XISOW7740DFMR [TI]

ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter;
XISOW7740DFMR
型号: XISOW7740DFMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter

文件: 总62页 (文件大小:4699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise  
DC-DC Converter  
1 Features  
2 Applications  
100 Mbps data rate  
Integrated DC-DC converter with low-emissions,  
low-noise  
Factory automation  
Motor control  
Grid infrastructure  
Medical equipment  
Test and measurement  
– Emission optimized to meet CISPR 32 and EN  
55032 Class B with >5 dB margin on 2 layer  
board  
– Low frequency power converter at 25 MHz  
enabling low noise performance  
– Low output ripple: 24 mV  
High efficiency output power  
– Efficiency at max load: 46%  
– Up to 0.55-W output power  
– VISOOUT accuracy of 5%  
– 5 V to 5 V: Max available load current = 110 mA  
– 5 V to 3.3 V: Max available load current = 140  
mA  
– 3.3 V to 3.3 V: Max available load current = 60  
mA  
3 Description  
The ISOW77xx family of devices are galvanically-  
isolated quad-channel digital isolator with an  
integrated high-efficiency power converter with low  
emissions. The integrated DC-DC converter provides  
up to 550 mW of isolated power, eliminating the  
need for a separate isolated power supply in space-  
constrained isolated designs.  
Device Information  
ISOW774x  
ISOW774xB  
FEATURE  
ISOW774xF  
ISOW774xFB  
Protection Level  
Surge Test Voltage  
Isolation Rating  
Reinforced  
10 kVPK  
Basic  
Independent power supply for channel isolator &  
power converter  
7.8 kVPK  
5000 VRMS  
5000 VRMS  
– Logic supply (VIO): 1.71-V to 5.5-V  
– Power converter supply (VDD): 3-V to 5.5-V  
Robust electromagnetic compatibility (EMC)  
– System-level ESD, EFT, and surge immunity  
– ±8 kV IEC 61000-4-2 contact discharge  
protection across isolation barrier  
1000 VRMS  
1500VPK  
/
1000 VRMS  
1500VPK  
/
Working Voltage  
Package  
DFM (20)  
DFM (20)  
12.83 mm × 7.5  
mm  
12.83 mm × 7.5  
mm  
Body Size (Nom)  
Reinforced and Basic isolation options  
High CMTI: 100-kV/µs (typical)  
Safety Related Certifications (Planned):  
VISOIN  
VIO  
EN_IO2  
OUTA  
– VDE reinforced and basic insulation per DIN  
VDE V 0884-11:2017-01  
– UL 1577 component recognition program  
– IEC 62368-1, IEC 61010-1, IEC 60601-1 and  
GB 4943.1-2011 certifications  
Tx  
Tx  
INA  
INB  
Rx  
Rx  
Rx  
Tx  
OUTB  
OUTC  
IND  
INC  
Tx  
Rx  
OUTD  
Extended temperature range: –40°C to +125°C  
20-pin wide body SOIC package  
EN_IO1  
GNDIO  
GISOIN  
GND1  
GN  
D2  
VSEL  
VDD  
DC-DC  
Primary  
DC-DC  
Secondary  
EN/FLT  
GND1  
VISOOUT  
GND2  
ISOW7741 Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 8  
7.1 Absolute Maximum Ratings........................................ 8  
7.2 ESD Ratings............................................................... 8  
7.3 Recommended Operating Conditions.........................9  
7.4 Thermal Information..................................................10  
7.5 Power Ratings...........................................................10  
7.6 Insulation Specifications............................................11  
7.7 Safety-Related Certifications.................................... 12  
7.8 Safety Limiting Values...............................................12  
7.9 Electrical Characteristics - Power Converter............ 13  
7.10 Supply Current Characteristics - Power  
Converter.....................................................................14  
7.11 Electrical Characteristics Channel Isolator -  
VIO, VISOIN = 5-V..........................................................15  
7.12 Supply Current Characteristics Channel  
Isolator - VIO, VISOIN = 5-V...........................................15  
7.13 Electrical Characteristics Channel Isolator -  
VIO, VISOIN = 3.3-V.......................................................18  
7.14 Supply Current Characteristics Channel  
7.18 Supply Current Characteristics Channel  
Isolator - VIO, VISOIN = 1.8-V........................................24  
7.19 Switching Characteristics - 5-V Supply...................27  
7.20 Switching Characteristics - 3.3-V Supply................28  
7.21 Switching Characteristics - 2.5-V Supply................29  
7.22 Switching Characteristics - 1.8-V Supply................30  
7.23 Insulation Characteristics Curves........................... 31  
7.24 Typical Characteristics............................................32  
8 Parameter Measurement Information..........................37  
9 Detailed Description......................................................39  
9.1 Overview...................................................................39  
9.2 Functional Block Diagram.........................................40  
9.3 Feature Description...................................................41  
9.4 Device Functional Modes..........................................44  
10 Application and Implementation................................46  
10.1 Application Information........................................... 46  
10.2 Typical Application.................................................. 46  
11 Power Supply Recommendations..............................50  
12 Layout...........................................................................51  
12.1 Layout Guidelines................................................... 51  
12.2 Layout Example...................................................... 52  
13 Device and Documentation Support..........................53  
13.1 Device Support....................................................... 53  
13.2 Documentation Support.......................................... 53  
13.3 Receiving Notification of Documentation Updates..53  
13.4 Support Resources................................................. 53  
13.5 Trademarks.............................................................53  
13.6 Electrostatic Discharge Caution..............................53  
13.7 Glossary..................................................................53  
14 Mechanical, Packaging, and Orderable  
Isolator - VIO, VISOIN = 3.3-V........................................18  
7.15 Electrical Characteristics Channel Isolator -  
VIO, VISOIN = 2.5-V.......................................................21  
7.16 Supply Current Characteristics Channel  
Isolator - VIO, VISOIN = 2.5-V........................................21  
7.17 Electrical Characteristics Channel Isolator -  
Information.................................................................... 54  
VIO, VISOIN = 1.8-V.......................................................24  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (October 2021) to Revision B (January 2022)  
Page  
Added ISOW7740, ISOW7742, ISOW7743, and ISOW7744 to data sheet....................................................... 1  
Changes from Revision * (September 2021) to Revision A (October 2021)  
Page  
Updated device status to Production Data......................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
5 Description (continued)  
The high-efficiency of the power converter allows for operation at a wide operating ambient temperature range  
of –40°C to +125°C. This device provides improved emissions performance, allowing for simplified board design  
and has provisions for ferrite beads to further attenuate emissions. The ISOW774x has been designed with  
enhanced protection features in mind, including soft-start to limit inrush current, over-voltage and under-voltage  
lock out, fault detection on the EN/FLT pin, overload and short-circuit protection, and thermal shutdown.  
The ISOW77xx family of devices provide high electromagnetic immunity while isolating CMOS or LVCMOS  
digital I/Os. The signal-isolation channel has a logic input and output buffer separated by a double capacitive  
silicon dioxide (SiO2) insulation barrier, whereas, power isolation uses on-chip transformers separated by thin  
film polymer as insulating material. There are five orderable configurations of four channel ISOW77xx flavor  
using the last part number digit to note the number of reverse channels. For example, the ISOW7740 has 4  
forward channels and 0 reverse channels, while the ISOW7743 would have 1 forward channel and 3 reverse  
channels. If the input signal is lost, the default output is high for the ISOW77xx devices without the F suffix and  
low for the ISOW77xx devices with the F suffix. The ISOW774x can operate from a single supply voltage of 3 V  
to 5.5 V by connecting VIO and VDD together on PCB. If lower logic levels are required, these devices support  
1.71 V to 5.5 V logic supply (VIO) that can be independent from the power converter supply (VDD) of 3 V to 5.5 V.  
VISOIN and VISOOUT needs to be connected on board with either a ferrite bead or fed through a LDO.  
These devices help prevent noise currents on data buses, such as UART, SPI, RS-485, RS-232, and CAN,  
or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through  
innovative chip design and layout techniques, electromagnetic compatibility of the device has been significantly  
enhanced to ease system-level ESD, EFT, surge and emissions compliance. The device is available in a 20-pin  
SOIC wide-body (SOIC-WB) DFM package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
6 Pin Configuration and Functions  
VIO  
INA  
INB  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
OUTB  
INC  
IND  
4
5
6
17  
16  
15  
OUTC  
OUTD  
GNDIO  
GISOIN  
EN_IO1  
7
14  
EN_IO2  
EN/FLT  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
GND1  
10  
Figure 6-1. ISOW7740 DFM Package 20-Pin SOIC-WB Top View  
VIO  
INA  
INB  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
OUTB  
INC  
4
5
6
17  
16  
15  
OUTC  
IND  
OUTD  
GNDIO  
GISOIN  
EN_IO1  
7
14  
EN_IO2  
EN/FLT  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
GND1  
10  
Figure 6-2. ISOW7741 DFM Package 20-Pin SOIC-WB Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
VIO  
INA  
INB  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
OUTB  
OUTC  
OUTD  
GNDIO  
4
5
6
17  
16  
15  
INC  
IND  
GISOIN  
EN_IO1  
7
14  
EN_IO2  
EN/FLT  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
GND1  
10  
Figure 6-3. ISOW7742 DFM Package 20-Pin SOIC-WB Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
VIO  
INA  
1
2
3
20  
19  
18  
VISOIN  
OUTA  
INB  
OUTB  
OUTC  
OUTD  
GNDIO  
4
5
6
17  
16  
15  
INC  
IND  
GISOIN  
EN_IO1  
7
14  
EN_IO2  
EN/FLT  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
GND1  
10  
Figure 6-4. ISOW7743 DFM Package 20-Pin SOIC-WB Top View  
VIO  
1
2
3
20  
19  
18  
VISOIN  
INA  
OUTA  
OUTB  
INB  
OUTC  
OUTD  
GNDIO  
4
5
6
17  
16  
15  
INC  
IND  
GISOIN  
EN_IO1  
7
14  
EN_IO2  
EN/FLT  
VDD  
8
13  
12  
11  
VSEL  
VISOOUT  
GND2  
9
GND1  
10  
Figure 6-5. ISOW7744 DFM Package 20-Pin SOIC-WB Top View  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
ISOW7740  
ISOW7741  
ISOW7742  
ISOW7743  
ISOW7744  
Ground connection for VIO. GND1 and GNDIO needs to  
be shorted on board.  
GNDIO  
GND1  
6
6
6
6
6
Ground connection for VDD. GND1 and GNDIO needs to  
be shorted on board.  
10  
11  
10  
11  
10  
10  
11  
10  
11  
Ground connection for VISOOUT. GND2 and GISOIN pins  
can be shorted on board or connected through a ferrite  
bead. See the Layout Section for more information.  
GND2  
11  
Ground connection for VISOIN. GND2 and GISOIN pins  
can be shorted on board or connected through a ferrite  
bead. See the Layout Section for more information.  
GISOIN  
INA  
15  
2
15  
2
15  
2
15  
2
15  
19  
I
Input channel A  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
NAME  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
PIN  
NO.  
I/O  
DESCRIPTION  
ISOW7740  
ISOW7741  
ISOW7742  
ISOW7743  
ISOW7744  
INB  
INC  
3
4
3
3
18  
18  
I
I
Input channel B  
Input channel C  
4
17  
17  
17  
IND  
5
16  
19  
18  
16  
19  
18  
16  
19  
3
16  
2
I
Input channel D  
Output channel A  
Output channel B  
OUTA  
OUTB  
19  
18  
O
O
3
OUTC  
OUTD  
17  
16  
17  
5
4
5
4
5
4
5
O
O
Output channel C  
Output channel D  
Output Enable 1: When EN_IO1 is high or open then the  
channel output pins on side 1 are enabled. When EN_IO1  
is low then the channel output pins on side 1 are in a high  
impedance state and the transmitter of the channel input  
pins on side 1 are disabled.  
EN_IO1  
EN_IO2  
7
7
7
7
7
I
I
Output Enable 2: When EN_IO2 is high or open then the  
channel output pins on side 2 are enabled. When EN_IO2  
is low then the channel output pins on side 2 are in a high  
impedance state and the transmitter of the channel input  
pins on side 2 are disabled.  
14  
14  
14  
14  
14  
Multi-function power converter enable input pin or fault  
output pin. Can only be used as either an input pin or an  
output pin.  
Power converter enable input pin: enables and disables  
the integrated DC-DC power converter. Connect directly  
to microcontroller or through a series current limiting  
resistor to use as an enable input pin. DC-DC power  
converted is enabled when EN/FLT is high to the VIO  
voltage level and disabled when low at GND1 voltage  
level.  
EN/FLT  
8
8
8
8
8
I/O  
Fault output pin: Alert signal if power converter is not  
operating properly. This pin is active low. Connect to  
microcontroller through a 5 kΩ or greater pull-up resistor  
in order to use as a fault outpin pin.  
See Section 9.3.3 for more information  
VISOOUT selection pin. VISOOUT = 5 V when VSEL shorted  
to VISOOUT. VISOOUT = 3.3 V, when VSEL shorted to  
GND2. For more information see the Device Functional  
Modes.  
VSEL  
13  
13  
13  
13  
13  
I
VIO  
1
9
1
9
1
9
1
9
1
9
Side 1 logic supply.  
VDD  
Side 1 DC-DC converter power supply.  
Side 2 supply voltage for isolation channels. VISOIN  
and VISOOUT pins can be shorted on board or  
connected through a ferrite bead. See Application and  
Implementation for more information.  
VISOIN  
20  
12  
20  
12  
20  
12  
20  
12  
20  
12  
Isolated power converter output voltage. VISOIN  
and VISOOUT pins can be shorted on board or  
connected through a ferrite bead. See Application and  
Implementation for more information.  
VISOOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
V
VDD  
Power converter supply voltage  
6
6
VISOIN  
Isolated supply voltage, input supply for secondary side isolation channels  
V
Isolated supply voltage, Power converter output  
VSEL shorted to GND2  
VISOOUT  
–0.5  
–0.5  
4
6
V
V
Isolated supply voltage, Power converter output  
VSEL shorted to VISOOUT  
VISOOUT  
VIO  
Primary side logic supply voltage  
Voltage at INx, OUTx, EN_IOx(3)  
Voltage at EN/FLT  
–0.5  
–0.5  
–0.5  
–0.5  
–15  
–40  
–65  
6
VSI + 0.5  
VSI + 0.5  
VISOOUT + 0.5  
15  
V
V
V
V
Voltage at VSEL  
V
IO  
Maximum output current through data channels  
Junction temperature  
mA  
°C  
°C  
TJ  
150  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VDD, VISOIN VISOOUT, and VIO are with respect to the local ground pin (GND1 or GND2). All voltage values except differential I/O bus  
voltages are peak voltage values.  
(3) VSI = input side supply; Cannot exceed 6 V.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±3000  
Electrostatic  
discharge  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C6  
V(ESD)  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2(2)  
Isolation barrier withstand test  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.3 Recommended Operating Conditions  
Over recommended operating conditions, typical values are at VDD = VIO = 3.3 V and TA =25°C, GND1 = GNDIO, GND2 =  
GISOIN (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Power Converter  
3.3 V operation  
5 V operation  
2.97  
4.5  
3.3  
5
3.63  
5.5  
V
V
Power converter supply  
voltage  
VDD  
Positive threshold when  
power converter supply is  
rising  
Positive threshold when power  
converter supply is rising  
VDD(UVLO+)  
2.7  
2.95  
V
Positive threshold when  
power converter supply is  
falling  
Positive threshold when power  
converter supply is falling  
VDD(UVLO-)  
2.40  
0.15  
2.55  
V
V
Power converter supply  
voltage hysteresis  
Power converter supply voltage  
hysteresis  
VDD(HYS)  
Channel Isolation  
1.8 V operation  
1.71  
2.25  
1.89  
5.5  
V
V
(3)  
VIO, VISOIN  
Channel logic supply voltage  
2.5 V, 3.3 V, and 5 V operation  
VIO(UVLO+)  
VIO(UVLO-)  
VIO(HYS)  
Rising threshold of logic supply voltage  
1.55  
1.41  
1.7  
V
Falling threshold of logic supply voltage  
Logic supply voltage hysteresis  
1.0  
75  
–4  
–2  
–1  
–1  
V
mV  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
VISOIN = 5 V  
VISOIN = 3.3 V  
VISOIN = 2.5 V  
VISOIN = 1.8 V  
VISOIN = 5 V  
IOH  
High level output current(1)  
Low level output current(1)  
4
VISOIN = 3.3 V  
VISOIN = 2.5 V  
VISOIN = 1.8 V  
2
IOL  
1
1
VIH  
VIL  
DR  
High-level input voltage(2)  
Low-level input voltage  
Data rate  
0.7 × VSI  
0
VSI  
0.3 × VSI  
100  
V
Mbps  
Channel isolator ready after  
power up or EN/FLT high  
tPWRUP  
TA  
VISOIN > VIO(UVLO+)  
5
ms  
°C  
Ambient temperature  
–40  
125  
(1) This current is for data output channel.  
(2) VSI = input side supply; VSO = output side supply  
(3) The channel outputs are in undetermined state when 1.89 V < VSI < 2.25 V and 1.05 V < VSI < 1.71 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
UNIT  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.4 Thermal Information  
ISOW774x  
DFM (SOIC)  
20 PINS  
68.5  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
24.6  
53.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17.1  
ΨJB  
50.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
VDD = VIO = 5.5 V, IISO = 110 mA, TJ = 150°C, TA ≤ 80°C, CL = 15 pF, input a 50-MHz 50% duty-cycle square wave  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.48  
0.74  
0.74  
UNIT  
W
PD  
Maximum power dissipation (both sides) VDD = 5.5 V, VIO = 5.5 V, VISOOUT  
=
VISOIN, IISOOUT = 100 mA, TJ = 150°C,  
TA ≤ 80°C, CL = 15 pF, input a 50-MHz  
50% duty-cycle square wave  
PD1  
PD2  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
W
W
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
Minimum internal gap (internal clearance – capacitive  
signal isolation)  
> 17  
DTI  
CTI  
Distance through the insulation  
µm  
V
Minimum internal gap (internal clearance –  
transformer power isolation)  
>120  
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
> 600  
I
Rated mains voltage ≤ 300 VRMS  
I-IV  
I-IV  
I-III  
Overvoltage category per IEC 60664-1 Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
DIN VDE V 0884-11:2017-01(2)  
Maximum repetitive peak isolation  
VIORM  
AC voltage (bipolar)  
1500  
VPK  
voltage  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test  
1000  
1500  
7071  
VRMS  
VDC  
VPK  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM; t = 60 s (qualification);  
VTEST = 1.2 × VIOTM; t = 1 s (100% production)  
VIOTM  
VIOSM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage  
ISOW774x(3)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK(qualification)  
6250  
6000  
VPK  
VPK  
Maximum surge isolation voltage  
ISOW774xB(3)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.3 × VIOSM = 7800 VPK(qualification)  
Method a, after input/output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
≤ 5  
≤ 5  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s; ISOW774x: Vpd(m) = 1.6 ×  
VIORM, tm = 10 s, ISOW774xB: Vpd(m) = 1.2 × VIORM, tm  
= 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test),  
Vini = 1.2 × VIOTM, tini = 1 s;  
≤ 5  
ISOW774x: Vpd(m) = 1.875 × VIORM, tm = 1  
s, ISOW774xB: Vpd(m) = 1.5 × VIORM, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance(5)  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~3.5  
> 1012  
> 1011  
> 109  
pF  
Ω
VIO = 500 V, 100°C ≤ TA ≤ 125°C  
VIO = 500 V, TS = 150°C  
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO(UL)= 5000 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO(UL) = 6000 VRMS, t = 1 s (100%  
production)  
VISO(UL) Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal  
in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
(2) ISOW77xx is suitable for safe electrical insulation and ISOW77xxB is suitable for basic electrical insulation only within the safety  
ratings.. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Recognized under  
UL 1577 Component  
Recognition Program  
Certified according to  
EN 61010-1:2010/A1:2019  
and EN 62368-1:2014  
Certified according to DIN Certified according to IEC  
Certified according to  
GB 4943.1-2011  
VDE V 0884-11:2017-01  
62368-1, and IEC 60601-1  
CSA 62368-1-19 and IEC  
62368-1:2018 Ed. 3 and EN  
62368-1:2020. (pollution degree  
2, material group I) 600  
Reinforced insulation;  
Maximum transient  
isolation voltage, 7071  
5000 VRMS Reinforced  
insulation per EN 61010-  
1:2010 up to working  
VPK  
;
VRMS (ISOW774x Reinforced),  
Maximum repetitive peak 1000VRMS (ISOW774xB Basic)  
Reinforced Insulation,  
Altitude ≤ 5000 m,  
Tropical Climate, 700  
VRMS maximum working 62368-1:2014 up to  
voltage;  
voltage of 600 VRMS;  
5000 VRMS Reinforced  
insulation per EN  
isolation voltage, 1500  
VPK  
maximum working voltage;  
2 MOPP (Means of Patient  
Protection) per CSA 60601-1:14  
and IEC 60601-1 Ed. 3+A1,  
250 VRMS maximum working  
voltage. Temperature rating is  
90°C for reinforced insulation  
and 125°C for basic insulation;  
see certificate for details.  
Single protection, 5000  
VRMS  
;
Maximum surge  
isolation voltage, 6250  
working voltage of  
600 VRMS (ISOW774x  
Reinforced), 1000  
V
PK for ISOW774x  
(Reinforced), 6000  
VPK for ISOW774xB  
(Basic).  
VRMS (ISOW774xB Basic)  
Certificate #: Reinforced:  
40040142.  
Basic: Pending  
Certificate #:  
CQC21001297517  
Master Contract#: 220991  
File #: E181974  
Client ID: 77311  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 68.5°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C  
332  
IS  
Safety input, output, or supply current(1)  
mA  
RθJA = 68.5°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
507  
PS  
TS  
Safety input, output, or total power(1)  
Maximum safety temperature(1)  
RθJA = 68.5°C/W, TJ = 150°C, TA = 25°C  
1825  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The  
IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use the following equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.9 Electrical Characteristics - Power Converter  
VDD = 5 V ±10% or 3.3 V ±10% and VISOIN power externally, GND1 = GNDIO, GND2 = GISOIN (over recommended  
operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 5 V, VISOOUT = 5 V, VSEL = VISOOUT  
VISOOUT  
VISOOUT  
Isolated supply voltage  
Isolated supply voltage  
External IISOOUT = 0 to 55 mA  
External IISOOUT = 0 to 110 mA  
4.75  
4.5  
5
5
5.25  
5.25  
V
V
VISOOUT(LINE  
DC line regulation  
DC load regulation  
IISOOUT = 55 mA, VDD = 4.5 V to 5.5 V  
IISOOUT = 0 to 110 mA  
2
mV/V  
)
VISOOUT(LOA  
1%  
D)  
IISOOUT = 110 mA, CLOAD = 0.01 µF || 10 µF;  
VI = VDD (ISOW774x); VI =0 V (ISOW774x  
with F suffix).  
Efficiency at maximum load  
current (1)  
EFF  
46%  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.01 µF || 20 µF,  
VISOOUT(RIP)  
24  
mV  
mA  
(pk-pk)  
IISOOUT = 110 mA  
DC current from VDD supply  
under short circuit on VISOOUT  
IISOOUT_SC  
VISOOUT shorted to GND2  
250  
VDD = 5 V, VISOOUT = 3.3 V, VSEL = GND2  
VISOOUT  
VISOOUT  
Isolated supply voltage  
Isolated supply voltage  
External IISOOUT = 0 to 70 mA  
External IISOOUT = 0 to 140 mA  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VISOOUT(LINE  
DC line regulation  
DC load regulation  
IISOOUT = 70 mA, VDD = 4.5 V to 5.5 V  
IISOOUT = 0 to 140 mA  
2
mV/V  
)
VISOOUT(LOA  
1%  
D)  
IISOOUT = 140 mA, CLOAD = 0.01 µF || 10 µF;  
VI = VDD (ISOW774x); VI =0 V (ISOW774x  
with F suffix).  
Efficiency at maximum load  
current (1)  
EFF  
36%  
Output ripple on isolated supply 20-MHz bandwidth , CLOAD = 0.01 µF || 20 µF,  
VISOOUT(RIP)  
30  
mV  
mA  
(pk-pk)  
IISOOUT = 110 mA  
DC current from VDD supply  
under short circuit on VISOOUT  
IISOOUT_SC  
VISOOUT shorted to GND2  
250  
VDD = 3.3 V, VISOOUT = 3.3 V, VSEL = GND2  
VISOOUT  
VISOOUT  
Isolated supply voltage  
Isolated supply voltage  
External IISOOUT = 0 to 30 mA  
External IISOOUT = 0 to 60 mA  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VISOOUT(LINE  
DC line regulation  
DC load regulation  
IISOOUT = 30 mA, VDD = 3.0 V to 3.6 V  
IISOOUT = 0 to 60 mA  
2
mV/V  
)
VISOOUT(LOA  
1%  
D)  
IISOOUT = 60 mA, CLOAD = 0.01 µF || 10 µF;  
VI = VDD (ISOW774x); VI =0 V (ISOW774x  
with F suffix).  
Efficiency at maximum load  
current (1)  
EFF  
43%  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.01 µF || 20 µF,  
VISOOUT(RIP)  
14  
mV  
mA  
(pk-pk)  
IISOOUT = 60 mA  
DC current from VDD supply  
under short circuit on VISOOUT  
IISOOUT_SC  
VISOOUT shorted to GND2  
185  
(1) Power converter ILOAD = current required to power the secondary side. ILOAD does not take into account the channel isolator current.  
See Supply Current Characteristics Channel Isolator section for details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7.10 Supply Current Characteristics - Power Converter  
VDD = 5 V ±10% or 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise  
noted).  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Power Converter Disabled  
Power converter supply  
current  
EN/FLT = GND1, VISOOUT = No ILOAD  
EN/FLT = GND1  
IDD  
0.28  
0.27  
0.45  
0.57  
mA  
mA  
Logic supply current  
IIO  
Power Converter Enabled  
VDD = 5 V, VSEL = VISOOUT  
VDD = 5 V, VSEL = VISOOUT  
VDD = 5 V, VSEL = GND2  
VDD = 5 V, VSEL = GND2  
VDD = 3.3 V, VSEL = GND2  
VDD = 3.3 V, VSEL = GND2  
VDD = 5 V  
ILOAD = 55 mA  
ILOAD = 110 mA  
ILOAD = 70 mA  
ILOAD = 140 mA  
ILOAD = 30 mA  
ILOAD = 60 mA  
VSEL = VISOOUT  
VSEL = GND2  
VSEL = GND2  
115  
225  
127  
250  
74  
171  
316  
169  
310  
112  
216  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Power converter supply  
current input  
IDD  
143  
110  
140  
60  
Power converter output  
current (1)  
VDD = 5 V  
IISOOUT  
VDD = 3.3 V  
(1) ILOAD does not take into account the channel isolator current. See Supply Current Characteristics Channel Isolator section for details.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.11 Electrical Characteristics Channel Isolator - VIO, VISOIN = 5-V  
VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
–25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = –4 mA, see Switching Characteristics  
Test Circuit and Voltage Waveforms  
VSO  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
0.4  
IO = 4 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.4  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.12 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 5-V  
VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7740 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
IDD_IO  
2.5  
4.6  
2.5  
4.6  
2.5  
4.6  
6.9  
4.8  
4.7  
4.8  
4.9  
7.3  
6.5  
31  
3.6  
6.9  
3.6  
6.9  
3.6  
6.9  
9.2  
7.2  
6.4  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
1 Mbps  
6.7  
9.7  
8.4  
35  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
ISOW7741 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
2.8  
4.3  
2.8  
4.3  
2.8  
4.3  
6.1  
5.5  
4.1  
6.3  
4.1  
6.3  
4.1  
6.3  
8.4  
7.9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7741 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741);  
VI = 0 V (ISOW7741 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
4.4  
4.9  
5
6.3  
7.1  
7
mA  
mA  
mA  
mA  
mA  
mA  
1 Mbps  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Channel Supply current -  
AC signal  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
6.3  
12.2  
25  
8.9  
14.2  
32  
ISOW7742 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.1  
3.9  
4.7  
5.6  
4.7  
5.6  
4.7  
5.6  
7.7  
8.5  
6.3  
7.2  
7.6  
8.3  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current - Disable  
3.1  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
3.9  
3.1  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
3.9  
Channel Supply current -  
DC signal  
5.4  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
6.2  
4.2  
1 Mbps  
5.1  
5.5  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
6.3  
16.7  
17.33  
100 Mbps  
22  
ISOW7743 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.5  
3.6  
3.5  
3.6  
3.5  
3.6  
4.7  
7
5.2  
5.1  
5.2  
5.1  
5.2  
5.1  
6.9  
9.4  
6.2  
7.2  
8.2  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7743 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743);  
VI = 0 V (ISOW7743 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
4
1 Mbps  
5.3  
6
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
6.2  
24  
14  
27  
100 Mbps  
17  
ISOW7744 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.8  
3.3  
3.8  
3.3  
5.8  
4.6  
5.8  
4.6  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7744 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
3.8  
3.3  
4
5.8  
4.6  
6.2  
10.2  
6.1  
7.3  
8.6  
7.3  
34  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744);  
VI = 0 V (ISOW7744 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
7.7  
3.8  
5.5  
6.4  
5.6  
30  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
7.4  
9
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7.13 Electrical Characteristics Channel Isolator - VIO, VISOIN = 3.3-V  
VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
-25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = –2 mA, see Switching Characteristics  
Test Circuit and Voltage Waveforms  
VSO  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
0.3  
IO = 2 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.3  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.14 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 3.3-V  
VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7740 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
IDD_IO  
2.4  
4.6  
2.4  
4.5  
2.4  
4.5  
6.8  
4.8  
4.6  
4.7  
4.7  
6
3.5  
6.9  
3.5  
6.9  
3.5  
6.9  
9.1  
7.2  
6.4  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
1 Mbps  
6.4  
8.6  
7.8  
30  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
5.5  
22  
100 Mbps  
ISOW7741 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
2.8  
4.2  
2.8  
4.2  
2.8  
4.2  
6.1  
5.5  
4
6.3  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7741 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
6.3  
4
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741);  
VI = 0 V (ISOW7741 with F suffix)  
6.3  
8.3  
7.9  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
4.4  
4.9  
6.3  
7.1  
6.7  
8.3  
12  
mA  
mA  
mA  
mA  
mA  
mA  
1 Mbps  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
4.8  
Channel Supply current -  
AC signal  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
5.9  
9.4  
17.5  
25  
ISOW7742 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.1  
3.9  
3.1  
3.9  
3.1  
3.9  
5.4  
6.2  
4.2  
5.1  
4.9  
5.7  
13  
4.6  
5.5  
4.6  
5.5  
4.6  
5.5  
7.6  
8.5  
6.3  
7.2  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
7.9  
16.6  
17.5  
100 Mbps  
13.7  
ISOW7743 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.4  
3.6  
3.4  
3.6  
3.4  
3.6  
4.7  
6.9  
4
5.1  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7743 with F suffix)  
Supply current - Disable  
5.1  
5
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
5.1  
5
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743);  
VI = 0 V (ISOW7743 with F suffix)  
Channel Supply current -  
DC signal  
6.8  
9.3  
6.2  
7.2  
7.4  
7.6  
23  
14  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
1 Mbps  
5.3  
5
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
5.6  
17  
100 Mbps  
10.5  
ISOW7744 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.7  
3.2  
3.7  
3.2  
5.7  
4.5  
5.7  
4.5  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7744 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
3.7  
3.2  
4
5.7  
4.5  
6.1  
10.1  
6.1  
7.3  
7.8  
7.3  
29  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744);  
VI = 0 V (ISOW7744 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
7.6  
3.8  
5.5  
5.5  
5.5  
21  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
6.3  
8.3  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.15 Electrical Characteristics Channel Isolator - VIO, VISOIN = 2.5-V  
VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
-25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = –1 mA, see Switching Characteristics  
Test Circuit and Voltage Waveforms  
VSO  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
0.1  
IO = 1 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.1  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.16 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 2.5-V  
VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7740 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
IDD_IO  
2.4  
4.5  
2.4  
4.5  
2.4  
4.5  
6.8  
4.7  
4.6  
4.7  
4.7  
5.7  
5.3  
18  
3.8  
6.9  
3.8  
6.9  
3.8  
6.9  
9
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
7.2  
6.4  
7
1 Mbps  
6.4  
8.1  
7.2  
24  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
ISOW7741 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
2.7  
4.2  
2.7  
4.2  
2.7  
4.2  
6.1  
5.4  
4.3  
6.3  
4.3  
6.3  
4.3  
6.3  
8.3  
7.9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7741 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741);  
VI = 0 V (ISOW7741 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
4.4  
4.9  
6.3  
7.1  
mA  
mA  
mA  
mA  
mA  
mA  
1 Mbps  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
4.7  
8.3  
Channel Supply current -  
AC signal  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
5.6  
7.9  
8.2  
11.2  
18.8  
14.6  
ISOW7742 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.1  
3.8  
3.1  
3.8  
3.1  
3.8  
5.3  
6.1  
4.2  
5.1  
4.7  
5.6  
10.9  
11.7  
4.6  
5.5  
4.6  
5.5  
4.6  
5.4  
7.5  
8.4  
6.3  
7.2  
6.8  
7.7  
14.5  
15.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
ISOW7743 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.4  
3.5  
3.4  
3.5  
3.4  
3.5  
4.6  
6.8  
4
5.1  
4.9  
5.1  
4.9  
5.1  
4.9  
6.7  
9.3  
6.2  
7.2  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7743 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743);  
VI = 0 V (ISOW7743 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
1 Mbps  
5.3  
4.8  
5.6  
13.8  
8.3  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
7.5  
17  
100 Mbps  
13  
ISOW7744 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.7  
3.2  
3.7  
3.2  
5.9  
4.4  
5.7  
4.4  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7744 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
3.7  
3.2  
3.9  
7.5  
3.8  
5.5  
4.8  
5.5  
16.5  
6
5.7  
4.4  
6.2  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744);  
VI = 0 V (ISOW7744 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
6.1  
7.3  
7.2  
7.3  
22  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
8.1  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7.17 Electrical Characteristics Channel Isolator - VIO, VISOIN = 1.8-V  
VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
PARAMETER  
Channel Isolation  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
0.7 x VSI  
V
V
0.3 x VSI  
0.1 x VSI  
-25  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
V
IIL  
Low level input current  
High level input current  
VIL = 0 at INx  
µA  
µA  
IIH  
VIH = VSI (1) at INx  
25  
(1)  
IO = –1 mA, see Switching Characteristics  
Test Circuit and Voltage Waveforms  
VSO  
VOH  
VOL  
High level output voltage  
Low level output voltage  
V
V
0.1  
IO = 1 mA, see Switching Characteristics Test  
Circuit and Voltage Waveforms  
0.1  
Common mode transient  
immunity  
VI = VSI or 0 V, VCM = 1000 V; see Common-  
Mode Transient Immunity Test Circuit  
CMTI  
85  
100  
kV/us  
(1) VSI = input side supply; VSO = output side supply  
7.18 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 1.8-V  
VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ISOW7740 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
IDD_IO  
1.9  
4.2  
1.9  
4.2  
1.9  
4.2  
6.1  
4.4  
4.0  
4.7  
4.0  
5.4  
4.6  
14.6  
3
6.3  
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
6.3  
3
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740);  
VI = 0 V (ISOW7740 with F suffix)  
6.3  
8.7  
6.7  
6.4  
7
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740);  
VI = VCCI (ISOW7740 with F suffix)  
1 Mbps  
6.4  
7.7  
9.5  
19  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
ISOW7741 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
2.4  
3.8  
2.4  
3.8  
2.4  
3.8  
5.5  
4.9  
3.6  
5.6  
3.6  
5.6  
3.6  
5.6  
7.8  
7.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7741 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741);  
VI = 0 V (ISOW7741 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741);  
VI = VCCI (ISOW7741 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
4
4.4  
4.2  
5.2  
6.9  
12  
5.7  
6.5  
6
mA  
mA  
mA  
mA  
mA  
mA  
1 Mbps  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Channel Supply current -  
AC signal  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
7.3  
9.6  
15.8  
ISOW7742 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
2.8  
3.4  
2.8  
3.4  
2.8  
3.4  
5
4.3  
5.1  
4.3  
5.1  
4.3  
5.1  
7.4  
8.1  
6.3  
7.2  
6.6  
7.5  
12.5  
13.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742);  
VI = 0 V (ISOW7742 with F suffix)  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742);  
VI = VCCI (ISOW7742 with F suffix)  
5.6  
4.2  
4.5  
4.3  
5.0  
9.1  
9.7  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
ISOW7743 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.2  
3
5
4.5  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7743 with F suffix)  
Supply current - Disable  
3.2  
3
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
4.5  
5
3.2  
3
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743);  
VI = 0 V (ISOW7743 with F suffix)  
4.5  
6.6  
8.9  
6.2  
7.2  
6.7  
7.4  
15  
Channel Supply current -  
DC signal  
4.4  
6.2  
4
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743);  
VI = VCCI (ISOW7743 with F suffix)  
1 Mbps  
4.6  
4.6  
4.9  
11.4  
7.8  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
9.8  
ISOW7744 Channel Supply Current  
EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744);  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
3.6  
2.6  
3.6  
2.6  
5.7  
3.8  
5.7  
3.8  
mA  
mA  
mA  
mA  
VI = 0 V (ISOW7744 with F suffix)  
Supply current - Disable  
EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise  
specified)  
SUPPLY  
CURRENT  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_IO  
3.6  
2.6  
3.8  
6.7  
3.8  
4.7  
4.5  
4.7  
13.8  
5.2  
5.7  
3.8  
6.1  
9.6  
6.1  
7.3  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744);  
VI = 0 V (ISOW7744 with F suffix)  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
IDD_IO  
IISOIN  
Channel Supply current -  
DC signal  
EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744);  
VI = VCCI (ISOW7744 with F suffix)  
1 Mbps  
Channel Supply current -  
AC signal  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
7.3  
16.9  
7.7  
100 Mbps  
(1) VCCI = VIO or VISOIN  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.19 Switching Characteristics - 5-V Supply  
VISOIN = 5 V ±10%, VIO = 5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
10.7  
0.9  
MAX UNIT  
tPLH, tPHL  
PWD  
7.6  
15.7  
5
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
|
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
210  
473.8  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4
5.5  
3.6  
3.5  
ns  
ns  
ns  
ns  
Output signal rise time  
2.5  
2.4  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
217  
217  
237  
237  
237  
237  
286  
286  
333  
333  
333  
333  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
ns  
tie  
216 – 1 PRBS data at 100 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7.20 Switching Characteristics - 3.3-V Supply  
VISOIN = 3.3 V ±10%, VIO = 3.3 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX UNIT  
tPLH, tPHL  
PWD  
6
16.2  
4.7  
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
|
0.6  
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
220  
474  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
4.5  
2.7  
2.4  
ns  
ns  
ns  
ns  
Output signal rise time  
1.8  
1.6  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
230  
230  
226  
226  
225  
225  
300.4  
299.6  
318.9  
319.1  
317.9  
317.6  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.3  
μs  
ns  
tie  
216 – 1 PRBS data at 100 Mbps  
0.65  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.21 Switching Characteristics - 2.5-V Supply  
VISOIN = 2.5 V ±10%, VIO = 2.5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX UNIT  
tPLH, tPHL  
PWD  
7.5  
18  
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
|
0.36  
5.1  
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
225  
478  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
6
ns  
ns  
ns  
ns  
Output signal rise time  
2
3.26  
3.2  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
1.8  
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
237  
236  
228  
228  
227  
227  
326  
325  
360  
360  
350  
350  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
ns  
tie  
216 – 1 PRBS data at 100 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7.22 Switching Characteristics - 1.8-V Supply  
VISOIN = 1.8 V ±5%, VIO = 1.8 V ±5%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless  
otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
TEST CONDITIONS  
MIN  
TYP  
15  
0
MAX UNIT  
tPLH, tPHL  
PWD  
7.5  
21.5  
5.8  
ns  
ns  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
|
ENIO_tPLH  
ENIO_tPHL  
,
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
ENIO propagation delay time (opposite side)  
243  
475  
ns  
tsk(o)  
tsk(pp)  
tr  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
Same-direction channels  
4.1  
8.6  
3
ns  
ns  
ns  
ns  
Output signal rise time  
1.9  
1.8  
See Switching Characteristics Test  
Circuit and Voltage Waveforms  
tf  
Output signal fall time  
3
Channel disable propagation delay, high-to-high impedance  
output  
tPHZ  
tPLZ  
260  
260  
240  
240  
237  
237  
410  
406  
444  
444  
439  
439  
ns  
ns  
ns  
ns  
ns  
ns  
Channel disable propagation delay, low-to-high impedance  
output  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x  
See Enable/Disable Propagation Delay  
Time Test Circuit and Waveform  
tPZH  
Channel enable propagation delay, high impedance-to-high  
output for ISOW774x with F suffix  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x  
tPZL  
Channel enable propagation delay, high impedance-to-low  
output for ISOW774x with F suffix  
Measured from the time VIO or VISOIN  
goes below 1.6 V at 10 mV/ns.  
See Default Output Delay Time Test  
Circuit and Voltage Waveforms  
tDO  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
ns  
tie  
216 – 1 PRBS data at 100 Mbps  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
7.23 Insulation Characteristics Curves  
550  
VDD = VIO = VISOIN = 3.6 V  
VDD = VIO = VISOIN = 5.5 V  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (C)  
Figure 7-2. Thermal Derating Curve for Safety  
Limiting Power for DFM-20 Package  
Figure 7-1. Thermal Derating Curve for Safety  
Limiting Current for DFM-20 Package  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
7.24 Typical Characteristics  
3.4  
5.1  
5.08  
5.06  
5.04  
5.02  
5
VDD = 5 V  
VDD = 3.3 V  
3.38  
3.36  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
3.22  
3.2  
4.98  
4.96  
4.94  
4.92  
4.9  
0
20  
40  
60  
80  
100  
120  
140  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Load Current (mA)  
Load Current (mA)  
VSEL = GND2  
TA = 25°C  
VISOOUT = 3.3 V  
VSEL = VISOOUT  
TA = 25°C  
VISOOUT = 5 V  
Figure 7-3. Isolated Supply Voltage (VISOOUT) vs  
Load Current (IISOOUT  
Figure 7-4. Isolated Supply Voltage (VISOOUT) vs  
Load Current (IISOOUT  
)
)
270  
240  
210  
180  
150  
120  
90  
48  
45  
42  
39  
36  
33  
30  
27  
24  
21  
VDD = 5 V, VISOOUT = 5 V  
VDD = 3.3 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 5 V  
VDD = 3.3 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 3.3 V  
60  
30  
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Load Current (mA)  
Load Current (mA)  
TA = 25°C  
TA = 25°C  
Figure 7-5. Supply Current (IDD) vs Load Current  
(IISOOUT  
Figure 7-6. Efficiency vs Load Current (IVISOOUT  
)
)
800  
700  
600  
500  
400  
300  
200  
100  
0
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.29  
3.28  
3.27  
3.26  
3.25  
VDD = 5 V, VISOOUT = 5 V  
VDD = 3.3 V, VISOOUT = 3.3 V  
VDD = 5 V, VISOOUT = 3.3 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
0
20  
40  
60  
80  
100  
120  
140  
Output Load Current (mA)  
VSEL = GND2  
VDD = 5 V  
No VISOOUT Load  
TA = 25°C  
Figure 7-8. 3.3-V Isolated Supply Voltage (VISOOUT  
vs Free-Air Temperature  
)
Figure 7-7. Power Dissipation vs Load Current  
(IISOOUT  
)
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
5.05  
5.04  
5.03  
5.02  
5.01  
5
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
4.99  
4.98  
4.97  
4.96  
4.95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
Temperature (C)  
Input Supply Voltage, VDD (mA)  
VSEL = VISOOUT  
VDD = 5 V  
No VISOOUT Load  
VSEL = VISOOUT VISOOUT = GND2 TA = 25°C = GND1  
Figure 7-9. 5-V Isolated Supply Voltage (VISOOUT) vs  
Free-Air Temperature  
Figure 7-10. Short-Circuit Supply Current (ICC) vs  
Supply Voltage (VCC)  
24  
20  
IIO, VIO = 5 V  
IISOIN, VISOIN = 5 V  
IIO, VIO = 3.3 V  
IISOIN, VISOIN = 3.3 V  
IIO, VIO = 5 V  
IISOIN, VISOIN = 5 V  
IIO, VIO = 3.3 V  
22  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
IISOIN, VISOIN = 3.3 V  
6
6
4
4
2
2
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Data Rate (Mbps)  
Data Rate (Mbps)  
CL = 15 pF  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
Figure 7-11. ISOW7741 Channel Supply Currents  
vs Data Rate For CL = 15 pF  
Figure 7-12. ISOW7741 Channel Supply Currents  
vs Data Rate For CL = 0 pF  
3
17  
tPHL, VIO = 5 V, VISOIN = 5 V  
tPLH, VIO = 5 V, VISOIN = 5 V  
tPHL, VIO = 5 V, VISOIN = 3.3 V  
tPLH, VIO = 5 V, VISOIN = 3.3 V  
tPHL, VIO = 3.3 V, VISOIN = 3.3 V  
tPLH, VIO = 3.3 V, VISOIN = 3.3 V  
16  
15  
14  
13  
12  
11  
10  
9
2.75  
2.5  
VIO UVLO+  
VIO UVLO-  
VISOIN UVLO+  
VISOIN UVLO-  
VDD UVLO+  
VDD UVLO-  
2.25  
2
1.75  
1.5  
1.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (C)  
Temperature (C)  
Figure 7-14. Propagation Delay Time vs Free-Air  
Temperature  
Figure 7-13. Power-Supply Undervoltage  
Threshold vs Free Air Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
5
0.8  
0.6  
0.4  
0.2  
0
4.5  
VSO = 3.3 V  
VSO = 5 V  
4
3.5  
3
VSO = 3.3 V  
VSO = 5 V  
2.5  
0
3
6
9
12  
15  
-15  
-12  
-9  
-6  
-3  
0
Low-Level Output Current (mA)  
High-Level Output Current (mA)  
TA = 25°C  
TA = 25°C  
Figure 7-16. Low-Level Output Voltage vs Low-  
Level Output Current  
Figure 7-15. High-Level Output Voltage vs High-  
Level Output Current  
VDD = 5 V VISOOUT = 3.3  
V
TA = 25°C  
VDD = 5 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
Figure 7-17. 10-mA to 110-mA Load Transient  
Response  
Figure 7-18. Soft Start at 10-mA Load For VISOOUT  
3.3 V  
=
VDD = 5 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
VDD = 5 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
Figure 7-19. Soft Start at 50-mA Load For VISOOUT  
3.3 V  
=
Figure 7-20. Soft Start at 110-mA Load For VISOOUT  
= 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
Figure 7-22. Soft Start at 50-mA Load For VISOOUT  
5 V  
=
Figure 7-21. Soft Start at 10-mA Load For VISOOUT  
5 V  
=
VDD = 3.3 V VISOOUT = 3.3  
V
10 uF  
Capacitor on  
VISOOUT  
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
Figure 7-24. VISOOUT Ripple Voltage at 3.3 V with 10  
uF Capacitor and 60 mA load  
Figure 7-23. Soft Start at 110-mA Load For VISOOUT  
= 5 V  
VDD = 5 V VISOOUT = 5 V  
10 uF  
Capacitor on  
VISOOUT  
VDD = 3.3 V VISOOUT = 3.3  
V
100 uF  
Capacitor on  
VISOOUT  
Figure 7-25. VISOOUT Ripple Voltage at 5 V with 10  
uF Capacitor and 110 mA load  
Figure 7-26. VISOOUT Ripple Voltage at 3.3 V with  
100 uF Capacitor and 60 mA load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5 V, VISOOUT = 5 V, 110 mA load  
VDD = 5 V, VISOOUT = 3.3 V, 140 mA load  
VDD = 3.3 V, VISOOUT = 3.3 V, 60 mA load  
VDD = 5 V VISOOUT = 5 V  
100 uF  
Capacitor on  
VISOOUT  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
VISOOUT Capacitor (F)  
TA = 25°C  
Figure 7-27. VISOOUT Ripple Voltage at 5 V with 100  
uF Capacitor and 110 mA load  
Figure 7-28. VISOOUT Ripple Voltage vs Load  
Capacitor  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
8 Parameter Measurement Information  
In the below images, VCCI and VCCO refers to the power supplies VIO and VISOIN, respectively.  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. CL = 15 pF and The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns,  
tf ≤ 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 8-1. Switching Characteristics Test Circuit and Voltage Waveforms  
VCC1  
VCC / 2  
VCC / 2  
VI  
0 V  
VOH  
tPZH  
VO  
IN  
OUT  
0 V or 3 V  
50%  
0.5 V  
VO  
EN  
0 V  
RL = 1 k1%  
tPHZ  
CL  
See Note B  
tPZL  
tPLZ  
Input  
Generator  
(See Note A)  
VOH  
0.5 V  
VOL  
VI  
50 ꢀ  
VO  
50%  
A. A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO  
= 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
VCCI  
See Note B  
V
CCI  
V
1.4 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
Note  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
Note  
B. Power Supply Ramp Rate = 10 mV/ns.  
Figure 8-3. Default Output Delay Time Test Circuit and Voltage Waveforms  
5V  
Connected to Visoout on PCB  
VISOIN  
VIO  
0.01uF  
1uF  
10uF  
10uF  
1uF  
0.01uF  
VIO  
GND1  
OUT  
IN  
5V  
GND1  
VDD  
C
L
10uF  
1uF  
0.01uF  
GND1  
GND2  
+
V
CM  
Note  
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Note  
Pass-fail criteria: Outputs must remain stable.  
Figure 8-4. Common-Mode Transient Immunity Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
9 Detailed Description  
9.1 Overview  
The ISOW774x family of devices have low-noise, low-emissions isolated DC-DC converter, and four high- speed  
isolated data channels. Section 9.2 shows the functional block diagram of the ISOW774x device.  
9.1.1 Power Isolation  
The integrated isolated DC-DC converter uses advanced circuit and on-chip layout techniques to reduce  
radiated emissions and achieve upto 46% typical efficiency. The integrated transformer uses thin film polymer  
as the insulation barrier. Output voltage of power converter can be controlled to 3.3 V or 5 V using VSEL  
pin. The DC-DC converter can be switched off using the EN/FLT pin to save power. The output voltage,  
VISOOUT , is monitored and feedback information is conveyed to the primary side through a dedicated isolation  
channel. VISOOUT needs to be connected to VISOIN to ensure the feedback channel is properly powered to  
regulate the DC-DC converter. This can be achieved by connecting the pins directly or through an LDO that  
remains powered up at all times. A ferrite bead is recommended between Visoout and Visoin to further reduce  
emissions. See the Section 10.2 section. The duty cycle of the primary switching stage is adjusted accordingly.  
The fast feedback control loop of the power converter ensures low overshoots and undershoots during load  
transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the VIO, VDD and VISOIN supplies  
which ensures robust fails-safe system performance under noisy conditions. An integrated soft-start mechanism  
ensures controlled inrush current and avoids any overshoot on the output during power up.  
9.1.2 Signal Isolation  
The integrated signal isolation channels employ an ON-OFF keying (OOK) modulation scheme to transmit the  
digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high frequency carrier  
across the barrier to represent one state and sends no signal to represent the other state. The receiver  
demodulates the signal after signal conditioning and produces the output through a buffer stage. The signal-  
isolation channels incorporate advanced circuit techniques to maximize the CMTI performance and minimize the  
radiated emissions from the high frequency carrier and IO buffer switching. Figure 9-1 shows a functional block  
diagram of a typical signal isolation channel. In order to keep any noise coupling from power converter away  
from signal path, power supplies on side 1 for power converter (VDD) and signal path(VIO) are kept separate.  
Similarly on side 2, power converter output (VISOOUT) needs to be connected to VISOIN externally on PCB.  
Emissions can be further improved by placing a ferrite bead between VISOOUT and VISOIN as well as between the  
GND2 pins. For more details, refer to the Layout Guidelines section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
9.2 Functional Block Diagram  
V
V
ISOIN  
IO  
Isolation Barrier  
VISOOUT and  
VISOIN needs to  
be directly  
connected or  
through an  
LDO on board  
that is always  
powered.  
Data Channels  
(4)  
Data Channels  
(4)  
I/O Channels  
I/O Channels  
FB Controller  
V
ref  
FB Channel (Rx)  
FB Channel (Tx)  
Thermal  
Shutdown,  
UVLO, Soft-start  
UVLO, Soft-start  
Transformer  
Driver  
Power  
Controller  
Rectifier  
V
ISOOUT  
V
DD  
Transformer  
Figure 9-1. Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Figure 9-2. Conceptual Block Diagram of a Capacitive Data Channel  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
Figure 9-3 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 9-3. On-Off Keying (OOK) Based Modulation Scheme  
9.3 Feature Description  
Table 9-1 shows an overview of the device features.  
Table 9-1. Device Features  
DEFAULT OUTPUT  
STATE  
PART NUMBER1  
CHANNEL DIRECTION  
MAXIMUM DATA RATE  
RATED ISOLATION2  
ISOW7740  
ISOW7740F  
ISOW7741  
ISOW7741F  
ISOW7742  
ISOW7742F  
ISOW7743  
ISOW7743F  
ISOW7744  
ISOW7744F  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
4 forward, 0 reverse  
3 forward, 1 reverse  
2 forward, 2 reverse  
1 forward, 3 reverse  
0 forward, 4 reverse  
100 Mbps  
5 kVRMS / 7071 VPK  
1. The F suffix is part of the orderable part number. See the Section 14 section for the full orderable part  
number.  
2. For detailed isolation ratings, see the Section 7.7 table.  
9.3.1 Electromagnetic Compatibility (EMC) Considerations  
The ISOW774x devices use emissions reduction schemes for the internal oscillator and advanced internal layout  
scheme to minimize radiated emissions at the system level.  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the  
ISOW774x devices incorporate many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Power path and signal path separated to minimize internal high frequency coupling and allowing for an  
external filtering knob using ferrite beads available to further reduce emissions  
Reduced power converter switching frequency to 25 Mhz to reduce strength of high frequency components in  
emissions spectrum  
9.3.2 Power-Up and Power-Down Behavior  
The ISOW774x device has built-in UVLO on the VIO, VDD, and VISOIN supplies with positive-going and negative-  
going thresholds and hysteresis. Both the power converter supply (VDD) and logic supply (VIO) need to be  
present for the device to work. If either of them is below its UVLO, both the signal path and the power converter  
are disabled.  
When the VDD voltage crosses the positive-going UVLO threshold during power-up, the DC-DC converter  
initializes and the power converter duty cycle is increased in a controlled manner. This soft-start scheme limits  
primary peak currents drawn from the VDD supply and charges the VISOOUT output in a controlled manner,  
avoiding overshoots. Outputs of the isolated data channels are in an indeterminate state until the VIO or VDD  
voltage crosses the positive-going UVLO threshold. When the UVLO positive-going threshold is crossed on the  
secondary side VISOOUT pin, the feedback data channel starts providing feedback to the primary controller. The  
regulation loop takes over and the isolated data channels go to the normal state defined by the respective input  
channels or their default states. Design should consider a sufficient time margin (typically 10 ms with 10-µF load  
capacitance) to allow this power up sequence before valid data channels are accounted for system functionality.  
When either VIO or VDD power is lost, the primary side DC-DC controller turns off when the UVLO lower  
threshold is reached. The VISOOUT capacitor then discharges depending on the external load. The isolated data  
outputs on the VISOIN side are returned to the default state for the brief time that the VISOIN voltage takes to  
discharge to zero.  
9.3.3 Protection Features  
The ISOW774x devices have multiple protection features to create a robust system level solution.  
The Enable DC-DC / FAULT protection feature (EN/FLT) can be used as either an input pin, to enable or  
disable the integrated DC-DC power converter, or as an output pin, which works as an alert signal if the  
power converter is not operating properly. In the /FAULT use case, an alert is reported if VDD > 7 V, VDD < 2.5  
V, or if the junction temperature >170°C. When a fault is detected, this pin will go low, disabling the DC-DC  
converter to prevent any damage.  
5 kΩ  
Powers Down Isolator Channels  
and DC-DC Converter.  
EN/FLT  
MCU OUTPUT  
IQ < 1 mA Typical  
MCU INPUT  
Fault Reported If  
VDD < 2.5 V  
VDD > 7 V  
Junction Temp > 170° C  
Figure 9-4. EN/FLT Fault Pin Diagram  
An over-voltage clamp feature is present on VISOOUT which will clamp the voltage at 6 V, when VSEL =  
VISOOUT, or 4 V, when VSEL = GND2, if there is an increase in voltage seen on VISOOUT. It is recommended  
that the VISOOUT stays lower than the over-clamp voltage for device reliability.  
Over-voltage lock out on VDD will occur when a voltage higher than 7 V is seen. The device will go into a low  
power state and the EN/FLT pin will go low.  
The device is protected against output overload and short circuit. Output voltage starts dropping when the  
power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT  
short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
The device is protected against output overload and short circuit. Output voltage starts dropping when the  
power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT  
short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage.  
The device is protected against output overload and short circuit. Output voltage starts dropping when the  
power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT  
short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage.  
Thermal protection is also integrated to help prevent the device from getting damaged during overload  
and short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to  
increase. When the temperature goes above 165°C, thermal shutdown activates and the primary controller  
turns off which removes the energy supplied to the VISOOUT load, which causes the device to cool off.  
When the junction temperature goes below 150°C, the device starts to function normally. If an overload or  
output short-circuit condition prevails, this protection cycle is repeated. Care should be taken in the design to  
prevent the device junction temperatures from reaching such high values.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
9.4 Device Functional Modes  
Table 9-2 lists the supply configurations for these devices.  
Table 9-2. Supply Configuration Function Table  
(1)  
(3)  
VDD  
VIO  
VSEL  
VISOOUT  
OFF  
< VDD(UVLO+)  
>VDD(UVLO+)  
5 V  
>VIO(UVLO+)  
<VIO(UVLO+)  
1.71 V to 5.5 V  
1.71 V to 5.5 V  
X
X
OFF  
High (shorted to VISOOUT  
)
5 V  
5 V or 3.3 V  
Low (shorted to GND2)(2)  
3.3 V  
(1) VDD= 3.3 V, MODE shorted to VISOOUT(essentially VISOOUT = 5 V) is not the recommended mode of operation  
(2) The MODE pin has a weak pulldown internally. Therefore for VISOOUT = 3.3 V, the MODE pin should be strongly connected to the  
GND2 pin in noisy system scenarios.  
(3) VISOOUT shorted to VISOIN on PCB and both GND2 pins are shorted to each other and EN=High  
Table 9-3 lists the channel isolators functional modes for these devices.  
Table 9-3. Channel Isolator Function Table  
CHANNEL  
OUTPUT  
SUPPLY (VCCO  
IO ENABLE  
(EN_IOx)  
CHANNEL INPUT  
OUTPUT  
(OUTx)  
(1)  
INPUT (INx)  
COMMENTS  
SUPPLY (VCCI  
)
(1)  
)
H or  
Open  
H
L
H
L
Normal Operation: A channel output  
assumes the logic state of its input.  
H or Open  
Default mode(2): When INx is open, the  
corresponding channel output goes to its  
default logic state.  
Open  
X
H or Open  
Default  
PU  
PU  
A low value of output enable causes  
the outputs of the same side to be high  
impedance and the output of opposite  
side to be fail-safe default state.  
L
Z and Default  
Default mode(2): When VCCI is  
unpowered, a channel output assumes  
the logic state based on the selected  
default option. When VCCI transitions  
from unpowered to powered-up, a  
channel output assumes the logic state  
of the input. When VCCI transitions  
from powered-up to unpowered, channel  
output assumes the selected default  
state.  
PD  
PU  
X
H or Open  
Default  
(1) VCCI = Input-side VIO or VISOIN; VCCO = Output-side VIO or VISOIN; PU = Powered up (VIO > 1.7 V, VISOIN > 1.7 V); PD = Powered down  
(VIO < 1 V, VISOIN < 1 V); X = Irrelevant; H = High level; L = Low level.  
(2) In the default condition, the output is high for the ISOW774x device and low with the F suffix.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
 
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
9.4.1 Device I/O Schematics  
INx (Devices without F suffix)  
INx (Devices with F suffix)  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
VCCI  
1.5 M  
985  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
VSEL  
OUTx  
VCCO  
VISOOUT  
VISOOUT  
VISOOUT  
~20 ꢀ  
1970 ꢀ  
OUTx  
SEL  
2 Mꢀ  
EN_IOx  
EN/FLT  
VCCI  
VCCI  
VCCI  
VIO  
VIO  
VIO  
VCCI  
VIO  
550 kꢀ  
550 kꢀ  
INx  
INx  
Fault  
1mA  
Figure 9-5. Device I/O Schematics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and  
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
The device is a high-performance, quad channel digital isolator with integrated DC-DC converter. Typically digital  
isolators require two power supplies isolated from each other to power up both sides of device. Due to the  
integrated DC-DC converter in the device, the isolated supply is generated inside the device that can be used  
to power isolated side of the device and peripherals on isolated side, thus saving board space. The device uses  
single-ended CMOS-logic switching technology. When designing with digital isolators, keep in mind that because  
of the single-ended design structure, digital isolators do not conform to any specific interface standard and are  
only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between  
the data controller (that is Microcontroller or UART), and a data converter or a line transceiver, regardless of the  
interface type or standard.  
The device is suitable for applications that have limited board space and desire more integration. The device  
is also suitable for very high voltage applications, where power transformers meeting the required isolation  
specifications are bulky and expensive.  
10.2 Typical Application  
For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files,  
simulation results, and test results, refer to TI Design TIDA-01333, Eight-Channel, Isolated, High-Voltage  
Analog Input Module With ISOW7841 Reference Design.  
Figure 10-1 shows the typical schematic for SPI isolation.  
Reference  
10 F  
1 F 10 nF  
10 nF  
1 F  
10 F  
3.3 VIN  
VIO  
VISOIN  
3.3VOUT  
DVCC  
AVDD  
DVDD  
REF  
CS  
INA  
INB  
OUTA  
OUTB  
CS  
HV+ to  
Chassis  
HV- to  
SCLK  
SCLK  
ADC  
MCU  
DVSS  
SDO  
SDI  
INC  
OUTC  
IND  
SDI  
Chassis  
OUTD  
SDO  
AGND DGND  
ISOW7741  
GNDIO  
GISOIN  
330 at 100 MHz  
(BLM15EX331SN  
1D)  
VSEL  
VISOOUT  
VDD  
IN OUT  
1 F  
10 nF  
10 nF  
1 F  
10 F  
10 F  
GND  
GND1  
GND2  
330 at 100 MHz  
(BLM15EX331SN  
1D)  
Optional LDO  
Figure 10-1. Isolated Power and SPI for ADC Sensing Application with ISOW7741  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
10.2.1 Design Requirements  
To design with this device, use the parameters listed in Table 10-1.  
Table 10-1. Design Parameters  
PARAMETER  
VALUE  
VDD input voltage  
VIO input voltage  
VISOIN input voltage  
3 V to 5.5 V  
1.71 V to 5.5 V  
1.71 V to 5.5 V  
VDD decoupling capacitors  
VIO decoupling capacitors  
VISOIN decoupling capacitors  
VISOOUT decoupling capacitors  
VISOOUT to VISOIN series inductor  
GND2 to GISOIN series inductor  
VIO series inductor  
10 µF + 1 µF + 0.01 µF + optional additional capacitance  
0.1 µF + optional additional capacitance  
0.1 µF + optional additional capacitance  
10 µF + 1 µF + 0.01 µF + optional additional capacitance  
BLM15ELX9331SN1D  
BLM15ELX9331SN1D  
BLM15ELX9331SN1D  
VDD series inductor  
BLM15ELX9331SN1D  
GND1 to GNDIO series inductor  
BLM15ELX9331SN1D  
Because of very-high current flowing through the ISOW7741 device device VDD and VISOOUT supplies, higher  
decoupling capacitors typically provide better noise and ripple performance. Although a 10-µF capacitor is  
adequate, higher decoupling capacitors (such as 47 µF) on both the VDD and VISOOUT pins to the respective  
grounds are strongly recommended to achieve the best performance.  
10.2.2 Detailed Design Procedure  
The devices requires specific placement of external bypass capacitors and ferrite beads to operate at high  
performance. These low-ESR ceramic bypass capacitors must be placed as close to the chip pads as possible.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
10  
1
F
F
10  
1
F
F
VIO  
330 at 100 MHz  
(BLM15EX331SN1D)  
10 nF  
10 nF  
VISOIN  
1
20  
OUTA  
OUTB  
OUTC  
IND  
2
3
19  
18  
INA  
INB  
4
5
17  
16  
INC  
OUTD  
GNDIO  
EN_IO1  
GISOIN  
EN_IO2  
6
7
15  
14  
VIO  
VISOIN  
EN/FLT  
VSEL  
8
9
13  
12  
VISOOUT  
FAULT OUT  
330 at 100 MHz  
(BLM15EX331SN1D)  
330 at 100 MHz  
(BLM15EX331SN1D)  
VISOOUT  
GND2  
VISOIN  
VDD  
1
F
10 nF  
1 F  
10  
10 nF  
F
10  
F
GND1  
10  
11  
330 at 100 MHz  
(BLM15EX331SN1D)  
330 at 100 MHz  
(BLM15EX331SN1D)  
Figure 10-2. Typical ISOW7741 Circuit Hook-Up  
10.2.3 Application Curve  
VDD = 5 V  
VISOOUT = 5 V  
IISOOUT = 100 mA  
Figure 10-3. ISOW7741 Radiated Emissions versus CISPR32B line (Blue)  
10.2.4 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See Figure 10-4 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
Figure 10-5 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1000 VRMS with a lifetime of 1184 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
Figure 10-4. Test Setup for Insulation Lifetime Measurement  
Figure 10-5. Insulation Lifetime Projection Data  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
11 Power Supply Recommendations  
To help make sure that operation is reliable at data rates and supply voltages, adequate decoupling capacitors  
must be located as close to supply pins as possible. VISOOUT needs to be connected to VISOIN to ensure the  
feedback channel is properly powered to regulate the DC-DC converter. If VISOOUT and VISOIN are not connected,  
the DC-DC converter will run open loop and the VISOOUT voltage will drift until the over-voltage clamp clamps at 6  
V. There are two ways to connect VISOOUTand VISOIN  
:
1) connect VISOOUT and VISOIN directly with a ferrite bead. A ferrite bead is recommended between VISOOUTand  
VISOIN to further reduce emissions.  
2) connect VISOOUT and VISOIN with a ferrite bead through an LDO that remains powered up at all times. If the  
LDO has an EN pin then keep the EN high at all times.  
The input supply (VIO and VDD) must have an appropriate current rating to support output load and switching at  
the maximum data rate required by the end application. For more information, refer to the Section 10.2 section.  
For an output load current of 110 mA, it is recommended to have >600 mA of input current limit and for lower  
output load currents, the input current limit can be proportionally lower.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
12 Layout  
12.1 Layout Guidelines  
A low cost two layer PCB should be sufficient to achieve good EMC performance:  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system  
to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping.  
Also the power and ground plane of each power system can be placed closer together, thus increasing the  
high-frequency bypass capacitance significantly.  
Because the device has no thermal pad to dissipate heat, the device dissipates heat through the respective GND  
pins. Ensure that enough copper is present on both GND pins to prevent the internal junction temperature of the  
device from rising to unacceptable levels.  
Figure 12-1 shows the recommended placement and routing of device bypass capacitors. Below guidelines must  
be followed to meet application EMC requirements:  
High frequency bypass capacitors 10 nF must be placed close to VDD and VISOOUT pins, less than 1 mm  
distance away from device pins. This is very essential for optimised radiated emissions performance. Ensure  
that these capacitors are 0402 size so that they offer least inductance (ESL).  
Bulk capacitors of atleast 10 μF must be placed on power converter input (VDD) and output (VISOOUT) supply  
pins.  
Traces on VDD and GND1 must be symmetric till bypass capacitors. Similarly traces on VISOOUT and GND2  
must be symmetric.  
Place two 0402 size Ferrite beads (Part number: BLM15EX331SN1) on VISOOUT and GND2 path so that any  
high frequency noise from power converter output sees a high impedance before it goes to other components  
on PCB.  
Do not have any metal traces or ground pour within 4 mm of power converter output terminals VISOOUT pin12  
and GND2 pin11. VSEL pin is also in VISOOUT domain and should be shorted to either pin 11 or pin 12 for  
output voltage selection.  
Following the layout guidelines of EVM as much as possible is highly recommended for a low radiated  
emissions design.  
12.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
12.2 Layout Example  
Ground plane on  
side 2  
Ground plane on  
side 1  
<2mm  
<2mm  
C
C
C
C
C
C
FB  
5
VISOIN  
Input Supply 1  
VIO  
20  
19  
1
10 F  
10 nF  
1 F  
10  
F
1
F
10 nF  
INA  
OUTA  
2
INB  
INC  
OUTB  
OUTC  
3
4
18  
17  
16  
15  
14  
13  
OUTD  
GNDIO  
5
IND  
GISOIN  
Ground plane on side 1  
6
EN_IO1  
EN/FLT  
VDD  
7
EN_IO2  
VSEL  
Ground  
plane on  
side 2  
8
10  
F
1
F
10 nF  
10 nF  
1 F  
10 F  
FB  
4
FB  
1
Input Supply 2  
9
12 VISOOUT  
C
C
C
C
C
C
FB  
3
FB  
2
GND1  
GND2  
11  
Ground plane  
on side 2  
10  
<1mm  
2-4mm  
Keep-out zone for any metal  
2-4mm  
<1mm  
Figure 12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Development Support  
For development support, refer to:  
8-ch Isolated High Voltage Analog Input Module with ISOW7841 Reference Design  
Isolated RS-485 With Integrated Signal and Power Reference Design  
Isolated RS-232 With Integrated Signal and Power Reference Design  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
 
 
 
 
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
 
 
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744  
www.ti.com  
SLLSFK1B – SEPTEMBER 2021 – REVISED JANUARY 2022  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISOW7741BDFMR  
ISOW7741DFMR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DFM  
DFM  
DFM  
DFM  
DFM  
DFM  
DFM  
DFM  
DFM  
20  
20  
20  
20  
20  
20  
20  
20  
20  
850  
850  
850  
850  
850  
850  
850  
850  
850  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
TBD  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ISOW7741  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI  
ISOW7741  
ISOW7741F  
ISOW7741F  
ISOW7741FBDFMR  
ISOW7741FDFMR  
XISOW7740DFMR  
XISOW7742FDFMR  
XISOW7743DFMR  
XISOW7743FDFMR  
XISOW7744DFMR  
TBD  
Call TI  
Call TI  
TBD  
Call TI  
Call TI  
TBD  
Call TI  
Call TI  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2022  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISOW7741BDFMR  
ISOW7741DFMR  
ISOW7741FBDFMR  
ISOW7741FDFMR  
SOIC  
SOIC  
SOIC  
SOIC  
DFM  
DFM  
DFM  
DFM  
20  
20  
20  
20  
850  
850  
850  
850  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
10.85 13.4  
10.85 13.4  
10.85 13.4  
10.85 13.4  
4.0  
4.0  
4.0  
4.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISOW7741BDFMR  
ISOW7741DFMR  
ISOW7741FBDFMR  
ISOW7741FDFMR  
SOIC  
SOIC  
SOIC  
SOIC  
DFM  
DFM  
DFM  
DFM  
20  
20  
20  
20  
850  
850  
850  
850  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

XISOW7742FDFMR

ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter
TI

XISOW7743DFMR

ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter
TI

XISOW7743FDFMR

ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter
TI

XISOW7744DFMR

ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter
TI

XIT100

Small Signal Field-Effect Transistor, P-Channel, Junction FET
CALOGIC

XIT101

Small Signal Field-Effect Transistor, P-Channel, Junction FET
CALOGIC

XIT137

Transistor
CALOGIC

XIT139

Transistor
CALOGIC

XIT1700

P-Channel Enhancement Mode MOSFET General Purpose Amplifier
CALOGIC

XIT1750

N-Channel Enhancement Mode MOSFET General Purpose Amplifier Switch
CALOGIC

XIWR6432LQGAMF

单芯片低功耗 57GHz 至 64GHz 工业毫米波雷达传感器 | AMF | 102 | -40 to 105
TI

XJ106

Transistor
CALOGIC