.2 Pin Functions ......................................... 9  
Specifications ........................................... 12  
5.1 Absolute Maximum Ratings......................... 12  
5.2 ESD Ratings ........................................ 12  
5.3 Recommended Operating Conditions............... 12  
5.4 Thermal Information................................. 12  
5.5 Electrical Characteristics............................ 13  
5.6 Timing Characteristics .............................. 16  
5.7 PMBus/SMBus/I2C Timing .......................... 17  
6
2
3
4
5
7
8
9
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布版本  
Copyright © 2015, Texas Instruments Incorporated  
修订历史记录  
5
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
3 Device Options  
3.1 Device Comparison Table  
UCD  
3138  
3138A  
RHA/RMH  
3138064  
3138064A  
RMH  
3138  
3138A  
RGC  
3138064  
3138064A  
RGC  
3138128  
3138128A  
PFC  
3138A64  
3138A64A  
PFC  
FEATURE  
3138064  
RGZ  
80 Pin QFP  
(14 mm x 14  
mm)  
(Includes  
leads)  
80 Pin QFP  
(14 mm x 14  
mm)  
(Includes  
leads)  
40 Pin QFN  
(6 mm x 6  
mm)  
40 Pin QFN  
(6 mm x 6  
mm)  
64 Pin QFN  
(9 mm x 9  
mm)  
64 Pin QFN  
(9 mm x 9  
mm)  
48 Pin QFN  
(7 mm x 7  
mm)  
Package Offering  
ARM7TDMI-S Core  
Processor  
31.25 MHz  
8
31.25 MHz  
8
31.25 MHz  
8
31.25 MHz  
8
31.25 MHz  
8
31.25 MHz  
31.25 MHz  
High Resolution DPWM  
Outputs (250ps  
Resolution)  
8
8
Number of High Speed  
Independent Feedback  
Loops (# Regulated  
Output Voltages  
3
7
3
7
3
3
3
9
3
3
12-bit, 256kps, General  
Purpose ADC Channels  
14  
14  
15  
15  
Digital Comparators at  
ADC Outputs  
4
4
4
4
4
4
4
Flash Memory (Program)  
32 kB  
64 kB  
32 kB  
64 kB  
64 kB  
128 kB  
64 kB  
Only 1 bank of  
64 kB Flash  
available  
Number of Memory 32kB  
Flash Memory Banks  
1
2
1
2
2
4
Flash Memory (Data)  
RAM  
2 kB  
4 kB  
2 kB  
4 kB  
2 kB  
4 kB  
2 kB  
4 kB  
2 kB  
4 kB  
2 kB  
8 kB  
2 kB  
8 kB  
Programmable Fault  
Inputs  
1 + 2(1)  
1 + 2(1)  
4
2 + 2(1)  
1 + 2(1)  
4
4
High Speed Analog  
Comparators with Cycle-  
by-Cycle Current Limiting  
6
6
7
7
6
7
7
UART (SCI)  
PMBus/I2C  
Additional I2C  
SPI  
1(1)  
1
1(1)  
1
2
1
0
0
2
2
2
1
1
1
2
1
1
1
1
1
0
0
1(1)  
1(1)  
1(1)  
1(1)  
0
0
4 (16 bit) and 4 (16 bit) and 4 (16 bit) and 4 (16 bit) and 4 (16 bit) and 4 (16 bit) and 4 (16 bit) and  
Timers  
1 (24 bit)  
1 (24 bit)  
1 (24 bit)  
1 (24 bit)  
1 (24 bit)  
2 (24 bit)  
2 (24 bit)  
Timer PWM Outputs  
Timer Capture Inputs  
Total Digital GPIOs  
External Interrupts  
1(1)  
2(1)  
18  
0
1(1)  
2(1)  
18  
0
2
1 + 3(1)  
30  
2
1 + 3(1)  
30  
1(1)  
2(1)  
24  
0
4
2 + 2(1)  
43  
4
2 + 2(1)  
43  
1
1
1
1
External Crystal Clock  
Support  
Yes (pins #61, Yes (pins #61,  
no  
no  
no  
no  
no  
62)  
62)  
Peak Current Mode  
Control  
All EADC  
channels  
All EADC  
channels  
All EADC  
channels  
All EADC  
Channels  
All EADC  
Channels  
EADC2 Only  
EADC Only  
(1) Represents an alternate pin out that is programmable via firmware.  
6
Device Options  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
3.2 Product Selection Matrix  
FEATURE  
UCD3138064A 64 PIN  
UCD3138064A 40 PIN  
ARM7TDMI-S Core Processor  
31.25 MHz  
8
31.25 MHz  
8
High Resolution DPWM Outputs (250ps Resolution)  
Number of High Speed Independent Feedback Loops (# Regulated  
Output Voltages)  
3
3
12-bit, 267 ksps, General Purpose ADC Channels  
14  
7
Digital Comparators at ADC Outputs  
4
4
Flash Memory (Program)  
64 kB  
64 KB  
Flash Memory (Data)  
2 kB  
2 KB  
Flash Security  
RAM  
4 kB  
4 KB  
DPWM Switching Frequency  
up to 2 MHz  
up to 2 MHz  
Programmable Fault Inputs  
2 + 2(1)  
1 + 2(1)  
High Speed Analog Comparators with Cycle-by-Cycle Current Limiting  
7(2)  
6
UART (SCI)  
2
1(1)  
PMBus  
1
I2C  
1(1)  
0
SPI  
1(1)  
0
Timers  
4 (16 bit) and 1 (24 bit)  
4 (16 bit) and 1 (24 bit)  
Timer PWM Outputs  
Timer Capture Inputs  
Watchdog  
2
1
1
1(1)  
On Chip Oscillator  
Power-On Reset and Brown-Out Reset  
Sync IN and Sync OUT Functions  
Total GPIO (includes all pins with multiplexed functions such as, DPWM,  
Fault Inputs, SCI, etc.)  
30  
1
18  
0
External Interrupts  
64 Pin QFN  
(9.00 mm x 9.00 mm)  
40 Pin QFN  
(6.00 mm x 6.00mm)  
Package Offering  
(1) This number represents an alternate pin out that is programmable via firmware. See the UCD3138064A Digital Power Peripherals  
Programmer’s Manual for details.  
(2) To facilitate simple OVP and UVP connections both comparators B and C are connected to the AD03 pin.  
Copyright © 2015, Texas Instruments Incorporated  
Device Options  
7
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
4 Pin Configuration and Functions  
4.1 Pin Diagrams  
64-Pin QFN  
RGC Package  
Top View  
63  
62  
61  
60  
59  
58  
57  
56  
64  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
AGND  
AGND  
V33D  
AD13  
3
AD12  
BP18  
4
AD10  
V33DIO  
DGND  
FAULT3  
FAULT2  
TCAP  
5
AD07  
AD06  
6
7
AD04  
8
AD03  
9
V33DIO  
TMS  
10  
11  
12  
13  
14  
15  
16  
DGND  
TDI/SCI_RX0/PMBUS_CTRL/FAULT1/SPI_MISO/DTC0  
TDO/SCI_TX0/PMBUS_ALERT/FAULT0/SPI_MOSI/DTC1  
TCK/TCAP/SYNC/PWM0/DTC0  
FAULT1/SPI_CLK/I2C_CLK  
/RESET  
ADC_EXT/TCAP/SYNC/PWM0  
SCI_RX0/DTC0  
SCI_TX0/DTC1  
PMBUS_CLK/SCI_TX0  
PMBUS_DATA/SCI_RX0  
FAULT0/SPI_CS/I2C_DATA  
INT_EXT  
DGND  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
8
Pin Configuration and Functions  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
40-Pin QFN  
RMH Package  
Top View  
40 39 38 37 36 35 34 33 32 31  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
AGND  
AD13  
AD06  
AGND  
AGND  
BP18  
3
4
AD04  
AD03  
V33D  
5
DGND  
6
DGND  
FAULT2  
TMS  
7
/RESET  
8
ADC_EXT_TRIG/TCAP/SYNC/PWM0  
PMBUS_CLK/SCI_TX0  
TDI/SCI_RX0/PMBUS_CTRL/FAULT1/DTC0  
TDO/SCI_TX0/PMBUS_ALERT/FAULT0/DTC1  
TCK/TCAP/SYNC/PWM0/DTC0  
9
10  
PMBUS_DATA/SCI_RX0  
11 12 13 14 15 16  
17 18 19 20  
NOTE: The RMH package has thinner package height compared to the RHA package. There are also four corner  
pins on the RMH package. These features help to improve solder-joint reliability. The corner anchor pins and thermal  
pad should be soldered for robust mechanical performance and should be tied to the appropriate ground signal.  
4.2 Pin Functions  
Pin Functions - 64 VQFN  
PIN  
ALTERNATE ASSIGNMENT  
CONFIGURABLE  
AS A GPIO?  
PRIMARY ASSIGNMENT  
Analog ground  
NUMBER  
NAME  
NO. 1  
NO. 2  
NO. 3  
NO. 4  
NO. 5  
1
2
3
4
AGND  
AD13  
AD12  
AD10  
12-bit ADC, Ch 13, comparator E, I-share  
12-bit ADC, Ch 12  
DAC output  
12-bit ADC, Ch 10  
12-bit ADC, Ch 7, Connected to comparator F  
and reference to comparator G  
5
AD07  
DAC output  
6
7
AD06  
AD04  
12-bit ADC, Ch 6, Connected to comparator F  
12-bit ADC, Ch 4, Connected to comparator D  
DAC output  
DAC output  
12-bit ADC, Ch 3, Connected to comparator B  
and C  
8
9
AD03  
Digital I/O 3.3V core supply, connected to V33D  
internally  
V33DIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DGND  
Digital ground  
RESET  
Device Reset Input, active low  
ADC conversion external trigger input  
SCI RX 0  
ADC_EXT  
SCI_RX0  
SCI_TX0  
TCAP  
DTC0  
SYNC  
PWM0  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SCI TX 0  
DTC1  
PMBUS_CLK  
PMBUS_DATA  
DPWM0A  
DPWM0B  
DPWM1A  
PMBUS Clock (Open Drain)  
PMBus data (Open Drain)  
DPWM 0A output  
SCI TX 0  
SCI RX 0  
DPWM 0B output  
DPWM 1A output  
Copyright © 2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Pin Functions - 64 VQFN (continued)  
PIN  
ALTERNATE ASSIGNMENT  
CONFIGURABLE  
AS A GPIO?  
PRIMARY ASSIGNMENT  
NUMBER  
NAME  
DPWM1B  
NO. 1  
NO. 2  
NO. 3  
NO. 4  
NO. 5  
20  
21  
22  
23  
24  
25  
DPWM 1B output  
Yes  
Yes  
Yes  
Yes  
Yes  
DPWM2A  
DPWM2B  
DPWM3A  
DPWM3B  
DGND  
DPWM 2A output  
DPWM 2B output  
DPWM 3A output  
DPWM 3B output  
Digital ground  
ADC_EXT_TRI  
G
26  
SYNC  
DPWM Synchronize pin  
TCAP  
PWM0  
DTC1  
Yes  
27  
28  
PMBUS_ALERT PMBus Alert (Open Drain)  
Yes  
Yes  
PMBUS_CTRL  
SCI_TX1  
PMBus Control (Open Drain)  
SCI TX 1  
PMBUS_ALER  
T
29  
Yes  
30  
31  
32  
33  
34  
35  
36  
37  
SCI_RX1  
PWM0  
SCI RX 1  
PMBUS_CTRL  
Yes  
Yes  
Yes  
General purpose PWM 0  
General purpose PWM 1  
Digital ground  
PWM1  
DGND  
INT_EXT  
FAULT0  
FAULT1  
TCK(1)  
External Interrupt  
Yes  
Yes  
Yes  
Yes  
External fault input 0  
External fault input 1  
JTAG TCK (for manufacturer test only)  
SPI_CS  
SPI_CLK  
TCAP  
I2C_DATA  
I2C_CLK  
SYNC  
PWM0  
DTC0  
PMBUS_ALER  
T
38  
TDO(1)  
JTAG TDO (for manufacturer test only)  
SCI_TX0  
SCI_RX0  
FAULT0  
SPI_MOSI  
SPI_MISO  
DTC1  
DTC0  
Yes  
39  
40  
41  
42  
43  
44  
TDI(1)  
JTAG TDI (for manufacturer test only)  
JTAG TMS (for manufacturer test only)  
Timer capture input  
PMBUS_CTRL FAULT1  
Yes  
Yes  
Yes  
Yes  
Yes  
TMS(1)  
TCAP  
FAULT2  
FAULT3  
DGND  
External fault input 2  
External fault input 3  
Digital ground  
Digital I/O 3.3 V core supply, connected to  
V33D internally  
45  
46  
47  
V33DIO  
BP18  
1.8V Bypass  
Digital 3.3V core supply; V33DIO is connected  
to V33D internally  
V33D  
48  
49  
AGND  
AGND  
Substrate analog ground  
Analog ground  
Channel #0, differential analog voltage, positive  
input  
50  
51  
52  
53  
54  
55  
EAP0  
EAN0  
EAP1  
EAN1  
EAP2  
EAN2  
Channel #0, differential analog voltage,  
negative input  
Channel #1, differential analog voltage, positive  
input  
Channel #1, differential analog voltage,  
negative input  
Channel #2, differential analog voltage, positive  
input  
Channel #2, differential analog voltage,  
negative input  
56  
57  
58  
59  
AGND  
V33A  
AD00  
AD01  
Analog ground  
Analog 3.3 V supply  
12-bit ADC, Ch 0, Connected to current source  
12-bit ADC, Ch 1, Connected to current source  
12-bit ADC, Ch 2, Connected to comparator A,  
I-share  
60  
AD02  
61  
62  
63  
64  
AD05  
AD08  
AD09  
AD11  
12-bit ADC, Ch 5  
12-bit ADC, Ch 8  
12-bit ADC, Ch 9  
12-bit ADC, Ch 11  
(1) Fusion Digital Power based debug tools are recommended instead of JTAG.  
10  
Pin Configuration and Functions  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Pin Functions - 40 WQFN  
PIN  
ALTERNATE ASSIGNMENT  
CONFIGURABLE  
AS A GPIO?  
PRIMARY ASSIGNMENT  
NUMBER  
NAME  
NO. 1  
NO. 2  
NO. 3  
NO. 4  
1
2
AGND  
AD13  
AD06  
AD04  
AD03  
DGND  
RESET  
Analog ground  
12-bit ADC, Ch 13, Connected to comparator E, I-share  
12-bit ADC, Ch 6, Connected to comparator F  
12-bit ADC, Ch 4, Connected to comparator D  
12-bit ADC, Ch 3, Connected to comparator B & C  
Digital ground  
3
4
5
6
7
Device Reset Input, active low  
ADC conversion external trigger input  
PMBUS Clock (Open Drain)  
PMBUS Data (Open Drain)  
DPWM 0A output  
8
ADC_EXT_TRIG  
PMBUS_CLK  
PMBUS_DATA  
DPWM0A  
TCAP  
SYNC  
PWM0  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
9
SCI_TX0  
SCI_RX0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DPWM0B  
DPWM 0B output  
DPWM1A  
DPWM 1A output  
DPWM1B  
DPWM 1B output  
DPWM2A  
DPWM 2A output  
DPWM2B  
DPWM 2B output  
DPWM3A  
DPWM 3A output  
DPWM3B  
DPWM 3B output  
PMBUS_ALERT  
PMBUS_CTRL  
TCK(1)  
PMBus Alert (Open Drain)  
PMBus Control (Open Drain)  
JTAG TCK (for manufacturer test only)  
JTAG TDO (for manufacturer test only)  
TCAP  
SYNC  
PWM0  
DTC0  
DTC1  
Yes  
Yes  
TDO(1)  
SCI TX0 PMBUS_AL FAULT0  
ERT  
23  
TDI(1)  
JTAG TDI (for manufacturer test only)  
SCI_RX0 PMBUS_C  
TRL  
FAULT1  
DTC0  
Yes  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
TMS(1)  
FAULT2  
DGND  
V33D  
JTAG TMS (for manufacturer test only)  
External fault input 2  
Yes  
Yes  
Digital ground  
Digital 3.3 V core supply; V33DIO is connected to V33D internally  
1.8V Bypass  
BP18  
AGND  
AGND  
EAP0  
EAN0  
EAP1  
EAN1  
EAP2  
Substrate analog ground  
Analog ground  
Channel #0, differential analog voltage, positive input  
Channel #0, differential analog voltage, negative input  
Channel #1, differential analog voltage, positive input  
Channel #1, differential analog voltage, negative input  
Channel #2, differential analog voltage, positive input  
(Recommended for peak current mode control)  
36  
37  
38  
39  
40  
AGND  
V33A  
AD00  
AD01  
AD02  
Analog ground  
Analog 3.3 V supply  
12-bit ADC, Ch 0, Connected to current source  
12-bit ADC, Ch 1, Connected to current source  
12-bit ADC, Ch 2, Connected to comparator A, I-share  
All four anchors should be soldered and tied to GND  
Corner  
NA  
Corner anchor pin  
(RMH only)  
(1) Fusion Digital Power based debug tools are recommended instead of JTAG.  
Copyright © 2015, Texas Instruments Incorporated  
Pin Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
V33D  
V33D to DGND  
3.8  
3.8  
3.8  
2.5  
0.3  
3.8  
125  
150  
V33DIO  
V33DIO to DGND  
V33A to AGND  
V
V33A  
V
BP18  
BP18 to DGND  
V
Ground difference  
All Pins, excluding AGND  
Junction Temperature, TJ  
Storage temperature, Tstg  
|DGND – AGND|  
Voltage applied to any pin  
V
(2)  
–0.3  
–40  
–55  
V
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommend Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Referenced to DGND  
5.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
001  
±2000  
(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101  
±500  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible if necessary precautions are taken.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible if necessary precautions are taken.  
5.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
V33D  
V33DIO  
V33A  
BP18  
TJ  
Digital power  
3
3
3.3  
3.3  
3.3  
1.8  
-
3.6  
3.6  
3.6  
2
V
V
Digital I/O power  
Analog power  
3
V
1.8-V digital power  
Junction temperature  
1.6  
–40  
V
125  
°C  
5.4 Thermal Information  
UCD3138064A  
(1)  
THERMAL METRIC  
VQFN (RGC)  
VQFN (RGZ) WQFN (RMH)  
UNIT  
64 PINS  
19.9  
5.7  
48 PINS  
26.9  
12.5  
3.9  
40 PINS  
30.8  
15.7  
5.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
3.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
0.2  
0.2  
ψJB  
3
4
5.7  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
0.3  
0.5  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
12  
Specifications  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
5.5 Electrical Characteristics  
V33A = V33D = V33DIO = 3V to 3.6 V; 1μF from BP18 to DGND, TJ = –40 °C to 125 °C (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Measured on V33A. The device is powered up  
but all ADC12 and EADC sampling is disabled  
I33A  
6.3  
mA  
I33DIO  
I33D  
All GPIO and communication pins are open  
ROM program execution  
0.35  
60  
mA  
mA  
(1)  
I33D  
Flash programming in ROM mode  
70  
mA  
The device is in ROM mode with all DPWMs  
enabled and switching at 2 MHz. The DPWMs  
are all unloaded.  
I33  
105  
mA  
ERROR ADC INPUTS EAP, EAN  
EAP – AGND  
–0.15  
–0.256  
–256  
0.8  
1.998  
1.848  
248  
V
EAP – EAN  
V
Typical error range  
AFE = 0  
mV  
mV  
mV  
mV  
mV  
MΩ  
μA  
AFE = 3  
1
2
4
8
1.20  
2.30  
4.45  
9.10  
AFE = 2  
1.7  
EAP – EAN Error voltage digital  
resolution  
AFE = 1  
3.55  
6.90  
0.5  
AFE = 0  
(1)  
REA  
Input impedance (See 6-2)  
AGND reference  
IOFFSET Input offset current (See 6-2)  
–5  
5
2
Input voltage = 0 V at AFE = 0  
Input voltage = 0 V at AFE = 1  
Input voltage = 0 V at AFE = 2  
Input voltage = 0 V at AFE = 3  
–2  
LSB  
LSB  
LSB  
LSB  
–2.5  
–3  
2.5  
3
EADC Offset  
–4  
4
15.62  
5
Sample Rate  
MHz  
(1)  
Analog Front End Amplifier Bandwidth  
100  
1
MHz  
V/V  
mV  
Gain  
A0  
See 6-3  
Minimum output voltage  
21  
EADC DAC  
DAC range  
0
1.6  
V
VREF DAC reference resolution  
10-bit, No dithering enabled  
With 4-bit dithering enabled  
1.56  
97.6  
mV  
μV  
VREF DAC reference resolution  
INL  
DNL  
–2.0  
–2.0  
1.58  
2.0  
2.0  
LSB  
LSB  
V
DAC reference voltage  
ADC12  
1.61  
IBIAS  
Bias current for PMBus address pins  
9.5  
0
10.5  
2.5  
μA  
V
Measurement range for voltage  
monitoring  
Internal ADC reference voltage  
–40 to 125 °C  
–40 to 25 °C  
25 to 125 °C  
2.475  
2.500  
–0.3  
–3.4  
2.53  
V
Change in Internal ADC reference from  
mV  
(1)  
25°C reference voltage  
(1) Characterized by design and not production tested.  
Copyright © 2015, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
V33A = V33D = V33DIO = 3V to 3.6 V; 1μF from BP18 to DGND, TJ = –40 °C to 125 °C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
-3.9  
-2.4  
TYP MAX UNIT  
ADC12 INL integral nonlinearity, end  
–2/+2  
4.5 LSB  
2.9 LSB  
(1)  
point  
ADC12 INL integral nonlinearity, best fit  
-
1.5/+1.  
5
ADC_SAMPLING_SEL = 6 for all ADC12 data,  
25 to 125 °C  
–0.8/+2  
.9  
(1)  
ADC12 DNL differential nonlinearity  
LSB  
ADC Zero Scale Error  
ADC Full Scale Error  
Input bias  
–7  
7
35  
mV  
mV  
nA  
–35  
2.5 V applied to pin  
200  
(1)  
Input leakage resistance  
ADC_SAMPLING_SEL= 6 or 0  
1
10  
MΩ  
pF  
(1)  
Input Capacitance  
ADC single sample conversion time  
3.744  
μs  
(2)  
DIGITAL INPUTS/OUTPUTS  
DGND  
+ 0.25  
(3)  
(3)  
VOL  
VOH  
Low-level output voltage  
High-level output voltage  
IOH = 4 mA, V33DIO = 3 V  
IOH = –4 mA, V33DIO = 3 V  
V
V
V33DIO  
– 0.6  
VIH  
VIL  
IOH  
IOL  
High-level input voltage  
Low-level input voltage  
Output sinking current  
Output sourcing current  
V33DIO = 3 V  
V33DIO = 3 V  
2.1  
V
V
1.1  
4
mA  
mA  
–4  
Low-level output voltage for PMBus pins  
(PMBUS_CLK, PMBUS_DATA,  
PMBUS_ALERT, PMBUS_CTRL)  
VOL(PMB  
us)  
IOL = 20mA  
400  
mV  
SYSTEM PERFORMANCE  
tWD  
Watchdog timeout resolution  
13.1  
17  
22.7  
6
ms  
Processor master clock (MCLK)  
31.25  
MHz  
(4)  
tDelay  
Digital filter delay  
(1 clock = 32 ns)  
TJ = 25 °C  
MCLKs  
Retention period of flash content (data  
retention and program)  
100  
240  
years  
f(PCLK)  
f(LFO)  
Internal oscillator frequency  
250  
10  
260 MHz  
MHz  
Internal low frequency oscillator  
frequency  
Flash Read  
1
MCLKs  
Current share current source (See 6-  
25)  
ISHARE  
238  
259  
μA  
kΩ  
RSHARE Current share resistor (See 6-25)  
POWER ON RESET AND BROWN OUT (V33A PIN, SEE 5-4)  
9.75  
10.3  
VGH  
VGL  
Vres  
Voltage Good High  
2.6  
2.55  
0.8  
V
V
V
V
Voltage Good Low  
(1)  
Voltage at which IReset signal is valid(1)  
Brownout  
Internal signal warning of brownout conditions  
Voltage range of sensor  
2.9  
(1)  
TEMPERATURE SENSOR  
VTEMP  
1.46  
2.44  
V
(2) DPWM outputs are low after reset. Other GPIO pins are configured as inputs after reset. During power up or power down, all GPIO pins  
output low.  
(3) The maximum total current, IOHmax and IOLmax for all outputs combined, should not exceed 12 mA to hold the maximum voltage drop  
specified. Maximum sink current per pin = –6 mA at VOL; maximum source current per pin = 6 mA at VOH  
.
(4) Time from close of error ADC sample window to time when digitally calculated control effort (duty cycle) is available. This delay, which  
has no variation associated with it, must be accounted for when calculating the system dynamic response.  
14  
Specifications  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Electrical Characteristics (continued)  
V33A = V33D = V33DIO = 3V to 3.6 V; 1μF from BP18 to DGND, TJ = –40 °C to 125 °C (unless otherwise noted)  
PARAMETER  
Voltage resolution  
TEST CONDITIONS  
MIN  
TYP  
5.9  
MAX UNIT  
mV/ºC  
Volts/°C  
Temperature resolution  
Degree C per bit  
0.1034  
±5  
ºC/LSB  
(1) (5)  
Accuracy  
–40 to 125 °C  
–10  
–40  
10  
ºC  
ºC  
μA  
V
Temperature range  
–40 to 125 °C  
125  
ITEMP  
VAMB  
Current draw of sensor when active  
Trimmed 25 °C reading  
30  
Ambient temperature  
1.85  
ANALOG COMPARATOR  
DAC Reference DAC Range  
0.01953  
2.478  
2.5  
V
Reference Voltage  
Bits  
2.5 2.513  
V
7
bits  
LSB  
LSB  
mV  
mA  
mV  
mV  
(1)  
INL  
–0.5  
0.06  
–19.5  
–0.5  
-10  
0.21  
0.12  
19.5  
1
(1)  
DNL  
(1)  
Offset  
(6)  
Reference DAC buffered output load  
Buffer Offset (–0.5 mA)  
0.156V < DAC < 2.363V  
0.059V < DAC < 2.305V  
10  
Buffer Offset (1.0 mA)  
-10  
10  
(5) Ambient temperature offset value should be used from the TEMPSENCTRL register to meet accuracy.  
(6) Available from reference DACs for comparators D, E, F and G.  
Copyright © 2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
15  
Product Folder Links: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
5.6 Timing Characteristics  
V33A = V33D = V33DIO = 3.3 V; 1 μF from BP18 to DGND, TJ = –40 to 125 °C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
250  
3.9  
MAX UNIT  
EADC DAC  
τ
Settling Time  
From 10 to 90%  
ns  
ADC12  
(1)  
ADC single sample conversion time  
ADC_SAMPLING_SEL= 6 or 0  
μs  
SYSTEM PERFORMANCE  
Time to disable DPWM output based on  
active FAULT pin signal  
High level on FAULT pin  
TJ = 25 °C  
70  
ns  
years  
ms  
Retention period of flash content (data  
retention and program)  
100  
Program time to erase one page or block  
in data flash or program flash  
20  
30  
Program time to write one word in data  
flash or program flash  
µs  
Sync-in/sync-out pulse width  
Flash Write  
Sync pin  
256  
20  
ns  
μs  
POWER ON RESET AND BROWN OUT (V33D PIN, SEE 5-4  
Time delay after Power is good or RESET*  
relinquished  
tPOR  
1
ms  
ms  
The time it takes from the device to exit a IRESET goes from a low state to a high state.  
reset state and begin executing program This is approximately equivalent to toggling the  
tEXC1  
9.5  
(1)  
flash bank 1 (32 kB).  
external reset pin from low to high state.  
The time it takes from the device to exit a IRESET goes from a low state to a high state.  
tEXC2  
reset state and begin executing program This is approximately equivalent to toggling the  
19  
19  
ms  
ms  
(1)  
flash bank 2 (32 kB).  
external reset pin from low to high state.  
The time it takes from the device to exit a IRESET goes from a low state to a high state.  
tEXCT  
reset state and begin executing the total This is approximately equivalent to toggling the  
(1)  
program flash (64 kB).  
external reset pin from low to high state.  
(1)  
TEMPERATURE SENSOR  
tON  
Turn on time / settling time of sensor  
100  
μs  
ANALOG COMPARATOR  
Time to disable DPWM output based on  
0 V to 2.5 V step input on the analog  
comparator.  
150  
ns  
(1)  
(1) Characterized by design and not production tested.  
16  
Specifications  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
5.7 PMBus/SMBus/I2C Timing  
The timing characteristics and timing diagram for the communications interface that supports I2C, SMBus,  
and PMBus in Slave or Master mode are shown in 5-1, 5-1, and 5-2. The numbers in 5-1  
shows that the device supports standard (100 kHz), fast (400 kHz), and fast-mode plus (1 MHz) speeds.  
5-1. I2C/SMBus/PMBus Timing Characteristics  
100 kHz Class  
MIN MAX  
400 kHz Class  
1 MHz Class  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
Typical values at TA = 25 °C and VCC = 3.3 V (unless otherwise noted)  
SMBus/PMBus  
operating  
frequency  
Slave mode, SMBC 50%  
duty cycle  
fSMB  
10  
10  
100  
100  
10  
10  
400  
400  
10  
10  
1000  
1000  
kHz  
kHz  
µs  
I2C operating  
frequency  
Slave mode, SCL 50% duty  
cycle  
fI2C  
Bus free time  
between start and  
stop(1)  
t(BUF)  
4.7  
1.3  
0.5  
Hold time after  
t(HD:STA)  
t(SU:STA)  
4
0.6  
0.6  
0.26  
0.26  
µs  
µs  
(repeated) start(1)  
Repeated start  
setup time(1)  
4.7  
t(SU:STO)  
t(HD:DAT)  
t(SU:DAT)  
Stop setup time(1)  
4
0
0.6  
0
0.26  
0
µs  
ns  
ns  
Data hold time  
Receive mode  
Data setup time  
250  
100  
50  
Error  
t(TIMEOUT)  
t(LOW)  
25  
4.7  
4
35  
25  
1.3  
0.6  
35  
25  
0.5  
35  
ms  
µs  
µs  
signal/detect(2)  
Clock low period  
Clock high  
period(3)  
t(HIGH)  
50  
25  
50  
25  
0.26  
50  
25  
Cumulative clock  
t(LOW:SEXT) low slave extend  
ms  
ns  
time(4)  
20  
+ 0.1  
Cb(5)  
20  
+ 0.1  
Cb(5)  
20  
+ 0.1  
Cb(5)  
Rise time tr = (VILmax  
0.15) to (VIHmin + 0.15)  
tr  
Clock/data fall time  
300  
300  
120  
120  
20  
+ 0.1  
Cb(5)  
20  
+ 0.1  
Cb(5)  
20  
+ 0.1  
Cb(5)  
Clock/data rise  
time  
Fall time tf = 0.9 VDD to  
(VILmax – 0.15)  
tf  
1000  
300  
400  
ns  
Total capacitance  
of one bus line  
Cb  
pF  
(1) Fast mode, 400 kHz  
(2) The device times out when any clock low exceeds t(TIMEOUT)  
.
(3) t(HIGH), Max, is the minimum bus idle time. SMBC = SMBD = 1 for t > 50 ms causes reset of any transaction that is in progress. This  
specification is valid when the NC_SMB control bit remains in the default cleared state (CLK[0] = 0).  
(4) t(LOW:SEXT) is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.  
(5) Cb (pF)  
版权 © 2015, Texas Instruments Incorporated  
Specifications  
17  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
5-1. I2C/SMBus/PMBus Timing Diagram  
5-2. Bus Timing in Extended Mode  
5.8 Parametric Measurement Information  
ADC output code  
INL, Best fit  
Actual ADC Transfer Function  
INL, End Point  
Best Fit Line  
Line Connecting Actual Zero  
Scale Point and Actual Full  
Scale Point  
ADC input voltage  
5-3. Best Fit INL and End Point INL  
18  
Specifications  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
V33D  
3.3 V  
Brown Out  
VGH  
VGL  
Vres  
t
TPOR  
TPOR  
IReset  
t
undefined  
5-4. Power On Reset (POR) / Brown Out Reset (BOR)  
VGH  
– This is the V33A threshold where the internal power is declared good. The UCD3138064A  
comes out of reset when above this threshold.  
VGL  
Vres  
– This is the V33A threshold where the internal power is declared bad. The device goes into  
reset when below this threshold.  
– This is the V33A threshold where the internal reset signal is no longer valid. Below this  
threshold the device is in an indeterminate state.  
IReset  
TPOR  
– This is the internal reset signal. When low, the device is held in reset. This is equivalent to  
holding the reset pin on the IC low.  
– The time delay from when VGH is exceeded to when the device comes out of reset.  
Brown  
Out  
– This is the V33A voltage threshold at which the device sets the brown out status bit. In  
addition an interrupt can be triggered if enabled.  
版权 © 2015, Texas Instruments Incorporated  
Specifications  
19  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
5.9 Typical Characteristics  
(Data is taken from the UCD3138)  
ADC12 Measurement Temperature Sensor Voltage  
2.1  
2
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.9  
1.8  
1.7  
1.6  
−40  
−20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
−60 −40 −20  
0
20 40 60 80 100 120 140 160  
Temperature (°C)  
5-6. ADC12 Measurement Temperature Sensor VoltagGe00v6bs  
G005a  
5-5. EADC LSB Size with 4X Gain (mV) vs Temperature  
Temperature  
ADC12 2.5-V Reference  
ADC12 Temperature Sensor Measurement Error  
8
2.515  
2.510  
2.505  
2.500  
6
4
2
2.495  
2.490  
2.485  
0
−2  
−4  
2.480  
2.475  
−40  
−20  
0
20  
40  
60  
Temperature (°C)  
80  
100  
120  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
G002b  
Temperature (°C)  
G003b  
5-8. ADC12 Temperature Sensor Measurement Error vs  
5-7. ADC12 2.5-V Reference vs Temperature  
Temperature  
2.08  
2.06  
3 σ  
1 σ  
AVG  
-1 σ  
-3 σ  
2.04  
2.02  
2
1.98  
1.96  
1.94  
1.92  
-100  
-50  
0
50  
100  
150  
200  
Temperature (°C)  
5-9. Oscillator Frequency (2MHz Reference, Divided Down from 250MHz) vs Temperature  
20  
Specifications  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
DPWM  
ADC12  
Front-end Control Peak Current  
Mode  
Timer  
Filter  
Constant  
Power/Constant  
Current  
SCI  
GIO  
C001  
Module  
5-10. Clock Gating Power Savings  
The power disable control register provides control bits that can enable or disable the clock to several  
peripherals such as, PCM, CPCC, digital filters, front ends, DPWMs, UARTs, ADC-12 and more.  
By default, all these controls are enabled. If a specific peripheral is not used the clock gate can be  
disabled in order to block the propagation of the clock signal to that peripheral and therefore reduce the  
overall current consumption of the device. The power savings chart displays the power savings per  
module. For example there are 4 DPWM modules, therefore, if all 4 are disabled a total of ~20 mA can be  
saved.  
版权 © 2015, Texas Instruments Incorporated  
Specifications  
21  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The UCD3138064A family is a digital power supply controller from Texas Instruments offering superior  
levels of integration and performance in a single chip solution. The flexible nature of the UCD3138064A  
family makes it suitable for a wide variety of power conversion applications. Multiple peripherals inside the  
device have been specifically optimized to enhance the performance of AC/DC and isolated DC/DC  
applications and reduce the solution component count in the IT and network infrastructure space. The  
UCD3138064A family is a fully programmable solution offering customers complete control of their  
application, along with ample ability to differentiate their solution.  
6.2 ARM Processor  
The ARM7TDMI-S processor is a synthesizable member of the ARM family of general purpose 32-bit  
microprocessors. The ARM architecture is based on RISC (Reduced Instruction Set Computer) principles  
where two instruction sets are available: the 32-bit ARM instruction set and the 16-bit Thumb instruction  
set. The Thumb instructions allow for higher code density equivalent to a 16-bit microprocessor, with the  
performance of the 32-bit microprocessor.  
The three-staged pipelined ARM processor has fetch, decode and execute stage architecture. Major  
blocks in the ARM processor include a 32-bit ALU, 32 x 8 multiplier, and a barrel shifter.  
6.3 Memory  
The UCD3138064A (ARM7TDMI-S) is a Von-Neumann architecture, where a single bus provides access  
to all of the memory modules. All of the memory module addresses are sequentially aligned along the  
same address range.  
Within the UCD3138064A family architecture, there is a 1024x32-bit Boot ROM that contains the initial  
firmware startup routines for PMBUS communication and non-volatile (FLASH) memory download. This  
boot ROM is executed after power-up-reset checks if there is a valid FLASH program written. If a valid  
program is present, the ROM code branches to the main FLASH-program execution. If there is no valid  
program, the device waits for a program download through the PMBus.  
The UCD3138064A family also supports customization of the boot program by allowing an alternative boot  
routine to be executed from program FLASH. This feature enables assignment of a unique address to  
each device; therefore, enabling firmware reprogramming even when several devices are connected on  
the same communication bus.  
There are three separate flash memory areas present inside the device. There are 2-32 kB program flash  
blocks and 1-2 kB data flash area. The 32 kB program areas are organized as 8 k x 32 bit memory blocks  
and are intended to be for the firmware programs. The blocks are configured with page erase capability for  
erasing blocks as small as 1 kB per page, or with a mass erase for erasing the entire 32 kB array. The  
flash endurance is specified at 1000 erase/write cycles and the data retention is good for 100 years. The 2  
kB data flash array is organized as a 512 x 32 bit memory (32 byte page size). The data flash is intended  
for firmware data value storage and data logging. Thus, the Data flash is specified as a high endurance  
memory of 20 k cycles with embedded error correction code (ECC).  
For run time data storage and scratchpad memory, a 8 kB RAM is available. The RAM is organized as a 2  
k x 32 bit array. The availability of 64 kB of program Flash memory in 2-32 kB banks, enables designers to  
implement multiple images of firmware (e.g. one main image + one back-up image) in the device and the  
flexibility to execute from either of the banks using appropriate algorithms. It also creates the unique  
opportunity for the processor to load a new program and subsequently execute that program without  
interrupting power delivery. This feature allows the end user to add new features to the power supply while  
eliminating any down-time required to load the new program.  
22  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.4 Feature Description  
6.4.1 System Module  
The System Module contains the interface logic and configuration registers to control and configure all the  
memory, peripherals and interrupt mechanisms. The blocks inside the system module are the address  
decoder, memory management controller, system management unit, central interrupt unit, and clock  
control unit.  
6.4.1.1 Address Decoder (DEC)  
The Address Decoder generates the memory selects for the FLASH, ROM and RAM arrays. The memory  
map addresses are selectable through configurable register settings. These memory selects can be  
configured from 1 kB to 16 MB. Power on reset uses the default addresses in the memory map for ROM  
execution, which is then configured by the ROM code to the application setup. During access to the DEC  
registers, a wait state is asserted to the CPU. DEC registers are only writable in the ARM privilege mode  
for user mode protection.  
6.4.1.2 Memory Management Controller (MMC)  
The MMC manages the interface to the peripherals by controlling the interface bus for extending the read  
and write accesses to each peripheral. The unit generates eight peripheral select lines with 1 kB of  
address space decoding.  
6.4.1.3 System Management (SYS)  
The SYS unit contains the software access protection by configuring user privilege levels to memory or  
peripherals modules. It contains the ability to generate fault or reset conditions on decoding of illegal  
address or access conditions. A clock control setup for the processor clock (MCLK) speed, is also  
available.  
6.4.1.4 Central Interrupt Module (CIM)  
The CIM accepts 32 interrupt requests for meeting firmware timing requirements. The ARM processor  
supports two interrupt levels: FIQ and IRQ. FIQ is the highest priority interrupt. The CIM provides  
hardware expansion of interrupts by use of FIQ/IRQ vector registers for providing the offset index in a  
vector table. This numerical index value indicates the highest precedence channel with a pending interrupt  
and is used to locate the interrupt vector address from the interrupt vector table. Interrupt channel 0 has  
the lowest precedence and interrupt channel 31 has the highest precedence. To remove the interrupt  
request, the firmware should clear the request as the first action in the interrupt service routine. The  
request channels are maskable, allowing individual channels to be selectively disabled or enabled.  
6-1. Interrupt Priority Table  
MODULE COMPONENT OR  
REGISTER  
NAME  
DESCRIPTION  
PRIORITY  
BRN_OUT_INT  
EXT_INT  
Brownout  
Brownout interrupt  
0 (Lowest)  
External Interrupts  
Watchdog Control  
Interrupt on external input pin  
Interrupt from watchdog exceeded (reset)  
1
2
WDRST_INT  
Wake-up interrupt when watchdog equals half of set watch  
time  
WDWAKE_INT  
Watchdog Control  
3
SCI_ERR_INT  
SCI_RX_0_INT  
SCI_TX_0_INT  
SCI_RX_1_INT  
SCI_TX_1_INT  
PMBUS_INT  
UART or SCI Control  
UART or SCI Control  
UART or SCI Control  
UART or SCI Control  
UART or SCI Control  
UART or SCI error Interrupt. Frame, parity or overrun  
UART0 RX buffer has a byte  
4
5
UART0 TX buffer empty  
6
UART1 RX buffer has a byte  
7
UART1 TX buffer empty  
8
PMBus related interrupt  
9
DIG_COMP_SPI_I2C_INT 12-bit ADC Control, SPI, I2C  
Digital comparator, SPI and I2C interrupt  
10  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
23  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
6-1. Interrupt Priority Table (continued)  
MODULE COMPONENT OR  
REGISTER  
NAME  
DESCRIPTION  
PRIORITY  
“Prebias complete”, “Ramp Delay Complete”, “Ramp  
Complete”, “Load Step Detected”,  
FE0_INT  
Front End 0  
11  
“Over-Voltage Detected”, “EADC saturated”  
“Prebias complete”, “Ramp Delay Complete”, “Ramp  
Complete”, “Load Step Detected”,  
“Over-Voltage Detected”, “EADC saturated”  
FE1_INT  
FE2_INT  
Front End 1  
Front End 2  
12  
13  
“Prebias complete”, “Ramp Delay Complete”, “Ramp  
Complete”, “Load Step Detected”,  
“Over-Voltage Detected”, “EADC saturated”  
PWM3_INT  
16-bit Timer PWM 3  
16-bit Timer PWM 2  
16-bit Timer PWM 1  
16-bit timer PWM 0  
24-bit Timer Control  
DTC Fault Interrupt  
16-bit Timer PWM3 counter overflow or compare interrupt  
16-bit Timer PWM2 counter Overflow or compare interrupt  
16-bit Timer PWM1 counter overflow or compare interrupt  
16-bit Timer PWM0 counter overflow or compare interrupt  
24-bit Timer counter overflow interrupt  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PWM2_INT  
PWM1_INT  
PWM0_INT  
OVF24_INT  
DTC_FLT_INT  
Reserved for future use  
CAPTURE_0_INT  
COMP_0_INT  
DTC module fault interrupt  
24-bit Timer Control  
24-bit Timer Control  
24-bit Timer capture 0 interrupt  
24-bit Timer compare 0 interrupt  
Constant Power Constant Current Mode switched in CPCC module Flag needs to be read for  
CPCC_RTC_INT  
ADC_CONV_INT  
23  
24  
or Real Time Clock Output  
details. RTC timer output generates an interrupt.  
12-bit ADC Control  
ADC end of conversion interrupt  
Analog comparator interrupts, Over-Voltage detection,  
Under-Voltage detection,  
FAULT_INT  
Fault Mux Interrupt  
25  
LLM load step detection  
DPWM3  
DPWM2  
DPWM3  
DPWM2  
Same as DPWM1  
Same as DPWM1  
26  
27  
1) Every (1-256) switching cycles  
2) Fault Detection  
DPWM1  
DPWM1  
28  
3) Mode switching  
DPWM0  
DPWM0  
Same as DPWM1  
29  
30  
EXT_FAULT_INT  
SYS_SSI_INT  
External Faults  
System Software  
Fault pin interrupt  
System software interrupt  
31 (highest)  
6.4.2 Peripherals  
6.4.2.1 Digital Power Peripherals  
At the core of the UCD3138x controller are 3 Digital Power Peripherals (DPP). Each DPP can be  
configured to drive from one to eight DPWM outputs. Each DPP consists of:  
Differential input error ADC (EADC) with sophisticated controls  
Hardware accelerated digital 2-pole/2-zero PID based filter  
Digital PWM module with support for a variety of topologies  
These can be connected in many different combinations, with multiple filters and DPWMs. They are  
capable of supporting functions like input voltage feed forward, current mode control, and constant  
current/constant power, etc.. The simplest configuration is shown in 6-1:  
EAP  
DPWMA  
Digital  
PWM  
Error ADC  
(Front End)  
Filter  
DPWMB  
EAN  
6-1. Simple Digital Power Configuration  
24  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.4.2.1.1 Front End  
6-2 shows the block diagram of the front end module. It consists of a differential amplifier, an adjustable  
gain error amplifier, a high speed flash analog to digital converter (EADC), digital averaging filters and a  
precision high resolution set point DAC reference. The programmable gain amplifier in concert with the  
EADC and the adjustable digital gain on the EADC output work together to provide 9 bits of range with 6  
bits of resolution on the EADC output. The output of the Front End module is a 9 bit sign extended result  
with a gain of 1 LSB / mV. Depending on the value of AFE selected, the resolution of this output could be  
either 1, 2, 4 or 8 LSBs. In addition Front End 0 has the ability to automatically select the AFE value such  
that the minimum resolution is maintained that still allows the voltage to fit within the range of the  
measurement. The EADC control logic receives the sample request from the DPWM module for initiating  
an EADC conversion. EADC control circuitry captures the EADC-9-bit-code and strobes the filter for  
processing of the representative error. The set point DAC has 10 bits with an additional 4 bits of dithering  
resulting in an effective resolution of 14 bits. This DAC can be driven from a variety of sources to facilitate  
things like soft start, nested loops, etc. Some additional features include the ability to change the polarity  
of the error measurement and an absolute value mode which automatically adds the DAC value to the  
error.  
It is possible to operate the controller in a peak current mode control configuration. In this mode topologies  
like the phase shifted full bridge converter can be controlled to maintain transformer flux balance. The  
internal DAC can be ramped at a synchronously controlled slew rate to achieve a programmable slope  
compensation. This eliminates the sub-harmonic oscillation as well as improves input voltage feed-forward  
performance. A0 is a unity gain buffer used to isolate the peak current mode comparator. The offset of this  
buffer is specified in the Electrical Characteristics table.  
EAP  
Front End Differential  
Amplifier  
REA  
IOFFSET  
AGND  
EAN  
REA  
IOFFSET  
AGND  
6-2. Input Stage Of EADC Module  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
25  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
AFE_GAIN  
23-AFE_GAIN  
EAP0  
EAN0  
6 bit ADC  
8mV/LSB  
Signed 9 bit result  
(error) 1 mV /LSB  
2AFE_GAIN  
EADC  
X
Averaging  
SAR/Prebias  
Ramp  
Filter x  
CPCC  
DAC0  
A0  
10 bit DAC  
1.5625mV/LSB  
Value  
Dither  
4 bit dithering gives 14 bits of effective resolution  
97.65625V/LSB effective resolution  
Absolute Value  
Calculation  
10 bit result  
1.5625mV/LSB  
Peak Current  
Detected  
Peak Current Mode  
Comparator  
6-3. Front End Module  
6.4.2.1.2 DPWM Module  
The DPWM module represents one complete DPWM channel with 2 independent outputs, A and B.  
Multiple DPWM modules within the UCD3138x system can be configured to support all key power  
topologies. DPWM modules can be used as independent DPWM outputs, each controlling one power  
supply output voltage rail. It can also be used as a synchronized DPWM—with user selectable phase shift  
between the DPWM channels to control power supply outputs with multiphase or interleaved DPWM  
configurations.  
The output of the filter feeds the high resolution DPWM module. The DPWM module produces the pulse  
width modulated outputs for the power stage switches. The filter calculates the necessary duty ratio as a  
24-bit number in Q23 fixed point format (23 bit integer with 1 sign bit). This represents a value within the  
range 0.0 to 1.0. This duty ratio value is used to generate the corresponding DPWM output ON time. The  
resolution of the DPWM ON time is 250 psec.  
Each DPWM module can be synchronized to another module or to an external synchronization signal. An  
input SYNC signal causes a DPWM ramp timer to reset. The SYNC signal outputs—from each of the four  
DPWM modules—occur when the ramp timer crosses a programmed threshold. This allows the phase of  
the DPWM outputs for multiple power stages to be tightly controlled.  
The DPWM logic takes the output of the filter and converts it into the correct DPWM output for several  
power supply topologies. It provides for programmable dead times and cycle adjustments for current  
balancing between phases. It controls the triggering of the EADC. It can synchronize to other DPWMs or  
to external sources. It can provide synchronization information to other DPWMs or to external recipients.  
In addition, it interfaces to several fault handling circuits. Some of the control for these fault handling  
circuits is in the DPWM registers. Fault handling is covered in the Fault Mux section.  
26  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Each DPWM module supports the following features:  
Dedicated 14 bit time-base with period and frequency control  
Shadow period register for end of period updates.  
Quad-event control registers (A and B, rising and falling) (Events 1-4)  
Used for on/off DPWM duty ratio updates.  
Phase control relative to other DPWM modules  
Sample trigger placement for output voltage sensing at any point during the DPWM cycle.  
Support for 2 independent edge placement DPWM outputs (same frequency or period setting)  
Dead-time between DPWM A and B outputs  
High Resolution PWM capability – 250 ps  
Pulse cycle adjustment of up to ±8.192 µs ( 32768 × 250 ps)  
Active high/ active low output polarity selection  
Provides events to trigger both CPU interrupts and start of ADC12 conversions.  
6.4.2.1.3 DPWM Events  
Each DPWM can control the following timing events:  
1. Sample Trigger Count–This register defines where the error voltage is sampled by the EADC in  
relationship to the DPWM period. The programmed value set in the register should be one fourth of the  
value calculated based on the DPWM clock. As the DCLK (DCLK = 62.5 MHz max) controlling the  
circuitry runs at one fourth of the DPWM clock (PCLK = 250MHz max). When this sample trigger count  
is equal to the DPWM Counter, it initiates a front end calculation by triggering the EADC, resulting in a  
CLA calculation, and a DPWM update. Over-sampling can be set for 2, 4 or 8 times the sampling rate.  
2. Phase Trigger Count–count offset for slaving another DPWM (Multi-Phase/Interleaved operation).  
3. Period–low resolution switching period count. (count of PCLK cycles)  
4. Event 1–count offset for rising DPWM A event. (PCLK cycles)  
5. Event 2–DPWM count for falling DPWM A event that sets the duty ratio. Last 4 bits of the register are  
for high resolution control. Upper 14 bits are the number of PCLK cycle counts.  
6. Event 3–DPWM count for rising DPWM B event. Last 4 bits of the register are for high resolution  
control. Upper 14 bits are the number of PCLK cycle counts.  
7. Event 4–DPWM count for falling DPWM B event. Last 4 bits of the register are for high resolution  
control. Upper 14 bits are the number of PCLK cycle counts.  
8. Cycle Adjust–Constant offset for Event 2 and Event 4 adjustments.  
Basic comparisons between the programmed registers and the DPWM counter can create the desired  
edge placements in the DPWM. High resolution edge capability is available on Events 2, 3 and 4.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
27  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Multi Mode Open Loop  
Start of Period  
Period  
Start of Period  
Period Counter  
DPWM Output A  
Event 1  
Event 2 (High Resolution)  
Cycle Adjust A (High Resolution)  
Sample Trigger 1  
To Other  
Modules  
Blanking A Begin  
Blanking A End  
DPWM Output B  
Event 3 (High Resolution)  
Event 4 (High Resolution)  
Cycle Adjust B (High Resolution)  
Sample Trigger 2  
Blanking B Begin  
To Other  
Modules  
Blanking B End  
Phase Trigger  
Events which change with DPWM mode:  
DPWM A Rising Edge = Event 1  
DPWM A Falling Edge = Event 2 + Cycle Adjust A  
DPWM B Rising Edge = Event 3  
DPWM B Falling Edge = Event 4 + Cycle Adjust B  
Phase Trigger = Phase Trigger Register value  
Events always set by their registers, regardless of mode:  
Sample Trigger 1, Sample Trigger 2, Blanking A Begin, Blanking A End, Blanking B Begin,  
Blanking B End  
6-4. Multi Mode Open Loop  
6-4 is for multi-mode, open loop. Open loop means that the DPWM is controlled entirely by its own  
registers, not by the filter output. In other words, the power supply control loop is not closed.  
The Sample Trigger signals are used to trigger the Front End to sample input signals. The Blanking  
signals are used to blank fault measurements during noisy events, such as FET turn on and turn off.  
Additional DPWM modes are described below.  
28  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.4.2.1.4 High Resolution DPWM  
Unlike conventional PWM controllers where the frequency of the clock dictates the maximum resolution of  
PWM edges, the UCD3138x DPWM can generate waveforms with resolutions as small as 250 ps. This is  
16 times the resolution of the clock driving the DPWM module.  
This is achieved by providing the DPWM mechanism with 16 phase shifted clock signals of 250 MHz  
each.  
6.4.2.1.5 Over Sampling  
The DPWM module has the capability to trigger an over sampling event by initiating the EADC to sample  
the error voltage. The default “00” configuration has the DPWM trigger the EADC once based on the  
sample trigger register value. The over sampling register has the ability to trigger the sampling 2, 4 or 8  
times per PWM period. Thus the time the over sample happens is at the divide by 2, 4, or 8 time set in the  
sampling register. The “01” setting triggers 2X over sampling, the “10” setting triggers 4X over sampling,  
and the “11” triggers over sampling at 8X.  
6.4.2.1.6 DPWM Interrupt Generation  
The DPWM has the capability to generate a CPU interrupt based on the PWM frequency programmed in  
the period register. The interrupt can be scaled by a divider ratio of up to 255 for developing a slower  
interrupt service execution loop. This interrupt can be fed to the ADC circuitry for providing an ADC12  
trigger for sequence synchronization. 6-2 outlines the divide ratios that can be programmed.  
6.4.2.1.7 DPWM Interrupt Scaling/Range  
6-2. DPWM Interrupt Divide Ratio  
NUMBER OF 32  
INTERRUPT  
DIVIDE  
SETTING  
INTERRUPT  
DIVIDE  
COUNT  
INTERRUPT  
DIVIDE  
COUNT (HEX)  
SWITCHING PERIOD  
FRAMES (assume  
1MHz loop)  
MHZ  
PROCESSOR  
CYCLES  
1
2
0
1
00  
01  
03  
07  
0F  
1F  
2F  
3F  
4F  
5F  
7F  
9F  
BF  
DF  
FF  
1
2
32  
64  
3
3
4
128  
4
7
8
256  
5
15  
31  
47  
63  
79  
95  
127  
159  
191  
223  
255  
16  
32  
48  
64  
80  
96  
128  
160  
192  
224  
256  
512  
6
1024  
1536  
2048  
2560  
3072  
4096  
5120  
6144  
7168  
8192  
7
8
9
10  
11  
12  
13  
14  
15  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
29  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
6.4.3 Synchronous Rectifier Dead Time Optimization Peripheral  
The UCD3138064A has an advanced dead time control interface where it can accept UCD7138 output  
signals and optimize SR gate driver signals accordingly. The UCD7138 low-side MOSFET driver is a high-  
performance driver for secondary-side synchronous rectification (SR) with body diode conduction sensing.  
The device is suitable for high power high efficiency isolated converter applications where dead-time  
optimization is desired. The UCD7138 gate driver is a companion device to UCD3138064A highly  
integrated digital controller for isolated power.  
UCD3138064A  
Rising edge  
optimization  
control  
UCD7138  
CTRL  
IN  
SR1 DPWM  
SR2 DPWM  
6
4
5
1
2
3
DPWM  
module  
Thermal Pad  
(GND)  
DTC  
VCC  
OUT  
VD  
SR1  
Dead Time  
Control  
Computation  
Engine  
Rising edge  
optimization  
control  
UCD7138  
IN  
CTRL  
OUT  
6
4
5
1
2
3
DTC0  
DTC1  
Thermal Pad  
(GND)  
SR2  
DTC  
VCC  
Decoder  
VD  
6-5. Synchronous Rectifier Peripheral use with Synchronous Rectifier Driver  
DTC0 and DTC1 are received body diode conduction inputs from UCD7138. SR0_DPWM and  
SR1_DPWM are the DPWM waveforms for the SRs. The red and green edges are moving edges  
controlled by both the filter output and the DTC interface. In each cycle, right after the falling edge of the  
SR DPWM waveform, a body diode conduction time detection window is generated. The detection window  
is defined by both DETECT_BLANK and DETECT_LEN registers. During this detection window, a 4-ns  
timer capture counts how long the body diode conducts. Then the DPWM turn off edge of the next cycle is  
adjusted accordingly.  
{w0_ 5tía  
!5WÜ{Ç  
{w1_ 5tía  
5Ç/0  
!5WÜ{Ç  
59Ç9/Ç  
59Ç9/Ç  
59Ç9/Ç  
59Ç9/Ç  
5Ç/1  
59Ç9/Ç_ .[!bY  
59Ç9/Ç_[9b  
6-6. Timing Diagram of the DTC Interface  
6-7 shows how the turn-off edge is adjusted based on the DTC measurement of the previous cycle.  
The A_ADJ and B_ADJ registers in DTCMONITOR are signed accumulators; default value is 0.  
30  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
!_/bÇ or ._/bÇ vꢀlue  
127  
Lf in aꢀnuꢀl /onꢁrol aode  
P = aꢀnuꢀl /onꢁrol regisꢁer vꢀlue  
P = 1  
P = 0  
9lse if !_/bÇ or ._/bÇ < C[Ç_ÇIw9{I  
P = C[Ç_{Ç9t  
Ç!wD9Ç_hCC{9Ç  
Ç!wD9Ç_[hí  
9lse if !_/bÇ or ._/bÇ < Ç!wD9Ç_[hí  
P = - 1  
9lse if !_/bÇ or ._/bÇ > Ç!wD9Ç_[hí + Ç!wD9Ç_hCC{9Ç  
P = 1  
P = - 1  
9lse  
P = 0  
C[Ç_ÇIw9{I  
P = C[Ç_{Ç9t  
0
6-7. DTC Interface Principle  
Based on the DTC measured, in the next cycle:  
A_ADJ = A_ADJ + A_  
A_ADJ = A_ADJ + B_∆  
In each cycle, the A_ADJ and B_ADJ accumulator values are dynamically adjust the dead time. The ∆  
value changes after the measured body diode conduction time. A_ADJ and B_ADJ have been measured  
and compared to the threshold values in automatic control mode. A_ADJ and B_ADJ can be controlled by  
firmware while in manual control mode.  
Other figures of this peripheral include negative current fault protection, consecutive fault counter, DTC  
input multiplexor, etc. For details, refer to the programmer's manual.  
6.4.4 Automatic Mode Switching  
Automatic Mode switching enables the DPWM module to switch between modes automatically, with no  
firmware intervention. This is useful to increase efficiency and power range. The following paragraphs  
describe phase-shifted full bridge and LLC examples.  
6.4.4.1 Phase Shifted Full Bridge Example  
In phase shifted full bridge topologies, efficiency can be increased by using pulse width modulation, rather  
than phase shift, at light load. This is shown in 6-8 below:  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
31  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
DPWM3A  
(QB1)  
DPWM3B  
(QT1)  
DPWM2A  
(QT2)  
DPWM2B  
(QB2)  
VTrans  
DPWM1B  
(QSYN1,3)  
DPWM0B  
(QSYN2,4)  
IPRI  
6-8. Phase-Shifted Full Bridge Waveforms  
32  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
L1  
T1  
Q7  
+12V  
Q6  
Q5  
C1  
RL  
VBUS  
I_pri  
PRIM  
CURRENT  
ORING  
CTL  
T2  
VOUT  
C2  
R2  
D1  
T1  
QT2  
QB2  
QT1  
Lr  
VA  
Current  
Sensing  
QB1  
D2  
DPWM0B  
DPWM1B  
Vref  
DPWM0  
Duty for mode  
switching  
Vout  
Iout  
CPCC  
<
EADC0  
EADC1  
CLA0  
DPWM1  
DPWM2  
CLA1  
DPWM2A  
DPWM2B  
Load Current  
DPWM3A  
DPWM3B  
I_pri  
EADC2  
DPWM3  
PCM  
AD00  
AD01  
ISOLATED  
GATE Transformer  
ACFAIL_IN  
FAULT 0  
FAULT 1  
FAULT 2  
SYNCHRONOUS  
GATE DRIVE  
ACFAIL_OUT  
FAILURE  
AD02/CMP0  
AD03/CMP1/CMP2  
AD04/CMP3  
AD05/CMP4  
AD06/CMP5  
AD07/CMP6  
AD08  
I_SHARE  
Vout  
FAULT  
GPIO1  
GPIO2  
GPIO3  
ORING_CRTL  
ON/OFF  
Iout  
I_pri  
CBC  
temp  
P_GOOD  
Vin  
VA  
WD  
ARM7  
AD09  
PMBus  
UART0  
RST  
OSC  
Primary  
UART1  
Memory  
6-9. Secondary-Referenced Phase-Shifted Full Bridge Control With Synchronous Rectification  
6.4.4.2 LLC Example  
In LLC, three modes are used. At the highest frequency, a pulse width modulated mode (Multi Mode) is  
used. As the frequency decreases, resonant mode is used. As the frequency gets still lower, the  
synchronous MOSFET drive changes so that the on-time is fixed and does not increase. In addition, the  
LLC control supports cycle-by-cycle current limiting. This protection function operates by a comparator  
monitoring the maximum current during the DPWMA conduction time. Any time this current exceeds the  
programmable comparator reference the pulse is immediately terminated. Due to classic instability issues  
associated with half-bridge topologies it is also possible to force DPWMB to match the truncated pulse  
width of DPWMA. The waveforms for the LLC are shown in 6-10:  
PWM  
Mode  
LLC Mode  
fr  
fs= fr_max  
fs< fr  
fs> fr  
Q1T  
Q1B  
QSR1  
QSR2  
Tr= 1/fr  
Tr= 1/fr  
ISEC(t)  
6-10. LLC Waveforms  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
33  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
VBUS  
Q1T  
ILR(t)  
Transformer  
QSR2  
LRES  
LK  
NS  
NS  
Driver  
DPWM1B  
ISEC(t)  
Oring Circuitry  
RLRES  
Q1B  
ILM(t)  
LM  
VOUT  
NP  
RF1  
RF2  
AD03  
COUT1  
COUT2  
EAP0  
VOUT(t)  
VBUS  
ESR1  
ESR2  
CF  
QSR1  
EAN0  
AD04  
CRES  
RS  
Driver  
DPWM1A  
CS  
CRES  
VCR(t)  
RS1  
RS2  
ADC13  
EAP1  
Driver  
Driver  
DPWM0B  
DPWM0A  
6-11. Secondary-Referenced Half-Bridge Resonant LLC Control With Synchronous Rectification  
34  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.4.4.3 Mechanism For Automatic Mode Switching  
The UCD3138064A allows the customer to enable up to two distinct levels of automatic mode switching.  
These different modes are used to enhance light load operation, short circuit operation and soft start.  
Many of the configuration parameters for the DPWM are in DPWM Control Register 1. For automatic  
mode switching, some of these parameters are duplicated in the Auto Config Mid and Auto Config High  
registers.  
If automatic mode switching is enabled, the filter duty signal is used to select which of these three  
registers is used. There are 4 registers which are used to select the points at which the mode switching  
takes place. They are used as shown in 6-12 below.  
Automatic Mode Switching  
With Hysteresis  
Filter Duty  
Full Range  
Auto Config High  
High – Upper Threshold  
High – Lower Threshold  
Auto Config Mid  
Low – Upper Threshold  
Low – Lower Threshold  
Control  
Register 1  
0
6-12. Automatic Mode Switching  
As shown, the registers are used in pairs for hysteresis. The transition from Control Register 1 to Auto  
Config Mid only takes place when the Filter Duty goes above the Low Upper threshold. It does not go  
back to Auto Config Mid until the Low Lower Threshold is passed. This prevents oscillation between  
modes if the filter duty is close to a mode switching point.  
6.4.5 DPWMC, Edge Generation, IntraMux  
The UCD3138064A has hardware for generating complex waveforms beyond the simple DPWMA and  
DPWMB waveforms already discussed – DPWMC, the Edge Generation Module, and the IntraMux.  
DPWMC is a signal inside the DPWM logic. It goes high at the Blanking A begin time, and low at the  
Blanking A end time.  
The Edge Gen module takes DPWMA and DPWMB from its own DPWM module, and the next one, and  
uses them to generate edges for two outputs. For DPWM3, the DPWM0 is considered to be the next  
DPWM. Each edge (rising and falling for DPWMA and DPWMB) has 8 options which can cause it.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
35  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
The options are:  
0 = DPWM(n) A Rising edge  
1 = DPWM(n) A Falling edge  
2 = DPWM(n) B Rising edge  
3 = DPWM(n) B Falling edge  
4 = DPWM(n+1) A Rising edge  
5 = DPWM(n+1) A Falling edge  
6 = DPWM(n+1) B Rising edge  
7 = DPWM(n+1) B Falling edge  
Where “n" is the numerical index of the DPWM module of interest. For example n=1 refers to DPWM1.  
The Edge Gen is controlled by the DPWMEDGEGEN register. It also has an enable/disable bit.  
The IntraMux is controlled by the Auto Config registers. Intra Mux is short for intra multiplexer. The  
IntraMux takes signals from multiple DPWMs and from the Edge Gen and combines them logically to  
generate DPWMA and DPWMB signals This is useful for topologies like phase-shifted full bridge,  
especially when they are controlled with automatic mode switching. Of course, it can all be disabled, and  
DPWMA and DPWMB will be driven as described in the sections above. If the Intra Mux is enabled, high  
resolution must be disabled, and DPWM edge resolution goes down to 4 ns.  
6-13 shows the Edge Gen/Intra Mux:  
A/B/C (N)  
A/B/C (N+1)  
INTRAMUX  
C (N+2)  
C (N+3)  
PWM A  
PWM B  
EDGE GEN  
A(N)  
B(N)  
EGEN A  
EGEN B  
A(N+1)  
B(N+1)  
B SELECT  
A SELECT  
A ON SELECT  
A OFF SELECT  
B ON SELECT  
B OFF SELECT  
6-13. Edge Generation / IntraMux  
Here is a list of the IntraMux modes for DPWMA:  
0 = DPWMA(n) pass through (default)  
1 = Edge-gen output, DPWMA(n)  
2 = DPWNC(n)  
3 = DPWMB(n) (Crossover)  
4 = DPWMA(n+1)  
5 = DPWMB(n+1)  
6 = DPWMC(n+1)  
7 = DPWMC(n+2)  
8 = DPWMC(n+3)  
and for DPWMB:  
0 = DPWMB(n) pass through (default)  
1 = Edge-gen output, DPWMB(n)  
2 = DPWNC(n)  
36  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
3 = DPWMA(n) (Crossover)  
4 = DPWMA(n+1)  
5 = DPWMB(n+1)  
6 = DPWMC(n+1)  
7 = DPWMC(n+2)  
8 = DPWMC(n+3)  
The DPWM number wraps around just like the Edge Gen unit. For DPWM3 the following definitions apply:  
DPWM(n)  
DPWM3  
DPWM0  
DPWM1  
DPWM2  
DPWM(n+1)  
DPWM(n+2)  
DPWM(n+3)  
6.4.6 Filter  
The UCD3138064A filter is a PID filter with many enhancements for power supply control. Some of its  
features include:  
Traditional PID Architecture  
Programmable non-linear limits for automated modification of filter coefficients based on received  
EADC error  
Multiple coefficient sets fully configurable by firmware  
Full 24-bit precision throughout filter calculations  
Programmable clamps on integrator branch and filter output  
Ability to load values into internal filter registers while system is running  
Ability to stall calculations on any of the individual filter branches  
Ability to turn off calculations on any of the individual filter branches  
Duty cycle, resonant period, or phase shift generation based on filter output.  
Flux balancing  
Voltage feed forward  
The first section of the filter is shown in 6-14 :  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
37  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Limit Comparator  
Limit 6  
Limit 5  
…..  
PID Filter Branch Stages  
Limit 0  
Coefficient  
select  
EADC_DATA  
Xn  
16  
24  
9
24  
X
P
9
9
24  
16  
24  
24  
9
9
24  
24  
9
+
+
X
I
24  
24  
Ki Low  
9
24  
24  
X
32  
9
Round  
24  
16  
24  
X X  
9
n
n-1  
9
24  
24  
-
X
Clamp  
+
D
6-14. First Section of the Filter  
The filter input, Xn, generally comes from a front end. Then there are three branches, P, I. and D. Note  
that the D branch also has a pole, Kd Alpha. Clamps are provided both on the I branch and on the D  
alpha pole.  
The filter also supports a nonlinear mode, where up to 7 different sets of coefficients can be selected  
depending on the magnitude of the error input Xn. This can be used to increase the filter gain for higher  
errors to improve transient response.  
Tthe output section of the filter (S0.23 means that there is 1 sign bit, 0 integer bits and 23 fractional bits) is  
shown in 6-15.:  
Filter Yn  
Clamp High  
Yn Scale  
Shifter  
24  
24  
24  
P
I
24  
24  
24  
S0.23  
26  
Filter Yn  
Saturate  
Yn  
Clamp  
+
D
S2.23  
S0.23  
S0.23  
Filter Yn  
Clamp Low  
All are S0.23  
6-15. Output Section of the Filter  
This section combines the P, I, and D sections, and provides for saturation, scaling, and clamping.  
38  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
There is a final section for the filter, shown in 6-16 that permits its output to be matched to the DPWM:  
Filter Output  
Clamp High  
Round to  
18 bits,  
Truncate  
low 4 bits  
Filter Period  
Bits [17:4]  
Filter YN  
38  
18  
14  
X
Clamp to  
Positive  
Round to  
18 bits,  
S14.23  
24  
S0.23  
14.4  
14.0  
Filter YN (Duty %)  
18  
Filter Duty  
14.4  
38  
18  
Clamp  
X
Clamp to  
Positive  
24  
S0.23  
S14.23  
14.4  
KCompx 14.0  
14  
14.0  
14.0  
KCompx  
DPWMx Period  
Loop_VFF  
14  
DPWMx Period 14.0  
Filter Output  
Clamp Low  
14.0  
14.0  
14.0  
14.0  
PERIOD_MULT_SEL  
Resonant Duty  
OUTPUT_MULT_SEL  
6-16. Final Section for the Filter  
This permits the filter output to be multiplied by a variety of correction factors to match the DPWM Period,  
to provide for Voltage Feed Forward, or for other purposes. After this, there is another clamp. For resonant  
mode, the filter can be used to generate both period and duty cycle.  
6.4.6.1 Loop Multiplexer  
The Loop Mux controls interconnections between the filters, front ends, and DPWMs. Any filter, front end,  
and DPWM can be combined in a variety of configurations.  
It also controls the following connections:  
DPWM to Front End  
Front End DAC control from Filters or Constant Current/Constant Power Module  
Filter Special Coefficients and Feed Forward  
DPWM synchronization  
Filter to DPWM  
The following control modules are configured in the Loop Mux:  
Constant Power/Constant Current  
Cycle Adjustment (Current and flux balancing)  
Global Period  
Light Load (Burst Mode)  
Analog Peak Current Mode  
6.4.6.2 Fault Multiplexer  
In order to allow a flexible way of mapping several fault triggering sources to all the DPWMs channels, the  
UCD3138x provides an extensive array of multiplexers that are united under the name Fault Mux module.  
The Fault Mux Module supports the following types of mapping between all the sources of fault and all the  
different fault response mechanisms inside each DPWM module.  
Many fault sources may be mapped to a single fault response mechanism. For instance an analog  
comparator in charge of over voltage protection, a digital comparator in charge of over current  
protection and an external digital fault pin can be all mapped to a Fault-A signal connected to a single  
FAULT MODULE and shut down DPWM1-A.  
A single fault source can be mapped to many fault response mechanisms inside many DPWM  
modules. For instance an analog comparator in charge of over current protection can be mapped to  
DPWM-0 through DPWM-3 by way of several fault modules.  
Many fault sources can be mapped to many fault modules inside many DPWM modules.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
39  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
CBC_PWM_AB_EN  
FAULT MUX  
DPWM  
Bit20 in DPWMCTRL0  
CYCLE BY CYCLE  
ANALOG PCM  
FAULT- CBC  
AB FLAG  
FAULT MODULE  
DISABLE PWM A AND B  
CBC_FAULT_EN  
Bit30 in DPWMFLTCTRL  
FAULT- AB  
FAULT-A  
FAULT-B  
AB FLAG  
FAULT MODULE  
DISABLE PWM A AND B  
DCOMP– 4X  
EXT GPIO4X  
ACOMP – 7X  
A FLAG  
FAULT MODULE  
DISABLE PWM A ONLY  
B FLAG  
FAULT MODULE  
DISABLE PWM B ONLY  
ALL_FAULT_EN  
DPWM_EN  
Bit0 in DPWMCTRL0  
Bit 31 in DPWMFLTCTRL  
6-17. Fault Mux Module  
The Fault Mux Module provides a multitude of fault protection functions within the UCD3138x high-speed  
loop (Front End Control, Filter, DPWM and Loop Mux modules). The Fault Mux Module allows highly  
configurable fault generation based on digital comparators, high-speed analog comparators and external  
fault pins. Each of the fault inputs to the DPWM modules can be configured to one or any combination of  
the fault events provided in the Fault Mux Module.  
Each one of the DPWM engines has four fault modules. The modules are called CBC fault module, AB  
fault module, A fault module and B fault module.  
The internal circuitry in all the four fault modules is identical, and the difference between the modules is  
limited to the way the modules are attached to the DPWMs.  
40  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
FAULT FLAG  
FAULT IN  
FAULT MODULE  
6-18. Fault Module  
All fault modules provide immediate fault detection but only once per DPWM switching cycle. Each one of  
the fault modules own a separate max_count and the fault flag will be set only if sequential cycle-by-cycle  
fault count exceeds max_count.  
Once the fault flag is set, DPWMs need to be disabled by DPWM_EN going low in order to clear the fault  
flags. Please note, all four Fault Modules share the same DPWM_EN control, all fault flags (output of Fault  
Modules) will be cleared simultaneously.  
All four Fault Modules share the same global FAULT_EN as well. Therefore a specific Fault Module  
cannot be enabled/ disabled separately.  
FAULT - CBC  
CLIM  
CYCLE BY CYCLE  
6-19. Cycle-By-Cycle Block  
Unlike Fault Modules, only one Cycle by Cycle block is available in each DPWM module.  
The Cycle by Cycle block works in conjunction with CBC Fault Module and enables DPWM reaction to  
signals arriving from the Analog Peak current mode (PCM) module.  
The Fault Mux Module supports the following basic functions:  
4 digital comparators with programmable thresholds and fault generation  
Configuration for 7 high speed analog comparators with programmable thresholds and fault generation  
External GPIO detection control with programmable fault generation  
Configurable DPWM fault generation for DPWM Current Limit Fault, DPWM Over-Voltage Detection  
Fault, DPWM A External Fault, DPWM B External Fault and DPWM IDE Flag  
Clock Failure Detection for High and Low Frequency Oscillator blocks  
Discontinuous Conduction Mode Detection  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
41  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
HFO/LFO  
Fail Detect  
DCM Detection  
Analog Comparator 0  
Control  
Analog  
Comparator 0  
Digital Comparator 0  
Control  
Front End  
Control 0  
Analog Comparator 1  
Control  
Analog  
Comparator 1  
Digital Comparator 1  
Control  
Front End  
Control 1  
Analog Comparator 2  
Control  
Analog  
Comparator 2  
Digital Comparator 2  
Control  
Analog Comparator 3  
Control  
Analog  
Comparator 3  
Front End  
Control 2  
Digital Comparator 3  
Control  
Analog Comparator 4  
Control  
Analog  
Comparator 4  
fault[2:0]  
External GPIO  
Detection  
Analog Comparator 5  
Control  
Analog  
Comparator 5  
DPWM 0  
Fault Control  
DPWM 1  
Fault Control  
DPWM 2  
Fault Control  
DPWM 3  
Fault Control  
Analog Comparator 6  
Control  
Analog  
Comparator 6  
DPWM 0  
DPWM 1  
DPWM 2  
DPWM 3  
Analog Comparator  
Automated Ramp  
6-20. Fault Mux Block Diagram  
6.4.7 Communication Ports  
6.4.7.1 SCI (UART) Serial Communication Interface  
A maximum of two independent Serial Communication Interface (SCI) or Universal Asynchronous  
Receiver/Transmitter (UART) interfaces are included within the device for asynchronous start-stop serial  
data communication (see the pin out sections for details). Each interface has a 24 bit pre-scaler for  
supporting programmable baud rates, a programmable data word and stop bit options. Half or full duplex  
operation is configurable through register bits. A loop back feature can also be setup for firmware  
verification. Both SCI-TX and SCI-RX pin sets can be used as GPIO pins when the peripheral is not being  
used.  
The UART peripheral includes a hardware based auto baud rate adjustment feature. Power supply  
controllers typically use temperature compensated RC based oscillators. Despite the temperature  
compensation, the clock speed will change with temperature. This can lead to a difference in baud rate  
between two controllers, leading to lost of communication. The UCD3138064A adds logic which can  
match the receive baud rate by measuring the bit timing of the incoming signal.  
In Addition, the UCD3138064A increases the resolution of the baud rate adjustment. The UCD3138064  
has 512 ns resolution, while the UCD3138064A adds 3 bits and provides 64 ns resolution on the baud  
rate. This makes the use ot auto baud possible at higher baud rates.  
6.4.7.2 PMBUS/I2C  
The PMBus interface in UCD3138064A supports both master and slave modes. The I2C interface only  
supports master mode. Only one of the interfaces has control of the address pin current sources as well  
as support for the optional Control and Alert lines described in the PMBus specification. Other than these  
differences, the interfaces are identical.  
42  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
The PMBus/I2C interface is designed to minimize the processor overhead required for interface. It can  
automatically detect and acknowledge addresses. It handles start and stop conditions automatically, and  
can clock stretch until the processor has time to poll the PMBus status. It will automatically receive and  
send up to 4 bytes at a time. It can automatically verify and generate a PEC. This means that a write byte  
command can be received by the processor with only one function call. There is no need for any interrupts  
at all with this PMBus/I2C interface. If it is polled every few milliseconds, it will work perfectly.  
The interface also supports automatic ACK of two independent addresses. If both PMBus/I2C interfaces  
are used at the same time a total of 4 independent addresses can be automatically detected.  
Example: PMBus Address Decode via ADC12 Reading  
The user can allocate 2 pins of the 12-bit ADC input channels, AD_00 and AD_01, for PMBus address  
decoding. At power-up the device applies IBIAS to each address detect pin and the voltage on that pin is  
captured by the internal 12-bit ADC.  
Vdd  
AD00,  
AD01  
pin  
On/Off Control  
I
BIAS  
Resistor to  
set PMBus  
Address  
To ADC Mux  
6-21. PMBUS Address Detection Method  
PMBus/I2C address 0x7E is a reserved address and should not be used in a system using the UCD3138x.  
This address is used for manufacturing test.  
6.4.7.3 SPI  
The SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed  
length (1 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate. The SPI is  
normally used for communication between the UCD3138x and external peripherals. Typical applications  
include an interface to external I/O or peripheral expansion via devices such as shift registers, display  
drivers, SPI EPROMs and analog-to-digital converters. The SPI allows serial communication with other  
SPI devices through a 3-pin or 4-pin mode interface.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
43  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
SCS  
tCSS  
tWH  
tWL  
tCSH  
SCK  
tSU  
tH  
MISO  
MOSI  
VALID IN  
tV  
tHO  
VALID OUT  
PSCK  
tWH  
tWL  
tSU  
tH  
tV  
tHO  
tCSS  
Period SCK  
2 ICLK  
1/2 PSCK  
1/2 PSCK  
2 ns (typical)  
4 ns (typical)  
4 ns (typical)  
2 ns (typical)  
1 PSCK  
SCK High Time  
SCK Low Time  
Data in setup  
Data in hold  
Ouput Valid  
Ouput Data Hold  
Chip Select Setup  
tCSH  
Chip Select Hold  
1 PSCK  
6-22. SPI Timing Diagram  
6.4.8 Timers  
External to the Digital Power Peripherals there are 3 different types of timers in UCD3138x. They are the  
24-bit timer, 16-bit timer and the watchdog timer  
6.4.8.1 24-Bit Timer  
There is one 24 bit timer which runs off the Interface Clock. It can be used to measure the time between  
two events, and to generate interrupts after a specific interval. Its clock can be divided down by an 8-bit  
pre-scalar to provide longer intervals. The timer has two compare registers (Data Registers). Both can be  
used to generate an interrupt after a time interval. . Additionally, the timer has a shadow register (Data  
Buffer register) which can be used to store CPU updates of the compare events while still using the timer.  
The selected shadow register update mode happens after the compare event matches.  
The two capture pins TCAP0 and TCAP1 are inputs for recording a capture event. A capture event can be  
set either to rising, falling, or both edges of the capture pin signal. Upon this event, the counter value is  
stored in the corresponding capture data register. Five Interrupts from the 24 bit timer can be set, which  
are the counter rollover event (overflow), capture events 0 and 1, and the two comparison match events.  
Each interrupt can be disabled or enabled.  
6.4.8.2 16-Bit PWM Timers  
There are four 16 bit counter PWM timers which run off the Interface Clock and can further be divided  
down by a 8-bit pre-scaler to generate slower PWM time periods. Each timer has two compare registers  
(Data Registers) for generating the PWM set/unset events. Additionally, each timer has a shadow register  
(Data Buffer register) which can be used to store CPU updates of compare events while still using the  
timer. The selected shadow register update mode happens after the compare event matches.  
44  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
The counter reset can be configured to happen on a counter roll over, a compare equal event, or by a  
software controlled register. Interrupts from the PWM timer can be set due to the counter rollover event  
(overflow) or by the two comparison match events. Each comparison match and the overflow interrupts  
can be disabled or enabled.  
Upon an event comparison, the PWM pin can be configured to set, clear, toggle or have no action at the  
output. The value of PWM pin output can be read for status or simply configured as General Purpose I/O  
for reading the value of the input at the pin.  
6.4.8.3 Watchdog Timer  
A watchdog timer is provided on the device for ensuring proper firmware loop execution. The timer is  
clocked off of a separate low speed oscillator source. If the timer is allowed to expire, a reset condition is  
issued to the ARM processor. The watchdog is reset by a simple CPU write bit to the watchdog key  
register by the firmware routine. On device power-up the watchdog is disabled. Yet after it is enabled, the  
watchdog cannot be disabled by firmware. Only a device reset can put this bit back to the default disabled  
state. A half timer flag is also provided for status monitoring of the watchdog.  
6.4.9 General Purpose ADC12  
The ADC12 is a 12 bit, high speed analog to digital converter, equipped with the following options:  
Typical conversion speed of 267 ksps  
Conversions can consist from 1 to 16 ADC channel conversions in any desired sequence  
Post conversion averaging capability, ranging from 4X, 8X, 16X or 32X samples  
Configurable triggering for ADC conversions from the following sources: firmware, DPWM rising edge,  
ADC_EXT_TRIG pin or Analog Comparator results  
Interrupt capability to embedded processor at completion of ADC conversion  
Six digital comparators on the first 6 channels of the conversion sequence using either raw ADC data  
or averaged ADC data  
Two 10 µA current sources for excitation of PMBus addressing resistors  
Dual sample and hold for accurate power measurement  
Internal temperature sensor for temperature protection and monitoring  
The control module (6-23) contains the control and conversion logic for auto-sequencing a series of  
conversions. The sequencing is fully configurable for any combination of 16 possible ADC channels  
through an analog multiplexer embedded in the ADC12 block. Once converted, the selected channel value  
is stored in the result register associated with the sequence number. Input channels can be sampled in  
any desired order or programmed to repeat conversions on the same channel multiple times during a  
conversion sequence. Selected channel conversions are also stored in the result registers in order of  
conversion, where the result 0 register is the first conversion of a 16-channel sequence and result 15  
register is the last conversion of a 16-channel sequence. The number of channels converted in a  
sequence can vary from 1 to 16.  
Unlike EADC0 through EADC2, which are primarily designed for closing high speed compensation loops,  
the ADC12 is not usually used for loop compensation purposes. The EADC converters have a  
substantially faster conversion rate, thus making them more attractive for closed loop control. The ADC12  
features make it best suited for monitoring and detection of currents, voltages, temperatures and faults.  
Please see 5.9 for the temperature variation associated with this function.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
45  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
ADC12 Block  
ADC12 Registers  
ADC  
Averaging  
12-bit SAR  
ADC  
S/H  
ADC  
Channels  
ADC12  
Control  
Digital  
Comparators  
ADC Channel  
ADC External Trigger (from pin)  
Analog  
Comparators  
DPWM  
Modules  
6-23. ADC12 Control Block Diagram  
6.4.10 Miscellaneous Analog  
The Miscellaneous Analog Control (MAC) Registers are a catch-all of registers that control and monitor a  
wide variety of functions. These functions include device supervisory features such as Brown-Out and  
power saving configuration, general purpose input/output configuration and interfacing, internal  
temperature sensor control and current sharing control.  
The MAC module also provides trim signals to the oscillator and AFE blocks. These controls are usually  
used at the time of trimming at manufacturing; therefore this document will not cover these trim controls.  
6.4.11 Brownout  
Brownout function is used to determine if the device supply voltage is lower than a threshold voltage, a  
condition that may be considered unsafe for proper operation of the device.  
The brownout threshold is higher than the reset threshold voltage; therefore, when the supply voltage is  
lower than brownout threshold, it still does not necessarily trigger a device reset.  
The brownout interrupt flag can be polled or alternatively can trigger an interrupt to service such case by  
an interrupt service routine. Please see 5-4.  
6.4.12 Global I/O  
Up to 32 pins in UCD3138x can be configured in the Global I/O register to serve as a general purpose  
input or output pins (GPIO). This includes all digital input or output pins except for the RESET pin.  
The pins that cannot be configured as GPIO pins are the supply pins, ground pins, ADC-12 analog input  
pins, EADC analog input pins and the RESET pin. Additional digital pins not listed in this register can be  
configured through their local configuration registers.  
There are two ways to configure and use the digital pins as GPIO pins:  
1. Through the centralized Global I/O control registers.  
2. Through the distributed control registers in the specific peripheral that shares it pins with the standard  
46  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
GPIO functionality.  
The Global I/O registers offer full control of:  
1. Configuring each pin as a GPIO.  
2. Setting each pin as input or output.  
3. Reading the pin’s logic state, if it is configured as an input pin.  
4. Setting the logic state of the pin, if it is configured as an output pin.  
5. Connecting pin/pins to high rail through internal push/pull drivers or external pull up resistors.  
The Global I/O registers include Global I/O EN register, Global I/O OE Register, Global I/O Open Drain  
Control Register, Global I/O Value Register and Global I/O Read Register.  
The following is showing the format of Global I/O EN Register (GLBIOEN) as an example:  
BIT NUMBER  
Bit Name  
Access  
31:0  
GLOBAL_IO_EN  
R/W  
Default  
0000_0000_0000_0000_0000_0000_0000_0000  
Bits 29-0: GLOBAL_IO_EN – This register enables the global control of digital I/O pins  
0 = Control of IO is done by the functional block assigned to the IO (Default)  
1 = Control of IO is done by Global IO registers.  
PIN NUMBER  
BIT  
PIN_NAME  
UCD3138x  
11  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
PWM2  
PWM3  
12  
FAULT3  
ADC_EXT_TRIG  
TCK  
55  
14  
45  
TDO  
46  
TMS  
48  
TDI  
47  
SCI_TX1  
SCI_TX0  
SCI_RX1  
SCI_RX0  
TCAP0  
37  
35  
38  
36  
49  
PWM1  
40  
PWM0  
39  
TCAP1  
13  
I2C_DATA  
PMBUS_CTRL  
PMBUS_ALERT  
EXT_INT  
FAULT2  
FAULT1  
FAULT0  
SYNC  
20  
18  
17  
42  
54  
44  
43  
8
34  
7
DPWM3B  
DPWM3A  
DPWM2B  
DPWM2A  
DPWM1B  
29  
6
28  
5
27  
4
26  
3
25  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
47  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
PIN NUMBER  
BIT  
PIN_NAME  
UCD3138x  
2
1
0
DPWM1A  
DPWM0B  
DPWM0A  
24  
23  
22  
6.4.13 Temperature Sensor Control  
Temperature sensor control register provides internal temperature sensor enabling and trimming  
capabilities. The internal temperature sensor is disabled by default.  
Temperature  
Calibration  
ADC 12  
Temperature  
Sensor  
CH15  
6-24. Internal Temp Sensor  
Temperature sensor is calibrated at room temperature (25 °C) via a calibration register value.  
The temperature sensor is measured using ADC12 (via Ch15). The temperature is then calculated using a  
mathematical formula involving the calibration register (this effectively adds a delta to the ADC  
measurement).  
The temperature sensor can be enabled or disabled.  
6.4.14 I/O Mux Control  
I/O Mux Control register may be used in order to choose a single specific functionality that is desired to be  
assigned to a physical device pin for your application. See the UCD3138x programmer's manual for  
details on the available configurations.  
6.4.15 Current Sharing Control  
UCD3138x provides three separate modes of current sharing operation.  
Analog bus current sharing  
PWM bus current sharing  
Master/Slave current sharing  
AD02 has a special ESD protection mechanism that prevents the pin from pulling down the current-  
share bus if power is missing from the UCD3138x  
The simplified current sharing circuitry is shown in the drawing below. The digital pulse connected to SW3  
transforms SW3 into a pulse-width-modulated current source. Details on the frequency and resolution of  
this feature are in the digital power fusion peripherals manual.  
48  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
3.3 V  
ISHARE  
SW3  
Digital  
3.3 V  
3.3V  
ESD  
AD13  
ESD  
3.2 kΩ  
400 Ω  
250 Ω  
AD02  
ESD  
SW2  
SW1  
250 Ω  
EXT CAP  
RSHARE  
ADC12 and  
CMP  
ADC12 and  
CMP  
6-25. Simplified Current Sharing Circuitry  
FOR TEST ONLY,  
ALWAYS KEEP 00  
CURRENT SHARING MODE  
CS_MODE  
EN_SW1  
EN_SW2  
DPWM  
Off or Slave Mode (3-state)  
PWM Bus  
00  
00  
00  
00  
00 (default)  
0
1
0
0
0
0
0
1
0
01  
10  
11  
ACTIVE  
Off or Slave Mode (3-state)  
Analog Bus or Master  
0
0
The period and the duty of 8-bit PWM current source and the state of the SW1 and SW2 switches can be  
controlled through the current sharing control register (CSCTRL).  
6.4.16 Temperature Reference  
The temperature reference register (TEMPREF) provides the ADC12 count when ADC12 measures the  
internal temperature sensor (channel 15) during the factory trim and calibration.  
This information can be used by different periodic temperature compensation routines implemented in the  
firmware. But it should not be overwritten by firmware, otherwise this factory written value will be lost until  
the device is reset.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
49  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
6.5 Device Functional Modes  
6.5.1 DPWM Modes Of Operation  
The DPWM is a complex logic system which is highly configurable to support several different power  
supply topologies. The discussion below will focus primarily on waveforms, timing and register settings,  
rather than on logic design.  
The DPWM is centered on a period counter, which counts up from 0 to PRD, and then is reset and starts  
over again.  
The DPWM logic causes transitions in many digital signals when the period counter hits the target value  
for that signal.  
6.5.1.1 Normal Mode  
In Normal mode, the Filter output determines the pulse width on DPWM A. DPWM B fits into the rest of  
the switching period, with a dead time separating it from the DPWM A on-time. It is useful for buck  
topologies, among others. 6-26 is a drawing of the Normal Mode waveforms:  
50  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Start of Period  
Period  
Start of Period  
Period Counter  
Filter controlled edge  
DPWM Output A  
Event 1  
Filter Duty (High Resolution)  
Cycle Adjust A (High Resolution)  
Adaptive Sample Trigger A  
Adaptive Sample Trigger B  
Sample Trigger 1  
Blanking A Begin  
To Other  
Modules  
Blanking A End  
DPWM Output B  
Event 3 – Event 2 (High Res)  
Event 4 (High Res)  
DTC Adjustment  
Sample Trigger 2  
Blanking B Begin  
Blanking B End  
Phase Trigger  
To Other  
Modules  
Events which change with DPWM mode:  
DPWM A Rising Edge = Event 1  
DPWM A Falling Edge = Event 1 + Filter Duty + Cycle Adjust A  
Adaptive Sample Trigger A = Event 1 + Filter Duty + Adaptive Sample Register or  
Adaptive Sample Trigger B = Event 1 + Filter Duty/2 + Adaptive Sample Register  
DPWM B Rising Edge = Event 1 + Filter Duty + Cycle Adjust A + (Event 3 – Event 2)  
DPWM B Falling Edge = Event 4 + DTC Adjustment  
Phase Trigger = Phase Trigger Register value or Filter Duty  
Events always set by their registers, regardless of mode:  
Sample Trigger 1, Sample Trigger 2, Blanking A Begin, Blanking A End,  
Blanking B Begin, Blanking B End  
6-26. Normal Mode - Closed Loop  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
51  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Cycle adjust A can be used to adjust pulse widths on individual phases of a multi-phase system. This can  
be used for functions like current balancing. The Adaptive Sample Triggers can be used to sample in the  
middle of the on-time (for an average output), or at the end of the on-time (to minimize phase delay) The  
Adaptive Sample Register provides an offset from the center of the on-time. This can compensate for  
external delays, such as MOSFET and gate driver turn on times.  
Blanking A-Begin and Blanking A-End can be used to blank out noise from the MOSFET turn on at the  
beginning of the period (DPWMA rising edge). Blanking B could be used at the turn off time of DPWMB.  
The other edges are dynamic, so blanking is more difficult.  
Cycle Adjust B has no effect in Normal Mode.  
6.5.1.2 Phase Shifting  
In most modes, it is possible to synchronize multiple DPWM modules using the phase shift signal. The  
phase shift signal has two possible sources. It can come from the Phase Trigger Register. This provides a  
fixed value, which is useful for an application like interleaved PFC.  
The phase shift value can also come from the filter output. In this case, the changes in the filter output  
causes changes in the phase relationship of two DPWM modules. This is useful for phase shifted full  
bridge topologies.  
6-27 shows the mechanism of phase shift:  
Phase Shift  
DPWM0 Start of Period  
DPWM0 Start of Period  
Period Counter  
DPWM1 Start of Period  
DPWM1 Start of Period  
Period Counter  
Phase Trigger = Phase Trigger Register value or Filter Duty  
6-27. Phase Shifting  
52  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.5.1.3 DPWM Multiple Output Mode  
Multi mode is used for systems where each phase has only one driver signal. It enables each DPWM  
peripheral to drive two phases with the same pulse width, but with a time offset between the phases, and  
with different cycle adjusts for each phase.  
The Multi-Mode diagram is shown in 6-28.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
53  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Start of Period  
Period  
Period Counter  
Start of Period  
Filter controlled edge  
DPWM Output A  
Event 1  
Filter Duty (High Resolution)  
Cycle Adjust A (High Resolution)  
DTC Adjustment  
Adaptive Sample Trigger A  
Adaptive Sample Trigger B  
Sample Trigger 1  
To Other  
Modules  
Blanking A Begin  
Blanking A End  
DPWM Output B  
Event 3 (High Resolution)  
Filter Duty (High Resolution)  
Cycle Adjust B (High Resolution)  
DTC Adjustment  
Sample Trigger 2  
Blanking B Begin  
Blanking B End  
Phase Trigger  
To Other  
Modules  
Events which change with DPWM mode:  
DPWM A Rising Edge = Event 1  
DPWM A Falling Edge = Event 1 + Filter Duty + Cycle Adjust A + DTC Adjustment  
Adaptive Sample Trigger A = Event 1 + Filter Duty + Adaptive Sample Register or  
Adaptive Sample Trigger B = Event 1 + Filter Duty/2 + Adaptive Sample Register  
DPWM B Rising Edge = Event 3  
DPWM B Falling Edge = Event 3 + Filter Duty + Cycle Adjust B + DTC Adjustment  
Phase Trigger = Phase Trigger Register value or Filter Duty  
Events always set by their registers, regardless of mode:  
Sample Trigger 1, Sample Trigger 2, Blanking A Begin, Blanking A End,  
Blanking B Begin, Blanking B End  
6-28. DPWM Multi-Mode Closed Loop  
54  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Event 2 and Event 4 are not relevant in Multi mode.  
DPWMB can cross over the period boundary safely, and still have the proper pulse width, so full 100%  
pulse width operation is possible. DPWMA cannot cross over the period boundary.  
Since the rising edge on DPWM B is also fixed, Blanking B-Begin and Blanking B-End can be used for  
blanking this rising edge.  
And, of course, Cycle Adjust B is usable on DPWM B.  
6.5.1.4 DPWM Resonant Mode  
This mode provides a symmetrical waveform where DPWMA and DPWMB have the same pulse width. As  
the switching frequency changes, the dead times between the pulses remain the same.  
The equations for this mode are designed for a smooth transition from PWM mode to resonant mode, as  
described in 6.4.4.2. A diagram of this mode is shown in 6-29:  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
55  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Start of Period  
Filter Period  
Start of Period  
Period Counter  
Filter controlled edge  
DPWM Output A  
Event 1  
Filter Duty – 2 x Event 1  
DTC Adjustment  
Adaptive Sample Trigger A  
Adaptive Sample Trigger B  
Sample Trigger 1  
Blanking A Begin  
To Other  
Modules  
Blanking A End  
DPWM Output B  
2 x Event 1  
Event 1  
DTC Adjustment  
Sample Trigger 2  
Blanking B Begin  
Blanking B End  
Phase Trigger  
To Other  
Modules  
Events which change with DPWM mode:  
DPWM A Rising Edge = Event 1  
DPWM A Falling Edge = Filter Duty – Event 1 + DTC Adjustment  
Adaptive Sample Trigger A = Event 1 + Filter Duty + Adaptive Sample Register or  
Adaptive Sample Trigger B = Event 1 + Filter Duty/2 + Adaptive Sample Register  
DPWM B Rising Edge = Filter Duty + Event 1  
DPWM B Falling Edge = Filter Period – Event 1 + DTC Adjustment  
Phase Trigger = Phase Trigger Register value or Filter Duty  
Events always set by their registers, regardless of mode:  
Sample Trigger 1, Sample Trigger 2, Blanking A Begin, Blanking A End,  
Blanking B Begin, Blanking B End  
6-29. DPWM Resonant Symmetrical Mode  
56  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
The Filter has two outputs, Filter Duty and Filter Period. In this case, the Filter is configured so that the  
Filter Period is twice the Filter Duty. So if there were no dead times, each DPWM pin would be on for half  
of the period. For dead time handling, the average of the two dead times is subtracted from the Filter Duty  
for both DPWM pins. Therefore, both pins will have the same on-time, and the dead times will be fixed  
regardless of the period. The only edge which is fixed relative to the start of the period is the rising edge of  
DPWM A. This is the only edge for which the blanking signals can be used easily.  
6.5.2 Triangular Mode  
Triangular mode provides a stable phase shift in interleaved PFC and similar topologies. In this case, the  
PWM pulse is centered in the middle of the period, rather than starting at one end or the other. In  
Triangular Mode, only DPWM-B is available. A diagram for Triangular Mode is shown in 6-30:  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
57  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Triangular Mode Closed Loop  
Start of Period  
Period  
Start of Period  
Period Counter  
DPWM Output A  
Sample Trigger 1  
Blanking A Begin  
Blanking A End  
To Other  
Modules  
Filter controlled edge  
DPWM Output B  
Cycle Adjust A (High Resolution)  
Cycle Adjust B (High Resolution)  
Filter Duty/2 (High Resolution)  
Period/2  
Sample Trigger 2  
Blanking B Begin  
Blanking B End  
To Other  
Phase Trigger  
Modules  
Events which change with DPWM mode:  
DPWM A Rising Edge = None  
DPWM A Falling Edge = None  
Adaptive Sample Trigger None  
DPWM B Rising Edge = Period/2 – Filter Duty/2 + Cycle Adjust A  
DPWM B Falling Edge = Period/2 + Filter Duty/2 + Cycle Adjust B  
Phase Trigger = Phase Trigger Register value or Filter Duty  
Events always set by their registers, regardless of mode:  
Sample Trigger 1, Sample Trigger 2, Blanking A Begin, Blanking A End,  
Blanking B Begin, Blanking B End  
6-30. Triangular Mode  
All edges are dynamic in triangular mode, so fixed blanking is not that useful. The adaptive sample trigger  
is not needed. It is very easy to put a fixed sample trigger exactly in the center of the FET on-time,  
because the center of the on-time does not move in this mode.  
58  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.5.3 Leading Edge Mode  
Leading edge mode is similar to Normal mode, reversed in time. The DPWM A falling edge is fixed, and  
the rising edge moves to the left, or backwards in time, as the filter output increases. The DPWM B falling  
edge stays ahead of the DPWMA rising edge by a fixed dead time. A diagram of the Leading Edge Mode  
is shown in 6-31:  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
59  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Leading Edge Closed Loop  
Start of Period  
Period  
Start of Period  
Period Counter  
DPWM Output A  
Event 1  
Filter Duty (High Resolution)  
Cycle Adjust A (High Resolution)  
Adaptive Sample Trigger A  
Adaptive Sample Trigger B  
Sample Trigger 1  
Blanking A Begin  
To Other  
Modules  
Blanking A End  
DPWM Output B  
Event 2 - Event 3 (High Resolution)  
Event 4 (High Resolution)  
Sample Trigger 2  
Blanking B Begin  
Blanking B End  
Phase Trigger  
To Other  
Modules  
Events which change with DPWM mode:  
DPWM A Falling Edge = Event 1  
DPWM A Rising Edge = Event 1 – Filter Duty + Cycle Adjust A  
Adaptive Sample Trigger A = Event 1 – Filter Duty + Adaptive Sample Register or  
Adaptive Sample Trigger B = Event 1 – Filter Duty/2 + Adaptive Sample Register  
DPWM B Rising Edge = Event 4  
DPWM B Falling Edge = Event 1 – Filter Duty + Cycle Adjust A – (Event 2 – Event 3)  
Phase Trigger = Phase Trigger Register value or Filter Duty  
Events always set by their registers, regardless of mode:  
Sample Trigger 1, Sample Trigger 2, Blanking A Begin, Blanking A End,  
Blanking B Begin, Blanking B End  
6-31. Leading Edge Mode  
As in the Normal mode, the two edges in the middle of the period are dynamic, so the fixed blanking  
intervals are mainly useful for the edges at the beginning and end of the period.  
60  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
6.6 Memory  
6.6.1 Register Maps  
6.6.1.1 CPU Memory Map and Interrupts  
When the device comes out of power-on-reset, the data memories are mapped to the processor as  
follows:  
6.6.1.1.1 Memory Map (After Reset Operation)  
Address  
Size (Bytes)  
Module  
0x0000_0000 – 0x0003_FFFF  
In 32 repeated blocks of 8 k each  
32 X 8 k  
Boot ROM  
0x0004_0000 – 0x0004_7FFF  
0x0004_8000 – 0x0004_FFFF  
0x0006_8800 – 0x0006_8FFF  
0x0006_9000 – 0x0006_9FFF  
32 k  
32 k  
2 k  
Program Flash 1  
Program Flash 2  
Data Flash  
4 k  
Data RAM  
6.6.1.1.2 Memory Map (Normal Operation)  
Just before the boot ROM program gives control to flash program, the ROM configures the memory as  
follows:  
Address  
Size (Bytes)  
Module  
Program Flash 1 (or 2)  
Program Flash 2 (or 1)  
Boot ROM  
0x0000_0000 – 0x0000_7FFF  
0x0000_8000 – 0x0000_FFFF  
0x0002_0000 – 0x0002_1FFF  
0x0006_8800 – 0x0006_8FFF  
0x0006_9000 – 0x0006_9FFF  
32 k  
32 k  
8 k  
2 k  
Data Flash  
4 k  
Data RAM  
6.6.1.1.3 Memory Map (System and Peripherals Blocks)  
Address  
Size  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
Module  
0x0012_0000 - 0x0012_00FF  
0x0013_0000 - 0x0013_00FF  
0x0014_0000 - 0x0014_00FF  
0x0015_0000 - 0x0015_00FF  
0x0016_0000 - 0x0016_00FF  
0x0017_0000 - 0x0017_00FF  
0x0018_0000 - 0x0018_00FF  
0x0019_0000 - 0x0019_00FF  
0x001A_0000 - 0x001A_00FF  
0x001B_0000 – 0x001B_00FF  
0x001C_0000 - 0x001C_00FF  
0x001D_0000 - 0x001D_00FF  
0x001E_0000 - 0x001E_00FF  
0xFFF7_EC00 - 0xFFF7_ECFF  
0xFFF7_ED00 - 0xFFF7_EDFF  
0xFFF7_F000 - 0xFFF7_F0FF  
0xFFF7_F600 - 0xFFF7_F6FF  
0xFFF7_FA00 - 0xFFF7_FAFF  
0xFFF7_FD00 - 0xFFF7_FDFF  
0xFFFF_FD00 - 0xFFFF_FDFF  
0xFFFF_FE00 - 0xFFFF_FEFF  
Loop Mux  
Fault Mux  
ADC  
DPWM 3  
Filter 2  
DPWM 2  
Front End/Ramp Interface 2  
Filter 1  
DPWM 1  
Front End/Ramp Interface 1  
Filter 0  
DPWM 0  
Front End/Ramp Interface 0  
UART 0  
UART 1  
Miscellaneous Analog Control  
PMBus Interface  
GIO  
Timer  
MMC  
DEC  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
61  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Address  
Size  
23  
Module  
CIM  
0xFFFF_FF20 - 0xFFFF_FF37  
0xFFFF_FF40 - 0xFFFF_FF50  
0xFFFF_FFD0 - 0xFFFF_FFEC  
16  
PSA  
28  
SYS  
The registers and bit definitions inside the System and Peripheral blocks are detailed in the programmer’s  
guide for each peripheral.  
6.6.1.2 Boot ROM  
The UCD3138064A incorporates a 8 kB boot ROM. This boot ROM includes support for:  
Program download through the PMBus  
Device initialization  
Examining and modifying registers and memory  
Verifying and executing program flash automatically  
Jumping to a customer defined boot program  
Checksum evaluation to facilitate program execution from either Program Flash 1 or Program Flash 2  
The Boot ROM is entered automatically on device reset. It initializes the device and then performs  
checksums on the program flash. If the first 2 kB of either program FLASH has a valid checksum, the  
program branches to location 0 in the appropriate Program FLASH module. This permits the use of a  
custom boot program. If the first checksum fails, it performs some additional checksum calculations to  
determine where the valid program is located. This permits full automated program memory checking,  
when there is no need for a custom boot program. The complete decision tree is located in 6-32.  
"Branch to Program Flash 1" means Flash 1 is at address 0x0000, and Flash 2 is at address 0x8000.  
"Branch to Program Flash 2" means Flash 2 is at address 0x0000, and Flash 1 is at address 0x8000.  
62  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Device Reset  
Does Program Flash 1 have a  
BRANCH instruction at the  
beginning?  
Yes  
No  
Is there a valid checksum on the  
first 2 kB of Program Flash 1 or all  
32 kB of Program Flash 1?  
Does Program Flash 2 have a  
BRANCH instruction at the  
beginning?  
Yes  
No  
Yes  
No  
Is there a valid checksum on the  
first 2 kB of Program Flash 2 or all  
32 kB of Program Flash 2?  
Yes  
No  
BRANCH to  
Program Flash 2  
Is there a valid  
checksum on all 64 kB?  
Yes  
No  
BRANCH to  
Program Flash 1  
Stay in ROM  
6-32. Check Sum Evaluation Flowchart  
If neither checksum is valid, the Boot ROM stays in control, and accepts commands via the PMBus  
interface. These functions can be used to read and write to all memory locations in the UCD3138064A.  
Typically they are used to download a program to Program Flash, and to command its execution.  
6.6.1.3 Customer Boot Program  
As described above, it is possible to generate a user boot program using 2 kB or more of the Program  
Flash. This can support things which the Boot ROM does not support, including:  
Program download via UART – useful especially for applications where the UCD3138064A is isolated  
from the host (e.g., PFC)  
Encrypted download – useful for code security in field updates.  
PMBus download at different addresses  
6.6.1.4 Flash Management  
The UCD3138064A offers a variety of features providing for easy prototyping and easy flash  
programming. At the same time, high levels of security are possible for production code, even with field  
updates. Standard firmware will be provided for storing multiple copies of system parameters in data flash.  
This minimizes the risk of losing information if data-flash programming is interrupted.  
版权 © 2015, Texas Instruments Incorporated  
Detailed Description  
63  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
6.6.1.5 Synchronous Rectifier MOSFET Ramp and IDE Calculation  
The UCD3138064A has built in logic for optimizing the performance of the synchronous rectifier  
MOSFETs. This comes in two forms:  
Synchronous Rectifier MOSFET ramp  
Ideal Diode Emulation (IDE) calculation  
When starting up a power supply, It is not uncommon for there to already be a voltage present on the  
output – this is called pre-bias. It can be very difficult to calculate the ideal synchronous rectifier MOSFET  
on-time for this case. If it is not calculated correctly, it may pull down the pre-bias voltage, causing the  
power supply to sink current. To avoid this, the synchronous rectifier MOSFETs are not turned on until  
after the power supply has ramped up to the nominal output voltage. The synchronous rectifier MOSFETs  
are then turned on slowly in order to avoid an output voltage glitch. The synchronous rectifier MOSFET  
ramp logic can be used to turn them on at a rate well below the bandwidth of the filter.  
In discontinuous mode, the ideal on-time for the synchronous rectifier MOSFETs is a function of Vin, Vout  
,
and the primary side duty cycle (D). The IDE logic in the UCD3138064A takes Vin and Vout data from the  
firmware and combines it with D data from the filter hardware. It uses this information to calculate the ideal  
on-time for the synchronous rectifier MOSFETs.  
64  
Detailed Description  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
7 Applications, Implementation, and Layout  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Application Information  
The UCD3138x has an extensive set of fully-programmable, high-performance peripherals that make it  
suitable for a wide range of power supply applications. In order to make the part easier to use, TI has  
prepared an extensive set of materials to demonstrate the features of the device for several key  
applications. In each case the following items are available:  
1. Full featured EVM hardware that demonstrates classic power supply functionality.  
2. An EVM user guide that contains schematics, bill-of-materials, layout guidance and test data  
showcasing the performance and features of the device and the hardware.  
3. A firmware programmers manual that provides a step-by-step walk through of the code.  
7-1. Application Information  
APPLICATION  
EVM DESCRIPTION  
This EVM demonstrates a PSFB DC-DC power converter with digital control using the UCD3138x device. Control is  
implemented by using PCMC with slope compensation. This simplifies the hardware design by eliminating the need  
for a series blocking capacitors and providing the inherent input voltage feed-forward that comes from PCMC. The  
controller is located on a daughter card and requires firmware in order to operate. This firmware, along with the entire  
source code, is made available through TI. A free, custom function GUI is available to help the user experiment with  
the different hardware and software enabled features. The EVM accepts a DC input from 350 VDC to 400 VDC, and  
outputs a nominal 12 VDC with full load output power of 360 W, or full output current of 30 A.  
Phase shifted full  
bridge  
This EVM demonstrates an LLC resonant half-bridge DC-DC power converter with digital control using the  
UCD3138x device. The controller is located on a daughter card and requires firmware in order to operate. This  
firmware, along with the entire source code, is made available through TI. A free, custom function GUI is available to  
help the user experiment with the different hardware and software enabled features. The EVM accepts a DC input  
from 350 VDC to 400 VDC, and outputs a nominal 12 VDC with full load output power of 340 W, or full output current  
of 29 A.  
LLC resonant  
converter  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
65  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
7.2 Typical Application  
This section summarizes the PSFB EVM DC-DC power converter.  
L1  
T1  
Q7  
+12V  
Q6  
C1  
RL  
VBUS  
I_pri  
PRIM  
ORING  
CTL  
CURRENT  
Q5  
T2  
VOUT  
C2  
R2  
D1  
T1  
QT2  
QB2  
QT1  
VA  
Lr  
Current  
Sensing  
QB1  
D2  
Vref  
DPWM0  
DPWM0B  
DPWM1B  
Duty for mode  
switching  
Vout  
CPCC  
<
EADC0  
EADC1  
CLA0  
DPWM1  
DPWM2  
Iout  
CLA1  
DPWM2A  
DPWM2B  
Load Current  
DPWM3A  
DPWM3B  
I_pri  
EADC2  
PCM  
DPWM3  
AD00  
AD01  
ISOLATED  
GATE Transformer  
ACFAIL_IN  
FAULT0  
FAULT1  
FAULT2  
SYNCHRONOUS  
GATE DRIVE  
ACFAIL_OUT  
FAILURE  
AD02/CMP0  
AD03/CMP1/CMP2  
AD04/CMP3  
AD05/CMP4  
AD06/CMP5  
AD07/CMP6  
AD08  
I_SHARE  
Vout  
FAULT  
UCD3138  
GPIO1  
GPIO2  
GPIO3  
ORING_CRTL  
ON/OFF  
Iout  
I_pri  
CBC  
temp  
P_GOOD  
Vin  
VA  
WD  
ARM7  
AD09  
PMBus  
UART0  
RST  
OSC  
Primary  
UART1  
Memory  
7-1. Phase-Shifted Full-Bridge  
66  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
7.2.1 Design Requirements  
7-2. Input Characteristics  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
ALL SPECIFICATIONS at Vin=400V and 25°C AMBIENT UNLESS OTHERWISE NOTED.  
Vin  
Input voltage range  
Max input voltage  
Input current  
Normal Operating  
Continuous  
350  
385  
420  
420  
V
V
Vinmax  
Iin  
Vin=350V, Full Load  
1.15  
30  
A
Istby  
Von  
Vhys  
Input no load current Output current is 0A  
mA  
V
Vin Decreasing (input voltage is detected on secondary side)  
340  
360  
Under voltage lockout  
Vin Increasing  
V
7-3. Output Characteristics  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
ALL SPECIFICATIONS at Vin=400V and 25°C AMBIENT UNLESS OTHERWISE NOTED.  
VO  
Output voltage setpoint  
Line regulation  
No load on outputs  
12  
V
0.5%  
Regline  
All outputs; 360 Vin 420; IO = IOmax  
All outputs; 0 IO IOmax; Vin = 400 V  
5Hz to 20 MHz  
Regload  
Load regulation  
Ripple and noise(1)  
1%  
Vn  
IO  
η
100  
mVpp  
Output current  
0
30  
A
Efficiency at phase-shift mode  
Efficiency at PWM ZVS mode  
Efficiency at hard switching mode  
Output adjust range  
Vo = 12 V, Io = 15 A  
Vo = 12 V, Io = 15 A  
Vo = 12 V, Io = 15 A  
93%  
93%  
90%  
η
η
Vadj  
11.4  
12.6  
V
V
Transient response  
overshoot/undershoot  
Vtr  
50% Load Step at 1AµS, min load at 2A  
±0.36  
tsettling  
tstart  
Transient response settling time  
Output rise time  
100  
50  
µS  
10% to 90% of Vout  
At Startup  
mS  
Overshoot  
2%  
fs  
Switching frequency  
Current sharing accuracy  
Loop phase margin  
Loop gain margin  
Over Vin and IO ranges  
50% - full load  
150  
±5%  
45  
kHz  
Ishare  
φ
10% - Full load  
10% - Full load  
degree  
dB  
G
10  
(1) Ripple and noise are measured with 10µF Tantalum capacitor and 0.1µF ceramic capacitor across output.  
7.2.2 Detailed Design Procedure  
7.2.2.1 PCMC (Peak Current Mode Control) PSFB (Phase Shifted Full Bridge) Hardware Configuration  
Overview  
The hardware configuration of the UCD3138x PCMC PSFB converter contains two critical elements that  
are highlighted in the subsequent sections.  
DPWM initialization - This section will highlight the key register settings and considerations necessary  
for the UCD3138x to generate the correct MOSFET waveforms for this topology. This maintains the  
proper phase relationship between the MOSFETs and synchronous rectifiers as well as the proper set  
up required to function correctly with PCMC.  
PCMC initialization - This section will discuss the register settings and hardware considerations  
necessary to modulate the DPWM pins with PCMC and internal slope compensation.  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
67  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
7.2.2.2 DPWM Initialization for PSFB  
The UCD3138x DPWM peripheral provides flexibility for a wide range of topologies. The PSFB  
configuration utilizes the Intra-Mux and Edge Generation Modules of the DPWM. For a diagram showing  
these modules, see the UCD3138x Digital Power Peripherals Manual.  
A schematic of the power stage of the PSFB is shown in 7-2:  
L1  
T1  
VOUT  
Q6  
VBUS  
I_pri  
PRIM  
CURRENT  
Q5  
T2  
R2  
D1  
T1  
QT2  
QB2  
QT1  
Lr  
QB1  
D2  
ISOLATED  
GATE Transformer  
SYNCHRONOUS  
GATE DRIVE  
7-2. Schematic – PSFB Power Stage  
68  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Here is an overview of the key PSFB signals:  
3 A – QB1  
( DPWM1C)  
3 B – QT1  
( DPWM2C)  
2 A – QT2  
( EDGEGEN)  
X1  
Y3  
2 B – QB2  
( EDGEGEN)  
X3  
Y2  
Transformer  
Voltage  
X2  
1 B –  
QSYN 1,3  
Y1  
0 B –  
QSYN 2,4  
DPWM3AF  
DPWM3BF  
DPWM 2AF  
DPWM 2BF  
Current  
Peak Level  
X1, X2 ,X3 and Y1 , Y2 , Y3 are sets of moving edges  
All other edges are fixed .  
7-3. Key PSFB Signals  
7.2.2.2.1 DPWM Synchronization  
DPWM1 is synchronized to DPWM0, DPWM2 is synchronized to DPWM1, and DPWM3 is synchronized to  
DPWM2, ½ period out of phase using these commands:  
Dpwm1Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 1; //configured to slave  
Dpwm2Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 1; // configured to slave  
Dpwm3Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 1; // configured to slave  
Dpwm0Regs.DPWMPHASETRIG.all = PWM_SLAVESYNC;  
Dpwm1Regs.DPWMPHASETRIG.all = PWM_SLAVESYNC;  
Dpwm2Regs.DPWMPHASETRIG.all = PWM_SLAVESYNC;  
LoopMuxRegs.DPWMMUX.bit.DPWM1_SYNC_SEL // Slave to dpwm-0  
= 0;  
// Slave to dpwm-1  
LoopMuxRegs.DPWMMUX.bit.DPWM2_SYNC_SEL // Slave to dpwm-2  
= 1;  
LoopMuxRegs.DPWMMUX.bit.DPWM3_SYNC_SEL  
= 2;  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
69  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
If the event registers on the DPWMs are the same, the two pairs of signals will be symmetrical. All code  
examples are taken from the PSFB EVM code, unless otherwise stated.  
7.2.2.3 Fixed Signals to Bridge  
The two top signals in the above drawing have fixed timing. The DPWM1CF and DPWM2CF signals are  
used for these pins. DPWMCxF refers to the signal coming out of the fault module of DPWMx, as shown  
in 7-4.  
7-4. Fixed Signals to Bridge  
70  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
These signals are actually routed to pins DPWM3A and 3B using the Intra Mux with these statements:  
Dpwm3Regs.DPWMCTRL0.bit.PWM_A_INTRA_MUX = 7; // Send DPWM1C  
Dpwm3Regs.DPWMCTRL0.bit.PWM_B_INTRA_MUX = 8; // Send DPWM2C  
Since these signals are really being used as events in the timer, the #defines are called EV5 and EV6.  
Here are the statements which initialize them:  
// Setup waveform for DPWM-C (re-using blanking B regs)  
Dpwm2Regs.DPWMBLKBBEG.all = PWM2_EV5 + (4 *16);  
Dpwm2Regs.DPWMBLKBEND.all = PWM2_EV6;  
Period End  
Controlled by DPWM1 Blanking register  
Period Start  
Blank B Begin  
Blank B End  
3 A – QB1  
Even 6  
Even 5  
( DPWM1C)  
3 B – QT1  
Even 6  
Even 6  
Even 5  
( DPWM 2C)  
Blank B Begin  
Blank B End  
Controlled by DPWM2 Blanking register  
7-5. Blank B Timing Information  
The statements for DPWM1 are the same. Remember that DPWMC reuses the Blank B registers for  
timing information.  
7.2.2.4 Dynamic Signals to Bridge  
DPWM0 and 1 are set at normal mode. PCMC triggering signal (fault) chops DPWM0A and 1A cycle by  
cycle. The corresponding DPWM0B and 1B are used for synchronous rectifier MOSFET control. The  
same PCMC triggering signal is applied to DPWM2 and DPWM3. Both of these are set to normal mode as  
well. DPWM2 and 3 are chopped and their edges are used to generate the next two dynamic signals to  
the bridge. They are generated using the Edge Generator Module in DPWM2. The Edge Generator  
sources are DPWM2 and DPWM3. The edges used are:  
DPWM2A turned on by a rising edge on DPWM2BF  
DPWM2A turned off by a falling edge on DPWM3AF  
DPWM2B turned on by a rising edge on DPWM3BF  
DPWM2B turned off by a falling edge on DPWM2AF  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
71  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
Period Start  
Period End  
3 A – QB1  
( DPWM 1C)  
3 B – QT1  
( DPWM 2C)  
2 A – QT2  
( EDGEGEN )  
2 B – QB2  
( EDGEGEN )  
Y3  
X3  
1A  
1 B –  
QSYN 1,3  
Y2  
Y1  
X2  
0A  
0 B –  
QSYN 2,4  
X1  
DPWM 3AF  
DPWM 3BF  
DPWM 2AF  
DPWM 2BF  
Current  
Peak Level  
Chopping point  
Chopping point  
X1 , X2 , X3 and Y1 , Y2 , Y3 are sets of moving edges  
All other edges are fixed .  
7-6. Dynamic Signals to Bridge  
The Edge Generator is configured with these statements:  
Dpwm2Regs.DPWMEDGEGEN.bit.A_ON_EDGE = 2;  
Dpwm2Regs.DPWMEDGEGEN.bit.A_OFF_EDGE = 5;  
Dpwm2Regs.DPWMEDGEGEN.bit.B_ON_EDGE = 6;  
Dpwm2Regs.DPWMEDGEGEN.bit.B_OFF_EDGE = 1;  
Dpwm2Regs.DPWMCTRL0.bit.PWM_A_INTRA_MUX = 1; // EDGEGEN-A out the A output  
Dpwm2Regs.DPWMCTRL0.bit.PWM_B_INTRA_MUX = 1; // EDGEGEN-B out the B output  
Dpwm2Regs.DPWMEDGEGEN.bit.EDGE_EN = 1;  
The EDGE_EN bits are set for all 4 DPWMs. This is done to ensure that all signals have the same timing  
delay through the DPWM.  
The final 6 gate signals are shown in 7-7.  
72  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
Period Start  
Period End  
3 A – QB1  
( DPWM 1C)  
3 B – QT1  
( DPWM 2C)  
2 A – QT2  
( EDGEGEN )  
2 B – QB2  
( EDGEGEN )  
Y3  
X3  
1 B –  
QSYN 1,3  
Y2  
Y1  
X2  
X1  
0 B –  
QSYN 2,4  
Peak Level  
Current  
Chopping point  
Chopping point  
7-7. Final 6 Gate Signals  
Note how the falling edge of DPWM2AF aligns with the X1 edge, and how the rising edge of DPWM2BF  
aligns with the X3 edge. The falling edges on DPWM2AF and DPWM3AF are caused by the peak  
detection logic. This is fed through the Cycle By Cycle logic. The Cycle By Cycle logic also has a special  
feature to control the rising edges of DPWM2BF (X1 and X3) and DPWM3BF (Y1 and Y3). It uses the  
value of Event3 – Event2 to control the time between the edges. The same feature is used with DPWM0  
and DPWM1 to control the X2 and Y2 signals. Using the other 2 DPWMs permits these signals to have a  
different dead time.  
The same setup can be used for voltage mode control. In this case, the Filter output sets the timing of the  
falling edge on DPWMxAF.  
All DPWMs are configured in Normal mode, with CBC enabled. If external slope compensation is used,  
DPWM1A and DPWM1B are used to reset the external compensator at the beginning of each half cycle. If  
no PCMC event occurs, the values of Events 2 and 3 determine the locations of the edges, just as in open  
loop mode.  
7.2.2.5 System Initialization for PCM  
PCM (Peak Current Mode) is a specialized configuration for the UCD3138x which involves several  
peripherals. This section describes how it works across the peripherals.  
7.2.2.5.1 Use of Front Ends and Filters in PSFB  
All three front ends are used in PSFB. The same signals are used in the same places for both PCMC and  
voltage mode. The same hardware can be used for both control modes, with the mode determined by  
which firmware is loaded into the device. FE0 and FE1 are used with their associated filters, but Filter 2 is  
not used at all.  
FE0 – Vout – voltage loop  
FE1 – Iout – current loop  
FE2 – Ipri – PCM  
In PCMC mode, FE2 is used for PCMC, and the voltage loop is normally used to provide the start point for  
the compensation ramp. If the CPCC firmware detects a need for constant current mode, it switches to the  
current loop for the start point.  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
73  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
7.2.2.5.2 Peak Current Detection  
Peak current detection involves all the major modules of the DPPs, the Front End, Filter, Loop Mux, Fault  
Mux and the DPWMs. A drawing of the major elements is shown in 7-8.  
Ipri  
PCM  
Comparator  
Loop  
Mux  
Fault  
Mux  
DPWM  
Voltage Loop  
Filter  
Loop  
Mux  
Ramp  
Module  
Loop  
Mux  
Vout  
Front  
End  
7-8. Peak Current Detection Function  
All signals without arrows flow from left to right. The voltage loop is used to select a peak current level.  
This level is fed to the Ramp module to generate a compensation ramp. The compensation ramp is  
compared to the primary current by the PCMC comparator in the Front End. When the ramp value is  
greater than the primary current, the APCMC signal is sent to the DPWM, causing the events described in  
the previous sections.  
The DPWM frame start and output pin signals can be used to trigger the Ramp Module. In this case,  
unlike in the case of other ramp module functions, each DPWM frame triggers the start of the ramp. The  
ramp steps every 32 ns.  
The Filter is configured normally, there is no real difference for PCMC. The PCM_FILTER_SEL bits in the  
LoopMux.PCMCTRL register are used to select which filter is connected to the ramp module:  
LoopMuxRegs.PCMCTRL.bit.PCM_FILTER_SEL =0; //select filter0  
With Firmware Constant Power/Constant current, Filter 1 and Front End 1 are used as a current control  
loop, with the EADCDAC set to high current. If the voltage loop value becomes higher than the current  
loop value, then Filter 1 is used to control the PCM ramp start value:  
LoopMuxRegs.PCMCTRL.bit.PCM_FILTER_SEL =1;  
S P A C E //select filter1 for slope compensation source  
In the ramp module, there are 2 bitfields in the RAMPCTRL register which must be configured. The  
PCM_START_SEL must be set to a 1 to enable the Filter to be used as a ramp start source. The  
RAMP_EN bit must be set, of course.  
The DAC_STEP register sets the slope of the compensation ramp. The DAC value is in volts, of course,  
so it is necessary to calculate the slope after the current to voltage conversion. Here is the formula for  
converting from millivolts per microsecond to DACSTEP.  
m = compensation slope in millivolts per microsecond  
ACSTEP = 335.5 × M  
In C, this can be written:  
#define COMPENSATION_SLOPE 150 //compensation slope in millivolts per microsecond  
#define DACSTEP_COMP_VALUE ((int) (COMPENSATION_SLOPE*335.5) )  
S P A C E //value in DACSTEP for desired compensation slope  
S P A C E FeCtrl0Regs.DACSTEP.all = DACSTEP_COMP_VALUE;  
74  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
It may also be necessary to set a ramp ending value in the RAMPDACEND register.  
In addition, it is necessary to set the D2S_COMP_EN bit in the EADCCTRL register. This is for enabling  
the differential to single ended comparator function. The front end diagram leaves it out for simplicity, but  
the connection between the DAC and the EADC amplifier is actually differential. The PCMC comparator,  
however, is single ended. So a conversion is necessary as shown in 7-9.  
AFE_GAIN  
23-AFE_GAIN  
6 bit ADC  
8mV/LSB  
EAP0  
2AFE_GAIN  
EAN0  
Signed 9 bit result  
(error) 1 mV /LSB  
EADC  
X
Averaging  
SAR/Prebias  
Ramp  
Filter x  
CPCC  
DAC0  
10 bit DAC  
1.5625mV/LSB  
Σ
Value  
Differential to  
Single Ended  
Dither  
4 bit dithering gives 14 bits of effective resolution  
97.65625μV/LSB effective resolution  
Absolute Value  
Calculation  
10 bit result  
1.5625mV/LSB  
Peak Current  
Detected  
Peak Current Mode  
Comparator  
7-9. Differential to Single-Ended Comparator Function  
The EADC_MODE bit in EADCCTRL should be set to a 5 for peak current mode.  
The peak current detection signal next goes to the Loop Mux. The Fault Mux has only 1 APCM input, but  
there are 3 front ends. So the PCM_FE_SEL bits in APCMCTRL must be used to select which front end is  
used:  
LoopMuxRegs.APCMCTRL.bit.PCM_FE_SEL = 2; // use FE2 for PCM */  
The PCM_EN bit must also be set.  
LoopMuxRegs.APCMCTRL.bit.PCM_EN = 1; // Enable PCM  
Next the Fault Mux is used to enable the APCM bit to the CLIM/CBC signal to the DPWM. There are 4  
DPWMxCLIM registers, one for each DPWM. The ANALOG_PCM_EN bit must be set in each one to  
connect the PCM detection signal to the CLIM/CBC signal on each DPWM. For the latest configuration  
information on all of these bits, consult the appropriate EVM firmware. To avoid errors, it is best to  
configure your hardware design using the same DPWMs, filters, and front ends for the same functions as  
the EVM.  
DPWM timing is used to trigger the start of the ramp. This is selected by the FECTRLxMUX registers in  
the Loop Mux. DPWMx_FRAME_SYNC_EN bits, when set, cause the ramp to be triggered at the start of  
the DPWM period.  
7.2.2.5.3 Peak Current Mode (PCM)  
There is one peak current mode control module in the device however any front end can be configured to  
use this module.  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
75  
提交文档反馈意见  
产品主页链接: UCD3138064A  
 
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
7.2.3 Application Curves  
30A Load  
syncFETs off  
1A-16A-1A  
Vin =385V  
7-11. VOUT Soft Start  
7-10. Load Transient  
Kp =14000  
Ki =300  
Kd =2000  
Alpha = –2  
7-12. Bode Plot  
76  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
7.2.4 Power Supply Recommendations  
Both 3.3 VD and 3.3 VA should have a local capacitor of at least 4.7-µF in parallel with a 10-nF  
capacitor placed as close as possible to the device pins.  
BP18 should have a 1-µF capacitor to ground.  
7.2.5 Layout  
7.2.5.1 IC Grounding and Layout Guidelines  
Single ground is recommended: SGND. A multilayer such as 4 layers board is recommended so that  
one solid SGND is dedicated for return current path, referred to the layout example.  
Apply multiple different capacitors for different frequency range on decoupling circuits. Each capacitor  
has different ESL, Capacitance and ESR, and they have different frequency response.  
Avoid long traces close to radiation components, and place them into an internal layer, and it is  
preferred to have grounding shield, and in the end, add a termination circuit.  
Analog circuit such as ADC sensing lines needs a return current path into the analog circuitry; digital  
circuit such as GPIO, PMBus and PWM has a return current path into the digital circuitry; although with  
a single plane, still try to avoid to mix analog current and digital current.  
Don’t use a ferrite bead or larger than 3 Ω resistor to connect between V33A and V33D.  
Both 3.3VD and 3.3VA should have local decoupling capacitors close to the device power pins, add  
vias to connect decoupling caps directly to SGND.  
Avoid negative current/negative voltage on all pins, so Schottky diodes may need to clamp the voltage;  
avoid the voltage spike on all pins more than 3.8 V or less than –0.3 V, add Schottky diodes on the  
pins which could have voltage spikes during surge test; be aware that a Schottky has relatively higher  
leakage current, which can affect the voltage sensing at high temperature.  
RESET pin should have one at least 2.2 µF low ESL capacitor locally decoupled with SGND plane.  
This capacitor must be located close to the device RESET pin. It is highly recommended to use a small  
resistance (such as 220 Ω) to connect the RESET pin with 3.3 VD.  
版权 © 2015, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
77  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
7.2.5.2 Layout Example  
7-13. PCB Layout Example  
78  
Applications, Implementation, and Layout  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
8 器件和文档支持  
8.1 器件支持  
UCD3138064A 应用固件在德州仪器 (TI) Code Composer Studio (CCS) 集成开发环境(建议采用版本  
v3.3)中开发。  
特定电源拓扑的器件编程、实时调试以及主要器件参数的监视/配置工作都可通过德州仪器  
(TI)  
FUSION_DIGITAL_POWER_DESIGNER 图形用户界面进行 (http://www.ti.com.cn/tool/cn/fusion_digital_  
power_designer)FUSION_DIGITAL_POWER_DESIGNER 软件应用采用 PMBus 协议通过串行总线与器  
件通信,所使用的接口适配器为德州仪器  
(TI)  
评估模块  
(EVM)  
USB-TO-GPIO  
(http://www.ti.com.cn/tool/cn/usb-to-gpio)FUSION_DIGITAL_POWER_DESIGNER GUI 的器件 GUI 模块  
中的内存调试器工具可提供基于 PMBUS 的实时调试功能,这是替代基于 JTAG 的传统方法的有效选择。  
该软件应用还可用于器件编程,所使用的工具是针对生产环境进行优化的  
FUSION_MFR_GUI  
(http:/  
/www.ti.com.cn/tool/cn/fusion_mfr_gui)FUSION_MFR_GUI 工具支持多个板载器件,且具有内置记录和报  
告功能。  
在参考文档方面,以下编程手册可提供关于 UCD3138064A 数字控制器应用和使用方法的详细信息:  
1. UCD3138064A 编程手册》  
2. 本手册中涵盖的 UCD3138064A 数字电源外设编程手册关键主题包括:  
数字脉宽调制器 (DPWM)  
工作模式(正常/多相/相移/谐振等)  
自动模式切换  
数字脉宽调制控制器 (DPWMC),边沿生成和内部多路复用  
前端  
模拟前端  
ADC EADC 误差  
前端 DAC  
斜坡模块  
逐次逼近寄存器模块  
滤波器  
滤波器数学函数  
环路复用  
模拟峰值电流模式  
恒定电流/恒定功率 (CCCP)  
自动周期调整  
故障复用  
模拟比较器  
数字比较器  
故障引脚功能  
DPWM 故障动作  
理想二极管仿真 (IDE),断续传导模式 (DCM) 检测  
振荡器故障检测  
UCD3138064A 中上述全部外设的寄存器映射  
3. UCD3138064A 监视和通信编程手册》本手册中介绍的关键主题包括:  
ADC12  
控制、转换、定序和取平均值  
数字比较器  
温度传感器  
PMBUS 寻址  
双路采样与保持  
其它模拟控制(电流分流、欠压、时钟门控)  
PMBUS 接口  
通用输入输出 (GPIO)  
版权 © 2015, Texas Instruments Incorporated  
器件和文档支持  
79  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
ZHCSER5 DECEMBER 2015  
www.ti.com.cn  
定时器模块  
PMBus  
UCD3138064A 中上述全部外设的寄存器映射  
4. UCD3138064A ARM 和数字系统编程手册》本手册中介绍的关键主题包括:  
引导 ROM 和引导闪存  
BootROM 函数  
存储器读/写功能  
校验和函数  
闪存函数  
避免程序闪存锁定  
ARM7 构架  
工作模式  
硬件/软件中断  
指令集  
两种内部工作状态(Thumb 16 位模式/ARM 32 位模式)  
存储器与系统模块  
地址解码器、DEC(存储器映射)  
存储器控制器 (MMC)  
中央中断模块  
UCD3138064A 中上述全部外设的寄存器映射  
5. UCD31xx 隔离电源应用 FUSION_DIGITAL_POWER_DESIGNER 用户指南  
除上述工具和文档外,如需获取有关评估模块、参考应用固件和应用手册/设计提示的最新信息,请访问  
http://www.ti.com.cn/product/cn/ucd3138064。  
8.2 文档支持  
8.2.1 相关文档  
1. UCD3138064A 编程手册》(文献编号:SLUUAD8)  
2. UCD3138 数字电源外设编程手册》(文献编号:SLUU995)  
3. UCD3138 监视和通信编程手册》(文献编号:SLUU996)  
4. UCD3138 ARM 和数字系统编程手册》(文献编号:SLUU994)  
5. 《隔离电源应用 FUSION_DIGITAL_POWER_DESIGNER 》 (文献编号:SLUA676)  
6. Code Composer Studio 开发工具 v3.3入门指南(文献编号:SPRU509H)  
7. ARM7TDMI-S 技术参考手册  
8. 系统管理总线 (SMBus) 技术规范  
9. PMBus™电源系统管理协议规范  
80  
器件和文档支持  
版权 © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: UCD3138064A  
UCD3138064A  
www.ti.com.cn  
ZHCSER5 DECEMBER 2015  
8.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools  
and contact information for technical support.  
8.4 商标  
E2E is a trademark of Texas Instruments.  
PMBus is a trademark of SMIF, Inc..  
All other trademarks are the property of their respective owners.  
8.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
8.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
9 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
机械、封装和可订购信息  
81  
提交文档反馈意见  
产品主页链接: UCD3138064A  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCD3138064ARGCR  
UCD3138064ARGCT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGC  
RGC  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
UCD3138064A  
UCD3138064A  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
RGC0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.15  
8.85  
A
B
PIN 1 INDEX AREA  
9.15  
8.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
17  
32  
16  
33  
65  
SYMM  
2X 7.5  
4.25 0.1  
60X  
0.5  
1
48  
0.30  
0.18  
64X  
49  
64  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
64X  
0.05  
4219010/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.25)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
49  
64  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.18) TYP  
(8.8)  
65  
SYMM  
(0.695) TYP  
(
0.2) TYP  
VIA  
33  
16  
32  
17  
(0.695) TYP  
(1.18) TYP  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219010/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGC0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
9X ( 1.19)  
65  
SYMM  
(8.8)  
(1.39)  
33  
16  
17  
32  
(1.39)  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
71% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219010/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UCD3138064ARGCT

适用于隔离电源的高集成度数字控制器 | RGC | 64 | -40 to 125
TI

UCD3138064RGCR

具有 64kB 存储器、适用于隔离电源的高集成度数字控制器 | RGC | 64 | -40 to 125
TI

UCD3138064RGCT

具有 64kB 存储器、适用于隔离电源的高集成度数字控制器 | RGC | 64 | -40 to 125
TI

UCD3138064RJAR

UCD3138064 Highly Integrated Digital Controller for Isolated Power With 64-kB Program Flash Memory
TI

UCD3138064RMHR

具有 64kB 存储器、适用于隔离电源的高集成度数字控制器 | RMH | 40 | -40 to 125
TI

UCD3138064RMHT

具有 64kB 存储器、适用于隔离电源的高集成度数字控制器 | RMH | 40 | -40 to 125
TI

UCD3138064_V01

UCD3138064 Highly Integrated Digital Controller for Isolated Power With 64-kB Program Flash Memory
TI

UCD3138128

UCD3138x Highly-Integrated Digital Controller For Isolated Power
TI

UCD3138128A

适用于隔离电源的高集成度数字控制器
TI

UCD3138128APFC

适用于隔离电源的高集成度数字控制器 | PFC | 80 | -40 to 125
TI

UCD3138128APFCR

适用于隔离电源的高集成度数字控制器 | PFC | 80 | -40 to 125
TI

UCD3138128PFC

UCD3138x Highly-Integrated Digital Controller For Isolated Power
TI