VSP5324-Q1 [TI]

汽车类 4 通道 12 位 80MSPS 模数转换器 (ADC);
VSP5324-Q1
型号: VSP5324-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 4 通道 12 位 80MSPS 模数转换器 (ADC)

转换器 模数转换器
文件: 总65页 (文件大小:3110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
VSP5324-Q1 4 通道、12 位、80MSPS ADC  
1 特性  
2 应用  
1
适用于汽车类 应用  
具有符合 AEC-Q100 标准的下列结果  
深度传感:  
位置和接近传感  
器件温度等级 2–40°C +105°C  
3D 扫描  
器件人体放电模型(HBM) ESD 分类等级 2  
器件充电模型 (CDM) ESD 分类等级 C4B  
3D 机器视觉  
安全和监控  
手势控制  
针对低功耗而设计:  
单信道接口:  
50MSPS 时,每通道 65mW  
3 说明  
VSP5324-Q1 器件是一款低功耗、12 位、80MSPS、  
四通道模数转换器 (ADC)。低功耗和在一个紧凑封装  
内的多通道集成使得此器件对于 3D 时差测距 (ToF) 系  
统具有很大的吸引力。  
双信道接口:  
80MSPS 时,每通道 82mW  
动态性能:  
5MHz 输入频率,80MSPS  
信噪比 (SNR)70dBFS  
串行低压差分信令 (LVDS) 输出减少了接口线路的数量  
并实现高度系统集成。  
无杂散动态范围 (SFDR)85dBc  
串行低压差分信令 (LVDS) 模数转换器 (ADC) 数据  
输出  
此器件采用紧凑型 9mm x 9mm VQFN-64 封装。  
多种 LVDS 测试模式以验证数据捕捉  
封装:9mm x 9mm VQFN-64  
工作温度:–40°C +105°C  
器件信息(1)  
器件型号  
封装  
VQFN (64)  
封装尺寸(标称值)  
VSP5324-Q1  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化的原理图  
信噪比与输入信号频率间的关系  
18-V  
AVDD LVDD  
18-V  
71.1  
70.6  
70.1  
69.6  
69.1  
68.6  
VSP5324-Q1  
SPI Control  
Register  
control  
Time of Flight  
Sensor  
Analog Inputs  
4-Channel  
12-bit ADC  
Bit Clock  
Frame Clock  
LVDS Data  
Host  
Serializer  
Common Mode Voltage (optional)  
Reference (optional)  
Power  
Down  
Sampling  
Clock  
0
10  
20  
30  
40  
50  
60  
70  
80  
Input Signal Frequency (MHz)  
D007  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLES275  
 
 
 
 
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
7.2 Functional Block Diagrams ..................................... 19  
7.3 Feature Description................................................. 20  
7.4 Device Functional Modes........................................ 26  
7.5 Programming........................................................... 27  
7.6 Register Maps......................................................... 29  
Application and Implementation ........................ 51  
8.1 Application Information............................................ 51  
8.2 Typical Application ................................................. 51  
Power Supply Recommendations...................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics: Dynamic Performance..... 7  
6.6 Electrical Characteristics: General............................ 8  
6.7 Electrical Characteristics: Digital............................... 9  
6.8 Timing Requirements................................................ 9  
8
9
10 Layout................................................................... 53  
10.1 Layout Guidelines ................................................. 53  
10.2 Layout Example .................................................... 54  
11 器件和文档支持 ..................................................... 55  
11.1 器件支持................................................................ 55  
11.2 文档支持................................................................ 56  
11.3 接收文档更新通知 ................................................. 56  
11.4 社区资源................................................................ 56  
11.5 ....................................................................... 57  
11.6 静电放电警告......................................................... 57  
11.7 Glossary................................................................ 57  
12 机械、封装和可订购信息....................................... 57  
6.9 LVDS Timing at Different Sampling Frequencies  
(One-Lane Interface, 12x Serialization) ................... 10  
6.10 LVDS Timing at Different Sampling Frequencies  
(Two-Lane Interface, 6x Serialization) ..................... 10  
6.11 Serial Interface Timing Requirements................... 10  
6.12 Typical Characteristics.......................................... 12  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2014) to Revision A  
Page  
已更改 将器件可见性从定制更改为目录.................................................................................................................................. 1  
已添加 接收文档更新通知社区资源 ................................................................................................................................... 56  
2
Copyright © 2015–2017, Texas Instruments Incorporated  
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
5 Pin Configuration and Functions  
RGC Package  
64-Pin VQFN With Exposed Thermal Pad  
Top View  
1
2
3
4
5
6
7
8
9
IN1_P  
IN1_M  
AGND  
NC  
48  
IN4_M  
47 IN4_P  
46 AGND  
45 NC  
NC  
NC  
42  
43  
AGND  
IN2_P  
IN2_M  
AGND  
AGND  
42 IN3_M  
41 IN3_P  
40 AGND  
39 NC  
Thermal Pad  
NC 10  
NC  
11  
12  
NC  
38  
37  
LGND  
AGND  
PD 13  
LGND 14  
36 LGND  
LVDD  
35  
34  
33  
OUT1A_P 15  
OUT4A_M  
OUT4A_P  
OUT1A_M  
16  
NC - No internal connection  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
24  
23  
3
ADCLKM  
ADCLKP  
Digital output  
Digital output  
Negative LVDS differential frame clock output pin  
Positive LVDS differential frame clock output pin  
6
9
AGND  
37  
40  
43  
46  
50  
57  
60  
Ground  
Analog ground pin  
AVDD  
CLKM  
Supply  
Analog supply pin, 1.8 V  
Negative clock input  
Differential clock input: apply differential clocks (sine wave, LVPECL, and LVDS) to CLKP and  
CLKM. Single-ended clock input: apply a CMOS clock to CLKP and tie CLKM to ground.  
59  
Analog input  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Positive clock input  
CLKP  
58  
Analog input  
Differential clock input: apply differential clocks (sine wave, LVPECL, and LVDS) to CLKP and  
CLKM. Single-ended clock input: apply a CMOS clock to CLKP and tie CLKM to ground.  
CS  
61  
2
Digital input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Serial interface enable pin  
IN1_M  
IN1_P  
IN2_M  
IN2_P  
IN3_M  
IN3_P  
IN4_M  
IN4_P  
Channel 1 negative differential analog input  
Channel 1 positive differential analog input  
Channel 2 negative differential analog input  
Channel 2 positive differential analog input  
Channel 3 negative differential analog input  
Channel 3 positive differential analog input  
Channel 4 negative differential analog input  
Channel 4 positive differential analog input  
1
8
7
42  
41  
48  
47  
Internal and external reference control input pin  
Logic high: device uses internal reference  
Logic low: device uses external reference  
INT/EXT  
56  
Digital input  
LCLKM  
LCLKP  
26  
25  
12  
14  
36  
35  
4
Digital output  
Digital output  
Negative LVDS differential bit clock output pin  
Positive LVDS differential bit clock output pin  
LGND  
LVDD  
Ground  
Supply  
Digital ground pin  
Digital and LVDS supply pin, 1.8 V  
5
10  
11  
38  
39  
44  
45  
51  
NC  
Unused; do not connect  
Channel 1A negative LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
OUT1A_M  
OUT1A_P  
OUT1B_M  
OUT1B_P  
OUT2A_M  
OUT2A_P  
OUT2B_M  
OUT2B_P  
OUT3A_M  
OUT3A_P  
16  
15  
18  
17  
20  
19  
22  
21  
30  
29  
Interface  
Interface  
Interface  
Interface  
Interface  
Interface  
Interface  
Interface  
Interface  
Interface  
Channel 1A positive LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
Channel 1B negative LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
Channel 1B positive LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
Channel 2A negative LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
Channel 2A positive LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
Channel 2B negative LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
Channel 2B positive LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
Channel 3A negative LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
Channel 3A positive LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Channel 3B negative LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
OUT3B_M  
OUT3B_P  
OUT4A_M  
OUT4A_P  
OUT4B_M  
OUT4B_P  
PD  
28  
Interface  
Interface  
Interface  
Interface  
Interface  
Interface  
Digital input  
Channel 3B positive LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
27  
34  
33  
32  
31  
13  
Channel 4A negative LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
Channel 4A positive LVDS differential output pin.  
This pin can be used with either one- or two-lane interface.  
Channel 4B negative LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
Channel 4B positive LVDS differential output pin. This pin is used with two-lane interface.  
In one-lane interface, this pin is unused and must be floated without a 100-Ω termination.  
Power-down control input pin  
Logic high: device is in power-down state; logic low: normal operation  
Reference bottom voltage pin  
Internal reference mode: the reference bottom voltage (0.45 V) is output on this pin.  
External reference mode: the reference bottom voltage (0.45 V) must be externally applied to this  
pin. There are no required decoupling capacitors on this pin.  
REFB  
REFT  
54  
55  
Analog input  
Analog input  
Reference top voltage pin  
Internal reference mode: the reference top voltage (1.45 V) is output on this pin.  
External reference mode: reference top voltage (1.45 V) must be externally applied to this pin.  
There are no required decoupling capacitors on this pin.  
RESET  
SCLK  
64  
63  
62  
52  
Digital input  
Digital input  
Digital input  
Digital output  
Serial interface reset pin; active low  
Serial interface clock pin  
SDATA  
SDOUT  
Serial interface data pin  
Serial interface readout pin  
Control input pin synchronizes test patterns across channels.  
When unused, this pin should be tied to ground.  
SYNC  
49  
Digital input  
Common-mode voltage pin  
VCM  
53  
Analog output Internal reference mode: common-mode voltage output pin, 0.95 V.  
External reference mode: reference voltage must be externally applied to this pin.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range, unless otherwise noted.(1)  
MIN  
–0.3  
–0.3  
MAX  
2.2  
UNIT  
V
AVDD  
Supply voltage  
LVDD  
2.2  
V
Ground voltage  
Between AGND and LGND  
differences  
–0.3  
–0.3  
–0.3  
0.3  
V
V
V
Digital outputs  
Digital inputs (CLKN, CLKP(2), RESET, SCLK,  
SDATA, CS, SYNC, PD, INT/EXT)  
lesser of 2.2 or (LVDD + 0.3)  
lesser of 2.2 or (LVDD + 0.3)  
Input voltage  
Analog inputs  
Input current (all pins except supplies)  
Ambient temperature, under bias, TA  
Junction temperature, TJ  
–0.3  
–10  
–40  
lesser of 2.2 or (LVDD + 0.3)  
V
10  
mA  
°C  
°C  
°C  
105  
125  
125  
Storage temperature, Tstg  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKN is less than |0.3 V|).  
This setting prevents the ESD protection diodes at the clock input pins from turning on.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Other pins  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC  
Q100-011  
Corner pins (1, 16, 17,  
32, 33, 48, 49, and 64)  
±750  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range, unless otherwise noted.  
MIN  
1.7  
NOM  
1.8  
MAX  
1.9  
UNIT  
V(AVDD)  
V(LVDD)  
VID  
Analog supply voltage  
Digital supply voltage  
V
V
1.7  
1.8  
1.9  
Differential input voltage  
Input common-mode voltage  
2
VPP  
mV  
VIC  
VIC ± 50  
Two-lane LVDS interface  
One-lane LVDS interface  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
10  
10  
80  
50  
MSPS  
MSPS  
VPP  
VPP  
VPP  
V
Input clock sample rate  
1.5  
1.6  
0.7  
3.3  
50%  
5
(VCLKP  
Input clock amplitude  
differential  
VCLKM  
)
LVDS, ac-coupled  
LVCMOS, single-ended, ac-coupled  
Duty cycle  
35%  
–40  
65%  
105  
CLOAD  
RLOAD  
TA  
Maximum external capacitance from each output pin to DRGND  
Differential resistance between LVDS output pairs (LVDS mode)  
Operating free-air  
pF  
Ω
100  
°C  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
6.4 Thermal Information  
VSP5324-Q1  
THERMAL METRIC(1)  
RGC (VQFN)  
UNIT  
64 PINS  
20.6  
6.1  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
2.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
2.6  
RθJC(bot)  
0.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics: Dynamic Performance  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, 50% clock duty cycle, and –1-  
dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range  
of TMIN = –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V.  
PARAMETER  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bits  
12  
ƒIN = 5 MHz  
68  
70  
69.5  
69.8  
69.2  
85  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal-to-noise ratio  
ƒIN = 30 MHz  
ƒIN = 5 MHz  
ƒIN = 30 MHz  
ƒIN = 5 MHz  
ƒIN = 30 MHz  
ƒIN = 5 MHz  
ƒIN = 30 MHz  
ƒIN = 5 MHz  
ƒIN = 30 MHz  
ƒIN = 5 MHz  
ƒIN = 30 MHz  
ƒIN = 5 MHz  
ƒIN = 30 MHz  
SINAD  
SFDR  
THD  
Signal-to-noise and distortion ratio  
Spurious-free dynamic range  
Total harmonic distortion  
Second-harmonic distortion  
Third-harmonic distortion  
64  
63  
64  
64  
82  
dBc  
81.5  
78  
dBc  
dBc  
90  
dBc  
HD2  
86  
dBc  
85  
dBc  
HD3  
82  
dBc  
91  
dBc  
Worst spur  
(other than second and third harmonics)  
83  
dBc  
ƒ1 = 8 MHz, ƒ2 = 10 MHz,  
each tone at –7 dBFS  
IMD  
Two-tone intermodulation distortion  
Crosstalk (far channel)  
83  
95  
1
dBc  
10-MHz full-scale signal on aggressor  
channel; no input signal applied on victim  
channel  
dB  
Recovery to within 1% (of full-scale) for  
6-dB overload with sine-wave input  
Clock  
cycle  
Input overload recovery  
For 50-mVPP signal on AVDD supply,  
up to 10 MHz, no signal applied to analog  
inputs  
PSRR  
AC power-supply rejection ratio  
50  
dB  
ENOB  
DNL  
INL  
Effective number of bits  
Differential nonlinearity  
Integral nonlinearity  
ƒIN = 5 MHz  
ƒIN = 5 MHz  
ƒIN = 5 MHz  
11.3  
±0.2  
±0.3  
Bits  
–0.8  
0.8  
1
LSBs  
LSBs  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
6.6 Electrical Characteristics: General  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, 50% clock duty cycle, and –1-  
dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range  
of TMIN = –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V.  
PARAMETER  
ANALOG INx_PUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Voltage range  
2
2
VPP  
kΩ  
Differential  
input  
VID  
Resistance, at dc  
Capacitance, at dc  
2.2  
550  
pF  
Analog input bandwidth  
MHz  
Analog input common-mode current  
(per input pin)  
µA/  
MSPS  
1.6  
VOC  
Common-mode output voltage  
VCM output current capability  
0.95  
5
V
IO(VCM)  
mA  
DC ACCURACY  
Offset error  
±5  
±20  
2
mV  
Gain error resulting from internal  
reference inaccuracy alone  
EGREF  
–2  
%FS  
%FS  
EGCHAN Gain error of channel alone  
0.5  
POWER SUPPLY  
80 MSPS  
50 MSPS  
114  
86  
135  
85  
mA  
mA  
IAVDD  
Analog supply current  
Output buffer supply current  
Analog power  
Two-lane LVDS interface, 80 MSPS,  
350-mV swing with 100-Ω external  
termination  
69  
56  
mA  
mA  
ILVDD  
One-lane LVDS interface, 50 MSPS,  
350-mV swing with 100-Ω external  
termination  
80 MSPS  
50 MSPS  
205  
155  
mW  
mW  
Two-lane LVDS interface, 80 MSPS,  
350-mV swing with 100-Ω external  
termination  
124  
101  
mW  
mW  
Digital power LVDS interface  
Total power  
One-lane LVDS interface, 50 MSPS,  
350-mV swing with 100-Ω external  
termination  
80 MSPS, two-lane LVDS interface  
50 MSPS, one-lane LVDS interface  
329  
256  
mW  
mW  
mW  
mW  
Global power-down  
Standby power  
40  
135  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
6.7 Electrical Characteristics: Digital  
At V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, unless otherwise noted. The DC specifications refer to the condition where the digital  
outputs do not switch, but are tied permanently to a valid logic level 0 or 1.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INx_PUTS (RESET, SCLK, SDATA, CS, PDN, SYNC, INT/EXT)  
All digital inputs support 1.8-V and 3.3-V CMOS  
logic levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
> 1.3  
V
V
All digital inputs support 1.8-V and 3.3-V CMOS  
logic levels  
< 0.4  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = 1.8 V  
VIL = 0 V  
6
µA  
µA  
< 0.1  
DIGITAL OUTPUTS  
AVDD –  
0.1  
VOH  
VOL  
High-level output voltage  
CMOS interface (SDOUT)  
CMOS interface (SDOUT)  
V
V
Low-level output voltage  
0.1  
LVDS interface (OUTP, OUTM, LCLKP, LCLKM,  
ADCLKP, ADCLKM), with an external 100-Ω  
termination  
High-level output differential  
voltage  
VOD(H)  
245  
420  
mV  
LVDS interface (OUTP, OUTM, LCLKP, LCLKM,  
ADCLKP, ADCLKM), with an external 100-Ω  
termination  
Low-level output differential  
voltage  
VOD(L)  
VOC  
–420  
–245  
mV  
V
Output common-mode voltage  
1.05  
6.8 Timing Requirements(1)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, sine wave input clock, C(LOAD) = 5  
pF, and R(LOAD) = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN  
= –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, and V(LVDD) = 1.7 V to 1.9 V.  
MIN  
NOM  
MAX  
UNIT  
Aperture delay  
4
ns  
Aperture delay  
matching(2)(3)  
Between the two channels of the same device  
±175  
ps  
Between two devices at the same temperature and  
LVDD supply  
Aperture delay variation  
Aperture jitter (RMS)  
2.5  
320  
5
ns  
fs  
Time to valid data after coming out of partial  
power-down mode  
50  
µs  
Wakeup time  
ADC latency  
Time to valid data after coming out of global  
power-down mode  
100  
11  
500  
µs  
Clock  
cycles  
One-lane LVDS output interface  
Two-lane LVDS output interface  
Clock  
cycles  
15  
Data valid to zero crossing of LCLKP, 80 MSPS,  
two-lane LVDS  
tsu  
th  
Data setup time  
Data hold time(4)  
0.61  
0.74  
ns  
ns  
Zero crossing of LCLKP to data becoming invalid,  
80 MSPS, two-lane LVDS  
Input clock rising edge crossover to frame clock  
rising edge crossover, two-lane LVDS for  
10 ƒS 80 MSPS  
(11 / 12) ×  
tS + td  
ns  
tp  
Clock propagation delay  
Delay time  
Input clock rising edge crossover to frame clock  
rising edge crossover, one-lane LVDS for  
10 ƒS 65 MSPS  
(9 / 12) ×  
tS + td  
ns  
ns  
td  
6.8  
9
11.8  
(1) Timing parameters are ensured by design and characterization and are not tested in production.  
(2) C(LOAD) is the effective external single-ended load capacitance between each output pin and ground.  
(3) R(LOAD) is the differential load resistance between the LVDS output pair.  
(4) Data valid refers to a logic high of 100 mV and a logic low of –100 mV.  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Timing Requirements(1) (continued)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, sine wave input clock, C(LOAD) = 5  
pF, and R(LOAD) = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN  
= –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, and V(LVDD) = 1.7 V to 1.9 V.  
MIN  
NOM  
MAX  
UNIT  
LVDS bit clock duty cycle  
Data fall time  
Differential clock duty cycle (LCLKP – LCLKM)  
50  
%
Rise time measured from –100 mV to 100 mV,  
10 MSPS sampling frequency 80 MSPS  
tf  
tr  
0.2  
0.2  
ns  
ns  
ns  
ns  
Rise time measured from –100 mV to 100 mV,  
10 MSPS sampling frequency 80 MSPS  
Data rise time  
Rise time measured from –100 mV to 100 mV,  
10 MSPS sampling frequency 80 MSPS  
tr(CLK) Output clock rise time  
tf(CLK) Output clock fall time  
0.18  
0.18  
Rise time measured from –100 mV to 100 mV,  
10 MSPS sampling frequency 80 MSPS  
6.9 LVDS Timing at Different Sampling Frequencies (One-Lane Interface, 12x Serialization)  
See 1 and 2.  
MIN  
0.75  
0.47  
0.25  
0.62  
0.38  
0.19  
MAX  
UNIT  
ƒ(SAMPLE) = 40 MSPS  
ƒ(SAMPLE) = 50 MSPS  
ƒ(SAMPLE) = 65 MSPS  
ƒ(SAMPLE) = 40 MSPS  
ƒ(SAMPLE) = 50 MSPS  
ƒ(SAMPLE) = 65 MSPS  
LCLKP zero-crossing to data becoming  
invalid (both edges)  
th  
ns  
Data valid to LCLKP zero-crossing (both  
edges)  
tsu  
ns  
6.10 LVDS Timing at Different Sampling Frequencies (Two-Lane Interface, 6x Serialization)  
See 1 and 2.  
MIN  
1.9  
MAX  
UNIT  
ƒ(SAMPLE) = 40 MSPS  
ƒ(SAMPLE) = 50 MSPS  
ƒ(SAMPLE) = 65 MSPS  
ƒ(SAMPLE) = 40 MSPS  
ƒ(SAMPLE) = 50 MSPS  
ƒ(SAMPLE) = 65 MSPS  
LCLKP zero-crossing to data becoming  
invalid (both edges)  
th  
1.55  
1.1  
ns  
1.44  
1.02  
0.64  
Data valid to LCLKP zero-crossing (both  
edges)  
tsu  
ns  
6.11 Serial Interface Timing Requirements  
See 3.  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒ(SCLK)  
tsu(LOADS)  
tsu(LOADH)  
tsu(D)  
SCLK frequency = 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDATA setup time  
> DC  
33  
33  
ns  
33  
ns  
th(D)  
SDATA hold time  
33  
ns  
10  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
OUTx_P  
Logic 0  
VOD(L) = -350 mV(1)  
Logic 1  
VOD(H) = 350 mV(1)  
OUTx_M  
VVIC  
OCM  
IC  
GND  
(1) With an external 100-Ω termination..  
1. LVDS Output Voltage Levels  
CLKM  
CLKP  
Input  
Clock  
t
PDI  
ADCLKM  
Frame  
Clock  
ADCLKP  
LCLKM  
t
su  
t
h
Bit  
Clock  
LCLKP  
t
t
t
t
h
su  
h
su  
OUT1A, OUT1B  
OUT2A, OUT2B  
OUT3B, OUT3A  
OUT4B, OUT4A  
Output  
Data  
Dn(1)  
Dn + 1(1)  
2. LVDS Mode Timing  
版权 © 2015–2017, Texas Instruments Incorporated  
11  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Register Address  
Register Data  
D15  
D14  
D13  
D12  
D11  
D10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D9  
D8  
SDATA  
SCLK  
th(D)  
tsu(D)  
tsu(LOADH)  
t(SCLK)  
tsu(LOADS)  
CS  
RESET  
3. Serial Interface Timing  
6.12 Typical Characteristics  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
D001  
D002  
SNR = 69.6 dBFS  
SFDR = 89.3 dBc  
SINAD = 69.5 dBFS  
THD = 85.9 dBc  
SNR = 69.6 dBFS  
SFDR = 84.8 dBc  
SINAD = 69.4 dBFS  
THD = 83.2 dBc  
Sample Rate = 80 MSPS  
Sample Rate = 80 MSPS  
4. FFT for 5-MHz Input Signal  
5. FFT for 15-MHz Input Signal  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
0
10  
20  
30  
40  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
D003  
D004  
SNR = 68.5 dBFS  
SFDR = 76.5 dBc  
SINAD = 67.8 dBFS  
THD = 75 dBc  
SNR = 69.8 dBFS  
SFDR = 85.1 dBc  
SINAD = 69.7 dBFS  
THD = 84.7 dBc  
Sample Rate = 80 MSPS  
Sample Rate = 40 MSPS  
6. FFT for 65-MHz Input Signal  
7. FFT For 5-MHz Input Signal  
12  
版权 © 2015–2017, Texas Instruments Incorporated  
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Typical Characteristics (接下页)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
D005  
D006  
SNR = 69.6 dBFS  
SFDR = 86.8 dBc  
SINAD = 69.5 dBFS  
THD = 84 dBc  
SNR = 67.2 dBFS  
SFDR = 76.5 dBc  
SINAD = 66.6 dBFS  
THD = 74 dBc  
Sample Rate = 40 MSPS  
Sample Rate = 40 MSPS  
8. FFT for 15-MHz Input Signal  
9. FFT for 65-MHz Input Signal  
71.1  
70.6  
70.1  
69.6  
69.1  
68.6  
90  
88  
86  
84  
82  
80  
78  
76  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
Input Signal Frequency (MHz)  
Input Signal Frequency (MHz)  
D007  
D008  
10. Signal-to-Noise Ratio (SNR) vs Input Signal  
11. Spurious-Free-Dynamic Range (SFDR) vs Input Signal  
Frequency  
Frequency  
72  
70  
68  
66  
64  
62  
60  
88  
fIN = 10.05 (MHz)  
fIN = 76.85 (MHz)  
fIN = 10.05 (MHz)  
fIN = 76.85 (MHz)  
86  
84  
82  
80  
78  
76  
74  
0
1
2
3
4
5
6
7
8
9
10 11 12  
0
1
2
3
4
5
6
7
8
9
10 11 12  
Digital Gain (dB)  
Digital Gain (dB)  
D009  
D010  
12. SNR vs Digital Gain  
13. SFDR vs Digital Gain  
版权 © 2015–2017, Texas Instruments Incorporated  
13  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
76  
74  
72  
70  
68  
66  
64  
120  
100  
80  
60  
40  
20  
0
72  
71.5  
71  
88  
SNR  
SFDR  
87.5  
87  
70.5  
70  
86.5  
86  
69.5  
69  
85.5  
85  
SNR  
SFDR (dBc)  
SFDR (dBFS)  
68.5  
68  
84.5  
84  
-50  
-40  
-30  
-20  
-10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Input Amplitude (dBFS)  
Input Clock Amplitude, Differential (VPP  
)
D011  
D012  
ƒIN = 5 MHz  
ƒIN = 5 MHz  
14. Performance vs Input Signal Amplitude  
15. Performance vs Input Clock Amplitude  
73  
72.5  
72  
88  
73  
72  
71  
70  
69  
68  
95  
90  
85  
80  
75  
70  
SNR  
THD  
SNR  
SFDR  
87.5  
87  
71.5  
71  
86.5  
86  
70.5  
70  
85.5  
85  
69.5  
69  
84.5  
84  
68.5  
68  
83.5  
83  
35  
40  
45  
50  
55  
60  
65  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Clock Duty Cycle (%)  
Analog Input Common-Mode Voltage (V)  
D013  
D014  
ƒIN = 5 MHz  
ƒIN = 5 MHz  
16. Performance vs Input Clock Duty Cycle  
17. Performance vs Input Common-Mode  
73  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
70.2  
70.1  
70  
SNR  
SFDR  
V(AVDD) = 1.65 V  
V(AVDD) = 1.7 V  
V(AVDD) = 1.8 V  
V(AVDD) = 1.9 V  
V(AVDD) = 1.95 V  
72.5  
72  
71.5  
71  
69.9  
69.8  
69.7  
69.6  
69.5  
69.4  
70.5  
70  
69.5  
69  
68.5  
68  
1.3  
1.4  
1.5  
1.6  
1.7  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
External Reference Input (V)  
Temperature (èC)  
D0135  
D016  
ƒIN = 5 MHz  
External reference using the VCM pin  
ƒIN = 5 MHz  
18. Performance in External Reference Mode  
19. SNR vs AVDD and Temperature  
14  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Typical Characteristics (接下页)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
85  
84  
83  
82  
81  
80  
79  
78  
77  
70.2  
70.1  
70  
V(DVDD) = 1.65 V  
V(DVDD) = 1.7 V  
V(DVDD) = 1.8 V  
V(DVDD) = 1.9 V  
V(DVDD) = 1.95 V  
69.9  
69.8  
69.7  
69.6  
69.5  
69.4  
V(AVDD) = 1.65 V  
V(AVDD) = 1.7 V  
V(AVDD) = 1.8 V  
V(AVDD) = 1.9 V  
V(AVDD) = 1.95 V  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
ƒIN = 5 MHz  
ƒIN = 5 MHz  
20. SFDR vs AVDD and Temperature  
21. SNR vs DVDD and Temperature  
85  
84  
83  
82  
81  
80  
79  
78  
77  
70  
69.9  
69.8  
69.7  
69.6  
69.5  
69.4  
V(DVDD) = 1.65 V  
V(DVDD) = 1.7 V  
V(DVDD) = 1.8 V  
V(DVDD) = 1.9 V  
V(DVDD) = 1.95 V  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
Temperature (èC)  
Temperature (èC)  
D019  
D020  
ƒIN = 5 MHz  
A 0.7-VPP 5-MHz sine-wave input is applied on the INx_P pin  
The INx_M pin is connected to the device VCM pin  
22. SFDR vs DVDD and Temperature  
23. SNR vs Temperature For Single-Ended Input  
74  
0.2  
73.5  
73  
0.1  
0
72.5  
72  
71.5  
71  
-0.1  
70.5  
70  
-0.2  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
250  
750  
1250  
1750  
2250  
2750  
3250  
3750  
Temperature (èC)  
Output Codes (LSB)  
D021  
D022  
A 0.7-VPP 5-MHz sine-wave input is applied on the INx_P pin  
The INx_M pin is connected to the device VCM pin  
24. SFDR vs Temperature for Single-ended Input  
25. Integral Nonlinearity  
版权 © 2015–2017, Texas Instruments Incorporated  
15  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
55  
50  
45  
40  
35  
30  
25  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
240  
740  
1240  
1740  
2240  
2740  
3240  
3740  
0
10  
20  
30  
40  
50  
60  
70  
Output Codes (LSB)  
Frequency of CMRR Signal (MHz)  
D023  
D024  
ƒIN = 3 MHz  
50-mVPP signal superimposed on the input  
common-mode  
27. CMRR vs Frequency  
26. Differential Nonlinearity  
5
-5  
50  
40  
Low-pass  
Band-pass 1  
Band-pass 2  
High-pass  
30  
-15  
-25  
-35  
-45  
-55  
-65  
-75  
-85  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Low-pass  
High-pass  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (fIN/fS)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fIN/fS)  
D025  
D026  
28. Filter Response (Decimate-by-2)  
29. Filter Response (Decimate-by-4)  
3
0
-3  
-6  
-9  
0
-10  
-20  
-30  
-40  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
-50  
-60  
K = 2  
-70  
K = 3  
K = 4  
K = 5  
K = 6  
K = 7  
K = 8  
K = 9  
K = 10  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.02  
0.1  
1
10  
20  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
D027  
D028  
SNR = 70.8 dBFS  
THD = 87.3 dBc  
SINAD = 70.7 dBFS  
SFDR = 88.7 dBc  
Decimate-by-2 filter enabled  
30. Digital High-Pass Filter Response  
31. FFT for 5-MHz Input Signal  
(Sample Rate = 80 MSPS With Decimation Filter = 2)  
16  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Typical Characteristics (接下页)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
0
-10  
0
HPF disabled  
HPF enabled, K = 2  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-70  
-60  
-80  
-70  
-90  
-80  
-100  
-110  
-120  
-130  
-140  
-90  
-100  
-110  
-120  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
10  
20  
30  
40  
Input Signal Frequency (MHz)  
Frequency (MHz)  
D029  
D030  
SNR = 70.8 dBFS  
SFDR = 88.7 dBc  
SINAD = 70.7 dBFS  
THD = 87.3 dBc  
32. FFT With HPF Enabled and Disabled  
33. FFT (Full-Band) for 5-MHz Input Signal  
(No Input Signal)  
(Sample Rate = 80 MSPS With Low-Frequency Noise  
Suppression Enabled)  
0
-10  
0
LF-noise supression enabled  
LF-noise supression disabled  
LF-noise supression enabled  
LF-noise supression disabled  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Frequency (MHz)  
1
39 39.1 39.2 39.3 39.4 39.5 39.6 39.7 39.8 39.9 40  
Frequency (MHz)  
D031  
D032  
34. FFT (0 MHz to 1 MHz) for 5-MHz Input Signal  
(Sample Rate = 80 MSPS With Low-Frequency Noise  
Suppression Enabled)  
35. FFT (39 MHz to 40 MHz) for 5-MHz Input Signal  
(Sample Rate = 80 MSPS With Low-Frequency Noise  
Suppression Enabled)  
120  
220  
110  
100  
90  
200  
180  
160  
140  
120  
100  
80  
80  
70  
60  
50  
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
D033  
D034  
36. Analog Supply Current  
37. Power Consumption on Analog Supply  
版权 © 2015–2017, Texas Instruments Incorporated  
17  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and  
–1-dBFS differential analog input, unless otherwise noted.  
130  
120  
110  
100  
90  
240  
220  
200  
180  
160  
140  
120  
100  
80  
Two-wire  
One-wire  
One-wire, decimate-by-2  
Two-wire  
One-wire  
One-wire, decimate-by-2  
80  
70  
60  
50  
40  
30  
60  
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Frequency (MHz)  
Sampling Frequency (MHz)  
D035  
D036  
38. Digital Supply Current  
39. Power Consumption on Digital Supply  
18  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7 Detailed Description  
7.1 Overview  
The VSP5324-Q1 device is a high-performance, 12-bit, quad-channel, analog-to-digital converter (ADC) with  
sample rates up to 80 MSPS. The conversion process is initiated by a rising edge of the external input clock and  
when the analog input signal is sampled. The sampled signal is sequentially converted by a series of small  
resolution stages, with the outputs combined in a digital correction logic block. At every clock edge the sample  
propagates through the pipeline, resulting in a data latency of 11 clock cycles. The output is available as 12-bit  
data, in serial (low-voltage differential signaling) LVDS format, coded in either offset binary or binary twos  
complement format.  
7.2 Functional Block Diagrams  
AVDD AGND  
LVDD  
LGND  
Device  
OUT1A_P  
OUT1A_M  
Serializer  
Serializer  
IN1_P  
IN1_M  
12-Bit  
ADC  
Digital  
OUT1B_P  
OUT1B_M  
OUT2A_P  
OUT2A_M  
Serializer  
Serializer  
IN2_P  
IN2_M  
12-Bit  
ADC  
Digital  
Digital  
Digital  
OUT2B_P  
OUT2B_M  
OUT3A_P  
OUT3A_M  
Serializer  
Serializer  
IN3_P  
IN3_M  
12-Bit  
ADC  
OUT3B_P  
OUT3B_M  
OUT4A_P  
OUT4A_M  
Serializer  
Serializer  
IN4_P  
IN4_M  
12-Bit  
ADC  
OUT4B_P  
OUT4B_M  
DC  
Clocking  
Sync  
Signal  
Serializer  
Clocks  
Bit Clock, 3x  
LCLKP  
LCLKM  
Differential and  
Single-Ended  
Input Clock  
CLKP  
CLKM  
Clock  
Buffer  
PLL  
CLOCKGEN  
Frame Clock, 1x  
ADCLKP  
ADCLKM  
ADC Control  
Serial  
Interface  
Reference  
SDOUT  
40. Quad ADC, One-Lane Configuration  
版权 © 2015–2017, Texas Instruments Incorporated  
19  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
AVDD AGND  
LVDD  
LGND  
Device  
OUT1A_P  
OUT1A_M  
Serializer  
Serializer  
IN1_P  
IN1_M  
12-Bit  
ADC  
Digital  
OUT1B_P  
OUT1B_M  
OUT2A_P  
OUT2A_M  
Serializer  
Serializer  
IN2_P  
IN2_M  
12-Bit  
ADC  
Digital  
Digital  
Digital  
OUT2B_P  
OUT2B_M  
OUT3A_P  
OUT3A_M  
Serializer  
Serializer  
IN3_P  
IN3_M  
12-Bit  
ADC  
OUT3B_P  
OUT3B_M  
OUT4A_P  
OUT4A_M  
Serializer  
Serializer  
IN4_P  
IN4_M  
12-Bit  
ADC  
OUT4B_P  
OUT4B_M  
DC  
Clocking  
Sync  
Signal  
Serializer  
Clocks  
Bit Clock, 3x  
LCLKP  
LCLKM  
Differential and  
Single-Ended  
Input Clock  
CLKP  
CLKM  
Clock  
Buffer  
PLL  
CLOCKGEN  
Frame Clock, 1x  
ADCLKP  
ADCLKM  
ADC Control  
Serial  
Interface  
Reference  
SDOUT  
41. Quad ADC, Two-Lane Configuration  
7.3 Feature Description  
7.3.1 Analog Input  
The analog input consists of a switched-capacitor-based differential sample-and-hold architecture, as shown in  
42. This differential topology results in very good AC performance even for high-input frequencies at high  
sampling rates. The INx_P and INx_M pins must be externally biased around a common-mode voltage of 0.95 V,  
available on the VCM pin. For a full-scale differential input, each input pin (INx_P, INx_M) must swing  
symmetrically between VCM + 0.5 V and VCM – 0.5 V, resulting in a 2-VPP differential input swing. The input  
sampling circuit has a high 3-dB bandwidth that extends up to 550 MHz (measured from the input pins to the  
sampled voltage).  
20  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Feature Description (接下页)  
SZ  
S
R(ON)  
R(ON)  
C(PAR3)  
25 W  
100 W  
0.3 pF  
Sampling  
Switch  
L(PKG)  
2 nH  
S
Sampling  
Capacitor  
15 W  
INx_P  
R(ON)  
C(PAR2)  
1 pF  
C(SAMP)  
4 pF  
C(BOND)  
10 W  
1 kW  
1 kW  
0.5 pF  
R(ESR)  
C(PAR1)  
0.1 pF  
R(ON)  
40 Ω  
VIC  
200 W  
L(PKG)  
2 nH  
C(SAMP)  
C(PAR2)  
1 pF  
R(ON)  
4 pF  
15 W  
10 W  
INx_M  
Sampling  
Capacitor  
C(BOND)  
0.5 pF  
Sampling  
Switch  
S
R(ON)  
R(ON)  
R(ESR)  
25 W  
100 W  
200 W  
C(PAR3)  
0.3 pF  
S
SZ  
42. Analog Input Equivalent Circuit  
7.3.1.1 Large- and Small-Signal Input Bandwidth  
The analog input circuit small-signal bandwidth is high, approximately 550 MHz. When using an amplifier to drive  
the VSP5324-Q1 device, the total amplifier noise up to small-signal bandwidth must be considered. The device  
large-signal bandwidth depends on the input signal amplitude. The VSP5324-Q1 device supports 2-VPP  
amplitude for input signal frequencies up to 80 MHz. For higher frequencies (greater than 80 MHz), the input  
signal amplitude must be decreased proportionally. For example, at 160 MHz, the device supports a maximum of  
1-VPP signal.  
7.3.2 Digital Processing Block  
The VSP5324-Q1 device integrates a set of commonly-used digital functions that can be used to ease system  
design such as test patterns and gain.  
7.3.2.1 Digital Gain  
The VSP5324-Q1 device includes programmable digital gain settings from 0 dB to 12 dB in 1-dB steps. The  
benefit of digital gain is to obtain improved SFDR performance. SFDR improvement is achieved at the expense  
of SNR; for each gain setting, SNR degrades by approximately 1 dB. Therefore, gain can be used to trade-off  
between SFDR and SNR.  
For each gain setting, the analog input full-scale range support scales proportionally, as shown in 1. After  
reset, the device is in 0-dB gain mode. To use other gain settings, program the GAIN_CHx bits in registers 2Ah  
(see the Register 2Ah (offset = 2Ah) [reset = 0] section) and 2Bh (see the Register 2Bh (offset = 2Bh) [reset = 0]  
section).  
版权 © 2015–2017, Texas Instruments Incorporated  
21  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
1. Analog Input Full-Scale  
Range Across Gains  
DIGITAL GAIN  
(dB)  
FULL-SCALE  
(VPP  
)
0
1
2
1.78  
1.59  
1.42  
1.26  
1.12  
1.00  
0.89  
0.80  
0.71  
0.63  
0.56  
0.50  
2
3
4
5
6
7
8
9
10  
11  
12  
7.3.2.2 ADC Input Polarity Inversion  
Normally, the INx_P pin represents the positive analog input pin and INx_M represents the complementary  
negative input. Setting the INVERT_ CH[4:1] bits listed in 2 (which provide individual control for each channel)  
causes the inputs to be swapped. INN now represents the positive input and INx_P represents the negative  
input.  
2. Polarity Inversion  
ADDRESS  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INVERT_  
CH4  
INVERT_  
CH3  
INVERT_  
CH2  
INVERT_  
CH1  
24  
PRBS_SEED[22:16]  
X(1)  
X
X
X
X
(1) X = don't care.  
7.3.2.3 SYNC Function  
The SYNC function can be used to synchronize the RAMP test patterns across channels. This function can be  
enabled using either the hardware pin (SYNC) or software register bits.  
To enable the software sync, set the register bit, EN_SYNC. To use the SYNC pin, set the EN_SYNC and  
HARD_SYNC_TP register bits. Note that SYNC pin is disabled after reset.  
7.3.2.4 Output Data Format  
Two output data formats are supported: twos complement and offset binary. These modes can be selected using  
the BTC_MODE serial interface register bit.  
For a positive overload, the D[11:0] output data bits are FFFh in offset binary output format and 7FFh in twos  
complement output format. For a negative input overload, the output code is 000h in offset binary output format  
and 800h in twos complement output format.  
22  
版权 © 2015–2017, Texas Instruments Incorporated  
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.3.3 Serial LVDS Interface  
The VSP5324-Q1 device offers several flexible output options which makes interfacing to an (application-specific  
integrated circuit) ASIC or an (field-programmable gate array) FPGA easy. Each option can be easily  
programmed using the serial interface. 3 lists a summary of all options. This table also lists the default values  
after power-up and reset and a detailed description of each option. The output interface options are one-lane and  
two-lane serialization, and are described in the One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame  
Clock and Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock sections, respectively.  
3. Summary of Output Interface Options  
AVAILABLE IN  
ONE-  
LANE  
TWO-  
LANE  
DEFAULT AFTER  
RESET  
FEATURE  
OPTIONS  
DESCRIPTION  
One-lane: ADC data are sent serially  
over one pair of LVDS pins  
Two-lane: ADC data are split and  
sent serially over two pairs of LVDS  
pins  
Lane interface  
One and two lanes  
Yes  
Yes  
One-lane  
Serialization factor  
12x  
6x  
Yes  
Yes  
No  
No  
No  
12x  
6x  
DDR bit clock frequency  
3x  
Yes  
No  
Only with two-lane interface  
1x sample rate  
1/2x sample rate  
Byte-wise  
Bit-wise  
Yes  
No  
1x  
Frame clock frequency  
Yes  
Yes  
Yes  
Only with two-lane interface  
No  
Byte-wise  
Byte-wise  
These options are available only with  
two-lane interface.  
Byte wise: ADC data are split into  
upper and lower bytes that are output  
on separate lanes.  
No  
Bit sequence  
Bit wise: ADC data are split into even  
and odd bits that are output on  
separate lanes.  
Word-wise  
No  
Yes  
Byte-wise  
Word wise: Successive ADC data  
samples are sent over separate  
lanes.  
7.3.3.1 One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock  
The 12-bit ADC data are serialized and output over one LVDS pair per channel along with a 6x bit clock and 1x  
frame clock, as shown in 43. The output data rate is 12x sample rate and is therefore suited for low sample  
rates (typically up to 50 MSPS).  
Input Clock  
CLK Frequency = fS  
Frame Clock  
ADCLK Frequency = 1x ƒS  
Bit Clock  
LCLK Frequency = 6x ƒS  
Output Data(1)  
D11  
(D0)  
D10  
(D1)  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
D11  
(D0)  
D10  
(D1)  
OUT1A, OUT2A, OUT3A, OUT4A  
Data Rate = 12x ƒS  
Sample N  
Sample N + 1  
(1) Upper number is the data bit in MSB-first mode. Lower number in parenthesis is the data bit in LSB-first mode.  
43. LVDS Output Interface, One-Lane, 12x Serialization  
版权 © 2015–2017, Texas Instruments Incorporated  
23  
 
 
 
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.3.3.2 Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock  
In the two-lane serialization option, the 12-bit ADC data are serialized and output over two LVDS pairs per  
channel. The output data rate is a 6x sample rate with a 3x bit clock and a 1x frame clock.  
Compared to the one-line scenario, the two-line output data rate is half the amount. This difference allows the  
device to be used up to the maximum sampling rate. Two-lane serialization is available in bit-, byte-, and word-  
wise modes. 44 shows the bit- and byte-wise modes and 45 shows the word-wise mode.  
Input Clock  
CLK Frequency = ƒS  
FRAME Clock  
ADCLKP, ADCLKM  
Frequency = 0.5x ƒS  
DDR Bit Clock  
LCLK Frequency = 3x ƒSS  
Output Data(1)(2)  
OUT1B, OUT2B  
OUT3B, OUT4B  
D11  
(D0)  
D10  
(D1)  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
D11  
(D0)  
D10  
(D1)  
D9  
(D2)  
D8  
(D3)  
D7  
(D4)  
D6  
(D5)  
Output Data(1)(2)  
OUT1A, OUT2A  
OUT3A, OUT4A  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
D5  
(D6)  
D4  
(D7)  
D3  
(D8)  
D2  
(D9)  
D1  
(D10)  
D0  
(D11)  
Output Data(1)(2)  
OUT1B, OUT2B,  
OUT3B, OUT4B  
D10  
(D1)  
D8  
(D3)  
D6  
(D5)  
D4  
(D7)  
D2  
(D9)  
D0  
(D11)  
D10  
(D1)  
D8  
(D3)  
D6  
(D5)  
D4  
(D7)  
D2  
(D9)  
D0  
(D11)  
Output Data(1)(2)  
OUT1A, OUT2A,  
OUT3A, OUT4A  
D11  
(D0)  
D9  
(D2)  
D7  
(D4)  
D5  
(D6)  
D3  
(D8)  
D1  
(D10)  
D11  
(D0)  
D9  
(D2)  
D7  
(D4)  
D5  
(D6)  
D3  
(D8)  
D1  
(D10)  
(1) The upper number is the data bit in MSB-first mode. The lower number in parenthesis is the data bit in LSB-first mode.  
(2) The unshaded cells indicate sample N data. The shaded cells indicate sample N + 1 data.  
44. LVDS Output Interface, Two-Lane, 6x Serialization, Byte-Wise and Bit-Wise Modes  
Input Clock  
CLK Frequency = ƒS  
FRAME Clock  
ADCLKP, ADCLKM  
Frequency = 0.5x ƒS  
DDR Bit Clock  
LCLK Frequency = 3x ƒS  
Output Data(1)(2)  
OUT1A, OUT2A  
OUT3A, OUT4A  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
D6  
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
Output Data(1)(2)  
OUT1B, OUT2B  
OUT3B, OUT4B  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
D6
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
(1) The upper number is the data bit in MSB-first mode. The lower number in parenthesis is the data bit in LSB-first mode.  
(2) The unshaded cells indicate sample N data. The shaded cells indicate sample N + 1 data.  
45. LVDS Output Interface, Two-Lane, 6x Serialization, Word-Wise Mode  
24  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.3.4 Bit Clock Programmability  
The VSP5324-Q1 output interface is normally a DDR interface with the LCLK rising and falling edge transitions in  
the middle of alternate data windows. 46 shows this default phase.  
ADCLKP  
LCLKP  
OUTxy_P  
46. LCLK Default Phase (PHASE_DDR[1:0] = 10)  
The LCLK phase can be programmed relative to the output frame clock and data using the PHASE_DDR[1:0]  
bits in 4. 47 shows the LCLK phase modes.  
4. Clock Programmability  
ADDRESS  
(HEX)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_REF_  
VCM0  
EN_REF_  
VCM1  
42  
X(1)  
X
X
X
X
X
X
X
PHASE_DDR[1:0]  
X
X
X
X
(1) X = don't care.  
ADCLKP  
LCLKP  
ADCLKP  
LCLKP  
OUTxy_P  
OUTxy_P  
a) PHASE_DDR[1:0] = 00  
b) PHASE_DDR[1:0] = 10  
ADCLKP  
LCLKP  
ADCLKP  
LCLKP  
OUTxy_P  
OUTxy_P  
c) PHASE_DDR[1:0] = 01  
d) PHASE_DDR[1:0] = 11  
47. LCLK Phase Programmability Modes  
版权 © 2015–2017, Texas Instruments Incorporated  
25  
 
 
 
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.3.5 LVDS Output Data and Clock Buffers  
48 shows the equivalent circuit of each LVDS output buffer. After reset, the buffer presents a 100-Ω output  
impedance to match the external 100-Ω termination.  
The VID voltage is nominally 350 mV, resulting in an output swing of ±350 mV with 100-Ω external termination.  
The buffer output impedance behaves in the same way as a source-side series termination. By absorbing  
reflections from the receiver end, the buffer helps improve signal integrity.  
Device  
VID  
OUTxy_P  
External  
100-W Load  
OUTxy_M  
RO  
1.1 V  
VID  
48. LVDS Buffer Equivalent Circuit  
7.4 Device Functional Modes  
7.4.1 External Reference Mode Of Operation  
The VSP5324-Q1 device supports an external reference mode of operation either by:  
Forcing the reference voltages on the REFT and REFB pins, or by  
Applying the reference voltage on the VCM pin.  
This mode can be used to operate multiple VSP5324-Q1 chips with the same (externally applied) reference  
voltage.  
7.4.1.1 Using the REF Pins  
For normal operation, the device requires two reference voltages, REFT and REFB. By default, the device  
generates these two voltages internally. To enable the external reference mode, set the register bits as listed in  
5. This procedure powers down the internal reference amplifier and the two reference voltages can be forced  
directly on the REFT and REFB pins as (V(REFT) = 1.45 V ± 50 mV) and (V(REFB) = 0.45 V ±50 mV).  
Use to calculate the relationship between the ADC full-scale input voltage (VFS) and the applied reference  
voltages.  
VFS = 2 ´ (V(REFT) - V(REFB)  
)
(1)  
26  
版权 © 2015–2017, Texas Instruments Incorporated  
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Device Functional Modes (接下页)  
7.4.1.2 Using the VCM Pin  
In this mode, an external reference voltage (VREFIN) can be applied to the VCM pin. Use公式 2 to calculate the  
relationship between the ADC full-scale input voltage and VREFIN.  
VFS = 2 ´ VREFIN  
(2)  
To enable this mode, set the register bits as listed in 5. This action changes the function of the VCM pin to an  
external reference input pin. The voltage applied on VCM must be 1.5 V ±50 mV.  
5. External Reference Function  
FUNCTION  
EN_HIGH_ADDRS  
EN_EXT_REF  
EXT_REF_VCM  
External reference using the REFT and REFB pins  
External reference using the VCM pin  
1
1
1
1
00  
11  
7.5 Programming  
7.5.1 Serial Interface  
The VSP5324-Q1 device has a set of internal registers that can be accessed by the serial interface formed by  
the CS (serial interface enable), SCLK (serial interface clock), and SDATA (serial interface data) pins. When CS  
is low the following occurs:  
The serial shift of bits into the device is enabled.  
Serial data (on the SDATA pin) are latched at every SCLK rising edge.  
The serial data are loaded into the register at every 24th SCLK rising edge.  
If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of  
24-bit words within a single active CS pulse.  
The first eight bits form the register address and the remaining 16 bits form the register data. The interface can  
function with SCLK frequencies from 15 MHz down to very low speeds (of few Hertz) and also with a non-50%  
SCLK duty cycle.  
7.5.2 Register Initialization  
After power-up, the internal registers must be initialized to the default values. This reset can be accomplished in  
one of two ways:  
1. A hardware reset is applied by a low-going pulse on the RESET pin (widths greater than 10 ns), as shown in  
3 and Serial Interface Timing Requirements.  
2. A software reset is applied by using the serial interface and setting the RST bit (register 00h, bit D0) high.  
This setting initializes the internal registers to default values and then self-resets the RST bit low. In this  
case, the RESET pin is kept high (inactive).  
See the Serial Interface Timing Requirements section and 3 for timing information.  
7.5.3 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be readback on the SDOUT pin, as  
shown in 49. This mode can useful as a diagnostic check to verify the serial interface communication between  
the external controller and ADC.  
By default, after power-up and device reset, the SDOUT pin is high-impedance. When readout mode is enabled  
using the READOUT register bit, the SDOUT pin outputs the contents of the selected register serially in the  
following sequence:  
1. The READOUT register bit must be set to 1 in order for the device to enter readout mode. This setting  
disables any further writes into the internal registers, except for the register at address 01h. Note that the  
READOUT bit is also located in this register. The device can exit readout mode by writing the READOUT bit  
to 0. Only the register contents of address 01h are unable to be read in register readout mode.  
2. The read cycle is initiated by clocking the register address A[7:0] on the SDIN pin.  
版权 © 2015–2017, Texas Instruments Incorporated  
27  
 
 
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Programming (接下页)  
3. The device serially outputs the contents (D[15:0]) of the selected register on the SDOUT pin.  
4. The external controller latches the contents at the SCLK rising edge.  
5. The READOUT register bit is set to 0 to exit serial readout mode, which enables all registers of the device to  
be written to. At this point, the SDOUT pin enters a high-impedance state.  
Register Address (A[7:0]) = 01h  
Register Data (D[15:0]) = 0001h  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
SDATA  
SCLK  
CS  
Pin SDOUT becomes active  
and forces low.  
Pin SDOUT is in the high-impedance state.  
SDOUT  
a) Enable Serial Readout (READOUT = 1)  
Register Data (D[15:0]) = XXXX (don’t care)  
Register Address (A[7:0]) = 0Fh  
A7  
D15  
D14  
D13  
D12  
D11  
D10  
SDATA  
SCLK  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SDOUT  
0
0
1
Pin SDOUT outputs contents of register 0x0F in the same cycle, MSB first.  
b) Read contents of register 0Fh. This register is initialized with 0200h (previously, the device was in global power down).  
49. Serial Readout Timing  
After reset, the device default states include the following:  
The device is in normal operation mode with 12x serialization enabled for all channels.  
Output interface is one-lane, 12x serialization with a 6x bit clock and a 1x frame clock frequency.  
Data format is LSB-first and offset binary.  
Serial readout is disabled.  
The PD pin is configured as a global power-down pin.  
Digital gain is set to 0 dB.  
28  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6 Register Maps  
6. Serial Register Memory Map  
ADDRESS  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00  
X(1)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
RST  
EN_HIGH_  
ADDRS  
01  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
READOUT  
X
02  
0A  
EN_SYNC  
X
RAMP_PAT_RESET_VAL  
PDN_  
COM  
PLETE  
PDN_PIN_  
CFG  
PDN_  
0F  
14  
1C  
X
X
X
X
X
X
X
X
X
X
X
PDN_CH4  
PARTIAL  
X
X
PDN_CH3  
LFNS_CH3  
X
X
PDN_CH2  
X
X
PDN_CH1  
X
LFNS_CH1  
X
X
X
X
LFNS_CH4  
LFNS_CH2  
X
X
EN_  
FRAME_  
PAT  
ADCLKOUT[11:0]  
PRBS_SEED[15:0]  
23  
24  
INVERT_  
CH4  
INVERT_  
CH3  
INVERT_  
CH2  
INVERT_  
CH1  
PRBS_SEED[22:16]  
X
X
X
X
X
PRBS_  
SEED_  
FROM_  
REG  
DUAL_  
CUSTOM_  
PAT  
SINGLE_  
CUSTOM_  
PAT  
HARD_  
SYNC_TP  
PRBS_  
TP_EN  
TP_SOFT_  
SYNC  
25  
X
X
X
X
X
EN_RAMP  
BITS_CUSTOM2[13:12]  
BITS_CUSTOM1[13:12]  
26  
27  
BITS_CUSTOM1[9:0]  
BITS_CUSTOM2[9:0]  
X
X
X
X
X
X
X
X
X
X
X
X
EN_BIT  
ORDER  
28  
29  
X
X
X
X
X
X
X
X
X
X
X
X
BIT_WISE  
X
EN_WORDWISE_BY_CH[7:0]  
GLOBAL_  
EN_FILTER  
X
X
X
X
X
X
X
X
2A  
2B  
X
X
X
X
X
X
X
X
GAIN_CH2[3:0]  
GAIN_CH3[3:0]  
X
X
X
X
X
X
X
X
GAIN_CH1[3:0]  
GAIN_CH4[3:0]  
HPF_EN_  
CH1  
USE_  
FILTER1  
2E  
30  
33  
X
X
X
HPF_CORNER _CH1[3:0]  
HPF_CORNER _CH2[3:0]  
HPF_CORNER _CH3[3:0]  
HPF_CORNER _CH4[3:0]  
FILTER1_COEFF_SET[2:0]  
FILTER2_COEFF_SET[2:0]  
FILTER3_COEFF_SET[2:0]  
FILTER1_RATE[2:0]  
FILTER2_RATE[2:0]  
FILTER3_RATE[2:0]  
X
X
X
ODD_TAP1  
X
X
X
X
HPF_EN_  
CH2  
USE_  
FILTER2  
ODD_TAP2  
ODD_TAP3  
HPF_EN_  
CH3  
USE_  
FILTER3  
HPF_EN_  
CH4  
USE_  
FILTER4  
35  
38  
X
X
FILTER4_COEFF_SET[2:0]  
X
FILTER4_RATE[2:0]  
X
X
X
ODD_TAP4  
X
X
X
X
X
X
X
X
X
X
DATA_RATE[1:0]  
(1) X = don't care.  
版权 © 2015–2017, Texas Instruments Incorporated  
29  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Register Maps (接下页)  
6. Serial Register Memory Map (接下页)  
ADDRESS  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
EN_REF_  
VCM0  
EN_REF_  
VCM1  
42  
X
X
X
X
X
X
X
X
PHASE_DDR[1:0]  
X
X
X
PAT_  
DESKEW  
45  
46  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PAT_SYNC  
X
MSB_  
FIRST  
BTC_  
MODE  
ENABLE 46  
FALL_SDR  
EN_16BIT  
X
EN_14BIT  
X
EN_12BIT  
X
X
X
EN_SDR  
EN_2LANE  
50  
51  
53  
54  
55  
ENABLE 50  
ENABLE 51  
ENABLE 53  
ENABLE 54  
ENABLE 55  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MAP_CH12_TO_OUT1B[3:0]  
MAP_CH12_TO_OUT2A[3:0]  
MAP_CH12_TO_OUT1A[3:0]  
MAP_CH12_TO_OUT2B[3:0]  
MAP_CH34_TO_OUT3B[3:0]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MAP_CH34_TO_OUT3A[3:0]  
MAP_CH34_TO_OUT4B[3:0]  
MAP_CH34_TO_OUT4A[3:0]  
EN_EXT_  
REF  
F0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
30  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1 Serial Registers  
7.6.1.1 Register 00h (offset = 00h) [reset = 0]  
This is a general register.  
50. Register 00h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
X
W-0  
D4  
X
D3  
D0  
RST  
W-0  
W-0  
7. Register 00h Field Descriptions  
Bit  
Field  
X
Type  
W
Reset  
Description  
D15-D1  
D0  
0
0
Don't care bits  
RST  
W
Reset  
0 = Normal operation (default)  
1 = Self-clearing software reset (after reset, this bit is set to  
0)  
7.6.1.2 Register 01h (offset = 01h) [reset = 0]  
This is a general register.  
51. Register 01h  
D15  
D7  
D14  
D13  
D5  
D12  
D11  
D10  
D9  
D1  
D8  
X
W-0  
D6  
X
D4  
D3  
D2  
X
D0  
EN_HIGH_ADD  
RS  
READOUT  
W-0  
W-0  
W-0  
W-0  
8. Register 01h Field Descriptions  
Bit  
Field  
Type  
W
Reset  
Description  
D15-D5  
D4  
X
0
0
Don't care bits  
EN_HIGH_ADDRS  
W
Register F0h access  
0 = Disables access to register F0h (default)  
1 = Enables access to register F0h  
D3-D1  
D0  
X
W
W
0
0
Don't care bits  
READOUT  
Register mode readout  
0 = Normal operation (default)  
1 = Register mode readout  
版权 © 2015–2017, Texas Instruments Incorporated  
31  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.3 Register 02h (offset = 02h) [reset = 0]  
This is a general register.  
52. Register 02h  
D15  
D7  
D14  
D6  
D13  
D12  
D11  
D10  
X
D9  
D1  
D8  
D0  
X
EN_SYNC  
R/W-0  
R/W-0  
R/W-0  
D5  
D4  
D3  
D2  
X
R/W-0  
9. Register 02h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15-D14  
D13  
X
0
0
Don't care bits  
SYNC enable(1)  
EN_SYNC  
0 = Normal operation; SYNC feature disabled (default)  
1 = SYNC feature enabled to synchronize test patterns  
D12-D0  
X
R/W  
0
Don't care bits  
(1) This bit must be set to 1 when the software or hardware SYNC feature is used; see bits D15 and D8 in the Register 25h (offset = 25h)  
[reset = 0] section.  
7.6.1.4 Register 0Ah (offset = 0Ah) [reset = 0]  
This is a general register.  
53. Register 0Ah  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
RAMP_PAT_RESET_VAL  
R/W-0  
D4  
D3  
RAMP_PAT_RESET_VAL  
R/W-0  
10. Register 0Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15-D0 RAMP_PAT_RESET_VAL  
R/W  
0
These bits determine the initial value of the ramp pattern after  
reset.  
32  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.5 Register 0Fh (offset = 0Fh) [reset = 0]  
This is a power-down mode register. All bits default to 0 after reset.  
54. Register 0Fh  
D15  
D14  
D13  
X
D12  
D4  
D11  
D10  
D9  
D8  
PDN_PIN_CFG  
PDN_  
COMPLETE  
PDN_PARTIAL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
D7  
D6  
X
D5  
D3  
D2  
D1  
X
D0  
PDN_CH4  
R/W-0  
PDN_CH3  
R/W-0  
X
PDN_CH2  
R/W-0  
PDN_CH1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
11. Register 0Fh Field Descriptions  
Bit  
D15-D11  
D10  
Field  
Type  
R/W  
R/W  
Reset  
Description  
X
0
0
Don't care bits  
PDN_PIN_CFG  
PD pin configuration  
0 = PD pin configured for complete power-down mode  
1 = PD pin configured for partial power-down mode  
D9  
D8  
D7  
PDN_ COMPLETE  
R/W  
R/W  
R/W  
0
0
0
Complete power-down  
0 = Normal operation  
1
= Register mode for complete power-down (slower  
recovery)  
PDN_PARTIAL  
PDN_CH4  
Partial power-down  
0 = Normal operation  
1 = Partial power-down mode (fast recovery from power-  
down)  
ADC power-down mode for channel 4  
0 = Normal operation  
1 = Partial power-down mode (fast recovery from power-  
down)  
D6  
D5  
X
R/W  
R/W  
0
0
Don't care bit  
PDN_CH3  
ADC power-down mode for channel 3  
0 = Normal operation  
1 = ADC power-down mode for channel 3  
Don't care bits  
D4-D3  
D2  
X
R/W  
R/W  
0
0
PDN_CH2  
ADC power-down mode for channel 2  
0 = Normal operation  
1 = ADC power-down mode for channel 2  
Don't care bit  
D1  
D0  
X
R/W  
R/W  
0
0
PDN_CH1  
ADC power-down mode for channel 1  
0 = Normal operation  
1 = ADC power-down mode for channel 1  
版权 © 2015–2017, Texas Instruments Incorporated  
33  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.6 Register 14h (offset = 14h) [reset = 0]  
This is a general register.  
55. Register 14h  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
X
R/W-0  
D7  
D6  
X
D5  
D4  
D3  
D2  
D1  
X
D0  
LFNS_CH4  
R/W-0  
LFNS_CH3  
R/W-0  
X
LFNS_CH2  
R/W-0  
LFNS_CH1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
12. Register 14h Field Descriptions  
Bit  
D15-D8  
D7  
Field  
Type  
R/W  
R/W  
Reset  
Description  
X
0
0
Don't care bits  
LFNS_CH4  
Noise-suppression mode selection for channel 4  
0 = LFNS disabled (default)  
1 = Low-frequency noise-suppression mode enable for  
channel 4  
D6  
D5  
X
R/W  
R/W  
0
0
Don't care bit  
LFNS_CH3  
Noise-suppression mode selection for channel 3  
0 = LFNS disabled (default)  
1 = Low-frequency noise-suppression mode enable for  
channel 3  
D4-D3  
D2  
X
R/W  
R/W  
0
0
Don't care bits  
LFNS_CH2  
Noise-suppression mode selection for channel 2  
0 = LFNS disabled (default)  
1 = Low-frequency noise-suppression mode enable for  
channel 2  
D1  
D0  
X
R/W  
R/W  
0
0
Don't care bit  
LFNS_CH1  
Noise-suppression mode selection for channel 1  
0 = LFNS disabled (default)  
1 = Low-frequency noise-suppression mode enable for  
channel 1  
34  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.7 Register 1Ch (offset = 1Ch) [reset = 0]  
This is a test pattern register. All bits default to 0 after reset.  
56. Register 1Ch  
D15  
X
D14  
D13  
D12  
D11  
D10  
D9  
D1  
D8  
D0  
EN_FRAME_P  
AT  
ADCLKOUT[11:0]  
R/W-0  
D7  
R/W-0  
D6  
R/W-0  
D5  
D4  
D3  
D2  
ADCLKOUT[11:0]  
R/W-0  
X
R/W-0  
13. Register 1Ch Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15  
D14  
X
0
0
Don't care bit  
EN_FRAME_PAT  
Frame pattern enable  
0 = Normal frame clock operation  
1 = Enables the output frame clock to be programmed  
through a pattern  
D13-D2 ADCLKOUT[11:0]  
R/W  
R/W  
0
0
ADCLK pin frame clock pattern  
These bits determine the 12-bit pattern for the frame clock on  
the ADCLKP and ADCLKN pins.  
D1-D0  
X
Don't care bits  
7.6.1.8 Register 23h (offset = 23h) [reset = 0]  
This is a test pattern register.  
57. Register 23h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
PRBS_SEED[15:0]  
R/W-0  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
D4  
D3  
PRBS_SEED[15:0]  
R/W-0  
14. Register 23h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15-D0 PRBS_SEED[15:0]  
R/W  
0
PRBS pattern seed value, lower bits  
These bits determine the PRBS pattern starting seed value of  
the lower 16 bits. (Default = 0)  
版权 © 2015–2017, Texas Instruments Incorporated  
35  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.9 Register 24h (offset = 24h) [reset = 0]  
This is a test pattern register. All bits default to 0 after reset.  
58. Register 24h  
D15  
D14  
D13  
D12  
PRBS_SEED[22:16]  
R/W-0  
D11  
D10  
D9  
D8  
X
R/W-0  
D7  
D6  
X
D5  
D4  
D3  
D2  
D1  
X
D0  
INVERT_CH4  
R/W-0  
INVERT_CH3  
R/W-0  
X
R/W-0  
INVERT_CH2  
R/W-0  
INVERT_CH1  
R/W-0  
R/W-0  
R/W-0  
15. Register 24h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15-D9 PRBS_SEED[22:16]  
R/W  
0
PRBS pattern seed value, upper bits  
These bits determine the PRBS pattern starting seed value of  
the upper seven bits.  
D8  
D7  
X
R/W  
R/W  
0
0
Don't care bit  
INVERT_CH4  
Analog input pin polarity for channel 4  
0 = Normal configuration (default)  
1 = Electrically swaps the analog input pin polarity for  
channel 4  
D6  
D5  
X
R/W  
R/W  
0
0
Don't care bit  
INVERT_CH3  
Analog input pin polarity for channel 3  
0 = Normal configuration (default)  
1 = Electrically swaps the analog input pin polarity for  
channel 3  
D4-D3  
D2  
X
R/W  
R/W  
0
0
Don't care bits  
INVERT_CH2  
Analog input pin polarity for channel 2  
0 = Normal configuration (default)  
1 = Electrically swaps the analog input pin polarity for  
channel 2  
D1  
D0  
X
R/W  
R/W  
0
0
Don't care bit  
INVERT_CH1  
Analog input pin polarity for channel 1  
0 = Normal configuration (default)  
1 = Electrically swaps the analog input pin polarity for  
channel 1  
36  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.10 Register 25h (offset = 25h) [reset = 0]  
This is a test pattern register. All bits default to 0 after reset.  
59. Register 25h  
D15  
D14  
D13  
D12  
D11  
D10  
X
D9  
D1  
D8  
HARD_SYNC_ PRBS_SEED_ PRBS_MODE_ PRBS_TP_EN  
TP_SOFT_SYN  
C
TP  
FROM_REG  
R/W-0  
2
R/W-0  
R/W-0  
R/W-0  
D4  
R/W-0  
D2  
R/W-0  
D0  
D7  
X
D6  
D5  
D3  
EN_RAMP  
DUAL_CUSTO SINGLE_CUST  
BITS_CUSTOM2[13:12]  
BITS_CUSTOM1[13:12]  
M_PAT  
OM_PAT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
16. Register 25h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15  
HARD_SYNC_TP  
R/W  
0
Sync test pattern selection  
0 = Inactive  
1
= External SYNC feature enabled for syncing test  
patterns  
D14  
PRBS_SEED_FROM_REG  
R/W  
0
PRBS seed selection  
0 = Disabled  
1 = Selection of PRBS seed from registers 23h and 24h  
enabled  
D13  
D12  
PRBS_MODE_2  
PRBS_TP_EN  
R/W  
R/W  
0
0
PRBS mode selection  
This bit sets the PRBS mode of the 9-bit LFSR (the 23-bit LFSR  
is default).  
PRBS test pattern selection  
0 = PRBS test pattern disabled  
1 = PRBS test pattern enable bit  
Don't care bits  
D11-D9  
D8  
X
R/W  
R/W  
0
0
TP_SOFT_SYNC  
Test pattern software sync  
0 = No sync  
1 = Software sync bit for test patterns on all eight channels  
Don't care bit  
D7  
D6  
X
R/W  
R/W  
0
0
EN_RAMP  
Ramp pattern enable  
0 = Normal operation  
1 = Enables a repeating full-scale ramp pattern on the  
outputs. Ensure that bits D4 and D5 are 0.  
D5  
D4  
DUAL_CUSTOM_PAT  
SINGLE_CUSTOM_PAT  
BITS_CUSTOM2[13:12]  
R/W  
R/W  
R/W  
0
0
0
Output toggles between two codes  
0 = Normal operation  
1 = Enables mode where the output toggles between two  
defined codes. Ensure that bits D4 and D6 are 0.  
Output is defined code  
0 = Normal operation  
1 = Enables mode where the output is a constant specified  
code. Ensure that bits D5 and D6 are 0.  
D3-D2  
MSB selection for dual patterns  
These bits determine two MSBs for the second code of the dual  
custom patterns.  
版权 © 2015–2017, Texas Instruments Incorporated  
37  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
16. Register 25h Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
D1-D0  
BITS_CUSTOM1[13:12]  
R/W  
0
MSB selection for single patterns  
These bits define two MSBs for the single custom pattern (and  
for the first code of the dual custom patterns).  
7.6.1.11 Register 26h (offset = 26h) [reset = 0]  
This is a test pattern register.  
60. Register 26h  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
BITS_CUSTOM1[9:0]  
R/W-0  
D7  
D6  
D4  
D3  
BITS_CUSTOM1[9:0]  
R/W-0  
X
R/W-0  
17. Register 26h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15-D6 BITS_CUSTOM1[9:0]  
R/W  
0
Lower single custom pattern bits  
These bits determine the 10 lower bits for the single custom  
pattern (and the first code of the dual custom pattern).  
D5-D0  
X
R/W  
0
Don't care bits  
7.6.1.12 Register 27h (offset = 27h) [reset = 0]  
This is a test pattern register.  
61. Register 27h  
D15  
D14  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
BITS_CUSTOM2[9:0]  
R/W-0  
D7  
D6  
D4  
D3  
BITS_CUSTOM2[9:0]  
R/W-0  
X
R/W-0  
18. Register 27h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15-D6 BITS_CUSTOM2[9:0]  
R/W  
0
Lower dual custom pattern bits  
These bits determine the 10 lower bits for the second code of  
the dual custom pattern.  
D5-D0  
X
R/W  
0
Don't care bits  
38  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.13 Register 28h (offset = 28h) [reset = 0]  
This is an output interface mode register. All bits default to 0 after reset.  
62. Register 28h  
D15  
EN_BITORDER  
R/W-0  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
X
BIT_WISE  
R/W-0  
R/W-0  
D7  
D0  
EN_WORDWISE_BY_CH[7:0]  
R/W-0  
19. Register 28h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit order enable(1)  
D15  
EN_BITORDER  
R/W  
0
This bit enables the bit order output in two-lane mode.  
0 = Byte-wise  
1 = Word-wise  
Don't care bit  
D14-D9  
D8  
X
R/W  
R/W  
0
0
BIT_WISE  
Bit- or byte-wise selection  
This bit selects between byte-wise and bit-wise format.  
0 = Byte-wise, the upper bits come are on one lane and the  
lower bits are on other lane  
1 = Bit-wise, the odd bits come out on one lane and the  
even bits come out on other lane  
D7-D0  
EN_WORDWISE_BY_CH[7:0]  
R/W  
0
Word-wise enable with channels 7 to 0  
0 = Data comes out in two-lane mode with the upper set of  
bits on one channel and the lower set of bits on the other  
channel  
1 = Output format is one sample on one LVDS lane with  
the next sample on the other LVDS lane  
(1) This bit must set 1 to enable bits D[8:0].  
7.6.1.14 Register 29h (offset = 29h) [reset = 0]  
This is a digital filter mode register. All bits default to 0 after reset.  
63. Register 29h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
X
R/W-0  
D0  
X
X
GLOBAL_EN_F  
ILTER  
R/W-0  
R/W-0  
R/W-0  
20. Register 29h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15-D2  
D1  
X
0
0
Don't care bits  
GLOBAL_EN_FILTER  
Filter block enable  
0 = Inactive  
1 = Global control filter blocks enabled  
Don't care bit  
D0  
X
R/W  
0
版权 © 2015–2017, Texas Instruments Incorporated  
39  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.15 Register 2Ah (offset = 2Ah) [reset = 0]  
This is a digital gain mode register. All bits default to 0 after reset.  
64. Register 2Ah  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
GAIN_CH2[3:0]  
R/W-0  
D9  
D8  
D0  
X
R/W-0  
D2  
D1  
X
GAIN_CH1[3:0]  
R/W-0  
R/W-0  
21. Register 2Ah Field Descriptions  
Bit  
D15-D12  
Field  
Type  
R/W  
R/W  
Reset  
Description  
X
0
0
Don't care bits  
D11-D8 GAIN_CH2[3:0]  
Channel 2 gain  
These bits set the programmable gain of channel 2  
Don't care bits  
D7-D4  
D3-D0  
X
R/W  
R/W  
0
0
GAIN_CH3[3:0]  
Channel 1 gain  
These bits set the programmable gain of channel 1  
7.6.1.16 Register 2Bh (offset = 2Bh) [reset = 0]  
This is a digital gain mode register. All bits default to 0 after reset.  
65. Register 2Bh  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
GAIN_CH3[3:0]  
R/W-0  
D9  
D8  
D0  
X
R/W-0  
D2  
D1  
X
GAIN_CH4[3:0]  
R/W-0  
R/W-0  
22. Register 2Bh Field Descriptions  
Bit  
D15-D12  
Field  
Type  
R/W  
R/W  
Reset  
Description  
X
0
0
Don't care bits  
D11-D8 GAIN_CH3[3:0]  
Channel 3 gain  
These bits set the programmable gain of channel 3  
Don't care bits  
D7-D4  
D3-D0  
X
R/W  
R/W  
0
0
GAIN_CH4[3:0]  
Channel 4 gain  
These bits set the programmable gain of channel 4  
40  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.17 Register 2Eh (offset = 2Eh) [reset = 0]  
This is a digital filter mode register. All bits default to 0 after reset.  
66. Register 2Eh  
D15  
X
D14  
HPF_EN_CH1  
R/W-0  
D13  
D12  
D11  
D10  
D9  
D8  
HPF_CORNER _CH1[3:0]  
R/W-0  
FILTER1_COEFF_SET[2:0]  
R/W-0  
R/W-0  
D7  
D6  
D5  
D4  
D3  
X
D2  
D1  
X
D0  
FILTER1_COE  
FF_SET[2:0]  
FILTER1_RATE[2:0]  
ODD_TAP1  
USE_FILTER1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
23. Register 2Eh Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15  
D14  
X
0
0
Don't care bit  
HPF_EN_CH1  
Channel 1 HPF filter enable  
0 = Disabled  
1 = HPF filter enable for channel 1  
D13-D10 HPF_CORNER _CH1[3:0]  
R/W  
R/W  
R/W  
0
0
0
HPF corner for channel 1  
These bits set the HPF corner in values from 2k to 10k.  
D9-D7  
D6-D4  
FILTER1_COEFF_SET[2:0]  
FILTER1_RATE[2:0]  
Filter 1 coefficient set  
These bits select the stored coefficient set for filter 1.  
Filter 1 decimation factor  
These bits set the decimation factor for filter 2.  
Don't care bit  
D3  
D2  
X
R/W  
R/W  
0
0
ODD_TAP1  
Filter 1 odd tap  
This bit uses odd tap filter 1.  
Don't care bit  
D1  
D0  
X
R/W  
R/W  
0
0
USE_FILTER1  
Channel 1 filter  
0 = Disabled  
1 = Enables filter for channel 1  
版权 © 2015–2017, Texas Instruments Incorporated  
41  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.18 Register 30h (offset = 30h) [reset = 0]  
This is a digital filter mode register. All bits default to 0 after reset.  
67. Register 30h  
D15  
X
D14  
HPF_EN_CH2  
R/W-0  
D13  
D12  
D11  
D10  
D9  
D8  
HPF_CORNER _CH2[3:0]  
R/W-0  
FILTER2_COEFF_SET[2:0]  
R/W-0  
R/W-0  
D7  
D6  
D5  
D4  
D3  
X
D2  
D1  
X
D0  
FILTER2_COE  
FF_SET[2:0]  
FILTER2_RATE[2:0]  
ODD_TAP2  
USE_FILTER2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
24. Register 30h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15  
D14  
X
0
0
Don't care bit  
HPF_EN_CH2  
Channel 2 HPF filter enable  
0 = Disabled  
1 = HPF filter enable for channel 2  
D13-D10 HPF_CORNER _CH2[3:0]  
R/W  
R/W  
R/W  
0
0
0
HPF corner for channel 2  
These bits set the HPF corner in values from 2k to 10k.  
D9-D7  
D6-D4  
FILTER2_COEFF_SET[2:0]  
FILTER2_RATE[2:0]  
Filter 2 coefficient set  
These bits select the stored coefficient set for filter 2.  
Filter 2 decimation factor  
These bits set the decimation factor for filter 2.  
Don't care bit  
D3  
D2  
X
R/W  
R/W  
0
0
ODD_TAP2  
Filter 2 odd tap  
This bit uses odd tap filter 2.  
Don't care bit  
D1  
D0  
X
R/W  
R/W  
0
0
USE_FILTER2  
Channel 2 filter  
0 = Disabled  
1 = Enables filter for channel 2  
42  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.19 Register 33h (offset = 33h) [reset = 0]  
This is a digital filter mode register. All bits default to 0 after reset.  
68. Register 33h  
D15  
X
D14  
HPF_EN_CH3  
R/W-0  
D13  
D12  
D11  
D10  
D9  
D8  
HPF_CORNER _CH3[3:0]  
R/W-0  
FILTER3_COEFF_SET[2:0]  
R/W-0  
R/W-0  
D7  
D6  
D5  
D4  
D3  
X
D2  
D1  
D0  
FILTER3_COE  
FF_SET[2:0]  
FILTER3_RATE[2:0]  
ODD_TAP3  
USE_FILTER3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
25. Register 33h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15  
D14  
X
0
0
Don't care bit  
HPF_EN_CH3  
Channel 3 HPF filter enable  
0 = Disabled  
1 = HPF filter enable for channel 3  
D13-D10 HPF_CORNER _CH3[3:0]  
R/W  
R/W  
R/W  
0
0
0
HPF corner for channel 3  
These bits set the HPF corner in values from 2k to 10k.  
D9-D7  
D6-D4  
FILTER3_COEFF_SET[2:0]  
FILTER3_RATE[2:0]  
Filter 3 coefficient set  
These bits select the stored coefficient set for filter 3.  
Filter 3 decimation factor  
These bits set the decimation factor for filter 3.  
Don't care bit  
D3  
D2  
X
R/W  
R/W  
0
0
ODD_TAP3  
Filter 3 odd tap  
This bit uses odd tap filter 3.  
Don't care bit  
D1  
D0  
X
R/W  
R/W  
0
0
USE_FILTER3  
Channel 3 filter  
0 = Disabled  
1 = Enables filter for channel 3  
版权 © 2015–2017, Texas Instruments Incorporated  
43  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.20 Register 35h (offset = 35h) [reset = 0]  
This is a digital filter mode register. All bits default to 0 after reset.  
69. Register 35h  
D15  
X
D14  
HPF_EN_CH4  
R/W-0  
D13  
D12  
D11  
D10  
D9  
D8  
HPF_CORNER _CH4[3:0]  
R/W-0  
FILTER4_COEFF_SET[2:0]  
R/W-0  
R/W-0  
D7  
D6  
D5  
D4  
D3  
X
D2  
D1  
X
D0  
FILTER4_COE  
FF_SET[2:0]  
FILTER4_RATE[2:0]  
ODD_TAP4  
USE_FILTER4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
26. Register 35h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15  
D14  
X
0
0
Don't care bit  
HPF_EN_CH4  
Channel 4 HPF filter enable  
0 = Disabled  
1 = HPF filter enable for channel 4  
D13-D10 HPF_CORNER _CH4[3:0]  
R/W  
R/W  
R/W  
0
0
0
HPF corner for channel 4  
These bits set the HPF corner in values from 2k to 10k.  
D9-D7  
D6-D4  
FILTER4_COEFF_SET[2:0]  
FILTER4_RATE[2:0]  
Filter 4 coefficient set  
These bits select the stored coefficient set for filter 4.  
Filter 4 decimation factor  
These bits set the decimation factor for filter 4.  
Don't care bit  
D3  
D2  
X
R/W  
R/W  
0
0
ODD_TAP4  
Filter 4 odd tap  
This bit uses odd tap filter 4.  
Don't care bit  
D1  
D0  
X
R/W  
R/W  
0
0
USE_FILTER4  
Channel 4 filter  
0 = Disabled  
1 = Enables filter for channel 4  
7.6.1.21 Register 38h (offset = 38h) [reset = 0x0000]  
This is an output interface mode register.  
70. Register 38h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D11  
D10  
D2  
D9  
D1  
D8  
D0  
X
R/W-  
D4  
D3  
X
DATA_RATE[1:0]  
R/W-  
R/W-  
27. Register 38h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15-D2  
D1-D0  
X
0
0
Don't care bits  
DATA_RATE[1:0]  
Clock rate selection  
These bits select the output frame clock rate. (Default = 0)  
44  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.22 Register 42h (offset = 42h) [reset = 0]  
This is an output interface mode register.  
71. Register 42h  
D15  
D14  
D13  
D12  
D11  
X
D10  
D2  
D9  
D8  
D0  
EN_REF_VCM  
0
R/W-0  
R/W-0  
D3  
D7  
X
D6  
D5  
D4  
X
D1  
X
PHASE_DDR[1:0]  
R/W-0  
EN_REF_VCM  
1
R/W-0  
R/W-0  
R/W-0  
R/W-0  
28. Register 42h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
D15  
EN_REF_VCM0  
R/W  
0
To enable the external reference mode, the EN_EXT_REF  
register bit (register F0h) must be set to 1.  
00 = In external reference mode, apply the reference on the  
REFT, REFB pins  
01, 10 = Don't use  
11 = In external reference mode, apply the reference on the  
VCM pin  
D14-D7  
D6-D5  
X
R/W  
R/W  
0
0
Don't care bits  
PHASE_DDR[1:0]  
These bits control the LCLK output phase relative to data.  
(Default = 10)  
D4  
D3  
X
R/W  
R/W  
0
0
Don't care bit  
EN_REF_VCM1  
To enable the external reference mode, the EN_EXT_REF  
register bit (register F0h) must be set to 1.  
00 = In external reference mode, apply the reference on the  
REFT, REFB pins  
01, 10 = Don't use  
11 = In external reference mode, apply the reference on the  
VCM pin  
D2-D0  
X
R/W  
0
Don't care bits  
版权 © 2015–2017, Texas Instruments Incorporated  
45  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.23 Register 45h (offset = 45h) [reset = 0]  
This is a test pattern register. All bits default to 0 after reset.  
72. Register 45h  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D10  
D2  
D9  
D8  
X
R/W-0  
D3  
D1  
D0  
X
PAT_SYNC  
R/W-0  
PAT_DESKEW  
R/W-0  
R/W-0  
29. Register 45h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
D15-D2  
D1  
X
0
0
Don't care bits  
PAT_SYNC  
Sync pattern enable  
0 = Inactive  
1 = Sync pattern mode enabled; ensure that D0 is 0  
D0  
PAT_DESKEW  
R/W  
0
Deskew pattern enable  
0 = Inactive  
1 = Deskew pattern mode enabled; ensure that D1 is 0  
7.6.1.24 Register 46h (offset = 46h) [reset = 0]  
This is an output interface mode register. All bits default to 0 after reset.  
73. Register 46h  
D15  
ENABLE 46  
R/W-0  
D14  
X
D13  
FALL_SDR  
R/W-0  
D12  
X
D11  
D10  
D9  
D8  
X
EN_16BIT  
R/W-0  
EN_14BIT  
R/W-0  
EN_12BIT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
D7  
D6  
X
D5  
D4  
D3  
D2  
D1  
X
D0  
EN_SDR  
R/W-0  
MSB_FIRST  
R/W-0  
BTC_MODE  
R/W-0  
EN_2LANE  
R/W-0  
R/W-0  
R/W-0  
30. Register 46h Field Descriptions  
Bit  
Field  
ENABLE 46  
Type  
Reset  
Description  
Enable register 46(1)  
This bit enables register 46.  
Don't care bit  
D15  
R/W  
0
D14  
D13  
X
R/W  
R/W  
0
0
FALL_SDR  
SDR output mode  
0 = At data window edge  
1 = The LCLK rising or falling edge control comes in the  
middle of the data window when operating in SDR output  
mode  
D12  
D11  
X
R/W  
R/W  
0
0
Don't care bit  
EN_16BIT  
16-bit mode enable  
0 = Inactive  
1 = 16-bit serialization mode enabled; ensure bits D[10:9]  
are 0  
(1) This bit must be set to 1 to enable bits D[13:0].  
46  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
30. Register 46h Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
D10  
EN_14BIT  
R/W  
0
14-bit mode enable  
0 = Inactive  
1 = 14-bit serialization mode enabled; ensure bits D11 and  
D9 are 0  
D9  
EN_12BIT  
R/W  
0
12-bit mode enable  
0 = Inactive  
1 = 12-bit serialization mode enabled; ensure bits D[11:10]  
are 0  
D8-D5  
D4  
X
R/W  
R/W  
0
0
Don't care bits  
EN_SDR  
Bit clock selection  
0 = DDR bit clock  
1 = SDR bit clock  
D3  
D2  
MSB_FIRST  
BTC_MODE  
R/W  
R/W  
0
0
MSB first selection  
0 = LSB first  
1 = MSB first  
Binary mode selection  
0 = Binary offset (ADC data output format)  
1 = Binary twos complement (ADC data output format)  
Don't care bit  
D1  
D0  
X
R/W  
R/W  
0
0
EN_2LANE  
LVDS output lane selection  
0 = One-lane LVDS output  
1 = Two-lane LVDS output  
7.6.1.25 Register 50h (offset = 50h) [reset = 0]  
This is a programmable LVDS mapping mode register. All bits default to 0 after reset.  
74. Register 50h  
D15  
ENABLE 50  
R/W-0  
D14  
D13  
D12  
D4  
D11  
X
D10  
D9  
D1  
D8  
D0  
R/W-0  
D7  
D6  
D5  
D3  
D2  
MAP_CH12_TO_OUT1B[3:0]  
R/W-0  
MAP_CH12_TO_OUT1A[3:0]  
R/W-0  
31. Register 50h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable for register 50h(1)  
This bit enables register 50h.  
Don't care bits  
D15  
ENABLE 50  
R/W  
0
D14-D8  
D7-D4  
X
R/W  
R/W  
0
0
MAP_CH12_TO_OUT1B[3:0]  
OUT1B pin to channel mapping  
These bits select the OUT1B pin pair to channel data mapping.  
D3-D0  
MAP_CH12_TO_OUT1A[3:0]  
R/W  
0
OUT1A pin to channel mapping  
These bits select the OUT1A pin pair to channel data mapping.  
(1) This bit must be set to 1 to enable bits D[7:0].  
版权 © 2015–2017, Texas Instruments Incorporated  
47  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.26 Register 51h (offset = 51h) [reset = 0]  
This is a programmable LVDS mapping mode register. All bits default to 0 after reset.  
75. Register 51h  
D15  
ENABLE 51  
R/W-0  
D14  
D13  
X
D12  
D4  
D11  
D3  
D10  
D9  
D8  
D0  
MAP_CH12_TO_OUT2B[3:0]  
R/W-0  
R/W-0  
D7  
D6  
D5  
D2  
D1  
MAP_CH12_TO_OUT2A[3:0]  
R/W-0  
X
R/W-0  
32. Register 51h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable for register 51h(1)  
D15  
ENABLE 51  
R/W  
0
This bit enables register 51h.  
Don't care bits  
D14-D12  
X
R/W  
R/W  
0
0
D11-D8 MAP_CH12_TO_OUT2B[3:0]  
OUT2B pin to channel mapping  
These bits select the OUT2B pin pair to channel data mapping.  
D7-D4  
D3-D0  
MAP_CH12_TO_OUT2A[3:0]  
X
R/W  
R/W  
0
0
OUT2A pin to channel mapping  
These bits select the OUT2A pin pair to channel data mapping.  
Don't care bits  
(1) This bit must be set to 1 to enable bits D[7:0].  
7.6.1.27 Register 53h (offset = 53h) [reset = 0]  
This is a programmable LVDS mapping mode register. All bits default to 0 after reset.  
76. Register 53h  
D15  
ENABLE 53  
R/W-0  
D14  
D6  
D13  
X
D12  
D4  
D11  
D3  
D10  
D9  
D8  
D0  
MAP_CH34_TO_OUT3B[3:0]  
R/W-0  
R/W-0  
D7  
D5  
D2  
D1  
X
R/W-0  
33. Register 53h Field Descriptions  
Bit  
Field  
ENABLE 53  
Type  
Reset  
Description  
Enable register 53h(1)  
This bit enables register 53h.  
Don't care bits  
D15  
R/W  
0
D14-D12  
X
R/W  
R/W  
0
0
D11-D8 MAP_CH34_TO_OUT3B[3:0]  
OUT3B pin to channel mapping  
These bits select the OUT3B pin pair to channel data mapping.  
Don't care bits  
D7-D0  
X
R/W  
0
(1) This bit must be set to 1 to enable bits D[7:0].  
48  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
7.6.1.28 Register 54h (offset = ) [reset = 0]  
This is a programmable LVDS mapping mode register. All bits default to 0 after reset.  
77. Register 54h  
D15  
ENABLE 54  
R/W-0  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
X
D10  
D2  
D9  
D1  
D8  
D0  
R/W-0  
D7  
D3  
X
MAP_Ch34_to_OUT3A[3:0]  
R/W-0  
R/W-0  
34. Register 54h Field Descriptions  
Bit  
Field  
ENABLE 54  
Type  
Reset  
Description  
Enable register 54h(1)  
This bit enables register 54h.  
Don't care bits  
D15  
R/W  
0
D14-D4  
D3-D0  
X
R/W  
R/W  
0
0
MAP_Ch34_to_OUT3A[3:0]  
OUT3A pin to channel mapping  
These bits select the OUT3A pin pair to channel data mapping.  
(1) This bit must be set to 1 to enable bits D[7:0].  
7.6.1.29 Register 55h (offset = 55h) [reset = 0]  
This is a programmable LVDS mapping mode register. All bits default to 0 after reset.  
78. Register 55h  
D15  
ENABLE 55  
R/W-0  
D14  
D13  
D12  
D4  
D11  
X
D10  
D9  
D1  
D8  
D0  
R/W-0  
D7  
D6  
D5  
D3  
D2  
MAP_CH34_TO_OUT4A[3:0]  
R/W-0  
MAP_CH34_TO_OUT4B[3:0]  
R/W-0  
35. Register 55h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Enable register 55h(1)  
This bit enables register 55h.  
Don't care bits  
D15  
ENABLE 55  
R/W  
0
D14-D8  
D7-D4  
X
R/W  
R/W  
0
0
MAP_CH34_TO_OUT4A[3:0]  
OUT4A pin to channel mapping  
These bits select the OUT4A pin pair to channel data mapping.  
D3-D0  
MAP_CH34_TO_OUT4B[3:0]  
R/W  
0
OUT4B pin to channel mapping  
These bits select the OUT4B pin pair to channel data mapping.  
(1) This bit must be set to 1 to enable bits D[7:0].  
版权 © 2015–2017, Texas Instruments Incorporated  
49  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
7.6.1.30 Register F0h (offset = F0h) [reset = 0]  
This is a general register.  
The EN_HIGH_ADDRS bit (register 01h, bit D4) must be set to 1 in order to access this  
register.  
79. Register F0h  
D15  
EN_EXT_REF  
R/W-0  
D14  
D6  
D13  
D5  
D12  
D11  
X
D10  
D2  
D9  
D1  
D8  
D0  
R/W-0  
D7  
D4  
D3  
X
R/W-0  
36. Register F0h Field Descriptions  
Bit  
Field  
EN_EXT_REF  
Type  
Reset  
Description  
D15  
R/W  
0
Reference mode selection  
0 = Internal reference mode enabled (default)  
External reference mode enabled. The voltage  
1
=
reference can be applied on either the REFP and REFB  
pins or the VCM pin.  
D7-D0  
X
R/W  
0
Don't care bits  
50  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The VSP5324-Q1 device is a low power 12-bit, 4-channel ADC customized for time-of-flight applications. The  
device accepts four single-ended or differential analog inputs and can be configured to output the digitized data  
on 4 or 8 LVDS lanes as per the requirements of the external host receiver. The sampling clock can be fed to the  
device using a single-ended or a differential signal. High-speed sampling rates of up to 80 MSPS can be used to  
speed up the sensor readout and therefore use longer sensor exposure times without taking a hit on the frame-  
rate. The device is controlled using a simple 4-wire SPI. Power constrained systems can additionally make use of  
the power-down pin (PD) to take the device quickly in and out of low-power mode. The device uses an internal  
reference and internal common-mode voltage by default and has a provision for the use of external reference  
and external common-mode voltage inputs.  
8.2 Typical Application  
18-V  
18-V  
AVDD LVDD  
VSP5324-Q1  
SPI Control  
Register  
control  
Time of Flight  
Sensor  
Analog Inputs  
4-Channel  
12-bit ADC  
Bit Clock  
Frame Clock  
LVDS Data  
Host  
Serializer  
Common Mode Voltage (optional)  
Reference (optional)  
Power  
Down  
Sampling  
Clock  
80. Application Schematic  
8.2.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. If the inputs are driven in a single-  
ended manner, capacitors must be placed on the INx_M signals and close to the INx_M pins. An optional 5-to  
15-resistor in series with each input pin can be kept to damp out ringing caused by package parasitics. The  
drive circuit may have to be designed to minimize the impact of kick-back noise generated by sampling switches  
opening and closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and  
matched impedance to the source.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Drive Circuit Requirements  
For optimum performance, the analog inputs must be driven differentially, as shown in 81. This architecture  
improves the common-mode noise immunity and even-order harmonic rejection. A 5-Ω to 15-Ω resistor in series  
with each input pin is recommended to damp out ringing caused by package parasitic. The drive circuit shows an  
R-C filter across the analog input pins. The purpose of the filter is to absorb glitches caused by the sampling  
capacitors opening and closing.  
版权 © 2015–2017, Texas Instruments Incorporated  
51  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
0.1 mF  
10 W  
INx_P  
Differential  
Input  
2 pF  
Device  
INx_M  
10 W  
0.1 mF  
81. Analog Input Drive Circuit  
8.2.2.2 Clock Input  
The VSP5324-Q1 device can function with either single-ended or differential clock inputs. The device can  
automatically detect if a single-ended or differential clock is applied. To operate with a single-ended input clock,  
CLKP must be driven by a CMOS clock with CLKM tied to GND. 82 and 83 show the typical single-ended  
and differential clock termination schemes (respectively).  
CMOS  
Clock Input  
CLKP  
Device  
CLKM  
82. Single-Ended Clock Driving Circuit  
0.1 mF  
0.1 mF  
0.1 mF  
CLKP  
CLKP  
CLKP  
R(TERM)  
Device  
Device  
R(TERM)  
Device  
0.1 mF  
0.1 mF  
0.1 mF  
CLKM  
CLKM  
CLKM  
R(TERM)  
a) Differential Sine-Wave Clock Input  
b) Differential LVPECL Clock Input  
c) Differential LVDS Clock Input  
83. Differential Clock Driving Circuit  
52  
版权 © 2015–2017, Texas Instruments Incorporated  
 
 
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
Typical Application (接下页)  
8.2.3 Application Curves  
73  
72  
71  
70  
69  
68  
95  
90  
85  
80  
75  
70  
70  
69.9  
69.8  
69.7  
69.6  
69.5  
69.4  
SNR  
SFDR  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
-40 -27.5 -15 -2.5 10 22.5 35 47.5 60 72.5 85  
Analog Input Common-Mode Voltage (V)  
Temperature (èC)  
D014  
D020  
ƒIN = 5 MHz  
A 0.7-VPP 5-MHz sine-wave input is applied on the INx_P pin  
The INx_M pin is connected to the device VCM pin  
84. Performance vs Input Common-Mode  
85. SNR vs Temperature For Single-Ended Input  
9 Power Supply Recommendations  
Using an LDO supply with minimal noise on the AVDD supply is recommended. The LVDD supply can be  
connected to an LDO or a DC-DC converter. A capacitor with a value of 100 nF per supply pin is recommended  
in addition to a 1-µF common decoupling capacitor per rail.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 General Guidelines  
The following list includes general layout guidelines. Refer to 86 as needed.  
Route the clock input as a differential pair when a differential clock input is used.  
When single ended inputs are used, place 100-nF capacitors close to the pins on the INx_M inputs to ensure  
that the reference rail is stable. When differential inputs are used, the inputs must be routed as differential  
pairs.  
Route the LVDS clock and data output pairs with 100-differential impedance and length matched as per the  
sampling frequency.  
10.1.2 Grounding  
A single ground plane is sufficient to provide good performance, provided that the analog, digital, and clock  
sections of the board are cleanly partitioned.  
10.1.3 Supply Decoupling  
Minimal external decoupling can be used without loss in performance because the VSP5324-Q1 device already  
includes internal decoupling. Note that decoupling capacitors can help filter external power-supply noise, thus the  
optimum number of capacitors depends on the actual application. The decoupling capacitors should be placed  
very close to the converter supply pins.  
版权 © 2015–2017, Texas Instruments Incorporated  
53  
 
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.4 Exposed Pad  
In addition to providing a path for heat dissipation, the pad is also electrically connected to the digital ground  
internally. Therefore, soldering the exposed pad to the ground plane is necessary to achieve the best thermal  
and electrical performance. For detailed information, see application notes QFN Layout Guidelines and  
QFN/SON PCB Attachment.  
10.2 Layout Example  
Analog input pins  
Clock inputs  
LVDS clock and data output pairs  
Pin 1  
The layout in this example uses four single-ended inputs and four LVDS-data outputs. The components that require  
special layout attention are shown and are listed in the General Guidelines section. For the two-lane output option,  
eight LVDS data pairs are used.  
86. VSP5324-Q1 Layout Example  
54  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
模拟带宽  
孔径延迟  
基频功率相对低频值下降 3dB 时的模拟输入频率。  
输入采样时钟上升沿与发生采样的实际时间之间的延迟时间。该延迟在各通道中会有所不同。最大差  
值被定义为孔径延迟差异(通道间)。  
孔径不确定性(抖动) 采样之间孔径延迟时间的变化。  
时钟脉宽和占空比 时钟占信号空比是时钟信号保持逻辑高电平的时间(时钟脉宽)与一个时钟信号周期的比率。  
占空比通常以百分比的形式表示。理想差分正弦波时钟的占空比为 50%。  
最大转换速率 行指定操作时所采用的最大采样率。除非另有说明,所有参数测试均以该采样率执行。  
最小转换速率 ADC 正常工作时的最小采样率。  
微分非线性 (DNL) 理想 ADC 对模拟输入值进行编码转换时以 1 LSB 为步长。DNL 是指任意单个步长与这一理想  
值之间的偏差(以 LSB 为计量单位)。  
积分非线性 (INL) INL ADC 传递函数与其最小二乘法曲线拟合所确定的最佳拟合曲线的偏差(以 LSB 为计量单  
位)。  
增益误差  
增益误差是指 ADC 实际输入满量程范围与其理想值的偏差。增益误差以理想输入满量程范围的百分  
比形式表示,由两部分组成:基准不精确导致的误差和通道导致的误差。两种误差均以独立形式标  
注,分别为 EG(REF) EG(CHAN)。对于一阶近似值,总增益误差为 (Etot ~ EG(REF) + EG(CHAN))。例如,  
如果 Etot = ±0.5%,则满量程输入范围为 [(1 – 0.5 / 100) × ƒS(ideal)] [(1 + 0.5 / 100) × ƒS(ideal)]。  
偏移误差  
温度漂移  
偏移误差是指 ADC 实际平均空闲通道输出编码与理想平均空闲通道输出编码之间的差值(以 LSB 数  
表示)。该数量通常转换为毫伏。  
温度漂移系数(相对于增益误差和偏移误差)指定了参数从 TMIN TMAX 每摄氏度的变化量。此系数  
由参数在 TMIN TMAX 范围内的最大变化量除以 TMAX – TMIN 的差值计算得出。  
信噪比 (SNR) SNR 是指基频功率 (PS) 与噪底功率 (PN) 的比值,后者不包括直流功率和前 9 个谐波的功率。当基  
频的绝对功率用作基准时,SNR dBc(相对于载波的分贝数)为单位;当基频功率被外推至转换  
器满量程范围时,SNR dBFS(相对于满量程的分贝数)为单位。  
PS  
SNR = 10 Log10  
PN  
(3)  
信噪比和失真 (SINAD) SINAD 是指基频功率 (PS) 与所有其他频谱成分(包括噪声 (PN) 和失真 (P(HD)),但不包括  
直流)功率的比值。当基频的绝对功率用作基准时,SINAD dBc(相对于载波的分贝数)为单位;  
当基频功率被外推至转换器满量程范围时,SINAD dBFS(相对于满量程的分贝数)为单位。  
PS  
SINAD = 10 Log10  
PN + P(HD)  
(4)  
版权 © 2015–2017, Texas Instruments Incorporated  
55  
VSP5324-Q1  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
www.ti.com.cn  
器件支持 (接下页)  
有效位数 (ENOB) ENOB 测量的是转换器相对于理论限值(基于量化噪声)的性能。  
SINAD - 1.76  
ENOB =  
6.02  
(5)  
总谐波失真 (THD) THD 是指基频功率 (PS) 与前 9 个谐波的功率 (P(HD)) 的比值。THD 通常以 dBc 为单位(相对  
于载波的分贝数)。  
PS  
THD = 10 Log10  
PN  
(6)  
无杂散动态范围 (SFDR) 基频功率与最高的其他频谱成分(毛刺或谐波)功率的比值。SFDR 通常以 dBc 为单位  
(相对于载波的分贝数)。  
双频互调失真 (IMD3) IMD3 是基频(ƒ1 ƒ2 频率处)功率与最差频谱成分(2 ƒ1 – ƒ2 2 ƒ2 – ƒ1 频率处)功  
率的比值。当基频的绝对功率用作基准时,IMD3 dBc(相对于载波的分贝数)为单位;当基频功  
率被外推至转换器满量程范围时,IMD3 dBFS(相对于满量程的分贝数)为单位。  
直流电源抑制比 (DC PSRR) DC PSSR 是偏移误差变化量与模拟电源电压变化量的比值。DC PSRR 通常以 mV/V  
为单位进行表示。  
交流电源抑制比 (AC PSRR) AC PSRR 测量的是 ADC 对电源电压变化的抑制能力。如果 ΔV(AVDD) 表示电源电压  
的变化,ΔVO 表示 ADC 输出代码的相应变化(以输入为基准),则:  
DVO  
PSRR = 20 Log10  
(Expressed in dBc)  
DV(AVDD)  
(7)  
电压过载恢复 使过载的模拟输入端的误差恢复至 1% 以下所需的时钟周期数。该技术参数的测试方法是分别施加  
具有 6dB 正过载和负过载的正弦波信号。然后记录下过载后前几个采样(相对于期望值)的偏差。  
共模抑制比 (CMRR) CMRR 测量的是 ADC 对模拟输入共模变化的抑制能力。如果 ΔVIC 为输入引脚的共模电压变  
化值,ΔVO ADC 输出代码的相应变化(以输入为基准),则:  
DVO  
CMRR = 20 Log10  
(Expressed in dBc)  
DVIC  
(8)  
串扰(仅限于多通道 ADC) 串扰测量的是目标通道与其相邻通道之间的内部信号耦合。串扰分两种情况:一种是  
与紧邻通道(近端通道)之间的耦合,另一种是与跨封装通道(远端通道)之间的耦合。通常采用对  
邻近通道施加满量程信号的方式来测量串扰。串扰是指耦合信号功率(在目标通道的输出端测得)与  
邻近通道输入端所施加信号功率的比值。串扰通常以 dBc 为单位进行表示。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
QFN 布局指南》  
QFN/SON PCB 连接》  
11.3 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
56  
版权 © 2015–2017, Texas Instruments Incorporated  
VSP5324-Q1  
www.ti.com.cn  
ZHCSH90A JANUARY 2015REVISED DECEMBER 2017  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2015–2017, Texas Instruments Incorporated  
57  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
VSP5324TRGCRQ1  
ACTIVE  
VQFN  
RGC  
64  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
VSP5324T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
VSP5324TRGCRQ1  
VQFN  
RGC  
64  
2000  
330.0  
16.4  
9.3  
9.3  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGC 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
VSP5324TRGCRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGC 64  
9 x 9, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224597/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGC0064A  
PLASTIC QUADFLAT PACK- NO LEAD  
9.15  
8.85  
A
B
9.15  
8.85  
PIN 1 INDEX AREA  
(0.2)TYP  
(0.1)TYP  
DETAIL 'A'  
DETAIL 'A'  
OPTION1  
OPTION2  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X  
7.5  
EXPOSED  
7.25±0.1  
THERMAL PAD  
32  
17  
16  
33  
SEE DETAIL 'A'  
60X  
0.5  
SYMM  
65  
2X  
7.5  
0.3  
0.18  
64X  
0.1  
C A B  
C
48  
1
0.05  
PIN1 ID  
64  
49  
(OPTIONAL)  
SYMM  
0.5  
0.3  
64X  
4219009/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGC0064A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X(8.8)  
2X(7.5)  
SEE SOLDER MASK  
DETAIL  
64X(0.6)  
(
7.25)  
64  
49  
1
48  
64X(0.24)  
60X(0.5)  
65  
SYMM  
2X  
2X(7.5)  
(8.8)  
4X  
(1.14)  
2X  
(1.1)  
(0.05)  
(TYP)  
33  
16  
45X (Ø0.2)  
(TYP) VIA  
4X  
(1.14)  
SYMM  
32  
17  
2X  
(1.1)  
LAND PATTERN EXAMPLE  
SCALE: 10X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219009/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGC0064A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (8.8)  
2X(7.5)  
SYMM  
36X  
(0.94)  
64x(0.6)  
64  
49  
1
48  
65  
64X(0.24)  
60X(0.5)  
2X(0.57)  
2X(8.8)  
SYMM  
2X(7.5)  
4X(1.14)  
(R0.05)  
TYP  
33  
16  
EXPOSED METAL  
17  
32  
4X(1.14)  
2X(0.57)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
60% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4219009/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

VSP5324TRGCRQ1

汽车类 4 通道 12 位 80MSPS 模数转换器 (ADC) | RGC | 64 | -40 to 105

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5610

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5610RSHR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5611

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5611RSHR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5612

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5612RSHR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with Timing Generator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5620

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5620RSLR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5621

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5621RSLR

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

VSP5622

16-Bit, 4-Channel, CCD/CMOS Sensor Analog Front-End with LED Driver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI