V62/08628-01XE [TI]

四通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | RGC | 64 | -55 to 125;
V62/08628-01XE
型号: V62/08628-01XE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、14 位、125MSPS 模数转换器 (ADC) - 增强型产品 | RGC | 64 | -55 to 125

转换器 模数转换器
文件: 总71页 (文件大小:3143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
QUAD CHANNEL, 14 BIT, 125 MSPS ADC WITH SERIAL LVDS OUTPUTS  
1
FEATURES  
Supports Sine, LVCMOS, LVPECL, LVDS Clock  
Inputs and Amplitude Down to 400 mVPP  
Controlled Baseline  
Internal Reference with External Reference  
Support  
One Assembly  
Test Site  
No External Decoupling Required for  
References  
One Fabrication Site  
–55°C to 125°C Operating Junction  
Temperature Range  
3.3-V Analog and Digital Supply  
64-pin QFN Package (9 mm × 9 mm)  
Pin Compatible 12-Bit Family (ADS642x)  
Enhanced Diminishing Manufacturing Sources  
(DMS) Support  
Feature Compatible Dual Channel Family  
(ADS624x, ADS644x)  
Enhanced Product-Change Notification  
(1)  
Qualification Pedigree  
Sample Rate: 125 MSPS  
APPLICATIONS  
14-Bit Resolution with No Missing Codes  
Simultaneous Sample and Hold  
Base-Station IF Receivers  
Diversity Receivers  
Medical Imaging  
3.5-dB Coarse Gain and up to 6-dB  
Programmable Fine Gain for SFDR/SNR  
Trade-Off  
Test Equipment  
Table 1. ADS64XX Quad Channel Family(1)  
Serialized LVDS Outputs with Programmable  
Internal Termination Option  
125 MSPS 105 MSPS 80 MSPS 65 MSPS  
(1) Component qualification in accordance with JEDEC and  
industry standards to ensure reliable operation over an  
extended temperature range. This includes, but is not limited  
to, Highly Accelerated Stress Test (HAST) or biased 85/85,  
temperature cycle, autoclave or unbiased HAST,  
ADS644X  
14 Bit  
ADS6445  
ADS6425  
ADS6444  
ADS6424  
ADS6443 ADS6442  
ADS6423 ADS6422  
ADS642X  
12 Bit  
electromigration, bond intermetallic life, and mold compound  
life. Such qualification testing should not be viewed as  
justifying use of this component beyond specified  
performance and environmental limits.  
(1) Product Preview for ADS6444, ADS6443, ADS6442 and  
ADS642X family  
Table 2. Performance Summary  
ADS6445  
87  
ADS6444  
91  
ADS6443  
92  
ADS6442  
93  
Fin = 10 MHz (0 dB gain)  
Fin = 170 MHz (3.5 dB gain)  
Fin = 10 MHz (0 dB gain)  
Fin = 170 MHz (3.5 dB gain)  
Power, per channel, mW  
SFDR, dBc  
79  
83  
84  
84  
73.4  
68.3  
420  
73.4  
69.3  
340  
74.2  
69.4  
300  
74.3  
70  
SINAD, dBFS  
265  
DESCRIPTION/ORDERING INFORMATION  
The ADS6445/ADS6444/ADS6443/ADS6442 (ADS644X) is a family of high performance 14 bit 125/105/80/65  
MSPS quad channel A-D converters. Serial LVDS data outputs reduce the number of interface lines, resulting in  
a compact 64 pin QFN package (9 mm × 9 mm) that allows for high system integration density. The device  
includes 3.5 dB coarse gain option that can be used to improve SFDR performance with little degradation in  
SNR. In addition to the coarse gain, fine gain options also exist, programmable in 1 dB steps up to 6 dB.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2008, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
The output interface is 2-wire, where each ADC data is serialized and output over two LVDS pairs. This makes it  
possible to halve the serial data rate (compared to a 1-wire interface) and restrict it to less than 1 Gbps easing  
receiver design. The ADS644X also includes the traditional 1-wire interface that can be used at lower sampling  
frequencies.  
An internal phase lock loop (PLL) multiplies the incoming ADC sampling clock to derive the bit clock. The bit  
clock is used to serialize the 14 bit data from each channel. In addition to the serial data streams, the frame and  
bit clocks also are transmitted as LVDS outputs.  
The LVDS output buffers have features such as programmable LVDS currents, current doubling modes and  
internal termination options. These can be used to widen eye openings and improve signal integrity, easing  
capture by the receiver.  
The ADC channel outputs can be transmitted either as MSB or LSB first and 2s complement or straight binary.  
The ADS644X has internal references, but also can support an external reference mode. The device is specified  
over –55°C to 125°C operating junction temperature range.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
BIT Clock  
DCLKP  
DCLKM  
CLKP  
CLKM  
PLL  
FRAME Clock  
FCLKP  
FCLKM  
DA0_P  
DA0_M  
Digital  
INA_P  
INA_M  
Encoder  
and  
Serializer  
14 Bit  
ADC  
SHA  
SHA  
SHA  
SHA  
DA1_P  
DA1_M  
DB0_P  
DB0_M  
Digital  
Encoder  
and  
INB_P  
INB_M  
14 Bit  
ADC  
DB1_P  
DB1_M  
Serializer  
DC0_P  
DC0_M  
Digital  
Encoder  
and  
INC_P  
INC_M  
14 Bit  
ADC  
DC1_P  
DC1_M  
Serializer  
DD0_P  
DD0_M  
Digital  
Encoder  
and  
IND_P  
IND_M  
14 Bit  
ADC  
DD1_P  
DD1_M  
Serializer  
VCM  
Reference  
Parallel  
Interface  
Serial  
Interface  
ADS644x  
B0199-03  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
JUNCTION  
TRANSPORT  
MEDIA,  
QUANTITY  
PACKAGE  
PACKAGE  
PRODUCT  
PACKAGE-LEAD  
ORDERING NUMBER  
DESIGNATOR(2) TEMPERATURE MARKING  
RANGE  
ADS6445  
QFN-64(3)  
RGC  
–55°C to 125°C  
6445EP  
ADS6445MRGCTEP  
250, Tape/reel  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) For thermal pad size on the package, see the mechanical drawings at the end of this data sheet. θJA = 23.17 °C/W (0 LFM air flow), θJC  
= 22.1 °C/W when used with 2 oz. copper trace and pad soldered directly to a JEDEC standard four layer 3 in. x 3 in. PCB.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
UNIT  
V
AVDD  
LVDD  
Supply voltage range  
–0.3 to 3.9  
Supply voltage range  
–0.3 to 3.9  
V
Voltage between AGND and DGND  
Voltage between AVDD to LVDD  
Voltage applied to external pin, VCM  
Voltage applied to analog input pins  
Operating junction temperature range  
Storage temperature range  
–0.3 to 0.3  
V
–0.3 to 3.3  
V
–0.3 to 2.0  
V
–0.3 V to minimum ( 3.6, AVDD + 0.3 V)  
V
TJ  
-55 to 125  
–65 to 150  
220  
°C  
°C  
°C  
Tstg  
Lead temperature 1,6 mm (1/16") from the case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM MAX UNIT  
SUPPLIES  
AVDD  
LVDD  
Analog supply voltage  
LVDS Buffer supply voltage  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
ANALOG INPUTS  
Differential input voltage range  
2
Vpp  
V
Input common-mode voltage  
1.5±0.1  
Voltage applied on VCM in external reference mode  
1.45  
1.50 1.55  
V
CLOCK INPUT  
Input clock sample rate, Fsrated  
Input clock amplitude differential (VCLKP – VCLKM  
Input Clock duty cycle  
ADS6445  
5
125 MSPS  
Sine wave, ac coupled  
LVPECL, ac coupled  
LVDS, ac coupled  
LVCMOS, ac coupled  
0.4  
1.5  
± 0.8  
± 0.35  
3.3  
)
Vpp  
35  
50  
65  
%
DIGITAL OUTPUTS  
Without internal termination  
With internal termination  
5
10  
Maximum external load capacitance from each output pin  
to DGND  
CLOAD  
pF  
RLOAD  
TJ  
Differential load resistance (external) between the LVDS output pairs  
Operating junction temperature  
100  
–55  
125  
°C  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, min and max values are across the full junction temperature range TJ,MIN = –55°C to TJ,MAX  
=
125°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, –1 dBFS differential analog input,  
internal reference mode (unless otherwise noted).  
ADS6445  
UNIT  
Fs = 125 MSPS  
PARAMETER  
MIN  
TYP  
MAX  
RESOLUTION  
14  
Bits  
ANALOG INPUT  
Differential input voltage range  
Differential input capacitance  
Analog input bandwidth  
2.0  
7
VPP  
pF  
500  
MHz  
µA  
Analog input common mode current (per input pin of each  
ADC)  
155  
REFERENCE VOLTAGES  
VREFB  
VREFT  
ΔVREF  
VCM  
Internal reference bottom voltage  
1.0  
2.0  
1
V
V
Internal reference top voltage  
Internal reference error (VREFT–VREFB)  
Common mode output voltage  
VCM output current capability  
0.985  
1.015  
V
1.5  
±4  
V
mA  
DC ACCURACY  
No missing codes  
Assured  
EO  
Offset error, across devices and across channels within a  
device  
mV  
–15  
±2  
15  
Offset error temperature coefficient, across devices and  
across channels within a device  
0.05  
mV/°C  
There are two sources of gain error - internal reference inaccuracy and channel gain error  
EGREF  
Gain error due to internal reference inaccuracy alone,  
-0.75  
0.1  
0.75  
% FS  
(ΔVREF /2.0) %  
Reference gain error temperature coefficient  
0.0125  
±0.3  
Δ%/°C  
EGCHAN  
Gain error of channel alone, across devices and across  
channels within a device  
% FS  
Channel gain error temperature coefficient, across devices  
and across channels within a device  
0.005  
Δ%/°C  
DNL  
Differential nonlinearity, Fin = 50 MHz  
Integral nonlinearity, Fin = 50 MHz  
DC power supply rejection ratio  
–0.99  
-5  
±0.6  
±3  
2.0  
5
LSB  
LSB  
INL  
PSRR  
0.5  
mV/V  
POWER SUPPLY  
ICC  
Total supply current  
502  
410  
92  
mA  
mA  
mA  
W
IAVDD  
ILVDD  
Analog supply current  
LVDS supply current  
Total power  
1.65  
77  
1.8  
Power down (with input clock stopped)  
150  
mW  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS  
Typical values are at 25°C, min and max values are across the full junction temperature range TJ,MIN = –55°C to TJ,MAX  
=
125°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, –1 dBFS differential analog input,  
internal reference mode (unless otherwise noted).  
ADS6445  
Fs = 125 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
DYNAMIC AC CHARACTERISTICS  
Fin = 10 MHz  
73.7  
73.1  
72.7  
72.1  
69.9  
69.4  
68.7  
68.1  
73.4  
72.3  
71.2  
71.8  
67.9  
68.3  
67.8  
67.9  
1.05  
Fin = 50 MHz  
Fin = 70 MHz  
Fin = 100 MHz  
68.5  
SNR  
dBFS  
Signal to noise ratio  
0 dB gain  
Fin = 170 MHz  
Fin = 230 MHz  
3.5 dB Coarse gain  
0 dB gain  
3.5 dB Coarse gain  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
Fin = 100 MHz  
67.75  
SINAD  
Signal to noise and  
distortion ratio  
dBFS  
LSB  
0 dB gain  
Fin = 170 MHz  
3.5 dB Coarse gain  
0 dB gain  
Fin = 230 MHz  
3.5 dB Coarse gain  
RMS  
Inputs tied to common-mode  
Output noise  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
Fin = 100 MHz  
87  
81  
78  
86  
76  
79  
77  
80  
93  
87  
87  
89  
83  
85  
80  
82  
87  
81  
78  
86  
76  
79  
77  
80  
69  
69  
69  
SFDR  
Spurious free dynamic  
range  
dBc  
dBc  
dBc  
0 dB gain  
Fin = 170 MHz  
Fin = 230 MHz  
3.5 dB Coarse gain  
0 dB gain  
3.5 dB Coarse gain  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
Fin = 100 MHz  
HD2  
Second harmonic  
0 dB gain  
Fin = 170 MHz  
Fin = 230 MHz  
3.5 dB Coarse gain  
0 dB gain  
3.5 dB Coarse gain  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 70 MHz  
Fin = 100 MHz  
HD3  
Third harmonic  
0 dB gain  
Fin = 170 MHz  
Fin = 230 MHz  
3.5 dB Coarse gain  
0 dB gain  
3.5 dB Coarse gain  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values are at 25°C, min and max values are across the full junction temperature range TJ,MIN = –55°C to TJ,MAX  
=
125°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, 50% clock duty cycle, –1 dBFS differential analog input,  
internal reference mode (unless otherwise noted).  
ADS6445  
Fs = 125 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
91  
MAX  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 100 MHz  
Fin = 170 MHz  
Fin = 230 MHz  
Fin = 10 MHz  
Fin = 50 MHz  
Fin = 100 MHz  
Fin = 170 MHz  
Fin = 230 MHz  
87  
Worst harmonic (other  
than HD2, HD3)  
90  
dBc  
88  
87  
86  
69  
80  
THD  
84.5  
73.5  
74  
dBc  
Total harmonic distortion  
ENOB  
Effective number of bits  
10.95  
11.7  
Fin = 50 MHz  
Bits  
F1= 46.09 MHz,  
F2 = 50.09 MHz  
88  
86  
90  
IMD  
2-Tone inter-  
modulation distortion  
dBFS  
F1= 185.09 MHz,  
F2 = 190.09 MHz  
Near channel  
Cross-talk signal  
frequency = 10 MHz  
Cross-talk  
dBc  
Far channel  
103  
Cross-talk signal  
frequency = 10 MHz  
Recovery to within 1% (of final value) for 6-dB overload  
with sine wave input  
1
Clock cycles  
dBc  
Input overload recovery  
AC PSRR  
35  
Power supply rejection  
ratio  
< 100 MHz signal, 100 mVPP on AVDD supply  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
DIGITAL CHARACTERISTICS  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1 AVDD = LVDD = 3.3 V, IO = 3.5 mA, RLOAD = 100 (1)  
.
All LVDS specifications are characterized, but not tested at production.  
ASD6445  
TYP MAX  
PARAMETER  
DIGITAL INPUTS  
TEST CONDITIONS  
UNIT  
MIN  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
2.4  
V
0.8  
V
10  
10  
4
µA  
µA  
pF  
DIGITAL OUTPUTS  
High-level output voltage  
Low-level output voltage  
Output differential voltage |VOD  
Output offset voltage VOS  
1375  
1025  
mV  
mV  
mV  
mV  
pF  
|
250 350  
450  
Common-mode voltage of OUTP and OUTM  
1200  
2
Output capacitance inside the device, from either output to  
ground  
Output capacitance  
(1) IO refers to the LVDS buffer current setting, RLOAD is the external differential load resistance between the LVDS output pair.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
TIMING SPECIFICATIONS(1)  
Typical values are at 25°C, min and max values are across the full junction temperature range TJ,MIN = –55°C to TJ,MAX  
=
125°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP clock amplitude, CL = 5  
pF (2), IO = 3.5 mA, RL = 100 (3), no internal termination, unless otherwise noted.  
ADS6445  
Fs = 125 MSPS  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
tJ  
Aperture jitter  
Uncertainty in the sampling  
instant  
250  
fs rms  
INTERFACE: 2-wire, DDR bit clock, 14x serialization  
From data cross-over to bit  
clock cross-over  
tsu  
th  
Data setup time(4) (5)(6)  
Data hold time(4) (5)(6)  
0.55  
0.58  
ns  
ns  
From bit clock cross-over to  
data cross-over  
Input clock rising edge  
cross-over to frame clock  
rising edge cross-over  
(6)  
tpd_clk  
Clock propagation delay  
Bit clock cycle-cycle jitter  
4.4  
ns  
(5)  
350  
75  
ps pp  
ps pp  
Frame clock cycle-cycle jitter  
(5)  
The following specifications apply for 5 MSPS Fs 125 MSPS and all interface options.  
Delay from input clock rising  
tA  
Aperture delay  
edge to the actual sampling  
instant  
2
±80  
12  
ns  
ps  
Channel-channel within same  
device  
Aperture delay variation  
Time for a sample to  
propagate to ADC outputs,  
see Figure 1  
(7)  
ADC Latency  
Clock cycles  
Time to valid data after  
coming out of global power  
down  
100  
µs  
Wake up time  
Time to valid data after input  
clock is re-started  
100  
200  
µs  
Time to valid data after  
coming out of channel standby  
Clock cycles  
tRISE  
tFALL  
Data rise time  
Data fall time  
From –100 mV to +100 mV  
From +100 mV to –100 mV  
100  
100  
ps  
ps  
Bit clock and frame clock rise  
time  
tRISE  
tFALL  
From –100 mV to +100 mV  
From +100 mV to –100 mV  
100  
ps  
ps  
Bit clock and frame clock fall  
time  
100  
50%  
50%  
LVDS Bit clock duty cycle  
LVDS Frame clock duty  
cycle  
(1) Timing parameters are ensured by design and characterization and not tested in production.  
(2) CL is the external single-ended load capacitance between each output pin and ground.  
(3) Io refers to the LVDS buffer current setting; RL is the external differential load resistance between the LVDS output pair.  
(4) Timing parameters are measured at the end of a 2 inch PCB trace (100 characteristic impedance) terminated by RLand CL.  
(5) Setup and hold time specifications take into account the effect of jitter on the output data and clock.  
(6) Refer to Output Timings in application section for timings at lower sampling frequencies and other interface options.  
(7) Note that the total latency = ADC latency + internal serializer latency. The serializer latency depends on the interface option selected as  
shown in Table 27.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Sample  
N+13  
Sample  
N+12  
Sample  
N+11  
Sample  
N
Input  
Signal  
tA  
CLKM  
CLKP  
Input  
Clock  
tPD_CLK  
Latency 12 Clocks  
DCLKP  
DCLKM  
Bit  
Clock  
DOP  
DOM  
Output  
Data  
D13 D12 D11 D10  
D6 D5 D4 D3 D2 D1 D0 D13 D12 D11 D10  
D6 D5 D4 D3 D2 D1 D0  
Sample N–1  
Sample N  
FCLKM  
FCLKP  
Frame  
Clock  
T0105-04  
Figure 1. Latency  
DCLKP  
Bit Clock  
DCLKM  
tsu  
th  
tsu  
th  
Output Data  
DOP, DOM  
Dn+1  
Dn  
T0106-03  
Figure 2. LVDS Timing  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
DEVICE PROGRAMMING MODES  
ADS644X offers flexibility with several programmable features that are easily configured.  
The device can be configured independently using either parallel interface control or serial interface  
programming.  
In addition, the device supports a third configuration mode, where both the parallel interface and the serial control  
registers are used. In this mode, the priority between the parallel and serial interfaces is determined by a priority  
table (refer to Table 4). If this additional level of flexibility is not required, the user can select either the serial  
interface programming or the parallel interface control.  
USING PARALLEL INTERFACE CONTROL ONLY  
To control the device using parallel interface, keep RESET tied to high (LVDD). Pins CFG1, CFG2, CFG3,  
CFG4, PDN, SEN, SCLK, and SDATA are used to directly control certain functions of the ADC. After power-up,  
the device is automatically configured as per the parallel pin voltage settings (refer to Table 5 to Table 8) and no  
reset is required. In this mode, SEN, SCLK, and SDATA function as parallel interface control pins.  
Frequently used functions are controlled in this mode—output data interface and format, power down modes,  
coarse gain and internal/external reference. The parallel pins can be configured using a simple resistor string as  
illustrated in Figure 3.  
Table 3 has a description of the modes controlled by the parallel pins.  
Table 3. Parallel Pin Definition  
PIN  
SEN  
CONTROL FUNCTIONS  
Coarse gain and internal/external reference.  
SCLK, SDATA  
PDN  
Sync, deskew patterns and global power down.  
Dedicated pin for global power down  
CFG1  
1-wire/2-wire and DDR/SDR bit clock  
CFG2  
14x/16x serialization and SDR bit clock capture edge  
Reserved function. Tie CFG3 to Ground.  
MSB/LSB first and data format.  
CFG3  
CFG4  
USING SERIAL INTERFACE PROGRAMMING ONLY  
In this mode, SEN, SDATA, and SCLK function as serial interface pins and are used to access the internal  
registers of ADC. The registers must first be reset to their default values either by applying a pulse on RESET  
pin or by a high setting on the <RST> bit (in register ). After reset, the RESET pin must be kept low.  
The serial interface section describes the register programming and register reset in more detail.  
Because the parallel pins (CFG1-4 and PDN) are not used in this mode, they must be tied to ground. The  
register override bit <OVRD> - D10 in register 0x0D has to be set high to disable the control of parallel interface  
pins in this serial interface control ONLY mode.  
USING BOTH THE SERIAL INTERFACE AND PARALLEL CONTROLS  
For increased flexibility, a combination of serial interface registers and parallel pin controls (CFG1-4 and PDN)  
also can be used to configure the device.  
The parallel interface control pins CFG1 to CFG4 and PDN are available. After power-up, the device is  
automatically configured as per the parallel pin voltage settings (refer to Table 5 through Table 11) and no reset  
is required. A simple resistor string can be used as illustrated in Figure 3.  
SEN, SDATA, and SCLK function as serial interface pins and are used to access the internal registers of ADC.  
The registers must first be reset to their default values either by applying a pulse on RESET pin or by a high  
setting on the <RST> bit (in register ). After reset, the RESET pin must be kept low.  
The Serial Interface section describes the register programming and register reset in more detail.  
Since some functions are controlled using both the parallel pins and serial registers, the priority between the two  
is determined by a priority table (refer to Table 4).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Table 4. Priority Between Parallel Pins and Serial Registers  
PIN  
FUNCTIONS SUPPORTED  
PRIORITY  
As described in Table 8  
through Table 11  
Register bits can control the modes only if the register bit <OVRD> is high. If <OVRD> bit  
is low, then the control voltage on these parallel pins determines the function.  
CFG1 to CFG4  
Register bit <PDN GLOBAL> controls global power down only if PDN pin is low. If PDN is  
high, device is in global power down.  
PDN  
SEN  
Global power down  
Coarse gain is controlled by register bit <COARSE GAIN> only if the <OVRD> bit is high.  
Else, device has 0 dB coarse gain.  
Serial interface enable  
Internal/external reference setting is determined by register bit <REF>.  
Register bits <PATTERNS> control the sync and deskew output patterns.  
Power down is determined by bit <PDN GLOBAL>  
Serial interface clock and  
serial interface data pins  
SCLK, SDATA  
AVDD  
(5/8) AVDD  
3R  
(5/8) AVDD  
GND  
AVDD  
2R  
3R  
(3/8) AVDD  
(3/8) AVDD  
To Parallel Pin  
GND  
Figure 3. Simple Scheme to Configure Parallel Pins  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
DESCRIPTION OF PARALLEL PINS  
Table 5. SCLK, SDATA Control Pins  
SCLK  
SDATA  
DESCRIPTION  
LOW  
LOW  
NORMAL conversion.  
SYNC – ADC outputs sync pattern on all channels. This pattern can be used by the receiver to align the  
deserialized data to the frame boundary. See Capture Test Patterns for details.  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
POWER DOWN – Global power down, all channels of the ADC are powered down, including internal references,  
PLL and output buffers.  
DESKEW – ADC outputs deskew pattern on all channels. This pattern can be used by the receiver to ensure  
deserializer uses the right clock edge. See Capture Test Patterns for details.  
Table 6. SEN Control Pin  
SEN  
DESCRIPTION  
0
External reference and 0 dB coarse gain (full-scale = 2 VPP  
External reference and 3.5 dB coarse gain (full-scale = 1.34 VPP  
Internal reference and 3.5 dB coarse gain (full-scale = 1.34 VPP  
Internal reference and 0 dB coarse gain (full-scale = 2 VPP  
)
(3/8)LVDD  
(5/8)LVDD  
LVDD  
)
)
)
Independent of the programming mode used, after power-up the parallel pins PDN, CFG1 to CFG4 automatically  
configure the device as per the voltage applied (refer to Table 7 to Table 11).  
Table 7. PDN Control Pin  
PDN  
0
DESCRIPTION  
Normal operation  
AVDD  
Power down global  
Table 8. CFG1 Control Pin  
CFG1  
0
DESCRIPTION  
DDR Bit clock and 1-wire interface  
Not used  
(3/8)LVDD  
(5/8)LVDD  
LVDD  
SDR Bit clock and 2-wire interface  
DDR Bit clock and 2-wire interface  
Table 9. CFG2 Control Pin  
CFG2  
0
DESCRIPTION  
14x Serialization and capture at falling edge of bit clock (only in 2-wire SDR bit clock mode)  
16x Serialization and capture at falling edge of bit clock (only in 2-wire SDR bit clock mode)  
16x Serialization and capture at rising edge of bit clock (only in 2-wire SDR bit clock mode)  
14x Serialization and capture at rising edge of bit clock (only in 2-wire SDR bit clock mode)  
(3/8)LVDD  
(5/8)LVDD  
LVDD  
Table 10. CFG3 Control Pin  
CFG3  
RESERVED - TIE TO GROUND  
Table 11. CFG4 Control Pin  
CFG4  
0
DESCRIPTION  
MSB First and 2s complement  
(3/8)LVDD  
(5/8)LVDD  
LVDD  
MSB First and offset binary  
LSB First and offset binary  
LSB First and 2s complement  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): ADS6445-EP  
 
 
 
 
 
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
SERIAL INTERFACE  
The ADC has a serial interface formed by pins SEN (serial interface enable), SCLK (serial interface clock),  
SDATA (serial interface data) and RESET. Serial shift of bits into the device is enabled when SEN is low. Serial  
data SDATA is latched at every falling edge of SCLK when SEN is active (low). The serial data is loaded into the  
register at every 16th SCLK falling edge when SEN is low. In case the word length exceeds a multiple of 16 bits,  
the excess bits are ignored. Data can be loaded in multiple of 16 bit words within a single active SEN pulse. The  
interface can work with SCLK frequency from 20 MHz down to very low speeds (few hertz) and even with  
non-50% duty cycle SCLK.  
The first 5 bits of the 16 bit word are the address of the register while the next 11 bits are the register data.  
Register Reset  
After power-up, the internal registers must be reset to their default values. This can be done in one of two ways:  
1. Either by applying a high-going pulse on RESET (of width greater than 10 ns) OR  
2. By applying software reset. Using the serial interface, set the <RST> bit in register 0x00 to high – this resets  
the registers to their default values and then self-resets the <RST> bit to LOW.  
When RESET pin is not used, it must be tied to LOW.  
Register Address  
Register Data  
SDATA  
A4  
A3  
A2  
A1  
A0 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
t(DH)  
D1  
D0  
t(SCLK)  
t(DSU)  
SCLK  
t(SLOADH)  
t(SLOADS)  
SEN  
RESET  
T0109-03  
Figure 4. Serial Interface Timing  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
SERIAL INTERFACE TIMING CHARACTERISTICS  
Typical values at 25°C, min and max values across the full junction temperature range TJ,MIN = –55°C to TJ,MAX = 125°C,  
AVDD = LVDD = 3.3 V, unless otherwise noted.  
PARAMETER  
SCLK Frequency, fSCLK = 1/tSCLK  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
> DC  
20  
SEN to SCLK Setup time  
25  
25  
SCLK to SEN Hold time  
ns  
SDATA Setup time  
25  
ns  
tDH  
SDATA Hold time  
25  
ns  
Time taken for register write to take effect after 16th SCLK falling edge  
100  
ns  
RESET TIMING  
Typical values at 25°C, min and max values across the full junction temperature range TJ,MIN = –55°C to TJ,MAX = 125°C,  
AVDD = LVDD = 3.3 V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay from power-up of AVDD and LVDD to RESET pulse  
active  
5
t1  
Power-on delay time  
Reset pulse width  
ms  
t2  
Pulse width of active RESET signal  
10  
25  
ns  
ns  
t3  
Register write delay time Delay from RESET disable to SEN active  
Power-up delay time Delay from power-up of AVDD and LVDD to output stable  
tPO  
6.5  
ms  
Power Supply  
AVDD, LVDD  
t1  
RESET  
t2  
t3  
SEN  
T0108-03  
Figure 5. Reset Timing  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
SERIAL REGISTER MAP  
Table 12. Summary of Functions Supported By Serial Interface  
REGISTER  
ADDRESS  
REGISTER FUNCTIONS(1)(2)  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<PDN  
GLOBAL>  
GLOBAL  
POWER  
DOWN  
<REF>  
INTERNAL  
OR  
<PDN CHD> <PDN CHC> <PDN CHB> <PDN CHA>  
POWER POWER POWER POWER  
DOWN CH D DOWN CHC DOWN CH B DOWN CH A  
<RST>  
S/W RESET  
00  
0
0
0
0
EXTERNAL  
<CLKIN GAIN>  
INPUT CLOCK BUFFER GAIN CONTROL  
04  
0A  
0
0
0
0
0
0
0
0
<DF>  
DATA  
FORMAT 2S  
COMP OR  
STRAIGHT  
BINARY  
<PATTERNS>  
TEST PATTERNS  
0
0
0
0
0
<CUSTOM A>  
CUSTOM PATTERN (LOWER 11 BITS)  
0B  
0C  
<FINE GAIN>  
FINE GAIN CONTROL (1 dB to 6 dB)  
<CUSTOM B>  
CUSTOM PATTERN (UPPER 3 BITS)  
0
0
0
0
0
0
<COARSE  
GAIN>  
COURSE  
GAIN  
FALLING OR  
RISING BIT  
CLOCK  
CAPTURE  
EDGE  
<OVRD>  
OVERRIDE  
BIT  
BYTE-WISE  
OR  
BIT-WISE  
14 BIT OR  
16 BIT  
SERIALIZE  
DDR OR  
SDR BIT  
CLOCK  
1-WIRE OR  
2-WIRE  
INTERFACE  
MSB OR  
LSB FIRST  
0D  
0
0
ENABLE  
<TERM CLK>  
<LVDS CURR>  
LVDS CURRENT SETTINGS  
<CURR DOUBLE>  
LVDS CURRENT DOUBLE  
10  
11  
LVDS INTERNAL TERMINATION BIT AND WORD CLOCKS  
<TERM DATA>  
WORD-WISE CONTROL  
0
0
0
0
LVDS INTERNAL TERMINATION - DATA OUTPUTS  
(1) The unused bits in each register (shown by blank cells in above table) must be programmed as 0.  
(2) Multiple functions in a register can be programmed in a single write operation.  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
DESCRIPTION OF SERIAL REGISTERS  
Table 13. Serial Register A  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<REF>  
INTERNAL  
OR  
<PDN>  
GLOBAL  
POWER  
DOWN  
<PDN CHD> <PDN CHC> <PDN CHB> <PDN CHA>  
POWER POWER POWER POWER  
DOWN CH D DOWN CHC DOWN CH B DOWN CH A  
<RST>  
S/W RESET  
00  
0
0
0
0
EXTERNAL  
D0 - D4  
Power down modes  
D0  
0
<PDN GLOBAL>  
Normal operation  
1
Global power down, including all channels ADCs, internal references, internal PLL and output  
buffers  
D1  
0
<PDN CHA>  
CH A Powered up  
CH A ADC Powered down  
1
D2  
0
<PDN CHB>  
CH B Powered up  
CH B ADC Powered down  
1
D3  
0
<PDN CHC>  
CH C Powered up  
CH C ADC Powered down  
1
D4  
0
<PDN CHD>  
CH D Powered up  
CH D ADC Powered down  
1
D5  
0
<REF> Reference  
Internal reference enabled  
External reference enabled  
1
D10  
<RST>  
1
Software reset applied – resets all internal registers and self-clears to 0  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Table 14. Serial Register B  
REGISTER  
ADDRESS  
BITS  
D5  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
<CLKIN GAIN>  
INPUT CLOCK BUFFER GAIN CONTROL  
04  
0
0
0
0
0
0
D6 - D2  
11000  
00000  
01100  
01010  
01001  
01000  
<CLKIN GAIN> Input clock buffer gain control  
Gain 0, minimum gain  
Gain 1, default gain after reset  
Gain 2  
Gain 3  
Gain 4  
Gain 5, maximum gain  
Table 15. Serial Register C  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<DF>  
DATA  
DORMAT 2S  
COMP OR  
STRAIGHT  
BINARY  
<PATTERNS>  
TEST PATTERNS  
00  
0
0
0
0
0
0
0
D7 - D5  
000  
<PATTERNS> Capture test patterns  
Normal ADC operation  
Output all zeros  
001  
010  
Output all ones  
011  
Output toggle pattern  
Unused  
100  
101  
Output custom pattern (contents of CUSTOM pattern registers 0x0B and 0x0C)  
Output DESKEW pattern (serial stream of 1010..)  
Output SYNC pattern  
110  
111  
D9  
0
<DF> Data format selection  
2s Complement format  
Straight binary format  
1
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
Table 16. Serial Register D  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<CUSTOM A>  
CUSTOM PATTERN (LOWER 11 BITS)  
0B  
D10 - D0  
<CUSTOM A> Lower 11 bits of custom pattern <D10>…<D0>  
Table 17. Serial Register E  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<FINE GAIN>  
FINE GAIN CONTROL (1 dB to 6 dB)  
<CUSTOM B>  
CUSTOM PATTERN (UPPER 3 BITS)  
0C  
0
0
0
0
0
D4 - D0  
<CUSTOM B> Upper 3 bits of custom pattern <D13>…<D11>  
<FINE GAIN> Fine gain control  
D10-D8  
000  
0 dB Gain (full-scale range = 2.00 VPP  
1 dB Gain (full-scale range = 1.78 VPP  
2 dB Gain (full-scale range = 1.59 VPP  
3 dB Gain (full-scale range = 1.42 VPP  
4 dB Gain (full-scale range = 1.26 VPP  
5 dB Gain (full-scale range = 1.12 VPP  
6 dB Gain (full-scale range = 1.00 VPP  
)
)
)
)
)
)
)
001  
010  
011  
100  
101  
110  
Table 18. Serial Register F  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<COARSE  
GAIN>  
COURSE  
GAIN  
FALLING OR  
RISING BIT  
CLOCK  
CAPTURE  
EDGE  
<OVRD>  
OVER-RIDE  
BITE  
BYTE-WISE  
OR  
BIT-WISE  
14 BIT OR  
16 BIT  
SERIALIZE  
DDR OR  
SDR BIT  
CLOCK  
1-WIRE OR  
2- WIRE  
INTERFACE  
MSB OR  
LSB FIRST  
0D  
0
0
0
ENABLE  
D0  
0
Interface selection  
1-Wire interface  
2-Wire interface  
1
D1  
0
Bit clock selection (only in 2-wire interface)  
DDR Bit clock  
1
SDR Bit clock  
D2  
0
Serialization factor selection  
14X Serialization  
1
16X Serialization  
D4  
0
Bit clock capture edge (only when SDR bit clock is selected, D1 = 1)  
Capture data with falling edge of bit clock  
1
Capture data with rising edge of bit clock  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): ADS6445-EP  
 
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
D5  
0
<COARSE GAIN>Coarse gain control  
0 dB Coarse gain (full-scale range = 2.0 VPP  
)
1
3.5 dB Coarse gain (full-scale range = 1.34 VPP)  
D6  
0
MSB or LSB First selection  
MSB First  
1
LSB First  
D7  
0
Byte/bit wise outputs (only when 2-wire is selected)  
Byte wise  
Bit wise  
1
D10  
<OVRD> Over-ride bit. All the functions in register 0x0D also can be controlled using the  
parallel control pins. By setting bit <OVRD> = 1, the contents of register 0x0D will over-ride  
the settings of the parallel pins.  
0
1
Disable over-ride  
Enable over-ride  
Table 19. Serial Register G  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<TERM CLK>  
<LVDS CURR>  
LVDS CURRENT SETTINGS  
<LVDS DOUBLE>  
LVDS CURRENT DOUBLE  
10  
LVDS INTERNAL TERMINATION BIT AND WORD CLOCKS  
D0  
0
<CURR DOUBLE> LVDS current double for data outputs  
Nominal LVDS current, as set by <D5…D2>  
Double the nominal value  
1
D1  
0
<CURR DOUBLE> LVDS current double for bit and word clock outputs  
Nominal LVDS current, as set by <D5…D2>  
Double the nominal value  
1
D3-D2  
00  
<LVDS CURR> LVDS current setting for data outputs  
3.5 mA  
4 mA  
01  
10  
2.5 mA  
3 mA  
11  
D5-D4  
00  
<LVDS CURR> LVDS current setting for bit and word clock outputs  
3.5 mA  
4 mA  
01  
10  
2.5 mA  
3 mA  
11  
D10-D6  
00000  
00001  
<TERM CLK> LVDS internal termination for bit and word clock outputs  
No internal termination  
166  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
00010  
00100  
01000  
10000  
200 Ω  
250 Ω  
333 Ω  
500 Ω  
Any combination of above bits also can be programmed, resulting in a parallel combination of  
the selected values. For example, 00101 is the parallel combination of 166||250 = 100 Ω  
00101  
100 Ω  
Table 20. Serial Register H  
REGISTER  
ADDRESS  
BITS  
A4 - A0  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
<TERM DATA>  
LVDS INTERNAL TERMINATION - DATA OUTPUTS  
11  
WORD-WISE CONTROL  
0
0
0
0
D4-D0  
00000  
00001  
00010  
00100  
01000  
10000  
<TERM DATA> LVDS internal termination for data outputs  
No internal termination  
166 Ω  
200 Ω  
250 Ω  
333 Ω  
500 Ω  
Any combination of above bits can also be programmed, resulting in a parallel combination  
of the selected values. For example, 00101 is the parallel combination of 166||250 = 100 Ω  
00101  
100 Ω  
D10-D9  
00  
Only when 2-wire interface is selected  
Byte-wise or bit-wise output, 1x frame clock  
Word-wise output enabled, 0.5x frame clock  
Do not use  
11  
01,10  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
PIN CONFIGURATION (2-WIRE INTERFACE)  
ADS644x  
RGC PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
DA1_P  
DA1_M  
DA0_P  
DA0_M  
CAP  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DD0_M  
DD0_P  
DD1_M  
DD1_P  
SCLK  
2
3
4
5
RESET  
LVDD  
6
SDATA  
SEN  
7
AGND  
AVDD  
AGND  
INA_M  
INA_P  
AGND  
INB_M  
INB_P  
AGND  
8
PDN  
PAD  
9
AVDD  
AGND  
IND_M  
IND_P  
AGND  
INC_M  
INC_P  
AGND  
10  
11  
12  
13  
14  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
P0056-04  
PIN ASSIGNMENTS (2-WIRE INTERFACE)  
PINS  
I/O  
NO. OF PINS  
DESCRIPTION  
NAME  
NO.  
SUPPLY AND GROUND PINS  
9, 17, 19,  
AVDD  
6
Analog power supply  
Analog ground  
27, 32, 40  
8, 10, 13,  
16, 18, 23,  
26, 31, 33,  
AGND  
11  
36, 39  
LVDD  
7, 49, 64  
54, 59  
3
2
Digital power supply  
Digital ground  
LGND  
INPUT PINS  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
PIN ASSIGNMENTS (2-WIRE INTERFACE) (continued)  
PINS  
I/O  
NO. OF PINS  
DESCRIPTION  
NAME  
NO.  
CLKP,  
CLKM  
24, 25  
I
I
I
I
I
2
2
2
2
Differential input clock pair  
INA_P,  
INA_M  
Differential input signal pair, channel A. If unused, the pins should be tied  
to VCM. Do not float.  
12, 11  
15, 14  
34, 35  
INB_P,  
INB_M  
Differential input signal pair, channel B. If unused, the pins should be tied  
to VCM. Do not float.  
INC_P,  
INC_M  
Differential input signal pair, channel C If unused, the pins should be tied  
to VCM. Do not float.  
IND_P,  
IND_M  
Differential input signal pair, channel D. If unused, the pins should be tied  
to VCM. Do not float.  
37, 38  
5
2
1
CAP  
Connect 2-nF capacitor from pin to ground  
This pin functions as serial interface clock input when RESET is low.  
When RESET is high, it controls DESKEW, SYNC and global POWER  
DOWN modes (along with SDATA). Refer to Table 5 for description.  
This pin has an internal pull-down resistor.  
SCLK  
44  
43  
42  
I
I
I
1
1
1
This pin functions as serial interface data input when RESET is low.  
When RESET is high, it controls DESKEW, SYNC and global POWER  
DOWN modes (along with SCLK). Refer to Table 5 for description.  
This pin has an internal pull-down resistor.  
SDATA  
SEN  
This pin functions as serial interface enable input when RESET is low.  
When RESET is high, it controls coarse gain and internal/external  
reference modes. Refer to Table 6 for description.  
This pin has an internal pull-up resistor.  
Serial interface reset input.  
When using the serial interface  
mode, the user MUST initialize  
internal registers through  
hardware RESET by applying a  
high-going pulse on this pin or by  
using software reset option.  
Refer to the Seri1al Interface  
section. In parallel interface  
mode, tie RESET permanently  
high. (SCLK, SDATA and SEN  
function as parallel control pins in  
this mode).  
RESET  
6
I
The pin has an internal pull-down  
resistor to ground.  
PDN  
41  
30  
I
I
1
Global power down control pin.  
Parallel input pin. It controls 1-wire or 2-wire interface and DDR or SDR  
bit clock selection. Refer to Table 8 for description.  
CFG1  
1
Tie to AVDD for 2-wire interface with DDR bit clock.  
Parallel input pin. It controls 14x or 16x serialization and SDR bit clock  
capture edge. Refer to Table 9 for description.  
CFG2  
29  
I
1
For 14x serialization with DDR bit clock, tie to ground or AVDD.  
CFG3  
CFG4  
28  
21  
I
I
1
1
RESERVED pin - Tie to ground.  
Parallel input pin. It controls data format and MSB or LSB first modes.  
Refer to Table 11 for description.  
Internal reference mode – common-mode voltage output  
External reference mode – reference input. The voltage forced on this  
pin sets the internal reference.  
VCM  
22  
I/O  
1
OUTPUT PINS  
DA0_P,D  
A0_M  
3, 4  
1, 2  
O
O
2
2
Channel A differential LVDS data output pair, wire 0  
Channel A differential LVDS data output pair, wire 1  
DA1_P,D  
A1_M  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
PIN ASSIGNMENTS (2-WIRE INTERFACE) (continued)  
PINS  
I/O  
NO. OF PINS  
DESCRIPTION  
NAME  
NO.  
DB0_P,D  
B0_M  
62, 63  
O
O
O
O
O
O
O
O
2
2
2
2
2
2
2
Channel B differential LVDS data output pair, wire 0  
Channel B differential LVDS data output pair, wire 1  
Channel C differential LVDS data output pair, wire 0  
Channel C differential LVDS data output pair, wire 1  
Channel D differential LVDS data output pair, wire 0  
Channel D differential LVDS data output pair, wire 1  
Differential bit clock output pair  
DB1_P,D  
B1_M  
60, 61  
52, 53  
50, 51  
47, 48  
45, 46  
57, 58  
DC0_P,D  
C0_M  
DC1_P,D  
C1_M  
DD0_P,D  
D0_M  
DD1_P,D  
D1_M  
DCLKP,  
DCLKM  
FCLKP,F  
CLKM  
55, 56  
20  
2
1
1
Differential frame clock output pair  
Do Not Connect  
NC  
Connect to ground plane using multiple vias. Refer to Board Design  
Considerations section.  
PAD  
0
24  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
PIN CONFIGURATION (1-WIRE INTERFACE)  
ADS644x  
RGC PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
CAP  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
SCLK  
2
3
4
5
RESET  
LVDD  
6
SDATA  
SEN  
7
AGND  
8
PDN  
PAD  
AVDD  
9
AVDD  
AGND  
10  
11  
12  
13  
14  
15  
16  
AGND  
IND_M  
IND_P  
AGND  
INC_M  
INC_P  
AGND  
INA_M  
INA_P  
AGND  
INB_M  
INB_P  
AGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
P0056-05  
PIN ASSIGNMENTS (1-WIRE INTERFACE)  
PINS  
NO. OF  
PINS  
I/O  
DESCRIPTION  
NAME  
NO.  
SUPPLY AND GROUND PINS  
9, 17, 19, 27,  
AVDD  
32, 40  
6
Analog power supply  
Analog ground  
8, 10, 13, 16,  
18, 23, 26, 31,  
33, 36, 39  
AGND  
11  
LVDD  
7, 49, 64  
54, 59  
3
2
Digital power supply  
Digital ground  
LGND  
INPUT PINS  
CLKP, CLKM  
24, 25  
I
2
Differential input clock pair  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
PIN ASSIGNMENTS (1-WIRE INTERFACE) (continued)  
PINS  
NO. OF  
PINS  
I/O  
DESCRIPTION  
NAME  
NO.  
Differential input signal pair, channel A. If unused, the pins should be tied to VCM. Do  
not float.  
INA_P, INA_M  
12, 11  
I
I
I
I
2
2
2
Differential input signal pair, channel B. If unused, the pins should be tied to VCM. Do  
not float.  
INB_P, INB_M  
INC_P, INC_M  
15, 14  
34, 35  
Differential input signal pair, channel C. If unused, the pins should be tied to VCM. Do  
not float.  
Differential input signal pair, channel D. If unused, the pins should be tied to VCM. Do  
not float.  
IND_P, IND_M  
CAP  
37, 38  
5
2
1
Connect 2 nF capacitance from pin to ground  
This pin functions as serial interface clock input when RESET is low.  
When RESET is high, it controls DESKEW, SYNC and global POWER DOWN  
modes (along with SDATA). Refer to Table 5 for description.  
This pin has an internal pull-down resistor.  
SCLK  
SDATA  
SEN  
44  
43  
42  
I
I
I
1
1
1
This pin functions as serial interface data input when RESET is low.  
When RESET is high, it controls DESKEW, SYNC and global POWER DOWN  
modes (along with SCLK). Refer to Table 5 for description.  
This pin has an internal pull-down resistor.  
This pin functions as serial interface enable input when RESET is low.  
When RESET is high, it controls coarse gain and internal/external reference modes.  
Refer to Table 6 for description.  
This pin has an internal pull-up resistor.  
Serial interface reset input.  
When using the serial interface mode, the user MUST initialize internal registers  
through hardware RESET by applying a high-going pulse on this pin or by using  
software reset option. Refer to the Serial Interface section. In parallel interface mode,  
tie RESET permanently high. (SCLK, SDATA and SEN function as parallel control  
pins in this mode).  
RESET  
6
I
1
The pin has an internal pull-down resistor to ground.  
Global power down control pin.  
PDN  
41  
30  
I
I
1
1
Parallel input pin. It controls 1-wire or 2-wire interface and DDR or SDR bit clock  
selection. Refer to Table 8 for description.  
CFG1  
Tie to ground for 1-wire interface with DDR bit clock.  
Parallel input pin. It controls 14x or 16x serialization and SDR bit clock capture edge.  
Refer to Table 9 for description.  
CFG2  
29  
I
1
For 14x serialization with DDR bit clock, tie to ground or AVDD.  
CFG3  
CFG4  
28  
21  
I
I
1
1
RESERVED pin - Tie to ground.  
Parallel input pin. It controls data format and MSB or LSB first modes. Refer to  
Table 11 for description.  
Internal reference mode – common-mode voltage output  
External reference mode – reference input. The voltage forced on this pin sets the  
internal reference.  
VCM  
22  
I/O  
1
OUTPUT PINS  
DA_P,DA_M  
DB_P,DB_M  
DC_P,DC_M  
DD_P,DD_M  
62, 63  
60, 61  
52, 53  
50, 51  
57, 58  
55, 56  
1–4, 45–48  
20  
O
O
O
O
O
O
2
2
2
2
2
2
8
1
Channel A differential LVDS data output pair  
Channel B differential LVDS data output pair  
Channel C differential LVDS data output pair  
Channel D differential LVDS data output pair  
Differential bit clock output pair  
DCLKP,DCLKM  
FCLKP,FCLKM  
UNUSED  
Differential frame clock output pair  
These pins are unused in the 1-wire interface. Do not connect  
Do not connect  
NC  
Connect to ground plane using multiple vias. Refer to Board Design Considerations in  
the application section.  
PAD  
0
1
26  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
TYPICAL CHARACTERISTICS  
All plots are at 25°C, AVDD = LVDD = 3.3 V, maximum rated sampling frequency, sine wave input clock, 1.5 VPP differential  
clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain (unless  
otherwise noted)  
ADS6445 (Fsrated = 125 MSPS)  
FFT for 10 MHz INPUT SIGNAL  
FFT for 100 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 88 dBc  
SINAD = 74 dBFS  
SNR = 74.3 dBFS  
THD = 87.6 dBc  
SFDR = 86 dBc  
SINAD = 72.63 dBFS  
SNR = 72.76 dBFS  
THD = 85 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
f − Frequency − MHz  
f − Frequency − MHz  
G001  
G002  
Figure 6.  
Figure 7.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 77.9 dBc  
f
f
1 = 185.1 MHz, –7 dBFS  
2 = 190.1 MHz, –7 dBFS  
2-Tone IMD = –86 dBFS  
SFDR = –95 dBFS  
IN  
SINAD = 68 dBFS  
SNR = 69.2 dBFS  
THD = 75.3 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
f − Frequency − MHz  
f − Frequency − MHz  
G003  
G004  
Figure 8.  
Figure 9.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
75  
74  
73  
72  
71  
70  
69  
68  
67  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G005  
G006  
Figure 10.  
Figure 11.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ADS6445 (Fsrated = 125 MSPS) (continued)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Input adjusted to get −1dBFS input  
6 dB  
0 dB  
3.5 dB  
2 dB  
1 dB  
4 dB  
5 dB  
3 dB  
3 dB  
2 dB  
4 dB  
5 dB  
6 dB  
0 dB  
1 dB  
10 30 50 70 90 110 130 150 170 190 210 230  
20  
40  
60  
80 100 120 140 160 180 200 220  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G007  
G008  
Figure 12.  
Figure 13.  
PERFORMANCE vs AVDD  
PERFORMANCE vs LVDD  
98  
94  
90  
86  
82  
78  
75  
74  
73  
72  
71  
70  
88  
86  
84  
82  
80  
78  
76  
74  
72  
78  
77  
76  
75  
74  
73  
72  
71  
70  
f
= 50.1 MHz  
f
= 50.1 MHz  
IN  
IN  
SFDR  
AV = 3.3 V  
DD  
LV = 3.3 V  
DD  
SNR  
SNR  
SFDR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
LV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G010  
G009  
Figure 14.  
Figure 15.  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
86  
84  
82  
80  
78  
76  
74  
77  
76  
75  
74  
73  
72  
71  
110  
100  
90  
78  
77  
76  
75  
74  
73  
72  
71  
70  
SFDR (dBFS)  
SFDR  
80  
SNR (dBFS)  
70  
SNR  
60  
50  
SFDR (dBc)  
40  
f
IN  
= 50.1 MHz  
f
IN  
= 20 MHz  
−10 0  
30  
−60  
−50  
−40  
−30  
−20  
−40  
−20  
0
20  
40  
60  
80  
Input Amplitude − dBFS  
T − Temperature − °C  
G012  
G011  
Figure 16.  
Figure 17.  
28  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ADS6445 (Fsrated = 125 MSPS) (continued)  
PERFORMANCE vs CLOCK AMPLITUDE (differential)  
PERFORMANCE vs CLOCK DUTY CYCLE  
90  
89  
88  
87  
86  
85  
84  
78  
77  
76  
75  
74  
73  
72  
86  
84  
82  
80  
78  
76  
74  
72  
77  
f
IN  
= 50.1 MHz  
SFDR  
76  
75  
74  
73  
72  
71  
70  
SFDR  
SNR  
SNR  
f
IN  
= 20.1 MHz  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
35  
40  
45  
50  
55  
60  
65  
Input Clock Amplitude − V  
Input Clock Duty Cycle − %  
PP  
G013  
G014  
Figure 18.  
Figure 19.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
POWER DISSIPATION vs SAMPLING FREQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
RMS (LSB) = 1.064  
35  
30  
25  
20  
15  
10  
5
AVDD  
LVDD  
0
8187 8188 8189 8190 8191 8192 8193 8194 8195 8196  
0
25  
50  
75  
100  
125  
f
S
− Sampling Frequency − MSPS  
G015  
Output Code  
G016  
Figure 20.  
Figure 21.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
CMRR vs FREQUENCY  
94  
92  
90  
88  
86  
84  
78  
0
f
= 50.1 MHz  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
External Reference Mode  
76  
74  
72  
70  
68  
SNR  
SFDR  
0
50  
100  
150  
200  
250  
300  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
f − Frequency − MHz  
V
VCM  
− VCM Voltage − V  
G018  
G017  
Figure 22.  
Figure 23.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ADS6444 (Fsrated = 105 MSPS)  
FFT for 10 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 91.2 dBc  
SFDR = 81.2 dBc  
SINAD = 73.9 dBFS  
SNR = 74.1 dBFS  
THD = 89.7 dBc  
SINAD = 71.6 dBFS  
SNR = 72.6 dBFS  
THD = 79.9 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
G019  
G020  
Figure 24.  
Figure 25.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 81 dBc  
SINAD = 68.6 dBFS  
SNR = 69 dBFS  
THD = 79 dBc  
f
f
1 = 185.1 MHz, –7 dBFS  
2 = 190.1 MHz, –7 dBFS  
IN  
IN  
−20  
−40  
2-Tone IMD = –88 dBFS  
SFDR = –89 dBFS  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
f − Frequency − MHz  
f − Frequency − MHz  
G021  
G022  
Figure 26.  
Figure 27.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
Gain = 3.5 dB  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 0 dB  
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G023  
G024  
Figure 28.  
Figure 29.  
30  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ADS6444 (Fsrated = 105 MSPS) (continued)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Input adjusted to get −1dBFS input  
0 dB  
3.5 dB  
4 dB  
5 dB  
1 dB  
2 dB  
3 dB  
3 dB  
6 dB  
2 dB  
1 dB  
0 dB  
4 dB  
5 dB  
6 dB  
10 30 50 70 90 110 130 150 170 190 210 230  
20  
40  
60  
80 100 120 140 160 180 200 220  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G025  
G026  
Figure 30.  
Figure 31.  
PERFORMANCE vs AVDD  
PERFORMANCE vs LVDD  
98  
94  
90  
86  
82  
78  
75  
74  
73  
72  
71  
70  
88  
86  
84  
82  
80  
78  
76  
74  
72  
78  
f
= 70.1 MHz  
f
= 70.1 MHz  
IN  
IN  
77  
76  
75  
74  
73  
72  
71  
70  
AV = 3.3 V  
DD  
LV = 3.3 V  
DD  
SFDR  
SNR  
SFDR  
SNR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
LV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G028  
G027  
Figure 32.  
Figure 33.  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
86  
84  
82  
80  
78  
76  
74  
77  
76  
75  
74  
73  
72  
71  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBFS)  
SFDR  
SNR  
80  
SNR (dBFS)  
70  
60  
50  
SFDR (dBc)  
40  
f
IN  
= 70.1 MHz  
f
IN  
= 20 MHz  
−10 0  
30  
−60  
−40  
−20  
0
20  
40  
60  
80  
−50  
−40  
−30  
−20  
T − Temperature − °C  
Input Amplitude − dBFS  
G029  
G030  
Figure 34.  
Figure 35.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ADS6444 (Fsrated = 105 MSPS) (continued)  
PERFORMANCE vs CLOCK AMPLITUDE (differential)  
PERFORMANCE vs CLOCK DUTY CYCLE  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
93  
91  
89  
87  
85  
83  
76  
75  
74  
73  
72  
71  
f
IN  
= 70.1 MHz  
f
IN  
= 20.1 MHz  
SFDR  
75  
74  
73  
72  
71  
70  
69  
68  
SNR  
SNR  
SFDR  
2.0  
35  
40  
45  
50  
55  
60  
65  
0.5  
1.0  
1.5  
2.5  
3.0  
Input Clock Duty Cycle − %  
Input Clock Amplitude − V  
PP  
G032  
G031  
Figure 36.  
Figure 37.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
POWER DISSIPATION vs SAMPLING FREQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
RMS (LSB) = 1.054  
35  
30  
25  
20  
15  
10  
5
AVDD  
LVDD  
0
8179 8180 8181 8182 8183 8184 8185 8186 8187 8188  
0
20  
40  
60  
80  
100  
f
S
− Sampling Frequency − MSPS  
G033  
Output Code  
G034  
Figure 38.  
Figure 39.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
CMRR vs FREQUENCY  
85  
84  
83  
82  
81  
80  
76  
0
f
= 70.1 MHz  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
External Reference Mode  
74  
72  
70  
68  
66  
SNR  
SFDR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
0
50  
100  
150  
200  
250  
300  
f − Frequency − MHz  
V
VCM  
− VCM Voltage − V  
G018  
G035  
Figure 40.  
Figure 41.  
32  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ADS6443 (Fsrated = 80 MSPS)  
FFT for 10 MHz INPUT SIGNAL  
FFT for 70 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 91 dBc  
SFDR = 85.7 dBc  
SINAD = 74.2 dBFS  
SNR = 74.4 dBFS  
THD = 88.5 dBc  
SINAD = 73 dBFS  
SNR = 73.5 dBFS  
THD = 83.9 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G037  
G038  
Figure 42.  
Figure 43.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 82 dBc  
f
f
1 = 185.1 MHz, –7 dBFS  
2 = 190.1 MHz, –7 dBFS  
2-Tone IMD = –93 dBFS  
SFDR = –98 dBFS  
IN  
SINAD = 69.4 dBFS  
SNR = 69.7 dBFS  
THD = 83.4 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
40  
0
10  
20  
30  
40  
f − Frequency − MHz  
f − Frequency − MHz  
G039  
G040  
Figure 44.  
Figure 45.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 3.5 dB  
Gain = 0 dB  
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G041  
G042  
Figure 46.  
Figure 47.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ADS6443 (Fsrated = 80 MSPS) (continued)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Input adjusted to get −1dBFS input  
4 dB  
2 dB  
1 dB  
5 dB  
3 dB  
3 dB  
3.5 dB  
0 dB  
6 dB  
2 dB  
1 dB  
0 dB  
4 dB  
5 dB  
6 dB  
10 30 50 70 90 110 130 150 170 190 210 230  
20  
40  
60  
80 100 120 140 160 180 200 220  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G043  
G044  
Figure 48.  
Figure 49.  
PERFORMANCE vs AVDD  
PERFORMANCE vs LVDD  
92  
91  
90  
89  
88  
87  
86  
76  
75  
74  
73  
72  
71  
70  
94  
92  
90  
88  
86  
84  
82  
78  
77  
76  
75  
74  
73  
72  
f
= 50.1 MHz  
f
= 50.1 MHz  
IN  
IN  
AV = 3.3 V  
DD  
LV = 3.3 V  
DD  
SNR  
SFDR  
SFDR  
SNR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
LV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G046  
G045  
Figure 50.  
Figure 51.  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
92  
90  
88  
86  
84  
82  
78  
77  
76  
75  
74  
73  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
f
IN  
= 50.1 MHz  
SFDR (dBFS)  
SFDR  
SNR  
80  
SNR (dBFS)  
70  
60  
50  
SFDR (dBc)  
40  
f
IN  
= 20 MHz  
−10 0  
30  
−60  
−50  
−40  
−30  
−20  
−40  
−20  
0
20  
40  
60  
80  
Input Amplitude − dBFS  
T − Temperature − °C  
G048  
G047  
Figure 52.  
Figure 53.  
34  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ADS6443 (Fsrated = 80 MSPS) (continued)  
PERFORMANCE vs CLOCK AMPLITUDE (differential)  
PERFORMANCE vs CLOCK DUTY CYCLE  
92  
90  
88  
86  
84  
82  
80  
78  
76  
78  
76  
75  
74  
73  
72  
71  
92  
90  
88  
86  
84  
82  
f
IN  
= 50.1 MHz  
77  
76  
75  
74  
73  
72  
71  
70  
SFDR  
SFDR  
SNR  
SNR  
f
IN  
= 20.1 MHz  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
35  
40  
45  
50  
55  
60  
65  
Input Clock Amplitude − V  
Input Clock Duty Cycle − %  
PP  
G049  
G050  
Figure 54.  
Figure 55.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
POWER DISSIPATION vs SAMPLING FREQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
RMS (LSB) = 1.016  
35  
30  
25  
20  
15  
10  
5
AVDD  
LVDD  
0
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189  
0
20  
40  
60  
80  
f
S
− Sampling Frequency − MSPS  
G051  
Output Code  
G052  
Figure 56.  
Figure 57.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
CMRR vs FREQUENCY  
96  
94  
92  
90  
88  
86  
76  
0
f
= 50.1 MHz  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
External Reference Mode  
74  
72  
70  
68  
66  
SNR  
SFDR  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
0
50  
100  
150  
200  
250  
300  
f − Frequency − MHz  
V
VCM  
− VCM Voltage − V  
G018  
G053  
Figure 58.  
Figure 59.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ADS6442 (Fsrated = 65 MSPS)  
FFT for 10 MHz INPUT SIGNAL  
FFT for 50 MHz INPUT SIGNAL  
0
−20  
0
−20  
SFDR = 92.4 dBc  
SFDR = 88.8 dBc  
SINAD = 74.3 dBFS  
SNR = 74.5 dBFS  
THD = 90 dBc  
SINAD = 73.6 dBFS  
SNR = 73.9 dBFS  
THD = 86.6 dBc  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
0
0
0
10  
20  
30  
0
10  
20  
30  
f − Frequency − MHz  
f − Frequency − MHz  
G055  
G056  
Figure 60.  
Figure 61.  
FFT for 230 MHz INPUT SIGNAL  
INTERMODULATION DISTORTION (IMD) vs FREQUENCY  
0
−20  
0
SFDR = 82.1 dBc  
f
f
1 = 185.1 MHz, –7 dBFS  
2 = 190.1 MHz, –7 dBFS  
2-Tone IMD = –96 dBFS  
SFDR = –86 dBFS  
IN  
SINAD = 69.3 dBFS  
SNR = 69.7 dBFS  
THD = 81.2 dBc  
IN  
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−100  
−120  
−140  
−160  
10  
20  
30  
0
10  
20  
30  
f − Frequency − MHz  
f − Frequency − MHz  
G057  
G058  
Figure 62.  
Figure 63.  
SFDR vs INPUT FREQUENCY  
SNR vs INPUT FREQUENCY  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
Gain = 0 dB  
Gain = 3.5 dB  
Gain = 3.5 dB  
Gain = 0 dB  
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G059  
G060  
Figure 64.  
Figure 65.  
36  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
ADS6442 (Fsrated = 65 MSPS) (continued)  
SFDR vs INPUT FREQUENCY ACROSS GAINS  
SINAD vs INPUT FREQUENCY ACROSS GAINS  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Input adjusted to get −1dBFS input  
5 dB  
3.5 dB  
1 dB  
2 dB  
3 dB  
4 dB  
3 dB  
0 dB  
6 dB  
1 dB  
4 dB  
2 dB  
5 dB  
6 dB  
0 dB  
10 30 50 70 90 110 130 150 170 190 210 230  
20  
40  
60  
80 100 120 140 160 180 200 220  
f
IN  
− Input Frequency − MHz  
f
IN  
− Input Frequency − MHz  
G061  
G062  
Figure 66.  
Figure 67.  
PERFORMANCE vs AVDD  
PERFORMANCE vs LVDD  
92  
91  
90  
89  
88  
87  
86  
76  
75  
74  
73  
72  
71  
70  
94  
92  
90  
88  
86  
84  
82  
78  
77  
76  
75  
74  
73  
72  
f
= 50.1 MHz  
f
= 50.1 MHz  
IN  
IN  
AV = 3.3 V  
DD  
LV = 3.3 V  
DD  
SNR  
SFDR  
SFDR  
SNR  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
LV − Supply Voltage − V  
DD  
AV − Supply Voltage − V  
DD  
G064  
G063  
Figure 68.  
Figure 69.  
PERFORMANCE vs TEMPERATURE  
PERFORMANCE vs INPUT AMPLITUDE  
96  
94  
92  
90  
88  
86  
84  
79  
78  
77  
76  
75  
74  
73  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR  
SFDR (dBFS)  
80  
SNR (dBFS)  
70  
60  
SNR  
50  
SFDR (dBc)  
40  
f
IN  
= 50.1 MHz  
f
IN  
= 20 MHz  
−10 0  
30  
−60  
−40  
−20  
0
20  
40  
60  
80  
−50  
−40  
−30  
−20  
T − Temperature − °C  
Input Amplitude − dBFS  
G065  
G066  
Figure 70.  
Figure 71.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
ADS6442 (Fsrated = 65 MSPS) (continued)  
PERFORMANCE vs CLOCK AMPLITUDE (differential)  
PERFORMANCE vs CLOCK DUTY CYCLE  
96  
94  
92  
90  
88  
86  
84  
82  
80  
80  
95  
93  
91  
89  
87  
85  
76  
75  
74  
73  
72  
71  
f
IN  
= 50.1 MHz  
79  
78  
77  
76  
75  
74  
73  
72  
SFDR  
SFDR  
SNR  
SNR  
f
IN  
= 20.1 MHz  
35  
40  
45  
50  
55  
60  
65  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Input Clock Duty Cycle − %  
Input Clock Amplitude − V  
PP  
G068  
G067  
Figure 72.  
Figure 73.  
OUTPUT NOISE HISTOGRAM WITH  
INPUTS TIED TO COMMON-MODE  
POWER DISSIPATION vs SAMPLING FREQUENCY  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
RMS (LSB) = 1.027  
35  
30  
25  
20  
15  
10  
5
AVDD  
LVDD  
0
8189 8190 8191 8192 8193 8194 8195 8196 8197  
0
10  
20  
30  
40  
50  
60  
f
S
− Sampling Frequency − MSPS  
G069  
Output Code  
G070  
Figure 74.  
Figure 75.  
PERFORMANCE IN EXTERNAL REFERENCE MODE  
CMRR vs FREQUENCY  
96  
94  
92  
90  
88  
86  
76  
0
f
= 50.1 MHz  
IN  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
External Reference Mode  
74  
72  
70  
68  
66  
SNR  
SFDR  
0
50  
100  
150  
200  
250  
300  
1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70  
f − Frequency − MHz  
V
VCM  
− VCM Voltage − V  
G018  
G071  
Figure 76.  
Figure 77.  
38  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
Contour Plots across Input and Sampling Frequencies  
125  
65  
92  
89  
86  
80  
83  
120  
110  
100  
90  
86  
80  
83  
74  
89  
68  
71  
77  
83  
86  
86  
80  
83  
86  
80  
74  
68  
71  
77  
89  
70  
80  
65  
60  
83  
50  
89  
68  
71  
77  
40  
74  
350  
86  
80  
83  
150  
65  
500  
30  
10  
50  
100  
200  
250  
300  
400  
450  
fIN - Input Frequency - MHz  
75 80  
65  
70  
85  
90  
SFDR - dBc  
M0049-13  
Figure 78. SFDR Contour (no gain)  
125  
120  
85  
79  
91  
88  
76  
70  
82  
110  
100  
90  
91  
88  
73  
88  
79  
85  
94  
82  
76  
82  
88  
80  
70  
91  
67  
73  
70  
79  
85  
60  
88  
76  
50  
70  
82  
40  
91  
65  
79  
250  
73  
85  
150  
76  
300  
30  
10  
50  
100  
200  
350  
400  
450  
500  
fIN - Input Frequency - MHz  
80  
70  
75  
85  
90  
SFDR - dBc  
M0049-14  
Figure 79. SFDR Contour (3.5 dB coarse gain)  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Contour Plots across Input and Sampling Frequencies (continued)  
125  
68  
64  
120  
110  
100  
90  
67  
65  
72  
66  
73  
74  
70  
69  
71  
66  
64  
65  
67  
68  
80  
71  
69  
72  
70  
70  
73  
74  
60  
66  
65  
64  
50  
67  
66  
40  
69  
68  
72  
70  
73  
71  
64  
74  
65  
70  
63  
62  
30  
10  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
75  
fIN - Input Frequency - MHz  
60  
65  
SNR - dBFS  
M0048-13  
Figure 80. SNR Contour (no gain)  
125  
120  
110  
100  
90  
67  
66  
72  
65  
68  
69  
71  
70  
67  
71  
68  
80  
65  
72  
70  
69  
66  
64  
70  
60  
50  
71  
67  
72  
69  
40  
65  
64  
64  
66  
63  
68  
70  
62  
63  
61  
30  
10  
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
fIN - Input Frequency - MHz  
60  
62  
64  
66  
68  
70  
72  
SNR - dBFS  
M0048-14  
Figure 81. SNR Contour (3.5 dB coarse gain)  
40  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
APPLICATION INFORMATION  
THEORY OF OPERATION  
The ADS6445/ADS6444/ADS6443/ADS6442 (ADS644X) is a family of quad channel, 14 bit pipeline ADC based  
on switched capacitor architecture in CMOS technology.  
The conversion is initiated simultaneously by all the four channels at the rising edge of the external input clock.  
After the input signals are captured by the sample and hold circuit of each channel, the samples are sequentially  
converted by a series of low resolution stages. The stage outputs are combined in a digital correction logic block  
to form the final 14 bit word with a latency of 12 clock cycles. The 14 bit word of each channel is serialized and  
output as LVDS levels. In addition to the data streams, a bit clock and frame clock also are output. The frame  
clock is aligned with the 14 bit word boundary.  
ANALOG INPUT  
The analog input consists of a switched-capacitor based differential sample and hold architecture, shown in  
Figure 82. This differential topology results in very good AC performance even for high input frequencies. The  
INP and INM pins have to be externally biased around a common-mode voltage of 1.5 V, available on VCM pin  
13. For a full-scale differential input, each input pin INP, INM has to swing symmetrically between VCM + 0.5 V  
and VCM – 0.5 V, resulting in a 2 VPP differential input swing. The maximum swing is determined by the internal  
reference voltages REFP (2.0 V nominal) and REFM (1.0 V, nominal). The sampling circuit has a 3 dB bandwidth  
that extends up to 500 MHz (see Figure 83, shown by the transfer function from the analog input pins to the  
voltage across the sampling capacitors, TF_ADC).  
Sampling  
Switch  
Sampling  
Capacitor  
Lpkg  
3 nH  
RCR Filter  
25 W  
INP  
Ron  
Cpar2  
1 pF  
Cbond  
2 pF  
Csamp  
15 W  
50 W  
4.0 pF  
Resr  
200 W  
3.2 pF  
Cpar1  
0.8 pF  
Ron  
10 W  
Csamp  
Lpkg  
3 nH  
50 W  
Ron  
4.0 pF  
25 W  
15 W  
INM  
Cpar2  
1 pF  
Cbond  
2 pF  
Sampling  
Capacitor  
Resr  
200 W  
Sampling  
Switch  
S0237-01  
Figure 82. Input Sampling Circuit  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
1
0
−1  
−2  
−3  
−4  
−5  
−6  
0
100  
200  
300  
400  
500  
600  
700  
f
IN  
− Input Frequency − MHz  
G073  
Figure 83. Analog Input Bandwidth (represented by magnitude of TF_ADC, see Figure 85 )  
Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially. This improves the common-mode  
noise immunity and even order harmonic rejection.  
A 5 resistor in series with each input pin is recommended to damp out ringing caused by the package  
parasitics. It is also necessary to present low impedance (< 50 ) for the common mode switching currents. For  
example, this is achieved by using two resistors from each input terminated to the common mode voltage (VCM).  
In addition to the above, the drive circuit may have to be designed to provide a low insertion loss over the  
desired frequency range and matched impedance to the source. While doing this, the ADC input impedance has  
to be taken into account. Figure 84 shows that the impedance (Zin, looking into the ADC input pins) decreases at  
high input frequencies. The Smith chart shows that the input impedance is capacitive and can be approximated  
by a series R-C up to 500 MHz.  
42  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
F1  
Freq = 50 MHz  
S(1, 1) = 0.967 / –13.241  
Impedance = 62.211 – j421.739  
1000  
F1  
900  
Frequency = 50 MHz  
Mag(Zin1) = 426.302  
800  
700  
600  
500  
400  
300  
200  
100  
0
F2  
Frequency = 400 MHz  
Mag(Zin1) = 65.193  
F1  
F2  
F1  
F2  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
fI -- Input Frequency -- MHz  
Frequency (100 kHz to 500 MHz)  
F2  
Freq = 400 MHz  
S(1, 1) = 0.273 / –59.329  
Impedance = 58.132 – j29.510  
M0087-01  
Figure 84. ADC Input Impedance, Zin  
Using RF-Transformers Based Drive Circuits  
Figure 85 shows a configuration using a single 1:1 turns ratio transformer (for example, Coilcraft WBC1-1) that  
can be used for low input frequencies up to 100 MHz.  
The single-ended signal is fed to the primary winding of the RF transformer. The transformer is terminated on the  
secondary side. Putting the termination on the secondary side helps to shield the kickbacks caused by the  
sampling circuit from the RF transformer’s leakage inductances. The termination is accomplished by two resistors  
connected in series, with the center point connected to the 1.5 V common mode (VCM pin). The value of the  
termination resistors (connected to common mode) has to be low (< 100 ) to provide a low-impedance path for  
the ADC common-mode switching current.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
TF_ADC  
ADS6xxx  
0.1 mF  
5 W  
INP  
25 W  
0.1 mF  
25 W  
INM  
5 W  
1:1  
VCM  
S0256-01  
Figure 85. Single Transformer Drive Circuit  
At high input frequencies, the mismatch in the transformer parasitic capacitance (between the windings) results  
in degraded even-order harmonic performance. Connecting two identical RF transformers back-to-back helps  
minimize this mismatch, and good performance is obtained for high frequency input signals. Figure 86 shows an  
example using two transformers (like Coilcraft WBC1-1). An additional termination resistor pair (enclosed within  
the shaded box in Figure 86) may be required between the two transformers to improve the balance between the  
P and M sides. The center point of this termination must be connected to ground.  
ADS6xxx  
0.1 µF  
5 Ω  
INP  
50 Ω  
50 Ω  
0.1 µF  
50 Ω  
50 Ω  
INM  
5 Ω  
1:1  
1:1  
VCM  
S0164-04  
Figure 86. Two Transformer Drive Circuit  
44  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
Using Differential Amplifier Drive Circuits  
Figure 87 shows a drive circuit using a differential amplifier (TI's THS4509) to convert a single-ended input to  
differential output that can be interfaced to the ADC input pins. In addition to the single-ended to differential  
conversion, the amplifier also provides gain (10 dB in Figure 87). As shown in the figure, RFIL helps to isolate the  
amplifier output from the switching inputs of the ADC. Together with CFIL, it also forms a low-pass filter that  
bandlimits the noise (and signal) at the ADC input. As the amplifier outputs are ac-coupled, the common-mode  
voltage of the ADC input spins is set using two resistors connected to VCM.  
The amplifier outputs also can be dc-coupled. Using the output common-mode control of the THS4509, the ADC  
input pins can be biased to 1.5 V. In this case, use +4 V and -1 V supplies for the THS4509 to ensure that it's  
output common-mode voltage (1.5 V) is at mid-supply.  
RF  
+VS  
0.1 mF  
RFIL  
500 W  
5 W  
0.1 mF 10 mF  
0.1 mF  
INP  
RS  
RG  
CFIL  
200 W  
0.1 mF  
RT  
CM THS4509  
RG  
200 W  
5 W  
CFIL  
RFIL  
INM  
0.1 mF  
500 W  
RS || RT  
VCM ADS6xxx  
0.1 mF  
–VS  
0.1 mF 10 mF  
0.1 mF  
RF  
S0259-01  
Figure 87. Drive Circuit Using THS4509  
Refer to the EVM User Guide (SLAU196) for more information.  
INPUT COMMON MODE  
To ensure a low-noise common-mode reference, the VCM pin is filtered with a 0.1 µF low-inductance capacitor  
connected to ground. The VCM pin is designed to directly drive the ADC inputs. The input stage of the ADC  
sinks a common-mode current in the order of 155 µA at 125 MSPS (per input pin). Equation 1 describes the  
dependency of the common-mode current and the sampling frequency.  
155 mAxFs  
125 MSPS  
(1)  
This equation helps to design the output capability and impedance of the CM driving circuit accordingly.  
REFERENCE  
The ADS644X has built-in internal references REFP and REFM, requiring no external components. Design  
schemes are used to linearize the converter load seen by the references; this and the on-chip integration of the  
requisite reference capacitors eliminates the need for external decoupling. The full-scale input range of the  
converter can be controlled in the external reference mode as explained below. The internal or external reference  
modes can be selected by programming the register bit <REF> (refer to Table 13).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): ADS6445-EP  
 
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
INTREF  
Internal  
VCM  
Reference  
1 kW  
INTREF  
4 kW  
EXTREF  
REFM  
REFP  
ADS6xxx  
S0165-04  
Figure 88. Reference Section  
Internal Reference  
When the device is in internal reference mode, the REFP and REFM voltages are generated internally.  
Common-mode voltage (1.5 V nominal) is output on VCM pin, which can be used to externally bias the analog  
input pins.  
External Reference  
When the device is in external reference mode, the VCM acts as a reference input pin. The voltage forced on the  
VCM pin is buffered and gained by 1.33 internally, generating the REFP and REFM voltages. The differential  
input  
voltage  
corresponding  
to  
full-scale  
is  
given  
by  
Equation  
2.  
Full−scale differential input pp + (Voltage forced on VCM)   1.33  
(2)  
In this mode, the range of voltage applied on VCM should be 1.45 V to 1.55 V. The 1.5-V common-mode voltage  
to bias the input pins has to be generated externally.  
COARSE GAIN AND PROGRAMMABLE FINE GAIN  
ADS644X includes gain settings that can be used to get improved SFDR performance (compared to 0 dB gain  
mode). The gain settings are 3.5 dB coarse gain and programmable fine gain from 0 dB to 6 dB. For each gain  
setting, the analog input full-scale range scales proportionally, as listed in Table 21.  
The coarse gain is a fixed setting of 3.5 dB and is designed to improve SFDR with little degradation in SNR (as  
seen in Figure 10 and Figure 11). The fine gain is programmable in 1 dB steps from 0 to 6 dB. With fine gain  
also, SFDR improvement is achieved, but at the expense of SNR (there is about 1 dB SNR degradation for every  
1 dB of fine gain).  
46  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
So, the fine gain can be used to trade-off between SFDR and SNR. The coarse gain makes it possible to get  
best SFDR but without losing SNR significantly. At high input frequencies, the gains are especially useful as the  
SFDR improvement is significant with marginal degradation in SINAD.  
The gains can be programmed using the register bits <COARSE GAIN> (refer to Table 18) and <FINE GAIN>  
(refer to Table 17). Note that the default gain after reset is 0 dB.  
Table 21. Full-Scale Range Across Gains  
GAIN, dB  
TYPE  
FULL-SCALE, VPP  
0
3.5  
1
Default (after reset)  
Coarse setting (fixed)  
2
1.34  
1.78  
1.59  
1.42  
1.26  
1.12  
1.00  
2
3
Fine setting (programmable)  
4
5
6
CLOCK INPUT  
The ADS644X clock inputs can be driven differentially (SINE, LVPECL or LVDS) or single-ended (LVCMOS),  
with little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
VCM using internal 5 kresistors as shown in Figure 89. This allows using transformer-coupled drive circuits for  
sine wave clock or ac-coupling for LVPECL, LVDS clock sources (see Figure 90 and Figure 92).  
VCM  
VCM  
5 kW  
5 kW  
CLKP  
CLKM  
ADS6xxx  
S0166-04  
Figure 89. Internal Clock Buffer  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
0.1 mF  
CLKP  
Differential Sine-Wave  
or PECL or LVDS Clock Input  
0.1 mF  
CLKM  
ADS6xxx  
S0167-05  
Figure 90. Differential Clock Driving Circuit  
Figure 91 shows a typical scheme using PECL clock drive from a CDCM7005 clock driver. SNR performance  
with this scheme is comparable with that of a low jitter sine wave clock source.  
VCC  
Reference Clock  
REF_IN  
Y0  
CLKP  
CLKM  
VCC  
Y0B  
CDCM7005  
ADS6xxx  
VCXO  
OUTP  
VCXO_INP  
VCXO_INM  
OUTM  
CTRL  
S0238-02  
Figure 91. PECL Clock Drive Using CDCM7005  
Single-ended CMOS clock can be ac coupled to the CLKP input, with CLKM (pin) connected to ground with a  
0.1-µF capacitor, as shown in Figure 92.  
0.1 mF  
CMOS Clock Input  
CLKP  
0.1 mF  
CLKM  
ADS6xxx  
S0168-07  
Figure 92. Single-Ended Clock Driving Circuit  
48  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
For best performance, the clock inputs have to be driven differentially, reducing susceptibility to common-mode  
noise. For high input frequency sampling, it is recommended to use a clock source with very low jitter. Bandpass  
filtering of the clock source can help reduce the effect of jitter. There is no change in performance with a  
non-50% duty cycle clock input.  
CLOCK BUFFER GAIN  
When using a sinusoidal clock input, the noise contributed by clock jitter improves as the clock amplitude is  
increased. Hence, it is recommended to use large clock amplitude. As shown by Figure 18, use clock amplitude  
greater than 1 VPP to avoid performance degradation.  
In addition, the clock buffer has programmable gain to amplify the input clock to support very low clock  
amplitude. The gain can be set by programming the register bits <CLKIN GAIN> (refer to Table 14) and  
increases monotonically from Gain 0 to Gain 4 settings. Table 22 lists the minimum clock amplitude supported for  
each gain setting.  
Table 22. Minimum Clock Amplitude across gains  
MINIMUM CLOCK AMPLITUDE SUPPORTED  
CLOCK BUFFER GAIN  
mVPP differential  
Gain 0 (minimum gain)  
Gain 1 (default gain)  
Gain 2  
800  
400  
300  
200  
150  
Gain 3  
Gain 4 (highest gain)  
POWER DOWN MODES  
The ADS644X has three power-down modes – global power down, channel standby and input clock stop.  
Global Power Down  
This is a global power-down mode in which almost the entire chip is powered down, including the four ADCs,  
internal references, PLL and LVDS buffers. As a result, the total power dissipation falls to about 77 mW typical  
(with input clock running). This mode can be initiated by setting the register bit <PDN GLOBAL> (refer to  
Table 13). The output data and clock buffers are in high-impedance state.  
The wake-up time from this mode to data becoming valid in normal mode is 100 µs.  
Channel Standby  
In this mode, only the ADC of each channel is powered down and this helps to get very fast wake-up times. Each  
of the four ADCs can be powered down independently using the register bits <PDN CH> (refer to Table 13). The  
output LVDS buffers remain powered up.  
The wake-up time from this mode to data becoming valid in normal mode is 200 clock cycles.  
Input Clock Stop  
The converter enters this mode:  
If the input clock frequency falls below 1 MSPS or  
If the input clock amplitude is less than 400 mVPP, differential with default clock buffer gain setting) at any  
sampling frequency.  
All ADCs and LVDS buffers are powered down and the power dissipation is about 235 mW. The wake-up time  
from this mode to data becoming valid in normal mode is 100 µs.  
Table 23. Power-Down Mode Summary  
AVDD POWER  
(mW)  
LVDD POWER  
(mW)  
POWER-DOWN MODE  
WAKE-UP TIME  
In power-up  
1360  
297  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Table 23. Power-Down Mode Summary (continued)  
AVDD POWER  
(mW)  
LVDD POWER  
(mW)  
POWER-DOWN MODE  
WAKE-UP TIME  
Global power down  
1 Channel in standby  
2 Channels in standby  
3 Channels in standby  
4 Channels in standby  
Input clock stop  
65  
12  
100 µs  
(1)  
(1)  
1115  
297  
200 Clocks  
200 Clocks  
200 Clocks  
200 Clocks  
100 µs  
(1)  
(1)  
825  
297  
(1)  
(1)  
532  
297  
(1)  
(1)  
245  
297  
200  
35  
(1) Sampling frequency = 125 MSPS.  
POWER SUPPLY SEQUENCING  
During power-up, the AVDD and LVDD supplies can come up in any sequence. The two supplies are separated  
inside the device. Externally, they can be driven from separate supplies or from a single supply.  
50  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
DIGITAL OUTPUT INTERFACE  
The ADS644X offers several flexible output options making it easy to interface to an ASIC or an FPGA. Each of  
these options can be easily programmed using either parallel pins or the serial interface.  
The output interface options are:  
• 1-Wire, 1× frame clock, 14× and 16× serialization with DDR bit clock  
• 2-Wire, 1× frame clock, 16× serialization, with DDR and SDR bit clock, byte wise/bit wise/word wise  
• 2-Wire, 1× frame clock, 14× serialization, with SDR bit clock, byte wise/bit wise/word wise  
• 2-Wire, (0.5 x) frame clock, 14× serialization, with DDR bit clock, byte wise/bit wise/word wise  
The maximum sampling frequency, bit clock frequency and output data rate will vary depending on the interface  
options selected (refer to Table 12).  
Table 24. Maximum Recommended Sampling Frequency for Different Output Interface Options  
MAXIMUM  
RECOMMENDED  
SAMPLING  
FREQUENCY,  
MSPS  
BIT CLOCK  
FREQUENCY,  
MHZ  
FRAME CLOCK  
FREQUENCY, MHZ  
SERIAL DATA RATE,  
Mbps  
INTERFACE OPTIONS  
14× Serialization  
65  
65  
455  
520  
65  
65  
910  
1040  
875  
DDR Bit  
clock  
1-Wire  
2-Wire  
2-Wire  
16× Serialization  
14× Serialization  
16× Serialization  
14× Serialization  
16× Serialization  
125  
125  
65  
437.5  
500  
62.5  
125  
65  
DDR Bit  
clock  
1000  
910  
455  
SDR Bit  
clock  
65  
520  
65  
1040  
Each interface option is described in detail in the following sections.  
1-WIRE INTERFACE - 14× AND 16× SERIALIZATION WITH DDR BIT CLOCK  
Here the device outputs the data of each ADC serially on a single LVDS pair (1 wire). The data is available at the  
rising and falling edges of the bit clock (DDR bit clock). The ADC outputs a new word at the rising edge of every  
frame clock, starting with the MSB. Optionally, it can also be programmed to output the LSB first. The data rate is  
14 × sample frequency (14× serialization) and 16 × sample frequency (16× serialization).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Input Clock,  
CLKP/M  
Freq = Fs  
Frame Clock,  
FCLKP  
Freq = 1 × Fs  
Bit Clock – DDR,  
DCLKP/M  
Freq = 7 × Fs  
Output Data  
DA, DB, DC, DD  
Data Rate = 14 × Fs  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D4  
D13 D12  
(D0) (D1)  
D3  
D2  
D1  
(D10) (D11) (D12) (D13)  
D0  
Bit Clock – DDR,  
DCLKP/M  
Freq = 8 × Fs  
Output Data  
DA, DB, DC, DD  
Data Rate = 16 × Fs  
0
0
D13 D12 D11 D10 D9  
D8  
D7  
D6  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D1  
(0)  
D0  
(0) (D0) (D1)  
0
0
D5  
D4  
D3  
(D10) (D11) (D12) (D13)  
D2  
Sample N  
Sample N + 1  
Data Bit in MSB First Mode  
D13  
(D2)  
Data Bit in LSB First Mode  
(1) In 16 Bit serialization, two zero bits are padded to the 14 bit ADC data on the MSB side.  
T0225-02  
Figure 93. 1-Wire Interface  
2-WIRE INTERFACE - 16× SERIALIZATION WITH DDR/SDR BIT CLOCK  
The 2-wire interface is recommended for sampling frequencies above 65 MSPS. In 16× serialization, two zero  
bits are padded to the 14 bit ADC data on the MSB side and the combined 16 bit data is serialized and output  
over two LVDS pairs. The data rate is 8 × Sample frequency since 8 bits are sent on each wire every clock cycle.  
The data is available along with DDR bit clock or optionally with SDR bit clock. Each ADC sample is sent over  
the 2 wires as byte-wise or bit-wise or word-wise.  
Using the 16× serialization makes it possible to upgrade to a 16-bit ADC in the future seamlessly, without  
requiring any modification to the receiver capture logic design.  
52  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
Input Clock,  
CLKP/M  
Freq = Fs  
Frame Clock,  
FCLKP/M  
Freq = 1 ´ Fs  
Bit Clock – SDR,  
DCLKP/M  
Freq = 8 ´ Fs  
Bit Clock – DDR,  
DCLKP/M  
Freq = 4 ´ Fs  
Output Data  
DA0, DB0, DC0, DD0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7)  
D4  
D3  
D2  
D1  
D0  
Output Data  
DA1, DB1, DC1, DD1  
0
(D8) (D9)  
0
D9  
(0)  
D8  
(0)  
0 0  
(D8) (D9)  
D9  
(0)  
D8  
(0)  
D13 D12 D11 D10  
(D10) (D11) (D12) (D13)  
D13 D12 D11 D10  
(D10) (D11) (D12) (D13)  
Data Rate = 8 ´ Fs  
Output Data  
DA0, DB0, DC0, DD0  
0
(D0) (D2) (D4) (D6) (D8)  
D12 D10  
D8  
D6  
D0  
(0)  
0
(D0) (D2) (D4) (D6) (D8)  
D12 D10  
D8  
D6  
D4 D2  
(D10) (D12)  
D4 D2  
(D10) (D12)  
D0  
(0)  
Output Data  
DA1, DB1, DC1, DD1  
0
(D1) (D3) (D5) (D7) (D9)  
D13 D11  
D9  
D7  
D1  
(0)  
0
D13 D11  
(D1) (D3) (D5) (D7) (D9)  
D9  
D7  
D1  
(0)  
D5 D3  
(D11) (D13)  
D5 D3  
(D11) (D13)  
Output Data  
DA0, DB0, DC0, DD0  
0
0
D13 D12 D11 D10  
D9  
D8  
D7  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D6  
D1  
(0)  
D0  
(0)  
D5  
D4  
D3  
(D10) (D11) (D12) (D13)  
D2  
Output Data  
DA1, DB1, DC1, DD1  
0
0
D13 D12 D11 D10  
D9  
D8  
D7  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D6  
D1  
(0)  
D0  
(0)  
D5  
D4  
D3  
(D10) (D11) (D12) (D13)  
D2  
White Cells – Sample N  
Data Bit in MSB First Mode  
Data Bit in LSB First Mode  
D13  
(D3)  
Grey Cells – Sample N + 1  
T0226-02  
Figure 94. 2-Wire Interface 16× Serialization  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
2-WIRE INTERFACE - 14× SERIALIZATION  
The 14 bit ADC data is serialized and output over two LVDS pairs. A frame clock at 1× sample frequency is also  
available with an SDR bit clock. With DDR bit clock option, the frame clock frequency is 0.5× sample frequency.  
The output data rate will be 7 × sample frequency as 7 data bits are output every clock cycle on each wire. Each  
ADC sample is sent over the 2 wires as byte-wise or bit-wise or word-wise.  
54  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
Input Clock,  
CLK  
Freq = Fs  
Frame Clock,  
FCLK  
Freq = 1 ´ Fs  
Bit Clock – SDR,  
DCLK  
Freq = 7 ´ Fs  
Output Data  
DA0, DB0, DC0, DD0  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D6  
D5  
D4  
D3  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D0) (D1) (D2) (D3) (D4) (D5) (D6) (D0) (D1)  
D2  
D1  
D0  
D6  
D5  
Output Data  
DA1, DB1, DC1, DD1  
D13 D12 D11  
(D7) (D8) (D9)  
D13 D12 D11  
(D7) (D8) (D9)  
D8  
(0)  
D7  
(0)  
D13 D12  
(D7) (D8)  
D10  
D9  
D8  
D7  
(D10) (D11) (D12) (D13)  
D10 D9  
(D10) (D11)  
Data Rate = 7 ´ Fs  
Output Data  
DA0, DB0, DC0, DD0  
D12 D10  
(D0) (D2) (D4) (D6) (D8)  
D8  
D6  
D4  
D12 D10  
D8  
(D0) (D2) (D4) (D6) (D8)  
D6  
D4  
D12 D10  
(D0) (D2)  
D2 D0  
(D10) (D12)  
D2 D0  
(D10) (D12)  
Output Data  
DA1, DB1, DC1, DD1  
D13 D11  
(D1) (D3) (D5) (D7) (D9)  
D9  
D7  
D5  
D13 D11  
D9  
(D1) (D3) (D5) (D7) (D9)  
D7  
D5  
D13 D11  
(D1) (D3)  
D3 D1  
(D11) (D13)  
D3 D1  
(D11) (D13)  
Output Data  
DA0, DB0, DC0, DD0  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D4  
D13 D12  
(D0) (D1)  
D3  
D2  
D1  
(D10) (D11) (D12) (D13)  
D0  
Output Data  
DA1, DB1, DC1, DD1  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D4  
D13 D12  
(D0) (D1)  
D3  
D2  
D1  
(D10) (D11) (D12) (D13)  
D0  
White Cells – Sample N  
Data Bit in MSB First Mode  
Data Bit in LSB First Mode  
D6  
(D0)  
Grey Cells – Sample N + 1  
T0227-02  
Figure 95. 2-Wire Interface 14× Serialization - SDR Bit Clock  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
Input Clock,  
CLK  
Freq = Fs  
Frame Clock,  
FCLK  
Freq = 0.5 ´ Fs  
Bit Clock – DDR,  
DCLK  
Freq = 3.5 ´ Fs  
Output Data  
DA0, DB0, DC0, DD0  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D6  
D5  
D4  
D3  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D0) (D1) (D2) (D3) (D4) (D5) (D6) (D0) (D1)  
D2  
D1  
D0  
D6  
D5  
Output Data  
DA1, DB1, DC1, DD1  
D13 D12 D11  
(D7) (D8) (D9)  
D8  
(0)  
D7  
(0)  
D13 D12 D11  
(D7) (D8) (D9)  
D8  
(0)  
D7  
(0)  
D13 D12  
(D7) (D8)  
D10 D9  
(D10) (D11)  
D10 D9  
(D10) (D11)  
Data Rate = 7 ´ Fs  
Output Data  
DA0, DB0, DC0, DD0  
D12 D10  
(D0) (D2) (D4) (D6) (D8)  
D8  
D6  
D4  
D0  
(0)  
D12 D10  
D8  
(D0) (D2) (D4) (D6) (D8)  
D6  
D4  
D12 D10  
(D0) (D2)  
D2  
(D10)  
D2 D0  
(D10) (D12)  
Output Data  
DA1, DB1, DC1, DD1  
D13 D11  
(D1) (D3) (D5) (D7) (D9)  
D9  
D7  
D5  
D1  
(0)  
D13 D11  
D9  
(D1) (D3) (D5) (D7) (D9)  
D7  
D5  
D13 D11  
(D1) (D3)  
D3  
(D11)  
D3 D1  
(D11) (D13)  
Output Data  
DA0, DB0, DC0, DD0  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D4  
0 0  
(D0) (D1)  
D3  
D2  
D1  
(D10) (D11) (D12) (D13)  
D0  
Output Data  
DA1, DB1, DC1, DD1  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
(D0) (D1) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9)  
D4  
D13 D12  
(D0) (D1)  
D3  
D2  
D1  
(D10) (D11) (D12) (D13)  
D0  
White Cells – Sample N  
Data Bit in MSB First Mode  
Data Bit in LSB First Mode  
D6  
(D0)  
Grey Cells – Sample N + 1  
T0228-02  
Figure 96. 2-Wire interface 14× Serialization - DDR Bit Clock  
56  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
OUTPUT BIT ORDER  
In the 2-wire interface, three types of bit order are supported - byte-wise, bit-wise and word-wise.  
Byte-wise: Each 14 bit sample is split across the 2 wires. Wires DA0, DB0, DC0, and DD0 carry the 7 LSB bits  
D6 - D0 and wires DA1, DB1, DC1, and DD1 carry the 7 MSB bits.  
Bit-wise: Each 14 bit sample is split across the 2 wires. Wires DA0, DB0, DC0 and DD0 carry the 7 even bits  
(D0, D2, D4...) and wires DA1, DB1, DC1 and DD1 carry the 7 odd bits (D1, D3, D5...).  
Word-wise: In this case, all 14 bits of a sample are sent over a single wire. Successive samples are sent over  
the 2 wires. For example sample N is sent on wires DA0, DB0, DC0 and DD0, while sample N+1 is sent over  
wires DA1, DB1, DC1 and DD1. The frame clock frequency is 0.5x sampling frequency, with the rising edge  
aligned with the start of each word.  
MSB/LSB FIRST  
By default after reset, the 14 bit ADC data is output serially with the MSB first (D13, D12, D11,...D1, D0). The  
data can be output LSB first also by programming the register bit <MSB_LSB_First>. In the 2-wire mode, the bit  
order in each wire is flipped in the LSB first mode.  
OUTPUT DATA FORMATS  
Two output data formats are supported – 2s complement (default after reset) and offset binary. They can be  
selected using the serial interface register bit <DF>. In the event of an input voltage overdrive, the digital outputs  
go to the appropriate full-scale level. For a positive overdrive, the output code is 0x3FFF in offset binary output  
format, and 0x1FFF in 2s complement output format. For a negative input overdrive, the output code is 0x0000 in  
offset binary output format and 0x2000 in 2s complement output format.  
LVDS CURRENT CONTROL  
The default LVDS buffer current is 3.5 mA. With an external 100 termination resistance, this develops ±350  
mV logic levels at the receiver. The LVDS buffer currents also can be programmed to 2.5 mA, 3.0 mA, and 4.5  
mA using the register bits <LVDS CURR>. In addition, there exists a current double mode, where the LVDS  
nominal current is doubled (register bits <CURR DOUBLE>, refer to Table 19).  
LVDS INTERNAL TERMINATION  
An internal termination option is available (using the serial interface), by which the LVDS buffers are differentially  
terminated inside the device. Five termination resistances are available – 166, 200, 250, 333, and 500 Ω  
(nominal with ±20% variation). Any combination of these terminations can be programmed; the effective  
termination is the parallel combination of the selected resistances. The terminations can be programmed  
separately for the clock and data buffers (bits <TERM CLK> and <TERM DATA>, refer to Table 20).  
The internal termination helps to absorb any reflections from the receiver end, improving the signal integrity. This  
makes it possible to drive up to 10 pF of load capacitance, compared to only 5 pF without the internal  
termination. Figure 97 and Figure 98 show the eye diagram with 5 pF and 10 pF load capacitors (connected from  
each output pin to ground).  
With 100 internal and 100 external termination, the voltage swing at the receiver end will be halved  
(compared to no internal termination). The voltage swing can be restored by using the LVDS current double  
mode (bits <CURR DOUBLE>, refer to Table 19).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
C001  
Figure 97. LVDS Data Eye Diagram With 5 pF Load Capacitance (No Internal Termination)  
C002  
Figure 98. LVDS Data Eye Diagram With 10 pF Load Capacitance (100 Internal Termination)  
58  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
CAPTURE TEST PATTERNS  
ADS644X outputs the bit clock (DCLK), positioned nearly at the center of the data transitions. It is recommended  
to route the bit clock, frame clock and output data lines with minimum relative skew on the PCB. This ensures  
sufficient setup/hold times for a reliable capture by the receiver.  
The DESKEW is a 1010... or 0101... pattern output on the serial data lines that can be used to verify if the  
receiver capture clock edge is positioned correctly. This may be useful in case there is some skew between  
DCLK and serial data inside the receiver. Once deserialized, it is required to ensure that the parallel data is  
aligned to the frame boundary. The SYNC test pattern can be used for this. For example, in the 1-wire interface,  
the SYNC pattern is 7 '1's followed by 7 '0's (from MSB to LSB). This information can be used by the receiver  
logic to shift the deserialized data until it matches the SYNC pattern.  
In addition to DESKEW and SYNC, the ADS644X includes other test patterns to verify correctness of the capture  
by the receiver such as all zeros, all ones and toggle. These patterns are output on all four channel data lines  
simultaneously. Some patterns like custom and sync are affected by the type of interface selected, serialization  
and bit order.  
Table 25. Test Patterns  
PATTERN  
All zeros  
All ones  
DESCRIPTION  
Outputs logic low.  
Outputs logic high.  
Outputs toggle pattern - <D13 – D0> alternates between 10101010101010 and  
01010101010101 every clock cycle.  
Toggle  
Outputs a 14 bit custom pattern. The 14 bit custom pattern can be specified into two  
serial interface registers. In the 2-wire interface, each code is sent over the 2 wires  
depending on the serialization and bit order.  
Custom  
Sync  
Outputs a sync pattern.  
Outputs deskew pattern. Either <D13 – D0> = 10101010101010 or <D11 – D0> =  
01010101010101 every clock cycle.  
Deskew  
Table 26. SYNC Pattern  
INTERFACE  
OPTION  
SERIALIZATION  
SYNC PATTERN ON EACH WIRE  
14 X  
16 X  
14 X  
16 X  
MSB-11111110000000-LSB  
MSB-111111111000000000-LSB  
MSB-1111000-LSB  
1-Wire  
2-Wire  
MSB-11110000-LSB  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
OUTPUT TIMINGS AT LOWER SAMPLING FREQUENCIES  
Setup, hold, and other timing parameters are specified across sampling frequencies and for each type of output  
interface in the following tables.  
Table 28 to Table 31: Typical values are at 25°C, min and max values are across the full temperature range TMIN  
= –40°C to TMAX = 85°C, AVDD = LVDD = 3.3 V, CL = 5 pF, IO = 3.5 mA, RL = 100 , no internal termination,  
unless otherwise noted.  
Timing parameters are ensured by design and characterization and not tested in production.  
Ts = 1/ Sampling frequency = 1/Fs  
Table 27. Clock Propagation Delay for Different Interface Options  
(1)  
SERIALIZER LATENCY  
INTERFACE  
SERIALIZATION  
CLOCK PROPAGATION DELAY, tpd_clk  
clock cycles  
14x  
16x  
tpd_clk = 0.428 x Ts + tdelay  
tpd_clk = 0.375 x Ts + tdelay  
1-Wire with DDR bit clock  
0
2
(when tpd_clk Ts)  
2-Wire with DDR bit clock  
2-Wire with SDR bit clock  
2-Wire with DDR bit clock  
2-Wire with SDR bit clock  
tpd_clk = 0.857 x Ts + tdelay  
tpd_clk = 0.428 x Ts + tdelay  
tpd_clk = 0.75 x Ts + tdelay  
tpd_clk = 0.375 x Ts + tdelay  
14x  
16x  
1
(when tpd_clk < Ts)  
0
1
(when tpd_clk Ts)  
0
(when tpd_clk < Ts)  
0
(1) Note that the total latency = ADC latency + internal serializer latency. The ADC latency is 12 clock cycles.  
Table 28. Timing for 1-Wire Interface  
DATA SETUP TIME, tsu  
ns  
DATA HOLD TIME, th  
ns  
tdelay  
ns  
SAMPLING  
SERIALIZATION FREQUENCY  
MSPS  
MIN  
TYP  
0.5  
MAX  
MIN  
0.4  
0.7  
1.6  
3.2  
TYP  
0.6  
0.9  
1.9  
3.6  
MAX  
MIN  
3
TYP  
MAX  
65  
0.3  
0.65  
1.3  
F
s 40 MSPS  
40  
0.85  
1.65  
3.5  
4
5
6
14×  
20  
Fs < 40 MSPS  
10  
65  
3.2  
3
4.5  
0.22  
0.42  
0.35  
0.55  
F
s 40 MSPS  
3
3
4
5
6
16×  
Fs < 40 MSPS  
4.5  
Table 29. Timing for 2-Wire Interface, DDR Bit Clock  
DATA SETUP TIME, tsu  
ns  
DATA HOLD TIME, th  
ns  
tdelay  
ns  
SAMPLING  
FREQUENCY  
MSPS  
SERIALIZATION  
MIN  
TYP  
0.65  
0.75  
0.85  
1.1  
MAX  
MIN  
0.5  
0.6  
0.7  
0.8  
1.5  
TYP  
0.7  
0.8  
0.9  
1.1  
1.9  
MAX  
MIN  
3.4  
TYP  
MAX  
5.4  
105  
92  
80  
65  
40  
0.45  
0.55  
0.65  
0.8  
F
s 45 MSPS  
4.4  
14×  
Fs < 45 MSPS  
1.4  
1.7  
3.7  
5.2  
6.7  
105  
92  
80  
65  
40  
0.35  
0.45  
0.55  
0.6  
0.55  
0.65  
0.75  
0.9  
0.4  
0.5  
0.6  
0.7  
1.3  
0.6  
0.7  
0.8  
1
F
s 45 MSPS  
3.4  
3.7  
4.4  
5.4  
6.7  
16×  
Fs < 45 MSPS  
1.1  
1.4  
1.7  
5.2  
60  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
 
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
Table 30. Timing for 2-Wire Interface, SDR Bit Clock  
DATA SETUP TIME, tsu  
ns  
DATA HOLD TIME, th  
ns  
tdelay  
ns  
SAMPLING  
FREQUENCY  
MSPS  
SERIALIZATION  
MIN  
TYP  
1
MAX  
MIN  
1
TYP  
1.2  
1.8  
3.5  
6.9  
MAX  
MIN  
3.4  
TYP  
s 40 MSPS  
4.4  
MAX  
5.4  
65  
40  
20  
10  
0.8  
1.5  
3.4  
6.9  
F
1.7  
3.6  
7.2  
1.6  
3.3  
6.6  
14×  
Fs < 40 MSPS  
3.7  
5.2  
6.7  
65  
40  
20  
10  
0.65  
1.3  
2.8  
6.0  
0.85  
1.5  
3.0  
6.3  
0.8  
1.4  
2.8  
5.8  
1.0  
1.6  
3.0  
6.1  
F
s 40 MSPS  
3.4  
3.7  
4.4  
5.4  
6.7  
16×  
Fs < 40 MSPS  
5.2  
Table 31. Output Jitter (applies to all interface options)  
BIT CLOCK JITTER, CYCLE-CYCLE  
ps, peak-peak  
FRAME CLOCK JITTER, CYCLE-CYCLE  
ps, peak-peak  
SAMPLING FREQUENCY  
MSPS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
65  
350  
75  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
BOARD DESIGN CONSIDERATIONS  
Grounding  
A single ground plane is sufficient to give optimum performance, provided the analog, digital, and clock sections  
of the board are cleanly partitioned. Refer to the EVM User Guide (SLAU196) for board layout schemes.  
Supply Decoupling  
As the ADS644X already includes internal decoupling, minimal external decoupling can be used without loss in  
performance. Note that the decoupling capacitors can help to filter external power supply noise, so the optimum  
number of decoupling capacitors would depend on actual application.  
It is recommended to use separate supplies for the analog and digital supply pins to isolate digital switching  
noise from sensitive analog circuitry. In case only a single 3.3 V supply is available, it should be routed first to  
AVDD. It can then be tapped and isolated with a ferrite bead (or inductor) with decoupling capacitor, before being  
routed to LVDD.  
Exposed Thermal Pad  
It is necessary to solder the exposed pad at the bottom of the package to a ground plane for best thermal  
performance. For detailed information, see application notes QFN Layout Guidelines(SLOA122A) and QFN/SON  
PCB Attachment (SLUA271A).  
62  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
www.ti.com ............................................................................................................................................................................................ SLAS573FEBRUARY 2008  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth – The analog input frequency at which the power of the fundamental is reduced by 3 dB with  
respect to the low frequency value.  
Aperture Delay – The delay in time between the rising edge of the input sampling clock and the actual time at  
which the sampling occurs. This delay will be different across channels. The maximum variation is specified as  
aperture delay variation (channel-channel).  
Aperture Uncertainty (Jitter) – The sample-to-sample variation in aperture delay.  
Clock Pulse Width/Duty Cycle – The duty cycle of a clock signal is the ratio of the time the clock signal remains  
at a logic high (clock pulse width) to the period of the clock signal. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock results in a 50% duty cycle.  
Maximum Conversion Rate – The maximum sampling rate at which certified operation is given. All parametric  
testing is performed at this sampling rate unless otherwise noted.  
Minimum Conversion Rate – The minimum sampling rate at which the ADC functions.  
Differential Nonlinearity (DNL) – An ideal ADC exhibits code transitions at analog input values spaced exactly  
1 LSB apart. The DNL is the deviation of any single step from this ideal value, measured in units of LSBs.  
Integral Nonlinearity (INL) – The INL is the deviation of the ADC's transfer function from a best fit line  
determined by a least squares curve fit of that transfer function, measured in units of LSBs.  
Gain Error – The gain error is the deviation of the ADC's actual input full-scale range from its ideal value. The  
gain error is given as a percentage of the ideal input full-scale range. The gain error does not include the error  
caused by the internal reference deviation from ideal value. This is specified separately as internal reference  
error. The maximum variation of the gain error across devices and across channels within a device is specified  
separately.  
Offset Error – The offset error is the difference, given in number of LSBs, between the ADC's actual average  
idle channel output code and the ideal average idle channel output code. This quantity is often mapped into mV.  
Temperature Drift – The temperature drift coefficient (with respect to gain error and offset error) specifies the  
change per degree Celsius of the parameter from TMIN to TMAX. It is calculated by dividing the maximum deviation  
of the parameter across the TMIN to TMAX range by the difference TMAX–TMIN  
.
Signal-to-Noise Ratio(SNR) is the ratio of the power of the fundamental (PS) to the noise floor power (PN),  
excluding the power at DC and the first nine harmonics.  
P
S
SNR + 10Log10  
P
N
(3)  
SNR is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter’s  
full-scale range.  
Signal-to-Noise and Distortion (SINAD) – SINAD is the ratio of the power of the fundamental (PS) to the power  
of all the other spectral components including noise (PN) and distortion (PD), but excluding dc.  
PS  
PN ) PD  
SINAD + 10Log10  
(4)  
SINAD is either given in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full scale) when the power of the fundamental is extrapolated to the converter's  
full-scale range.  
Effective Number of Bits (ENOB) – The ENOB is a measure of a converter’s performance as compared to the  
theoretical limit based on quantization noise.  
SINAD * 1.76  
ENOB +  
6.02  
(5)  
Total Harmonic Distortion (THD) – THD is the ratio of the power of the fundamental (PS) to the power of the  
first nine harmonics (PD).  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Link(s): ADS6445-EP  
ADS6445-EP  
SLAS573FEBRUARY 2008 ............................................................................................................................................................................................ www.ti.com  
PS  
PD  
THD + 10Log10  
(6)  
THD is typically given in units of dBc (dB to carrier).  
Spurious-Free Dynamic Range (SFDR) – The ratio of the power of the fundamental to the highest other  
spectral component (either spur or harmonic). SFDR is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion – IMD3 is the ratio of the power of the fundamental (at frequencies f1  
and f2) to the power of the worst spectral component at either frequency 2f1 – f2 or 2f2 – f1. IMD3 is either given  
in units of dBc (dB to carrier) when the absolute power of the fundamental is used as the reference, or dBFS (dB  
to full scale) when the power of the fundamental is extrapolated to the converter’s full-scale range.  
DC Power Supply Rejection Ratio (DC PSRR) – The DC PSSR is the ratio of the change in offset error to a  
change in analog supply voltage. The DC PSRR is typically given in units of mV/V.  
AC Power Supply Rejection Ratio (AC PSRR) – AC PSRR is the measure of rejection of variations in the  
supply voltage by the ADC. If ΔVsup is the change in supply voltage and ΔVout is the resultant change of the  
ADC output code (referred to the input), then  
DVout  
DVsup  
PSRR + 20Log10  
, expressed in dBc  
(7)  
Voltage Overload Recovery – The number of clock cycles taken to recover to less than 1% error after an  
overload on the analog inputs. This is tested by separately applying a sine wave signal with 6-dB positive and  
negative overload. The deviation of the first few samples after the overload (from their expected values) is noted.  
Common Mode Rejection Ratio (CMRR) – CMRR is the measure of rejection of variation in the analog input  
common-mode by the ADC. If ΔVcm_in is the change in the common-mode voltage of the input pins and ΔVout  
is the resultant change of the ADC output code (referred to the input), then  
DVout  
DVcm_in  
CMRR + 20Log10  
, expressed in dBc  
(8)  
Cross-Talk (only for multi-channel ADC)– This is a measure of the internal coupling of a signal from adjacent  
channel into the channel of interest. It is specified separately for coupling from the immediate neighboring  
channel (near-channel) and for coupling from channel across the package (far-channel). It is usually measured  
by applying a full-scale signal in the adjacent channel. Cross-talk is the ratio of the power of the coupling signal  
(as measured at the output of the channel of interest) to the power of the signal applied at the adjacent channel  
input. It is typically expressed in dBc.  
64  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): ADS6445-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
ADS6445MRGCTEP  
V62/08628-01XE  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
VQFN  
RGC  
64  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
VQFN  
RGC  
64  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ADS6445-EP :  
Catalog: ADS6445  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
ADS6445MRGCTEP  
VQFN  
RGC  
64  
250  
330.0  
16.4  
9.3  
9.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGC 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
333.2 345.9 28.6  
ADS6445MRGCTEP  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

V62/08628-02XE

四通道、14 位、105MSPS 模数转换器 (ADC) - 增强型产品 | RGC | 64 | -55 to 125
TI

V62/08630-01XE

SENSOR SIGNAL CONDITIONING IC FOR SENSOR SIGNAL CONDITIONING IC FOR
TI

V62/08631-01XE

MIXED SIGNAL MICROCONTROLLER
TI

V62/08631-01YE

MIXED SIGNAL MICROCONTROLLER
TI

V62/09601-01XE

具有 60KB 闪存、2KB RAM、12 位 ADC、2 个 USCI 的增强型产品 16 位超低功耗微处理器 | PM | 64 | -55 to 125
TI

V62/09602-01XE

LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE RECEIVER WITH ±15-kV IEC ESD PROTECTION
TI

V62/09603-01XE

LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE DRIVER WITH ±15-kV IEC ESD PROTECTION
TI

V62/09604-01XE

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER
TI

V62/09605-01XE

16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

V62/09605-01YE

16-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

V62/09606-01XE

用于 TTL 到 CMOS 或 CMOS 到 CMOS 操作的 CMOS 六路电压电平转换器 | PW | 16 | -55 to 125
TI

V62/09607-01XE

1.5°C ACCURATE PROGRAMMABLE DIGITAL TEMPERATURE SENSORS WITH SPI™ INTERFACE
TI