V62/06646-04ZE [TI]

HIGH-OUTPUT-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN; 高输出驱动运算放大器,带有关断
V62/06646-04ZE
型号: V62/06646-04ZE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-OUTPUT-DRIVE OPERATIONAL AMPLIFIERS WITH SHUTDOWN
高输出驱动运算放大器,带有关断

运算放大器 放大器电路 光电二极管 输出元件 驱动
文件: 总25页 (文件大小:884K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
HIGH-OUTPUT-DRIVE OPERATIONAL AMPLIFIERS  
WITH SHUTDOWN  
1
FEATURES  
TLV4112  
D OR DGN PACKAGE  
(TOP VIEW)  
23  
Controlled Baseline  
One Assembly Site  
One Test Site  
1OUT  
1IN−  
1IN+  
GND  
VDD  
1
2
3
4
8
7
6
5
One Fabrication Site  
2OUT  
2IN−  
2IN+  
Extended Temperature Performance of  
–55°C to 125°C  
Enhanced Diminishing Manufacturing Sources  
(DMS) Support  
P0029-01  
Enhanced Product-Change Notification  
DESCRIPTION  
(1)  
Qualification Pedigree  
The TLV411x single-supply operational amplifiers  
provide output currents in excess of 300 mA at 5 V.  
This enables standard pin-out amplifiers to be used  
as high current buffers or in coil driver applications.  
The TLV4110 and TLV4113 come with a shutdown  
feature.  
High Output Drive . . . >300 mA  
Rail-To-Rail Output  
Unity-Gain Bandwidth . . . 2.7 MHz  
Slew Rate . . . 1.5 V/µs  
Supply Current . . . 700 µA/Per Channel  
Supply Voltage Range . . . 2.5 V to 6 V  
Universal Op Amp EVM  
The TLV411x is available in the ultra-small MSOP  
PowerPAD™ package, which offers the exceptional  
thermal impedance required for amplifiers delivering  
high current levels.  
(1) Component qualification in accordance with JEDEC and  
industry standards to ensure reliable operation over an  
extended temperature range. This includes, but is not limited  
to, Highly Accelerated Stress Test (HAST) or biased 85/85,  
temperature cycle, autoclave or unbiased HAST,  
All TLV411x devices are offered in SOIC (single and  
dual) and MSOP PowerPAD (dual).  
electromigration, bond intermetallic life, and mold compound  
life. Such qualification testing should not be viewed as  
justifying use of this component beyond specified  
performance and environmental limits.  
FAMILY PACKAGE TABLE  
PACKAGE TYPES  
MSOP SOIC  
NUMBER OF  
CHANNELS  
DEVICE  
SHUTDOWN  
UNIVERSAL EVM BOARD  
TLV4110  
TLV4111  
TLV4112  
TLV4113  
1
1
2
2
8
8
Yes  
8
8
8
8
See the EVM Selection Guide (SLOU060)  
10  
14  
Yes  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments.  
Parts, Microsim PSpice are trademarks of MicroSim Corporation.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2008, Texas Instruments Incorporated  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
= 3 V  
V
DD  
= 3 V  
DD  
T
= 705C  
A
T
A
= 255C  
T
A
= 1255C  
T
= 05C  
A
T
A
= −405C  
T
= 05C  
T
A
= −405C  
A
T
A
= 1255C  
T
A
= 255C  
T
A
= 705C  
0
50  
OH  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
G004  
G005  
TLV4110 AND TLV4111 AVAILABLE OPTIONS  
TA  
PACKAGED DEVICES  
MSOP  
SMALL OUTLINE (D)(1) (2)  
SMALL OUTLINE  
SYMBOL  
(DGN)(1)  
TLV4110MDREP(3)  
TLV4111MDREP(3)  
TLV4110MDGNREP(3)  
TLV4111MDGNREP(3)  
BTB  
BTC  
–55°C to 125°C  
(1) The R designation indicates package is taped and reeled.  
(2) In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks can be driven, as long as the  
RMS value is less than 350 mW.  
(3) Product preview.  
TLV4112 AND TLV4113 AVAILABLE OPTIONS  
PACKAGED DEVICES  
MSOP  
TA  
SMALL OUTLINE  
(1) (2)  
SMALL OUTLINE  
(DGN)(1)  
SMALL OUTLINE  
(DGQ)(1)  
(D)  
SYMBOL  
SYMBOL  
TLV4112MDREP(3)  
TLV4113MDREP(3)  
TLV4112MDGNREP(3)  
BTD  
–55°C to 125°C  
TLV4113MDGQREP  
BTE  
(1) The R designation indicates package is taped and reeled.  
(2) In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks can be driven, as long as the  
RMS value is less than 350 mW.  
(3) Product preview.  
2
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
TLV411X PACKAGE PINOUTS  
TLV4110  
D OR DGN PACKAGE  
(TOP VIEW)  
TLV4111  
D OR DGN PACKAGE  
(TOP VIEW)  
TLV4112  
D OR DGN PACKAGE  
(TOP VIEW)  
NC  
IN−  
IN+  
SHDN  
VDD  
OUT  
NC  
NC  
IN−  
IN+  
NC  
1OUT  
1IN−  
1IN+  
GND  
VDD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
VDD  
OUT  
NC  
2OUT  
2IN−  
2IN+  
GND  
GND  
TLV4113  
TLV4113  
D OR DGN PACKAGE  
DGQ PACKAGE  
(TOP VIEW)  
(TOP VIEW)  
1
1OUT  
1IN−  
1IN+  
GND  
1SHDN  
VDD+  
2OUT  
2IN−  
2IN+  
2SHDN  
10  
1OUT  
1IN−  
1IN+  
GND  
NC  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
2
9
2OUT  
2IN−  
2IN+  
NC  
3
8
4
7
5
6
1SHDN  
NC  
2SHDN  
NC  
8
NC − No internal connection  
P0029-02  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VDD  
VID  
VI  
Supply voltage(2)  
7 V  
Differential input voltage  
Input voltage range  
Output current(3)  
±VDD  
±VDD  
IO  
800 mA  
350 mA  
110 mA  
500 mA  
155 mA  
TJ 105°C  
IO  
Continuous RMS output current (each output of amplifier)  
TJ 150°C  
TJ 105°C  
TJ 150°C  
Peak output current (each output of  
amplifier  
IO  
Continuous total power dissipation  
Operating free-air temperature range  
Maximum junction temperature  
Storage temperature range  
See Dissipation Rating Table  
–55°C to 125°C  
150°C  
TA  
TJ  
Tstg  
–65°C to 150°C  
260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to GND.  
(3) To prevent permanent damage, the die temperature must not exceed the maximum junction temperature.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
100  
10  
1
120  
125  
130  
135  
140  
Continous T 5C  
145  
150  
155  
160  
J
Figure 1. TLV4113MDGQ Wirebond Life  
DISSIPATION RATING TABLE  
θJC  
(°C/W)  
θJA  
(°C/W)  
T
A 25°C  
TA = 25°C  
POWER RATING  
PACKAGE  
POWER RATING  
D (8)  
D (14)  
DGN (8)(1)  
DGQ (10)(1)  
38.3  
176  
122.3  
52.7  
52.3  
710 mW  
142 mW  
26.9  
4.7  
1022 mW  
2.37 W  
204.4 mW  
474.4 mW  
478 mW  
4.7  
2.39 W  
(1) See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (SLMA002), for more information on  
the PowerPAD package. The thermal data was measured on a PCB layout, based on information in the section entitled Texas  
Instruments Recommended Board for PowerPAD, on page 33 of SLMA002.  
4
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.5  
0
MAX UNIT  
VDD  
VICR  
TA  
Supply voltage  
6
VDD – 1.5  
125  
V
V
Common-mode input voltage range  
Operating free-air temperature  
–55  
2.1  
3.8  
°C  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
V(on)  
V(off)  
V
V
Shutdown turnon/off voltage level(1)  
0.9  
1.65  
(1) Relative to GND  
ELECTRICAL CHARACTERISTICS  
at recommended operating conditions, VDD = 3 V and 5 V (unless otherwise noted)  
(1)  
PARAMETER  
DC PERFORMANCE  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
Full range  
25°C  
175  
3500  
µV  
VIC = VDD/2, VO = VDD/2 , RL = 100 ,  
RS = 50 Ω  
VIO  
Input offset voltage  
4000  
αVIO  
CMRR  
Offset voltage drift  
3
63  
68  
84  
µV/°C  
VDD = 3 V, RS = 50 , VIC = 0 to 2 V  
VDD = 5 V, RS = 50 , VIC = 0 to 4 V  
25°C  
Common-mode rejection ratio  
dB  
25°C  
25°C  
78  
67  
85  
75  
88  
75  
90  
85  
RL = 100 Ω  
Full range  
25°C  
VDD = 3 V  
100  
94  
RL = 10 kΩ  
Full range  
25°C  
Large-signal differential voltage  
amplification  
AVD  
dB  
RL = 100 Ω  
Full range  
25°C  
VDD = 5 V  
110  
RL = 10 kΩ  
Full range  
INPUT CHARACTERISTICS  
25°C  
Full range  
25°C  
0.3  
0.3  
25  
pA  
IIO  
Input offset current  
Input bias current  
1000  
50  
pA  
IIB  
Full range  
25°C  
2000  
ri(d)  
CIC  
Differential input resistance  
1000  
5
GΩ  
Common-mode input capacitance  
f = 100 Hz  
25°C  
pF  
(1) Full range is –55°C to 125°C.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
at specified free-air temperature, VDD = 3 V and 5 V (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP MAX  
2.97  
UNIT  
OUTPUT CHARACTERISTICS  
25°C  
Full range  
25°C  
2.7  
2.6  
2.6  
2.5  
4.7  
4.6  
4.6  
4.5  
IOH = –10 mA  
IOH = –100 mA  
IOH = –10 mA  
IOH = –100 mA  
IOL = 10 mA  
VDD = 3 V,  
VIC = VDD/2  
V
2.73  
Full range  
25°C  
VOH  
High-level output voltage  
4.96  
Full range  
25°C  
VDD = 5 V,  
VIC = VDD/2  
V
V
4.76  
Full range  
25°C  
0.03  
0.33  
0.1  
0.2  
Full range  
25°C  
VDD = 3 V and 5 V,  
VIC = VDD/2  
VOL  
Low-level output voltage  
0.4  
IOL = 100 mA  
Full range  
0.55  
VDD = 3 V  
VDD = 5 V  
±220  
±320  
800  
Measured at 0.5 V  
from rail  
IO  
Output current  
25°C  
25°C  
mA  
mA  
Sourcing  
Sinking  
IOS  
Short-circuit output current  
800  
POWER SUPPLY  
25°C  
Full range  
25°C  
700 1000  
1500  
IDD  
Supply current (per channel)  
VO = VDD/2  
µA  
dB  
dB  
69  
65  
69  
65  
82  
VDD = 2.7 to 3.3 V, No load  
VIC = VDD/2 V  
Full range  
25°C  
Power supply rejection ratio  
PSRR  
(ΔVDD / ΔVIO  
)
79  
VDD = 4.5 to 5.5 V, No load  
VIC = VDD/2 V  
Full range  
(1) Full range is –55°C to 125°C.  
6
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
ELECTRICAL CHARACTERISTICS (continued)  
at specified free-air temperature, VDD = 3 V and 5 V (unless otherwise noted)  
(1)  
PARAMETER  
DYNAMIC PERFORMANCE  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX  
UNIT  
GBWP  
Gain bandwidth product  
RL = 100 , CL = 10 pF  
25°C  
25°C  
2.7  
MHz  
0.8  
0.4  
1
1.57  
VDD = 3 V  
Vo(pp) = 2.5 V,  
RL = 100 ,  
CL = 10 pF  
Full range  
25°C  
SR  
Slew rate at unity gain  
V/µs  
1.57  
VDD = 5 V  
Full range  
25°C  
0.5  
φM  
Phase margin  
Gain margin  
RL = 100 , CL = 10 pF  
RL = 100 , CL = 10 pF  
66  
16  
25°C  
dB  
µs  
V(STEP)pp = 1 V,  
AV = –1,  
0.1%  
0.7  
ts  
Settling time  
25°C  
25°C  
CL = 10 pF,  
RL = 100 Ω  
0.01%  
1.3  
NOISE/DISTORTION PERFORMANCE  
AV = 1  
0.025  
0.035  
0.15  
55  
VO(pp) = VDD/2 V,  
RL = 100 ,  
f = 100 Hz  
THD+N  
Total harmonic distortion, plus noise  
AV = 10  
AV = 100  
f = 100 Hz  
f = 10 Hz  
f = 1 Hz  
Vn  
In  
Equivalent input noise voltage  
Equivalent input noise current  
25°C  
25°C  
nV/Hz  
fA/Hz  
10  
0.31  
SHUTDOWN CHARACTERISTICS  
25°C  
3.4  
10  
15  
Supply current in shutdown mode (per  
channel) (TLV4110, TLV4113)  
IDD(SHDN)  
SHDN = 0 V  
µA  
µs  
Full range  
t(ON)  
t(Off)  
Amplifier turnon time(2)  
Amplifier turnoff time(2)  
1
RL = 100 Ω  
25°C  
3.3  
(1) Full range is –55°C to 125°C.  
(2) Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the  
supply current has reached half its final value.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
VIO  
Input offset voltage  
vs Common-mode input voltage  
vs Frequency  
2, 3  
4
CMRR  
VOH  
VOL  
Zo  
Common-mode rejection ratio  
High-level output voltage  
Low-level output voltage  
Output impedance  
vs High-level output current  
vs Low-level output current  
vs Frequency  
5, 7  
6, 8  
9
IDD  
Supply current  
vs Supply voltage  
vs Frequency  
10  
kSVR  
AVD  
Power supply voltage rejection ratio  
Differential voltage amplification and phase  
Gain-bandwidth product  
11  
vs Frequency  
12  
vs Supply voltage  
vs Supply voltage  
vs Temperature  
13  
14  
SR  
Vn  
Slew rate  
15  
Total harmonic distortion+noise  
Equivalent input voltage noise  
Phase margin  
vs Frequency  
16  
vs Frequency  
17  
vs Capacitive load  
18  
Voltage-follower signal pulse response  
Inverting large-signal pulse response  
Small-signal inverting pulse response  
Crosstalk  
19, 20  
21  
22  
vs Frequency  
23  
Shutdown forward and reverse isolation  
Shutdown supply current  
24  
vs Free-air temperature  
25  
Shutdown supply current/output voltage  
26  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE REJECTION RATIO  
vs  
FREQUENCY  
6000  
4000  
2000  
0
6000  
4000  
2000  
0
120  
110  
100  
90  
V
T
A
= 3 V  
V
T
A
= 5 V  
V
= 3 V  
DD  
= 25°C  
DD  
= 25°C  
DD  
T = 25°C  
A
80  
70  
−2000  
−4000  
−6000  
−2000  
−4000  
−6000  
60  
50  
40  
100  
1k  
10k  
100k  
1M  
10M  
−0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
−0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2  
f − Frequency − Hz  
V
ICR  
− Common-Mode Input Voltage − V  
V
ICR  
− Common-Mode Input Voltage − V  
G003  
G002  
G001  
Figure 2.  
Figure 3.  
Figure 4.  
8
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
V
= 3 V  
V
DD  
= 3 V  
V
= 5 V  
DD  
DD  
T
= 705C  
A
T
A
= 255C  
T
A
= 1255C  
T
A
= 1255C  
T
= 05C  
A
T
A
= −405C  
T
A
= −405C  
T
A
= 05C  
T
= 05C  
T
A
= −405C  
A
T
A
= 255C  
T
A
= 1255C  
T
A
= 255C  
T
= 705C  
A
T
A
= 705C  
0
50  
OH  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
I
− High-Level Output Current − mA  
OL  
OH  
G004  
G005  
G006  
Figure 5.  
Figure 6.  
Figure 7.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
OUTPUT IMPEDANCE  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
100  
10  
1
1200  
1000  
800  
600  
400  
200  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
V
= 5 V  
V
T
A
= 3 V and 5 V  
A = 1  
V
DD  
DD  
= 25°C  
T
= 1255C  
A
V = V /2 V  
I DD  
T
A
= 705C  
T
= 255C  
= 05C  
A
T
= 705C  
A
T
T
= 05C  
T = 255C  
A
A
A
T
= −405C  
A
T
A
= −405C  
A = 100  
T
A
= 1255C  
A = 10  
A = 1  
1k  
0.1  
100  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
0
50  
100  
150  
200  
250  
300  
f − Frequency − Hz  
V
DD  
− Supply Voltage − V  
I
− Low-Level Output Current − mA  
OL  
G008  
G009  
G007  
Figure 8.  
Figure 9.  
Figure 10.  
POWER-SUPPLY REJECTION  
DIFFERENTIAL VOLTAGE  
RATIO  
vs  
AMPLIFICATION AND PHASE  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
FREQUENCY  
SUPPLY VOLTAGE  
120  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
135  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
R
= 3 V and 5 V  
= 1 k  
DD  
100  
80  
F
R = 100 Ω  
I
Phase  
V = 0 V  
I
90  
45  
0
T
A
= 25°C  
60  
40  
Gain  
20  
0
V
R
C
= 3 V and 5 V  
R
L
= 100  
DD  
= 100 k  
= 10 pF  
= 25°C  
F
L
C
L
= 10 pF  
−20  
f = 1 kHz  
T
A
T
A
= 25°C  
−40  
100  
−45  
10M  
A
V
= Open Loop  
1k  
10k  
100k  
1M  
f − Frequency − Hz  
100  
1k  
10k  
100k  
1M  
10M  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
G011  
f − Frequency − Hz  
V
DD  
− Supply Voltage − V  
G010  
G012  
Figure 11.  
Figure 12.  
Figure 13.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
TOTAL HARMONIC  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
SLEW RATE  
vs  
TEMPERATURE  
DISTORTION+NOISE  
vs  
FREQUENCY  
10  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
R
C
A
V
= 100  
= 10 pF  
= 1  
L
L
V
R
= 5 V  
DD  
= 100  
L
V
O(PP)  
= V /2  
DD  
SR+  
SR−  
A
V
= 1, 10, and 100  
SR+  
1
SR−  
A = 100  
0.1  
A = 10  
A = 1  
V
R
C
= 3 V and 5 V  
DD  
= 100  
= 10 pF  
= 1  
L
L
A
V
0.01  
10  
100  
1k  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
f − Frequency − Hz  
V
DD  
− Supply Voltage − V  
T
A
− Free-Air Temperature − °C  
G015  
G013  
G014  
Figure 14.  
Figure 15.  
Figure 16.  
EQUIVALENT INPUT VOLTAGE  
NOISE  
vs  
PHASE MARGIN  
vs  
CAPACITIVE LOAD  
VOLTAGE-FOLLOWER  
LARGE-SIGNAL PULSE RESPONSE  
FREQUENCY  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
V
T
= 3 V and 5 V  
DD  
= 25°C  
V
I
A
V
DD  
= 3 V  
R
= 100  
L
R
L
= 600  
R
= 20  
V
DD  
= 5 V  
NULL  
1
0
4
3
2
V
O
R
NULL  
= 20  
60  
V
R
C
= 5 V  
= 100  
= 10 pF  
= 25°C  
= 1  
DD  
40  
R
= 0  
NULL  
L
L
T
A
R
NULL  
= 0  
20  
1
0
A
V
0
10  
100  
1k  
10k  
100k  
−2  
0
2
4
6
8
10  
12  
14  
10  
100  
1k  
10k  
100k  
f − Frequency − Hz  
t − Time − µs  
Capacitive Load − pF  
G016  
G018  
G017  
Figure 17.  
Figure 18.  
Figure 19.  
VOLTAGE-FOLLOWER  
SMALL-SIGNAL PULSE RESPONSE  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
SMALL-SIGNAL INVERTING  
PULSE RESPONSE  
2.60  
2.55  
2.50  
2.45  
3
2
2.58  
2.54  
2.50  
2.46  
2.42  
2.54  
2.50  
V
I
V
I
1
V
R
C
= 5 V  
= 100  
= 50 pF  
= 25°C  
DD  
0
L
L
V
R
C
= 5 V  
DD  
= 100  
= 50 pF  
= 25°C  
−1  
L
L
T
A
V
I
V = 2.5 V  
I
−2  
5
T
A
A
V
= −1  
V = 2.5 V  
I
V
O
A
V
= −1  
2.55  
2.50  
2.45  
2.40  
4
V
R
C
T
= 5 V  
DD  
3
2
1
0
= 100  
= 10 pF  
= 25°C  
V = 100 mV  
= 1  
L
L
V
O
A
2.46  
2.42  
I
V
O
A
V
−0.2 0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
−1  
0
1
2
3
4
5
6
7
8
−0.2 0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
t − Time − µs  
t − Time − µs  
t − Time − µs  
G019  
G020  
G021  
Figure 20.  
Figure 21.  
Figure 22.  
10  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
CROSSTALK  
vs  
FREQUENCY  
SHUTDOWN SUPPLY CURRENT  
vs  
SHUTDOWN FORWARD AND  
REVERSE ISOLATION  
FREE-AIR TEMPERATURE  
0
−20  
0
−20  
16  
14  
12  
10  
8
V
R
= 3 V and 5 V  
V
= 3 V and 5 V  
V
V
= 3 V and 5 V  
= V /2  
DD  
DD  
= 100  
DD  
DD  
R
C
T
= 100  
= 50 pF  
= 25°C  
= 1  
L
L
L
I
All Channels  
No Load  
A
−40  
A
V
−40  
−60  
−60  
−80  
6
V
I
= 0.1 V  
PP  
−100  
−120  
−140  
−160  
−80  
4
V
I
= 4 V  
PP  
2
−100  
V
I
= 2.5 V  
100  
PP  
0
V
I
= 2 V  
10k  
PP  
−120  
−2  
10  
100  
1k  
100k  
10  
1k  
10k  
100k  
1M  
10M  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
f − Frequency − Hz  
f − Frequency − Hz  
T
A
− Free-Air Temperature − °C  
G022  
G023  
G024  
Figure 23.  
Figure 24.  
Figure 25.  
SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE  
4
3
2
1
SD  
0
2
V
DD  
= 3 V  
R = 100  
L
1.5  
1
C
L
= 10 pF  
T
A
= 25°C  
V = V /2  
I
DD  
A
V
= 1  
0.5  
0
V
O
6
I
DD(SD)  
4
2
0
−2  
−20  
0
20  
40  
60  
80  
100  
120  
t − Time − µs  
G025  
Figure 26.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
SHUTDOWN FUNCTION  
Two members of the TLV411x family (TLV4110/3) have a shutdown terminal for conserving battery life in  
portable applications. When the shutdown terminal is tied low, the supply current is reduced to just nano amps  
per channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. In order to save  
power in shutdown mode, an external pullup resistor is required; therefore, to enable the amplifier, the shutdown  
terminal must be pulled high. When the shutdown terminal is left floating, care should be taken to ensure that  
parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into  
shutdown.  
DRIVING A CAPACITIVE LOAD  
When the amplifier is configured in this manner, capacitive loading directly on the output decreases the device's  
phase margin, leading to high-frequency ringing or oscillations. Therefore, for capacitive loads of greater than  
1 nF, it is recommended that a resistor be placed in series ®NULL) with the output of the amplifier, as shown in  
Figure 27. A maximum value of 20 is recommended for most applications.  
R
F
R
F
R
G
R
G
R
R
NULL  
NULL  
+
+
Input  
Input  
Output  
LOAD  
Output  
Snubber  
C
R
L
C
R
L
C
L
(a)  
(b)  
S0048-03  
Figure 27. Driving a Capacitive Load  
OFFSET VOLTAGE  
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times  
the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage.  
R
F
I
IB−  
R
G
+
+
V
I
V
O
R
S
I
IB+  
R
R
F
F
V
+ V  
1 ) ǒ Ǔ " I  
R
1 ) ǒ Ǔ " I  
R
ǒ Ǔ ǒ Ǔ  
OO  
IO  
IB)  
S
IB*  
F
R
R
G
G
S0094-01  
Figure 28. Output Offset Voltage Model  
12  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
 
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
R
null  
_
+
R
L
C
L
S0095-01  
Figure 29.  
GENERAL POWER DESIGN CONSIDERATIONS  
When driving heavy loads at high junction temperatures there is an increased probability of electromigration  
affecting the long-term reliability of ICs. Therefore, to avoid this issue:  
The output current must be limited (at these high-junction temperatures).  
OR  
The junction temperature must be limited.  
The maximum continuous output current at a die temperature 150°C will be 1/3 of the current at 105°C.  
The junction temperature will be dependent on the ambient temperature around the IC, thermal impedance from  
the die to the ambient and power dissipated within the IC.  
TJ = TA + θJA × PDIS  
Where:  
PDIS is the IC power dissipation and is equal to the output current multiplied by the voltage dropped across  
the output of the IC.  
θJA is the thermal impedance between the junction and the ambient temperature of the IC.  
TJ is the junction temperature.  
TA is the ambient temperature.  
Reducing one or more of these factors results in a reduced die temperature. The 8-pin SOIC (small outline  
integrated circuit) has a thermal impedance from junction to ambient of 176°C/W. For this reason it is  
recommended that the maximum power dissipation of the 8-pin SOIC package be limited to 350 mW, with peak  
dissipation of 700 mW as long as the RMS value is less than 350 mW.  
The use of the MSOP PowerPAD™ dramatically reduces the thermal impedance from junction to case. And, with  
correct mounting, the reduced thermal impedance greatly increases the IC's permissible power dissipation and  
output current handling capability. For example, the power dissipation of the PowerPAD™ is increased to above  
1 W. Sinusoidal and pulse-width modulated output signals also increase the output current capability. The  
equivalent dc current is proportional to the square-root of the duty cycle:  
Ǹ
( )  
duty cycle  
I
+ I  
 
DC(EQ)  
Cont  
(1)  
CURRENT DUTY CYCLE  
AT PEAK RATED CURRENT  
EQUIVALENT DC CURRENT  
AS A PERCENTAGE OF PEAK  
100  
70  
100  
84  
50  
71  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
Note that, with an operational amplifier, a duty cycle of 70% often results in the op-amp sourcing current 70% of  
the time and sinking current 30%; therefore, the equivalent dc current is still 0.84 times the continuous current  
rating at a particular junction temperature.  
GENERAL PowerPAD DESIGN CONSIDERATIONS  
The TLV411x is available in a thermally-enhanced PowerPAD family of packages. These packages are  
constructed using a downset lead frame upon which the die is mounted [see Figure 30(a) and Figure 30(b)]. This  
arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see  
Figure 30(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance  
can be achieved by providing a good thermal path away from the thermal pad.  
The PowerPAD package allows for both assembly and thermal management in one manufacturing operation.  
During the surface-mount solder operation (when the leads are being soldered), the thermal pad can also be  
soldered to a copper area underneath the package. Through the use of thermal paths within this copper area,  
heat can be conducted away from the package into either a ground plane or other heat-dissipating device.  
The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of  
surface mount with the previously awkward mechanical methods of heat sinking.  
DIE  
Thermal  
Pad  
Side View (a)  
DIE  
End View (b)  
Bottom View (c)  
M0031-01  
Figure 30. Views of Thermally Enhanced DGN Package  
14  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
 
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the  
recommended approach.  
1. Prepare the PCB with a top-side etch pattern, as shown in Figure 31. There should be etch for the leads as  
well as etch for the thermal pad.  
2. Place five holes (dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in  
diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.  
3. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps  
dissipate the heat generated by the TLV411x IC. These additional vias may be larger than the 13-mil  
diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad  
area to be soldered so that wicking is not a problem.  
4. Connect all holes to the internal ground plane.  
5. When connecting these holes to the ground plane, do not use the typical web or spoke via connection  
methodology. Web connections have a high thermal-resistance connection that is useful for slowing the heat  
transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In  
this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the  
holes under the TLV411x PowerPAD package should make their connection to the internal ground plane with  
a complete connection around the entire circumference of the plated-through hole.  
6. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five  
holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes  
of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the  
reflow process.  
7. Apply solder paste to the exposed thermal pad area and all of the IC terminals.  
8. With these preparatory steps in place, the TLV411x IC is simply placed in position and run through the solder  
reflow operation as any standard surface-mount component. This results in a part that is properly installed.  
Thermal Pad Area  
Single or Dual  
68 mils × 70 mils) with 5 vias  
(Via diameter = 13 mils  
M0032−01  
Figure 31. PowerPAD PCB Etch and Via Pattern  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
 
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
SGLS314DJUNE 2006REVISED MAY 2008............................................................................................................................................................... www.ti.com  
For a given θJA, the maximum power dissipation is shown in Figure 32 and is calculated by the following formula:  
T
–T  
MAX  
A
P
+
ǒ Ǔ  
D
q
JA  
Where:  
PD = Maximum power dissipation of TLV411x IC (watts)  
TMAX = Absolute maximum junction temperature (150°C)  
TA  
θJA = θJC + θCA  
θJC = Thermal coefficient from junction to case  
= Free-ambient air temperature (°C)  
θCA = Thermal coefficient from case to ambient air (°C/W)  
(2)  
4.0  
T = 150°C  
J
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
DGN Package  
Low-K Test PCB  
= 52.7°C/W  
θ
JA  
SOIC Package  
Low-K Test PCB  
θ
= 176°C/W  
JA  
−55 −40 −25 −10  
5
20 35 50 65 80 95 110 125  
T
A
− Free-Air Temperature − °C  
G026  
NOTE: Results are with no air flow and using JEDEC Standard Low-K test PCB.  
Figure 32. Maximum Power Dissipation vs Free-Air Temperature  
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent  
power and output power. The designer should never forget about the quiescent heat generated within the device,  
especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat  
dissipation is at low output voltages with high output currents.  
The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The  
PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a  
copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other  
hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the  
device, θJA decreases and the heat-dissipation capability increases. The currents and voltages shown in these  
graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents  
and voltages should be used to choose the proper package.  
16  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
TLV4110-EP, TLV4111-EP  
TLV4112-EP, TLV4113-EP  
www.ti.com............................................................................................................................................................... SGLS314DJUNE 2006REVISED MAY 2008  
MACROMODEL INFORMATION  
Macromodel information provided was derived using Microsim Parts™, the model generation software used with  
Microsim PSpice™ The Boyle macromodel (see Note 3) and subcircuit in Figure 33 are generated using the  
TLV411x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations  
of the following key parameters can be generated to a tolerance of 20% (in most cases).  
Common-mode rejection ratio  
Phase margin  
DC output resistance  
AC output resistance  
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
Quiescent power dissipation  
Input bias current  
Short-circuit output current limit  
Open-loop voltage amplification  
Unity-gain frequency  
NOTE 3: G.R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE Journal of Solid-State  
Circuits, SC-9, 353 (1974).  
3
99  
V
DD  
+
egnd  
rd1  
11  
rd2  
12  
rss  
ro2  
css  
fb  
rp  
c1  
7
+
c2  
vlim  
1
2
+
r2  
9
6
IN+  
IN−  
8
vc  
D
S
D
S
+
vb  
ga  
G
G
ro1  
gcm  
ioff  
53  
OUT  
dp  
5
dlp  
dln  
91  
90  
92  
10  
+
+
iss  
dc  
vlp  
hlim  
vln  
+
GND  
+ 54  
4
de  
ve  
* TLV4112_5V operational amplifier ”macromodel” subcircuit  
iss  
10  
90  
0
4
0
6
2
1
9
dc  
13.800E−6  
75E−9  
* updated using Model Editor release 9.1 on 01/18/00 at 15:50  
hlim  
ioff  
vlim 1K  
dc  
Model Editor is an OrCAD product.  
*
j1  
11  
12  
6
10 jx1  
10 jx2  
* connections: non−inverting input  
J2  
*
*
*
*
*
| inverting input  
r2  
100.00E3  
5.9386E3  
5.9386E3  
10  
| | positive power supply  
rd1  
3
11  
12  
5
| | | negative power supply  
rd2  
3
| | | | output  
ro1  
8
| | | | |  
1 2 3 4 5  
ro2  
7
99  
4
10  
.subckt TLV4112_5V  
*
rp  
3
3.3333E3  
14.493E6  
dc 0  
rss  
10  
9
99  
0
c1  
11  
12  
7
99  
53  
5
91  
90  
3
0
99  
2.2439E−12  
vb  
c2  
6
10.000E−12  
vc  
3
53  
4
dc .86795  
dc .86795  
dc 0  
dc 300  
dc 300  
css  
dc  
de  
dlp  
dln  
dp  
egnd  
fb  
10  
5
454.55E−15  
ve  
54  
7
dy  
vlim  
vlp  
8
0
54  
90  
92  
4
dy  
91  
0
dx  
vln  
92  
dx  
.model  
.model  
.model  
.model  
.ends  
*$  
dx  
dy  
jx1  
jx2  
D(Is=800.00E−18)  
dx  
D(Is=800.00E−18 Rs=1m Cjo=10p)  
99  
7
poly(2) (3,0) (4,0) 0 .5 .5  
poly(5) vb vc ve vlp vln 0  
NJF(Is=150.00E−12 Beta=2.0547E−3 +Vto=−1)  
NJF(Is=150.00E−12 Beta=2.0547E−3 + Vto=−1)  
+ 33.395E6 −1E3 1E3 33E6 −33E6  
ga  
gcm  
6
0
0
6
11  
10  
12 168.39E−6  
99 168.39E−12  
S0096-01  
Figure 33. Boyle Macromodel and Subcircuit  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TLV4110-EP, TLV4111-EP TLV4112-EP, TLV4113-EP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jan-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
TLV4113MDGQREP  
V62/06646-04ZE  
ACTIVE  
ACTIVE  
MSOP-  
PowerPAD  
DGQ  
DGQ  
10  
10  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAGLevel-1-260C-UNLIM  
MSOP-  
PowerPAD  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAGLevel-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLV4113-EP :  
Catalog: TLV4113  
NOTE: Qualified Version Definitions:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jan-2012  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Mar-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV4113MDGQREP  
MSOP-  
Power  
PAD  
DGQ  
10  
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Mar-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
MSOP-PowerPAD DGQ 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
358.0 335.0 35.0  
TLV4113MDGQREP  
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

V62/06649-01XE

16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS
TI

V62/06650-01XE

16-BIT 500-MSPS 2´–8´ INTERPOLATING DUAL-CHANNEL DIGITAL-TO-ANALOG CONVERTER (DAC)
TI

V62/06651-01XE

DUAL 12-BIT 200-MSPS DIGITAL-TO-ANALOG CONVERTER
TI

V62/06651-02XE

DUAL 12-BIT 200-MSPS DIGITAL-TO-ANALOG CONVERTER
TI

V62/06652-01XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-02XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-03XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-04XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-05XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-06XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-07XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI

V62/06652-08XE

CAP-FREE NMOS 150 mA LOW DROPOUT REGULATOR WITH REVERSE CURRENT PROTECTION
TI