V62/18617-01XE-T [TI]

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125;
V62/18617-01XE-T
型号: V62/18617-01XE-T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用增强型航天塑料封装且具有待机模式的耐辐射加固保障 3.3V CAN 收发器 | D | 8 | -55 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总36页 (文件大小:1589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
采用增强型航天塑料的 SN55HVD233-SEP 3.3V 耐辐射 CAN 收发器  
1 特性  
3 说明  
1
VID V62/18617  
SN55HVD233-SEP 用于 采用 符合 ISO 11898 标准的  
控制器局域网 (CAN) 串行通信物理层的应用。作为  
CAN 收发器,此器件在差分 CAN 总线和 CAN 控制器  
间提供传输和接收能力,信令速度高达 1Mbps。  
耐辐射  
单粒子锁定 (SEL) 125°C 下的抗扰度可达  
43MeV-cm2/mg  
在高达 30krad(Si) 的条件下无 ELDRS  
SN55HVD233-SEP 专门用于非常严苛的辐射环境,  
具有 交叉线保护、过压保护、±16V 接地失效保护和过  
热(热关断)保护功能。此器件可在 –7V 12V 的宽  
共模范围内运行。此收发器是用于卫星应用的微处理  
器、FPGA ASIC 的主机 CAN 控制器与差分 CAN  
总线之间的 接口。  
每个晶圆批次的 RLAT 总电离剂量 (TID) 高达  
20krad(Si)  
增强型航天塑料  
受控基线  
金线  
NiPdAu 铅涂层  
器件信息(1)  
同一组装和测试场所  
同一制造场所  
器件型号  
等级  
封装  
SN55HVD233MDPSEP  
SN55HVD233MDTPSEP  
支持军用(-55°C 125°C)温度范围  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
20krad(Si)  
RLAT  
8 引线 SOIC [D]  
6.48mm × 6.48mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
采用增强型模具化合物实现低释气  
简化原理图  
VCC  
符合 ISO 11898-2 标准  
VCC  
总线引脚故障保护大于 ±16V  
总线引脚 ESD 保护大于 ±14kV HBM  
数据传输速率高达 1Mbps  
扩展级共模范围:–7V 12V  
高输入阻抗支持 120 个节点  
LVTTL I/O 可承受 5V 的电压  
可调节的驱动器传输次数,用于改善信号质量  
未供电节点不会干扰总线  
VCC  
VCC  
D
VCC  
RS  
SLOPE CONTROL  
and MODE  
LOGIC  
LBK / EN /AB  
低电流待机模式,200µA(典型值)  
诊断回送功能  
R
热关断保护  
GND  
加电和断电无干扰总线输入和输出  
Copyright © 2017, Texas Instruments Incorporated  
具有低 VCC 的高输入阻抗  
功率循环过程中单片输出  
2 应用  
支持近地轨道空间 应用  
空间数据总线通信和控制  
用于机载数据处理的卫星遥测和遥控  
CANopenDeviceNetCAN KingdomISO  
11783NMEA 2000SAE J1939 CAN 总线标  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF98  
 
 
 
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 15  
9.4 Device Functional Modes........................................ 18  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Driver Electrical Characteristics ................................ 7  
7.6 Receiver Electrical Characteristics ........................... 7  
7.7 Driver Switching Characteristics ............................... 8  
7.8 Receiver Switching Characteristics........................... 8  
7.9 Device Switching Characteristics.............................. 8  
7.10 Typical Characteristics............................................ 9  
Parameter Measurement Information ................ 11  
10 Application and Implementation........................ 19  
10.1 Application Information.......................................... 19  
10.2 Typical Application ................................................ 21  
11 Power Supply Recommendations ..................... 23  
12 Layout................................................................... 23  
12.1 Layout Guidelines ................................................. 23  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 接收文档更新通知 ................................................. 26  
13.2 社区资源................................................................ 26  
13.3 ....................................................................... 26  
13.4 静电放电警告......................................................... 26  
13.5 术语表 ................................................................... 26  
14 机械、封装和可订购信息....................................... 27  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 12 月  
*
初始发行版。  
2
版权 © 2018, Texas Instruments Incorporated  
 
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
5 说明 (续)  
模式:SN55HVD233-SEP 的引脚 8 RS 具有三种运行模式:高速、斜率控制或低功耗待机模式。用户可直接将引  
8 接地以选择高速运行模式,驱动器输出晶体管将尽快开启和关闭,无上升和下降斜率限制。由于斜率与引脚的  
输出电流成比例,用户可在引脚 8 连接接地的电阻器以调节上升和下降斜率。斜率控制可通过 0Ω 电阻器值进行,  
以实现约 38V/µs 的单端压摆率,所使用的电阻器值最高可达 50kΩ,以实现约 4V/µs 的压摆率。有关斜率控制的  
更多信息,请参阅应用和实现 部分。  
如果对引脚 8 施加高逻辑电平,那么 SN55HVD233-SEP 会进入低电流待机(仅监听)模式,在此模式下,驱动器  
将关断并且接收器保持活动状态。当本地协议控制器需要向总线传输时,将会改变此低电流待机模式。有关回送模  
式的更多信息,请参阅应用信息 部分。  
环回:当 SN55HVD233-SEP 的环回 LBK 引脚 5 具有逻辑高电平时,会将总线输出和总线输入置于高阻抗状态。  
其余电路将保持工作状态,可用于驱动器到接收器的回送和自诊断节点功能,且不会干扰总线。  
CAN 总线状态:在器件供电运行期间,CAN 总线具有两种状态:显性和隐性。在总线显性状态下,总线采用差分  
驱动方式,D R 引脚相应地置为逻辑低电平。在隐性总线状态下,总线通过接收器的高电阻内部输入电阻器 RIN  
偏置为 VCC/2D R 引脚相应地偏置为逻辑高电平(请参阅总线状态(物理位表示) 简化的隐性共模偏置和  
接收器)。  
Copyright © 2018, Texas Instruments Incorporated  
3
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
RS  
1
2
3
4
8
7
6
5
D
GND  
CANH  
CANL  
LBK  
V
CC  
R
Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
D
I
CAN transmit data input (LOW for dominant and HIGH for recessive bus states), also called TXD, driver input.  
GND  
VCC  
2
GND Ground connection.  
3
Supply Transceiver 3.3-V supply voltage.  
CAN receive data output (LOW for dominant and HIGH for recessive bus states), also called RXD, receiver  
output.  
R
4
O
LBK  
5
6
7
I
Loopback mode input pin.  
Low-level CAN bus line.  
High-level CAN bus line.  
CANL  
CANH  
I/O  
I/O  
Mode select pin:  
Tie to GND = high-speed mode,  
Strong pullup to VCC = low power mode,  
0-Ω to 50-kΩ pulldown to GND = slope control mode.  
RS  
8
I
4
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature unless otherwise noted(1)(2)  
MIN  
–0.3  
–16  
MAX  
7
UNIT  
V
VCC Supply voltage  
Voltage at any bus pin (CANH or CANL)  
16  
V
Voltage input, transient pulse, CANH and CANL, through 100 Ω (see Figure 18)  
–100  
–0.5  
–0.5  
–10  
100  
7
V
VI  
Input voltage, (D, RS, LBK)  
Output voltage, (R)  
V
VO  
IO  
7
V
Receiver output current  
Operating junction temperature  
Storage temperature  
10  
mA  
°C  
°C  
TJ  
150  
150  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground pin.  
7.2 ESD Ratings  
VALUE  
±14000  
±4000  
±500  
UNIT  
CANH, CANL, and GND  
Other pins  
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VCC  
Supply voltage  
3
3.6  
12  
5.5  
0.8  
6
V
V
Voltage at any bus pin (separately or common mode)  
–7  
VIH  
VIL  
VID  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
D, LBK  
D, LBK  
2
V
0
–6  
V
V
Resistance from RS to ground for slope control  
VI(RS) Input voltage at RS for standby  
0
50  
5.5  
kΩ  
V
0.75 VCC  
–50  
Driver  
IOH  
High-level output current  
mA  
Receiver  
Driver  
–10  
50  
10  
IOL  
TJ  
Low-level output current  
mA  
°C  
Receiver  
Operating junction temperature(1)  
–55  
125  
(1) Maximum junction temperature operation is allowed as long as the device maximum junction temperature is not exceeded.  
Copyright © 2018, Texas Instruments Incorporated  
5
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
7.4 Thermal Information  
SN55HVD233-SEP  
THERMAL METRIC(1)(2)  
D (SOIC)  
8 PINS  
112.6  
47.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
57.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.4  
ψJB  
56.2  
(1) All values except RθJC were taken on a JEDEC-51 standard High-K PCB using a nominal lead form. Differences in lead form,  
component density, or PCB design can affect these values.  
(2) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
7.5 Driver Electrical Characteristics  
At TA = –55°C to 125°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
CANH  
CANL  
CANH  
CANL  
2.4  
0.5  
VCC  
Bus output voltage  
(dominant)  
VO(D)  
V(D) = 0 V, V(RS) = 0 V, see Figure 12 and Figure 13  
V
1.25  
2.3  
2.3  
2
Bus output voltage  
(recessive)  
VO  
V(D) = 3 V, V(RS) = 0 V, see Figure 12 and Figure 13  
V
V(D) = 0 V, V(RS) = 0 V, see Figure 12 and Figure 13  
V(D) = 0 V, V(RS) = 0 V, see Figure 13 and Figure 14  
V(D) = 3 V, V(RS) = 0 V, see Figure 12 and Figure 13  
V(D) = 3 V, V(RS) = 0 V, no load  
1.5  
1.2  
3
V
3
Differential output voltage  
(dominant)  
VOD(D)  
2
–120  
–0.5  
12  
mV  
V
Differential output voltage  
(recessive)  
VOD  
0.05  
Peak-to-peak common-mode output  
voltage  
VOC(pp)  
See Figure 20  
1
V
IIH  
IIL  
High-level input current D, LBK  
Low-level input current D, LBK  
V(D) = 2 V  
–30  
–30  
30  
30  
µA  
µA  
V(D) = 0.8 V  
V(CANH) = –7 V, CANL open, see Figure 23  
V(CANH) = 12 V, CANL open, see Figure 23  
V(CANL) = –7 V, CANH open, see Figure 23  
V(CANL) = 12 V, CANH open, see Figure 23  
See receiver input capacitance  
V(RS) = 0.75 VCC  
–250  
1
IOS  
Short-circuit output current  
mA  
–1  
250  
CO  
Output capacitance  
RS input current for standby  
Standby  
IIRS(s)  
–10  
µA  
µA  
V(RS) = VCC, V(D) = VCC, V(LBK) = 0 V  
200  
700  
6
ICC  
Supply current  
Dominant V(D) = 0 V, no load, V(LBK) = 0 V, RS = 0 V  
Recessive V(D) = VCC, no load, V(LBK) = 0 V, V(RS) = 0 V  
mA  
6
(1) All typical values are at 25°C and with a 3.3-V supply.  
7.6 Receiver Electrical Characteristics  
At TA = –55°C to 125°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
VIT+ Positive-going input threshold voltage  
750  
900  
mV  
mV  
mV  
V
VIT– Negative-going input threshold voltage V(LBK) = 0 V, see Table 1  
500  
2.4  
650  
100  
Vhys Hysteresis voltage (VIT+ – VIT–  
VOH High-level output voltage  
VOL Low-level output voltage  
)
IO = –4 mA, see Figure 17  
IO = 4 mA, see Figure 17  
V(CANH) or V(CANL) = 12 V  
0.4  
V
150  
150  
500  
V(CANH) or V(CANL) = 12 V,  
VCC = 0 V  
Other bus pin = 0 V,  
V(D) = 3 V,  
V(LBK) = 0 V,  
V(RS) = 0 V  
600  
–100  
–100  
II  
Bus input current  
µA  
CANH or CANL = –7 V  
–610  
–450  
CANH or CANL = –7 V,  
VCC = 0 V  
Pin-to-ground, VI = 0.4 sin(4E6πt) + 0.5 V,  
V(D) = 3 V, V(LBK) = 0 V  
CI  
Input capacitance (CANH or CANL)  
Differential input capacitance  
40  
20  
pF  
pF  
Pin-to-pin, VI = 0.4 sin(4E6πt) + 0.5 V,  
V(D) = 3 V, V(LBK) = 0 V  
CID  
RID  
RIN  
Differential input resistance  
Input resistance (CANH or CANL)  
Standby  
40  
20  
105  
55  
700  
6
kΩ  
kΩ  
V(D) = 3 V, V(LBK) = 0 V  
V(RS) = VCC, V(D) = VCC, V(LBK) = 0 V  
200  
µA  
ICC  
Supply current  
Dominant  
Recessive  
V(D) = 0 V, no load, V(RS) = 0 V, V(LBK) = 0 V  
V(D) = VCC, no load, V(RS) = 0 V, V(LBK) = 0 V  
mA  
mA  
6
(1) All typical values are at 25°C and with a 3.3-V supply.  
Copyright © 2018, Texas Instruments Incorporated  
7
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
7.7 Driver Switching Characteristics  
At TA = –55°C to 125°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
V(RS) = 0 V, see Figure 15  
35  
85  
Propagation delay time,  
low-to-high-level output  
tPLH  
tPHL  
tsk(p)  
RS with 10 kΩ to ground, see Figure 15  
RS with 50 kΩ to ground, see Figure 15  
V(RS) = 0 V, see Figure 15  
70  
125  
870  
ns  
ns  
ns  
500  
70  
120  
Propagation delay time,  
high-to-low-level output  
RS with 10 kΩ to ground, see Figure 15  
RS with 50 kΩ to ground, see Figure 15  
V(RS) = 0 V, see Figure 15  
130  
180  
870  
1200  
35  
Pulse skew (|tPHL – tPLH|)  
RS with 10 kΩ to ground, see Figure 15  
RS with 50 kΩ to ground, see Figure 15  
60  
370  
tr  
Differential output signal rise time  
Differential output signal fall time  
Differential output signal rise time  
Differential output signal fall time  
Differential output signal rise time  
Differential output signal fall time  
Enable time from standby to dominant  
20  
20  
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
V(RS) = 0 V, see Figure 15  
tf  
tr  
30  
135  
135  
1400  
1400  
1.5  
RS with 10 kΩ to ground, see Figure 15  
tf  
30  
tr  
350  
350  
0.6  
RS with 50 kΩ to ground, see Figure 15  
tf  
ten(s)  
See Figure 19  
(1) All typical values are at 25°C and with a 3.3-V supply.  
7.8 Receiver Switching Characteristics  
At TA = –55°C to 125°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Pulse skew (|tPHL – tPLH|)  
35  
35  
7
105  
105  
ns  
ns  
ns  
ns  
ns  
See Figure 17  
Output signal rise time  
2
tf  
Output signal fall time  
2
(1) All typical values are at 25°C and with a 3.3-V supply.  
7.9 Device Switching Characteristics  
At TA = –55°C to 125°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
See Figure 22  
MIN  
TYP(1)  
MAX UNIT  
Loopback delay, driver input to receiver  
output  
t(LBK)  
7.5  
ns  
V(RS) at 0 V, see Figure 21  
70  
105  
500  
70  
215  
Total loop delay, driver input to receiver  
t(loop1)  
V(RS) with 10 kΩ to ground, see Figure 21  
V(RS) with 50 kΩ to ground, see Figure 21  
V(RS) at 0 V, see Figure 21  
225  
800  
215  
225  
800  
ns  
ns  
output, recessive to dominant  
Total loop delay, driver input to receiver  
t(loop2)  
V(RS) with 10 kΩ to ground, see Figure 21  
V(RS) with 50 kΩ to ground, see Figure 21  
105  
500  
output, dominant to recessive  
(1) All typical values are at 25°C and with a 3.3-V supply.  
8
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
7.10 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D005  
D002  
V(RS), V(LBK) = 0 V  
V(RS), V(LBK) = 0 V  
Figure 1. Recessive-To-Dominant Loop Time vs  
Temperature  
Figure 2. Dominant-To-Recessive Loop Time vs  
Temperature  
20  
19  
18  
17  
16  
15  
160  
140  
120  
100  
80  
60  
40  
20  
0
200  
400  
600  
800  
1000  
0
1
2
3
4
Frequency (kbps)  
V(RS), V(LBK) = 0 V  
Low-Level Output Voltage (V)  
C003  
C004  
VCC = 3.3 V  
TA = 25°C  
VCC = 3.3 V  
V(RS), V(LBK) = 0 V  
TA = 25°C  
60-Ω load  
Figure 3. Supply Current vs Frequency  
Figure 4. Driver Low-Level Output Current vs  
Low-Level Output Voltage  
2.2  
2
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
1.8  
1.6  
1.4  
1.2  
1
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
High-Level Output Voltage (V)  
C005  
D001  
VCC = 3.3 V  
V(RS), V(LBK) = 0 V  
TA = 25°C  
RL = 60 Ω  
V(RS), V(LBK) = 0 V  
Figure 5. Driver High-Level Output Current vs  
High-Level Output Voltage  
Figure 6. Differential Output Voltage vs  
Temperature  
Copyright © 2018, Texas Instruments Incorporated  
9
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
D007  
D006  
V(RS), V(LBK) = 0 V  
See Figure 17  
V(RS), V(LBK) = 0 V  
See Figure 17  
Figure 7. Receiver Low-To-High Propagation Delay vs  
Temperature  
Figure 8. Receiver High-To-Low Propagation Delay vs  
Temperature  
60  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
VCC = 3.6 V  
VCC = 3.3 V  
VCC = 3 V  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (èC)  
D003  
D004  
V(RS), V(LBK) = 0 V  
See Figure 15  
V(RS), V(LBK) = 0 V  
See Figure 15  
Figure 10. Driver High-To-Low Propagation Delay vs  
Temperature  
Figure 9. Driver Low-To-High Propagation Delay vs  
Temperature  
35  
30  
25  
20  
15  
10  
5
0
œ5  
0.0  
0.6  
1.2  
1.8  
2.4  
3.0  
3.6  
Supply Voltage (V)  
C011  
V(RS), V(LBK) = 0 V  
RL = 60 Ω  
TA = 25°C  
Figure 11. Driver Output Current vs Supply Voltage  
10  
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
8 Parameter Measurement Information  
I
O(CANH)  
D
I
I
60 Ω ±1%  
V
OD  
V
O(CANH)  
V
+ V  
O(CANH)  
O(CANL)  
I
R
S
IRs  
2
V
I
V
OC  
I
O(CANL)  
+
V
I(Rs)  
V
O(CANL)  
-
Figure 12. Driver Voltage, Current, and Test Definition  
Dominant  
3 V  
V
O(CANH)  
Recessive  
2.3 V  
1 V  
V
O(CANL)  
Figure 13. Bus Logic State Voltage Definitions  
330 Ω ±1%  
CANH  
D
V
OD  
V
I
60 Ω ±1%  
+
-7 V V 12 V  
TEST  
R
S
_
CANL  
330 Ω ±1%  
Figure 14. Driver VOD  
CANH  
CANL  
V
CC  
V
/2  
CC  
V /2  
CC  
C
= 50 pF ±20%  
(see Note B)  
L
V
I
0 V  
V
D
V
O
t
t
PHL  
PLH  
R
L
= 60 Ω ±1%  
V
I
R
S
O(D)  
+
90%  
10%  
0.9 V  
V
O
V
0.5 V  
I(Rs)  
(see Note A)  
V
O(R)  
-
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics:  
Pulse repetition rate (PRR) 125 kHz, 50% duty cycle  
tr 6 ns  
tf 6 ns  
ZO = 50 Ω  
B. CL includes fixture and instrumentation capacitance.  
Figure 15. Driver Test Circuit and Voltage Waveforms  
Copyright © 2018, Texas Instruments Incorporated  
11  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Parameter Measurement Information (continued)  
CANH  
R
I
O
V
V
ID  
I(CANH)  
V
+ V  
I(CANH  
I(CANL)  
V
IC  
=
2
V
O
CANL  
V
I(CANL)  
Figure 16. Receiver Voltage and Current Definitions  
2.9 V  
1.5 V  
CANH  
CANL  
2.2 V  
2.2 V  
V
I
R
I
O
V
I
t
t
PHL  
PLH  
C
L
= 15 pF ±20%  
1.5 V  
V
V
OH  
V
O
(see Note A)  
(see Note B)  
90%  
90%  
50%  
10%  
50%  
10%  
V
O
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics:  
PRR 125 kHz, 50% duty cycle  
tr 6 ns  
tf 6 ns  
ZO = 50 Ω  
B. CL includes fixture and instrumentation capacitance.  
Figure 17. Receiver Test Circuit and Voltage Waveforms  
Table 1. Differential Input Voltage Threshold Test  
INPUT  
OUTPUT  
R
MEASURED  
|VID  
VCANH  
–6.1 V  
12 V  
VCANL  
–7 V  
|
L
L
900 mV  
900 mV  
6 V  
11.1 V  
–7 V  
VOL  
–1 V  
L
12 V  
6 V  
L
6 V  
–6.5 V  
12 V  
–7 V  
H
H
H
H
H
500 mV  
500 mV  
6 V  
11.5 V  
–1 V  
–7 V  
VOH  
6 V  
12 V  
6 V  
Open  
Open  
X
CANH  
CANL  
R
100  
Pulse Generator  
15 µs Duration  
1% Duty Cycle  
D at 0 V or V  
CC  
Rs, LBK, at 0 V or V  
CC  
t , t 100 ns  
r f  
NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.  
Figure 18. Test Circuit, Transient Overvoltage Test  
12  
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
HVD233  
R
S
CANH  
60 1%  
V
I
D
0 V  
LBK  
CANL  
R
V
O
+
-
15 pF 20%  
V
CC  
50%  
V
I
0 V  
V
V
OH  
50%  
V
O
OL  
t
en(s)  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: All VI input pulses are supplied by a generator having the following characteristics:  
tr or tf 6 ns  
PRR = 125 kHz, 50% duty cycle  
Figure 19. Ten(s) Test Circuit and Voltage Waveforms  
27 Ω ±±1  
27 Ω ±±1  
CANH  
CANL  
V
OC(PP)  
D
V
OC  
V
I
R
S
V
OC  
50 pF ±201  
NOTE: All VI input pulses are supplied by a generator having the following characteristics:  
tr or tf 6 ns  
PRR = 125 kHz, 50% duty cycle  
Figure 20. VOC(pp) Test Circuit and Voltage Waveforms  
0, 10 k,  
or 100 k5%  
DUT  
R
S
CANH  
V
CC  
50%  
50%  
D
V
I
60 1%  
V
I
0 V  
LBK  
t
t
(loop1)  
(loop2)  
CANL  
V
OH  
OL  
V
50%  
50%  
V
O
CC  
V
R
+
-
V
O
15 pF 20%  
Figure 21. T(loop) Test Circuit and Voltage Waveforms  
Copyright © 2018, Texas Instruments Incorporated  
13  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
HVD233  
V
R
S
CC  
CANH  
50%  
50%  
V
I
+
D
0 V  
V
I
V
OD  
60 W 1%  
-
t
t
(LBK2)  
(LBK1)  
V
LBK  
OH  
V
CC  
CANL  
50%  
= t  
50%  
V
O
R
V
OL  
t
= t  
(LBK2)  
(LBK)  
(LBK1)  
V
OD  
2.3 V  
+
V
O
15 pF 20%  
-
Copyright © 2017, Texas Instruments Incorporated  
Figure 22. T(LBK) Test Circuit and Voltage Waveforms  
I
OS  
I
OS  
15 s  
CANH  
D
0 V  
0 V or V  
CC  
+
I
OS  
V
I
12 V  
_
CANL  
V
I
0 V  
0 V  
and  
10 µs  
V
I
-7 V  
Figure 23. IOS Test Circuit and Waveforms  
3.3 V  
T
A
= 25°C  
V
= 3.3 V  
CC  
R2 ± 1%  
R1 ± 1%  
R1 ± 1%  
CANH  
CANL  
+
ID  
-
R
V
V
ac  
V
I
R2 ± 1%  
The R Output State Does Not Change During  
Application of the Input Waveform.  
V
ID  
R1  
R2  
500 mV  
900 mV  
50 Ω  
50 Ω  
280 Ω  
130 Ω  
12 V  
V
I
-7 V  
NOTE: All input pulses are supplied by a generator with ƒ 1.5 MHz.  
Figure 24. Common-Mode Voltage Rejection  
14  
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
9 Detailed Description  
9.1 Overview  
The SN55HVD233-SEP is used in applications employing the CAN serial communication physical layer in  
accordance with the ISO 11898 standard. As a CAN transceiver, the device provides transmit and receive  
capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.  
Designed for operation in especially harsh environments, the SN55HVD233-SEP features cross-wire,  
overvoltage, and loss of ground protection to ±16 V, overtemperature (thermal shutdown) protection, and  
common-mode transient protection of ±100 V. This device operates over a wide –7-V to 12-V common mode  
range. This transceiver is the interface between the host CAN controller on the microprocessor, FPGA, or ASIC;  
and the differential CAN bus used in satellite applications.  
9.2 Functional Block Diagram  
8
Rs  
7
CANH  
1
D
6
CANL  
4
R
5
LBK  
Copyright © 2017, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 Modes  
The RS, pin 8 of the SN55HVD233-SEP, provides for three modes of operation: high-speed, slope control, or  
low-power standby mode. The user selects the high-speed mode of operation by connecting pin 8 directly to  
ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise  
and fall slope. The user can adjust the rise and fall slope by connecting a resistor to ground at pin 8, because the  
slope is proportional to the pin's output current. Slope control is implemented with a resistor value of 0 Ω to  
achieve a single ended slew rate of approximately 38-V/µs, and up to a value of 50 kΩ to achieve approximately  
4-V/µs slew rate. For more information about slope control, refer to Application and Implementation section.  
The SN55HVD233-SEP enters a low-current standby (listen-only) mode during which the driver is switched off  
and the receiver remains active if a high logic level is applied to pin 8. The local protocol controller reverses this  
low-current standby mode when it needs to transmit to the bus.  
Copyright © 2018, Texas Instruments Incorporated  
15  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
9.3.2 Loopback  
A logic high on the loopback LBK pin 5 of the SN55HVD233-SEP places the bus output and bus input in a high-  
impedance state. The remaining circuit remains active and available for driver-to-receiver loopback, self-  
diagnostic node functions without disturbing the bus. For more information on the loopback mode, refer to the  
Application Information section.  
9.3.3 CAN Bus States  
The CAN bus has two states during powered operation of the device: dominant and recessive. A dominant bus  
state is when the bus is driven differentially, corresponding to a logic low on the D and R pin. A recessive bus  
state is when the bus is biased to VCC / 2 through the high-resistance internal input resistors RIN of the receiver,  
corresponding to a logic high on the D and R pins (see Figure 25 and Figure 26).  
CANH  
Vdiff(D)  
Vdiff(R)  
CANL  
Time, t  
Recessive  
Logic H  
Dominant  
Logic L  
Recessive  
Logic H  
Figure 25. Bus States (Physical Bit Representation)  
CANH  
RXD  
VCC/2  
CANL  
Figure 26. Simplified Recessive Common Mode Bias and Receiver  
9.3.4 ISO 11898 Compliance of SN55HVD233-SEP  
9.3.4.1 Introduction  
Many users value the low-power consumption of operating their CAN transceivers from a 3.3-V supply. However,  
some users are concerned about the interoperability with 5-V supplied transceivers on the same bus. This report  
analyzes this situation to address those concerns.  
16  
Copyright © 2018, Texas Instruments Incorporated  
 
 
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
Feature Description (continued)  
9.3.4.2 Differential Signal  
CAN is a differential bus where complementary signals are sent over two wires and the voltage difference  
between the two wires defines the logical state of the bus. The differential CAN receiver monitors this voltage  
difference and outputs the bus state with a single-ended output signal.  
NOISE MARGIN  
900 mV Threshold  
RECEIVER DETECTION WINDOW  
75% SAMPLE POINT  
500 mV Threshold  
NOISE MARGIN  
Figure 27. Typical SN55HVD233-SEP Differential Output Voltage Waveform  
The CAN driver creates the difference in voltage between CANH and CANL in the dominant state. The dominant  
differential output of the SN55HVD233-SEP is greater than 1.5 V and less than 3 V across a 60-Ω load. The  
minimum required by ISO 11898 is 1.5 V and maximum is 3 V. These are the same limiting values for 5-V  
supplied CAN transceivers. The bus termination resistors drive the recessive bus state and not the CAN driver.  
A CAN receiver is required to output a recessive state with less than 500 mV and a dominant state with more  
than 900-mV difference voltage on its bus inputs. The CAN receiver must do this with common-mode input  
voltages from –2 V to 7 V. The SN55HVD233-SEP receiver meets these same input specifications as 5-V  
supplied receivers.  
9.3.4.2.1 Common-Mode Signal  
A common-mode signal is an average voltage of the two signal wires that the differential receiver rejects. The  
common-mode signal comes from the CAN driver, ground noise, and coupled bus noise. The supply voltage of  
the CAN transceiver has nothing to do with noise. The SN55HVD233-SEP driver lowers the common-mode  
output in a dominant bit by a couple hundred millivolts from that of most 5-V drivers. While this does not fully  
comply with ISO 11898, this small variation in the driver common-mode output is rejected by differential receivers  
and does not effect data, signal noise margins, or error rates.  
9.3.4.3 Interoperability of 3.3-V CAN in 5-V CAN Systems  
The 3.3-V supplied CAN transceivers are electrically interchangeable with 5-V CAN transceivers. The differential  
output is the same. The recessive common mode output is the same. The dominant common mode output  
voltage is a couple hundred millivolts lower than 5-V supplied drivers, while the receivers exhibit identical  
specifications as 5-V devices.  
To help ensure the widest interoperability possible, the SN55HVD233-SEP successfully passed the  
internationally recognized GIFT ICT conformance and interoperability testing for CAN transceivers. Electrical  
interoperability does not always assure interchangeability, however. Most implementers of CAN buses recognize  
that ISO 11898 does not sufficiently specify the electrical layer and that strict standard compliance alone does  
not ensure full interchangeability. Interchangeability is ensured with thorough equipment testing.  
Copyright © 2018, Texas Instruments Incorporated  
17  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
9.3.5 Thermal Shutdown  
If the junction temperature of the device exceeds the thermal shutdown threshold, the device turns off the CAN  
driver circuits thus blocking the D pin to bus transmission path. The shutdown condition is cleared when the  
junction temperature drops below the thermal shutdown temperature of the device. The CAN bus pins are high-  
impedance biased to recessive level during a thermal shutdown, and the receiver-to-R pin path remains  
operational.  
9.4 Device Functional Modes  
Table 2. Driver I/O  
DRIVER(1)  
INPUTS  
OUTPUTS  
D
LBK  
RS  
CANH  
CANL  
BUS STATE  
Recessive  
Dominant  
X
X
> 0.75 VCC  
Z
H
Z
Z
Z
L
Z
Z
L
H or open  
X
L or open  
0.33 VCC  
0.33 VCC  
X
H
Recessive  
Recessive  
(1) H = High level; L = Low level; Z = High impedance; X = Irrelevant  
Table 3. Receiver I/O  
RECEIVER(1)  
INPUTS  
OUTPUT  
BUS STATE  
Dominant  
Recessive  
?
VID = V(CANH) – V(CANL)  
ID 0.9 V  
ID 0.5 V or open  
0.5 V < VID < 0.9 V  
ID 0.9 V  
D
R
L
V
X
V
H or open  
H
?
H or open  
Dominant  
Recessive  
Recessive  
?
V
X
H
L
L
V
ID 0.5 V or open  
ID 0.5 V or open  
H
L
V
0.5 V < VID < 0.9 V  
L
L
(1) H = High level; L = Low level; Z = High impedance; X = Irrelevant; ? = Indeterminate  
18  
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Diagnostic Loopback  
The diagnostic loopback or internal loopback function of the SN55HVD233-SEP is enabled with a high-level input  
on pin 7, LBK. This mode disables the driver output while keeping the bus pins biased to the recessive state.  
This mode also redirects the D data input (transmit data) through logic to the received data output (R), thus  
creating an internal loopback of the transmit-to-receive data path. This mimics the loopback that occurs normally  
with a CAN transceiver because the receiver loops back the driven output to the R (receive data) pin. This mode  
allows the host microprocessor to input and read back a bit sequence or CAN messages to perform diagnostic  
routines without disturbing the CAN bus. Figure 33 shows a typical CAN bus application.  
If the LBK pin is not used, it may be tied to ground (GND). However, it is pulled low internally (defaults to a low-  
level input) and may be left open if not in use.  
Copyright © 2018, Texas Instruments Incorporated  
19  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Application Information (continued)  
RS INPUT  
V
D INPUT  
CANH INPUT  
V
CC  
CC  
V
CC  
110 kW  
45 kW  
9 kW  
100 kW  
1 kW  
INPUT  
INPUT  
9 V  
9 kW  
40 V  
+
_
INPUT  
CANL INPUT  
CANH AND CANL OUTPUTS  
R OUTPUT  
V
CC  
V
CC  
V
CC  
110 kW  
45 kW  
9 kW  
5 W  
OUTPUT  
9 V  
INPUT  
40 V  
OUTPUT  
40 V  
9 kW  
LBK INPUT  
V
CC  
1 kW  
INPUT  
100 kW  
9 V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 28. Equivalent Input and Output Schematic Diagrams  
20  
Copyright © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
10.2 Typical Application  
Bus Lines -- 40 m max  
CANH  
Stub Lines -- 0.3 m max  
120  
W
120 W  
CANL  
3.3 V  
Vcc  
3.3 V  
Vcc  
3.3 V  
Vcc  
Rs  
Rs  
Rs  
0.1  
0.1 mF  
SN55HVD233-SP  
SN55HVD233-SP  
SN55HVD233-SP  
0.1  
F
mF  
m
GND  
GND  
GND  
D
R
D
R
D
R
LBK  
LBK  
LBK  
CANTX  
CANRX  
CANTX  
CANRX  
GPIO  
CANTX  
CANRX  
GPIO  
GPIO  
FPGA/MCU  
FPGA/MCU  
FPGA/MCU  
Sensor, Actuator, or Control  
Equipment  
Sensor, Actuator, or Control  
Equipment  
Sensor, Actuator, or Control  
Equipment  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. Typical Application Schematic  
10.2.1 Design Requirements  
The High-Speed ISO 11898 Standard specifications are given for a maximum signaling rate of 1 Mbps with a bus  
length of 40 m and a maximum of 30 nodes. It also recommends a maximum unterminated stub length of 0.3 m.  
The cable is specified to be a shielded or unshielded twisted-pair with a 120-Ω characteristic impedance (ZO).  
The standard defines a single line of twisted-pair cable with the network topology as shown in Figure 29. It is  
terminated at both ends with 120-Ω resistors, which match the characteristic impedance of the line to prevent  
signal reflections. According to ISO 11898, placing RL on a node should be avoided because the bus lines lose  
termination if the node is disconnected from the bus.  
10.2.2 Detailed Design Procedure  
Table 4. Suggested Cable Length vs Signaling Rate  
BUS LENGTH (m)  
SIGNALING RATE (Mbps)  
40  
100  
200  
500  
1000  
1
0.5  
0.25  
0.1  
0.05  
Basically, the maximum bus length is determined by, or rather is a trade-off with the selected signaling rate as  
listed in Table 4.  
A signaling rate decreases as transmission distance increases. While steady-state losses may become a factor  
at the longest transmission distances, the major factors limiting signaling rate as distance is increased are time  
varying. Cable bandwidth limitations, which degrade the signal transition time and introduce inter-symbol  
interference (ISI), are primary factors reducing the achievable signaling rate when transmission distance is  
increased.  
For a CAN bus, the signaling rate is also determined from the total system delay – down and back between the  
two most distant nodes of a system and the sum of the delays into and out of the nodes on a bus with the typical  
5-ns/m prop delay of a twisted-pair cable. Also, consideration must be given the signal amplitude loss due to  
resistance of the cable and the input resistance of the transceivers. Under strict analysis, skin effects, proximity  
to other circuitry, dielectric loss, and radiation loss effects all act to influence the primary line parameters and  
degrade the signal.  
A conservative rule of thumb for bus lengths over 100 m is derived from the product of the signaling rate in Mbps  
and the bus length in m, which should be less than or equal to 50.  
Copyright © 2018, Texas Instruments Incorporated  
21  
 
 
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Signaling Rate (Mbps) × Bus Length (m) 50. Operation at extreme temperatures should employ additional  
conservatism.  
10.2.2.1 Slope Control  
Adjust the rise and fall slope of the SN55HVD233-SEP driver output by connecting a resistor from the RS (pin 8)  
to ground (GND), or to a low-level input voltage as shown in Figure 30.  
The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented  
with an external resistor value ranging from 0 Ω to achieve a 38-V/µs single ended slew rate, and up to 50 kΩ to  
achieve a 4-V/µs slew rate as displayed in Figure 31. Figure 32 shows typical driver output waveforms with  
slope control.  
0 kΩ to  
50 kΩ  
GPIO  
RS  
1
2
3
4
5
10  
9
D
GND  
VCC  
R
CANH  
CANL  
LBK  
MCU/DSP  
8
7
6
N/C  
N/C  
Figure 30. Slope Control/Standby Connection to a DSP  
10.2.2.2 Standby  
If a high-level input (> 0.75 VCC) is applied to RS (pin 8), the circuit enters a low-current, listen-only standby  
mode during which the driver is switched off and the receiver remains active. The local controller can reverse this  
low-power standby mode when the rising edge of a dominant state (bus differential voltage > 900-mV typical)  
occurs on the bus.  
10.2.3 Application Curves  
40  
35  
30  
25  
20  
15  
10  
5
0
0
10000  
20000  
30000  
40000  
50000  
60000  
Slope Control Resistance (kW)  
D008  
Figure 31. HVD233 Driver Output Signal Slope vs Slope  
Control Resistance Value  
Figure 32. Typical SN55HVD233-SEP 250-Kbps Output  
Pulse Waveforms With Slope Control  
22  
Copyright © 2018, Texas Instruments Incorporated  
 
 
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
11 Power Supply Recommendations  
TI recommends to have localized capacitive decoupling near device VCC pin to GND. Values of 4.7 µF at VCC  
pin and 10 µF, 1 µF, and 0.1 µF at supply have tested well on evaluation modules.  
12 Layout  
12.1 Layout Guidelines  
Minimize stub length from node insertion to bus.  
12.1.1 Bus Loading, Length, and Number of Nodes  
The ISO11898 standard specifies up to 1-Mbps data rate, maximum bus length of 40 m, maximum drop line  
(stub) length of 0.3 m, and a maximum of 30 nodes. However, with careful network design, the system may have  
longer cables, longer stub lengths, and many more nodes to a bus. Many CAN organizations and standards have  
scaled the use of CAN for applications outside the original ISO11898 standard. They made system level trade-  
offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are  
ARINC825, CANopen, CAN Kingdom, DeviceNet, and NMEA200.  
A high number of nodes requires a transceiver with high input impedance and wide common mode range such  
as the SN55HVD233-SEP CAN. ISO11898-2 specifies the driver differential output with a 60-Ω load (two 120-Ω  
termination resistors in parallel), and the differential output must be greater than 1.5 V. The SN55HVD233-SEP is  
specified to meet the 1.5-V requirement with a 60-Ω load, and additionally specified with a differential output  
voltage minimum of 1.2 V across a common mode range of –2 V to 7 V through a 330-Ω coupling network. This  
network represents the bus loading of 120 SN55HVD233-SEP transceivers based on their minimum differential  
input resistance of 40 kΩ. Therefore, the SN55HVD233-SEP supports up to 120 transceivers on a single bus  
segment with margin to the 1.2-V minimum differential input voltage requirement at each node. For CAN network  
design, margin must be given for signal loss across the system and cabling, parasitic loadings, network  
imbalances, ground offsets, and signal integrity; thus, a practical maximum number of nodes may be lower. Bus  
length may also be extended beyond the original ISO11898 standard of 40 m by careful system design and data  
rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with  
changes in the termination resistance, cabling, less than 64 nodes, and significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO11898 CAN standard. Using this flexibility requires good  
network design.  
12.1.2 CAN Termination  
The ISO11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with 120-Ω  
characteristic impedance (ZO). Use resistors equal to the characteristic impedance of the line to terminate both  
ends of the cable to prevent signal reflections. Keep unterminated drop lines (stubs) connecting nodes to the bus  
as short as possible to minimize signal reflections. The termination may be on the cable or in a node, but if  
nodes may be removed from the bus, the termination must be carefully placed so that it is not removed from the  
bus.  
Copyright © 2018, Texas Instruments Incorporated  
23  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
Layout Guidelines (continued)  
Node n  
(with termination)  
Node 1  
Node 2  
Node 3  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
RTERM  
Figure 33. Typical CAN Bus  
Termination is typically a 120-Ω resistor at each end of the bus. If filtering and stabilization of the common mode  
voltage of the bus is desired, then the user may use split termination (see Figure 34). Split termination uses two  
60-Ω resistors with a capacitor in the middle of these resistors to ground. Split termination improves the  
electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common mode voltages  
at the start and end of message transmissions.  
Take care with the power ratings of the termination resistors used, especially for the worst-case condition (if a  
system power supply is shorted across the termination resistance to ground). In most cases, under the worst-  
case condition, much higher current passes through the termination resistance than the CAN transceiver's  
current limit.  
Split Termination  
Standard Termination  
CANH  
CANH  
R
/2  
TERM  
CAN  
Transceiver  
CAN  
R
TERM  
Transceiver  
C
SPLIT  
R
/2  
TERM  
CANL  
CANL  
Figure 34. CAN Bus Termination Concepts  
24  
版权 © 2018, Texas Instruments Incorporated  
 
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
12.2 Layout Example  
RS  
GND  
D
R1  
GND  
GND  
R5  
GND  
U1  
C7  
VCC  
R6  
R2  
R
LBK  
Figure 35. Board Layout Example  
版权 © 2018, Texas Instruments Incorporated  
25  
SN55HVD233-SEP  
ZHCSJ41 DECEMBER 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
26  
版权 © 2018, Texas Instruments Incorporated  
SN55HVD233-SEP  
www.ti.com.cn  
ZHCSJ41 DECEMBER 2018  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN55HVD233MDPSEP  
SN55HVD233MDTPSEP  
V62/18617-01XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
250  
250  
75  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
33PSEP  
NIPDAU  
NIPDAU  
NIPDAU  
33PSEP  
33PSEP  
33PSEP  
V62/18617-01XE-T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN55HVD233MDTPSEP  
SOIC  
D
8
250  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
340.5 336.1 25.0  
SN55HVD233MDTPSEP  
D
8
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
SN55HVD233MDPSEP  
V62/18617-01XE-T  
D
D
SOIC  
SOIC  
8
8
75  
75  
507  
507  
8
8
3940  
3940  
4.32  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

V62/18622-01XE

增强型产品 2.5V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/18622-02XE

增强型产品 4.1V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/18622-03XE

增强型产品 3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/18622-04XE

增强型产品 3.3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/19602-01XE

采用塑料封装的耐辐射 40V 可调节电压监控器 | PW | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/19602-01XE-T

采用塑料封装的耐辐射 40V 可调节电压监控器 | PW | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/19608-01XE

增强型产品 PCI 基于 EXPRESS® 的 IEEE 1394b OHCI 主机控制器 | PZT | 100 | -40 to 110

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/19616-01XE

具有相位同步功能的增强型产品 15GHz 射频合成器 | RTC | 48

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/19622-01XE

精度为 0.5% 的塑料增强型、低电压、宽工作电流、可调节精密并联稳压器 | DBZ | 3 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI

V62/19623-019A

采用塑料封装的抗辐射、3.5V 至 32V 输入、6A 同步降压转换器 | KGD | 0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
TI