XLMG2610RRGT [TI]

具有集成驱动器、保护和电流检测功能且适用于 ACF 的 650V 170/248mΩ GaN 半桥 | RRG | 40 | -40 to 125;
XLMG2610RRGT
型号: XLMG2610RRGT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成驱动器、保护和电流检测功能且适用于 ACF 的 650V 170/248mΩ GaN 半桥 | RRG | 40 | -40 to 125

驱动 驱动器
文件: 总44页 (文件大小:1625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMG2610  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
LMG2610 用于有源钳位反激式转换器的集650V GaN 半桥  
1 特性  
3 说明  
650V GaN FET 半桥  
LMG2610 是一款 650V GaN 功率 FET 半桥适用于  
开关模式电源应用中 < 75W 的有源钳位反激式 (ACF)  
转换器。LMG2610 通过在 9mm x 7mm QFN 封装中  
集成半桥功率 FET、栅极驱动器、自举二极管和高侧  
栅极驱动电平转换器简化了设计、减少了元件数量并  
减小了布板空间。  
170m低侧248mGaN FET  
• 具有低传播延迟和可调节导通压摆率控制的集成栅  
极驱动器  
• 具有高带宽和高精度的电流检测仿真  
• 低侧/高侧栅极驱动互锁  
• 高侧栅极驱动信号电平转换器  
• 智能开关自举二极管功能  
• 高侧启动< 8us  
非对称 GaN FET 电阻针对 ACF 工作条件进行了优  
化。可编程导通压摆率可提供 EMI 和振铃控制。与传  
统的电流检测电阻相比低侧电流检测仿真可降低功  
并允许将低侧散热焊盘连接到冷却 PCB 电源接  
地。  
• 低侧/高侧逐周期过流保护  
• 通FLT 引脚报告实现过热保护  
AUX 空闲静态电流240μA  
AUX 待机静态电流50μA  
BST 空闲静态电流60μA  
• 最大电源和输入逻辑引脚电压26V  
• 具有双散热焊盘9mm x 7mm QFN 封装  
高侧栅极驱动信号电平转换器消除了外部解决方案中出  
现的噪声和突发模式功率耗散问题。智能开关 GaN 自  
FET 没有二极管正向压降可避免高侧电源过充,  
并且反向恢复电荷为零。  
LMG2610 具有低静态电流和快速启动时间支持转换  
器轻负载效率要求和突发模式运行。保护特性包括  
FET 导通互锁、欠压锁定 (UVLO)、逐周期电流限制和  
过热关断。  
2 应用  
• 有源钳位反激式电源转换器  
• 交流/直流适配器和充电器  
• 交流/USB 墙壁插座电源  
• 交流/直流辅助电源  
器件信息  
器件型号  
(1)  
封装尺寸标称值)  
LMG2610  
QFN  
9.00 mm x 7.00 mm  
DH  
BST  
HS  
GaN  
Level  
Shift RX  
Driver  
RDRVH  
AUX  
Level  
Shift TX  
INH  
SW  
EN  
Control  
FLT  
LS  
GaN  
INL  
Driver  
RDRVL  
Current  
Emulation  
CS  
SL  
AGND  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDE2  
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
Table of Contents  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................21  
8.4 Device Functional Modes..........................................28  
9 Application and Implementation..................................29  
9.1 Application Information............................................. 29  
9.2 Typical Application.................................................... 30  
9.3 Power Supply Recommendations.............................32  
9.4 Layout....................................................................... 33  
10 Device and Documentation Support..........................36  
10.1 Documentation Support.......................................... 36  
10.2 接收文档更新通知................................................... 36  
10.3 支持资源..................................................................36  
10.4 Trademarks.............................................................36  
10.5 Electrostatic Discharge Caution..............................36  
10.6 术语表..................................................................... 36  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Switching Characteristics..........................................10  
6.7 Typical Characteristics..............................................12  
7 Parameter Measurement Information..........................17  
7.1 GaN Power FET Switching Parameters....................17  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
Information.................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (October 2022) to Revision A (December 2022)  
Page  
• 将数据表状态从“预告信息”更改为“量产数据”.............................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
5 Pin Configuration and Functions  
1
33  
NC1  
NC3  
2
3
4
5
6
32  
CS  
31  
AGND  
30  
INL  
29  
INH  
28  
EN  
41  
42  
7
27  
DH  
PADH  
PADL  
8
26  
9
25  
SL  
10  
11  
12  
24  
23  
22  
13  
21  
NC1  
NC2  
SW  
SL  
5-1. RRG Package, 40-Pin VQFN (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
NC1  
1, 13  
2-12  
Used to anchor QFN package to PCB. Pins must be soldered to PCB landing pads. The  
PCB landing pads are non-solder mask defined pads and must not be physically  
connected to any other metal on the PCB. Internally connected to DH.  
NC  
DH  
P
P
High-side GaN FET drain. Internally connected to NC1.  
GaN FET half-bridge switch node between the high-side GaN FET source and low-side  
GaN FET drain. Internally connected to PADH.  
SW  
NC2  
14-16  
17, 21, 37  
Used to anchor QFN package to PCB. Pins must be soldered to PCB landing pads. The  
PCB landing pads are non-solder mask defined pads and must not be physically  
connected to any other metal on the PCB. Internally connected to AGND, SL, and PADL.  
NC  
P
SL  
18-20, 22-27  
28  
Low-side GaN FET source. Internally connected to AGND, PADL, and NC2.  
EN  
Enable. Used to toggle between active and standby modes. The standby mode has  
reduced quiescent current to support converter light load efficiency targets. There is a  
forward biased ESD diode from EN to AUX so avoid driving EN higher than AUX.  
I
INH  
INL  
29  
30  
High-side gate-drive control input. Referenced to AGND. Signal is level shifted internally to  
the high-side GaN FET driver. There is a forward biased ESD diode from INH to AUX so  
avoid driving INH higher than AUX.  
I
Low-side gate-drive control input. Referenced to AGND. There is a forward biased ESD  
diode from INL to AUX so avoid driving INL higher than AUX.  
I
AGND  
CS  
31  
32  
GND  
Low-side analog ground. Internally connected to SL, PADL, and NC2.  
Current-sense emulation output. Outputs 1 ma/A scaled replica of the low-side GaN FET  
current. Feed output current into a resistor to create a current sense voltage signal.  
Reference the resistor to the power supply controller IC local ground. This function  
replaces the external current-sense resistor that is used in series with the low-side FET.  
O
NC3  
33  
Used to anchor QFN package to PCB. Pin must be soldered to a PCB landing pad. The  
PCB landing pad is non-solder mask defined pad and must not be physically connected to  
any other metal on the PCB. Pin not connected internally.  
NC  
FLT  
34  
35  
36  
38  
Active-low fault output. Open-drain output that asserts during an over-temperature shut  
down.  
O
P
I
AUX  
Auxiliary voltage rail. Low-side supply voltage. Connect a local bypass capacitor between  
AUX and AGND.  
RDRVL  
BST  
Low-side drive strength control resistor. Set a resistance between RDRVL and AGND to  
program the low-side GaN FET turn-on slew rate.  
Bootstrap voltage rail. High-side supply voltage. The bootstrap diode function between  
AUX and BST is internally provided. Connect an appropriately sized bootstrap capacitor  
between BST and SW. Recommend to make the SW connection using NC4 as a pass  
through connection to PADH (PADH = SW) as explained in the NC4 description.  
P
RDRVH  
NC4  
39  
40  
High-side drive strength control resistor. Set a resistance between RDRVH and SW to  
program the high-side GaN FET turn-on slew rate. Recommend to make the SW  
connection using NC4 as a pass through connection to PADH (PADH = SW) as explained  
in the NC4 description.  
I
Pin is not functional. Pin is high impedance and referenced to SW. Recommend to connect  
pin to PADH (PADH = SW) to use as convenient connection for the BST bypass capacitor  
and the RDRVH resistor. See the example board layout in the Layout Example section.  
NC  
PADH  
PADL  
41  
42  
High-side thermal pad. Internally connected to SW. All the SW current can be conducted  
with PADH (PADH = SW).  
TP  
TP  
Low-side thermal pad. Internally connected to SL, AGND, and NC2. All the SL current can  
be conducted with PADL (PADL = SL).  
(1) I = Input, O = Output, G = Ground, P = Power, NC = No Connect, TP = Thermal Pad.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMG2610  
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
Unless otherwise noted: voltages are respect to AGND(1)  
MIN  
MAX  
650  
UNIT  
V
VDS(ls)  
Low-side drain-source (SW to SL) voltage, FET off  
VDS(surge)(ls) Low-side drain-source (SW to SL) voltage, surge condition, FET off (2)  
720  
V
VDS(tr)(surge) Low-side drain-source (SW to SL) transient ringing peak voltage, surge condition,  
800  
V
FET off (2)  
(ls)  
VDS(hs)  
High-side drain source (DH to SW) voltage, FET off  
650  
720  
V
V
VDS(surge)(hs) High-side drain-source (DH to SW) voltage, surge condition, FET off (2)  
VDS(tr)(surge) High-side drain-source (DH to SW) transient ringing peak voltage, surge condition,  
800  
V
FET off (2)  
(hs)  
AUX  
30  
V
V
V
V
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
EN, INL, INH, FLT  
VAUX + 0.3  
Pin voltage  
CS  
5.5  
4
RDRVL  
BST  
30  
4
Pin voltage to SW  
RDRVH  
Internally  
limited  
ID(peak)(ls)  
IS(peak)(ls)  
ID(peak)(hs)  
IS(peak)(hs)  
Low-side drain (SW to SL) peak current, FET on  
Low-side source (SL to SW) peak current, FET off  
High-side drain (DH to SW) peak current, FET on  
High-side source (SW to DH) peak current, FET off  
A
A
A
6.4  
6.4  
Internally  
limited  
4  
4
A
CS  
10  
mA  
Positive sink current  
Internally  
limited  
FLT (while asserted)  
mA  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) See GaN Power FET Switching Capability for more information on the GaN FET switching capability.  
6.2 ESD Ratings  
VALUE  
±1000  
±2000  
UNIT  
V
Pins1 through 16, Pins 38  
through 40  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
Pins 17 through 37  
V
V(ESD)  
Charged device model (CDM),  
per ANSI/ESDA/JEDEC  
JS-002(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMG2610  
 
 
 
 
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.3 Recommended Operating Conditions  
Unless otherwise noted: voltages are respect to AGND  
MIN  
10  
7.5  
0
NOM  
MAX  
UNIT  
V
Supply voltage  
AUX  
26  
26  
Supply voltage to SW  
Input voltage  
BST  
V
EN, INL, INH  
FLT  
VAUX  
VAUX  
V
Pull-up voltage on open-drain output  
High-level input voltage  
Low-level input voltage  
0
V
VIH  
VIL  
2.5  
V
EN, INL, INH  
0.6  
5.4  
3
V
ID(peak)(ls) Low-side drain (SW to SL) peak current, FET on  
ID(peak)(hs) High-side drain (DH to SW) peak current, FET on  
A
3.2  
2  
A
CAUX  
AUX to AGND capacitance from external bypass capacitor  
3 x CBST  
0.010  
µF  
µF  
CBST_SW BST to SW capacitance from external bypass capacitor  
RDRVL to AGND resistance from external slew-rate control resistor to configure  
below low-side slew rate settings  
slew rate setting 0 (slowest)  
90  
42.5  
20  
120  
47  
open  
51.5  
24  
kΩ  
kΩ  
kΩ  
kΩ  
RRDRVL  
slew rate setting 1  
slew rate setting 2  
22  
slew rate setting 3 (fastest)  
0
5.6  
11  
RDRVH to SW resistance from external slew-rate control resistor to configure below  
high-side slew rate settings  
slew rate setting 0 (slowest)  
RRDRVH_  
90  
42.5  
20  
120  
47  
open  
51.5  
24  
kΩ  
kΩ  
kΩ  
kΩ  
slew rate setting 1  
SW  
slew rate setting 2  
22  
slew rate setting 3 (fastest)  
0
5.6  
11  
6.4 Thermal Information  
LMG2610  
RRG (VQFN)  
40 Pins  
25.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
1.22  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMG2610  
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.5 Electrical Characteristics  
1) Symbol definitions: VDS(ls) = SW to SL voltage; IDS(ls) = SW to SL current; VDS(hs) = DH to SW voltage; ID(hs) = DH to SW  
current; 2) Unless otherwise noted: voltage, resistance, and capacitance are respect to AGND; -40 °C TJ 125 °C; 10 ≤  
V
AUX 26; 7.5 VBST_SW 26; VEN = 5 V; VINL = 0 V; VINH = 0 V; RRDRVL = 0 ; RRDRVH_SW = 0 ; RCS = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOW-SIDE GAN POWER FET  
VINL = 5 V, ID(ls) = 3 A, TJ = 25°C  
VINL = 5 V, ID(ls) = 3 A, TJ = 125°C  
SL to SW current = 0.1 A  
170  
325  
-1.9  
-2.6  
2
RDS(on)(ls) Drain-source (SW to SL) on resistance  
mΩ  
V
Source-drain (SL to SW) third-quadrant  
voltage  
VSD(ls)  
SL to SW current = 1 A  
VDS(hs) = 0 V, VDS(ls) = 650 V, TJ = 25 °C  
VDS(hs) = 0 V, VDS(ls) = 650 V, TJ = 125 °C  
IDSS(ls)  
Drain (SW to SL) leakage current  
µA  
10  
QOSS(ls) Output (SW to SL) charge  
19.7  
22  
nC  
pF  
COSS(ls) Output (SW to SL) capacitance  
Output (SW to SL) capacitance stored  
VDS(hs) = 0 V, VDS(ls) = 400 V  
EOSS(ls)  
energy  
2.32  
29  
µJ  
pF  
Energy related effective output (SW to  
SL) capacitance  
COSS,er(ls)  
Time related effective output (SW to SL)  
capacitance  
COSS,tr(ls)  
VDS(hs) = 0 V, VDS(ls) = 0 V to 400 V  
49.2  
0
pF  
nC  
QRR(ls)  
Reverse recovery charge  
HIGH-SIDE GAN POWER FET  
VINH = 5 V, ID(hs) = 1.75 A, TJ = 25°C  
VINH = 5 V, ID(hs) = 1.75 A, TJ = 125°C  
SW to DH current = 0.1 A  
248  
470  
-2  
RDS(on)  
Drain-source (DH to SW) on resistance  
mΩ  
V
(hs)  
Source-drain (SW to DH) third-quadrant  
voltage  
VSD(hs)  
SW to DH current = 1 A  
-2.7  
1.4  
VDS(ls) = 0 V, VDS(hs) = 650 V, TJ = 25 °C  
VDS(ls) = 0 V, VDS(hs) = 650 V, TJ = 125 °C  
IDSS(hs)  
Drain (DH to SW) leakage current  
µA  
7
QOSS(hs) Output (DH to SW) charge  
15.51  
22.4  
nC  
pF  
COSS(hs) Output (DH to SW) capacitance  
Output (DH to SW) capacitance stored  
VDS(ls) = 0 V, VDS(hs) = 400 V  
EOSS(hs)  
energy  
2.15  
26.9  
µJ  
pF  
COSS,er(hs Energy related effective output (DH to  
SW) capacitance  
)
COSS,tr(hs Time related effective output (DH to SW)  
VDS(ls) = 0 V, VDS(hs) = 0 V to 400 V  
38.78  
0
pF  
nC  
capacitance  
)
QRR(hs)  
LOW-SIDE OVERCURRENT PROTECTION  
IT(OC)(ls)  
HIGH-SIDE OVERCURRENT PROTECTION  
IT(OC)(hs)  
BOOTSTRAP RECTIFIER  
Reverse recovery charge  
5.4  
3
5.9  
3.5  
6.4  
4
A
A
Overcurrent fault threshold current  
Overcurrent fault threshold current  
VINL = 5 V, VAUX_BST = 1 V, TJ = 25°C  
VINL = 5 V, VAUX_BST = 1 V, TJ = 125°C  
VINL = 5 V, VAUX_BST = 7 V  
8
14  
RDS(on)  
AUX to BST on resistance  
Ω
AUX to BST current limit  
210  
240  
270  
mA  
mA  
BST to AUX reverse current blocking  
threshold  
VINL = 5 V  
15  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
1) Symbol definitions: VDS(ls) = SW to SL voltage; IDS(ls) = SW to SL current; VDS(hs) = DH to SW voltage; ID(hs) = DH to SW  
current; 2) Unless otherwise noted: voltage, resistance, and capacitance are respect to AGND; -40 °C TJ 125 °C; 10 ≤  
V
AUX 26; 7.5 VBST_SW 26; VEN = 5 V; VINL = 0 V; VINH = 0 V; RRDRVL = 0 ; RRDRVH_SW = 0 ; RCS = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CS  
VINL = 5 V, 0 A ID(ls) < IT(OC)(ls), 0 V ≤  
VCS 2 V  
Current sense gain (ICS(src) / ID(LS)  
)
1
mA/A  
VINL = 5 V, 0 A ID(ls) < IT(OC)(ls), 0 V ≤  
VCS 2 V  
Current sense input offset current  
50  
7
mA  
mA  
mA  
V
50  
Initial held output after overcurrent fault  
occurs while INL remains high  
VINL = 5 V, 0 V VCS 2 V  
VINL = 5 V, 0 V VCS 2 V  
ICS(src)  
Final held output after overcurrent fault  
occurs while INL remains high  
10  
12  
15.5  
(OC)(final)  
VINL = 5 V, ID(ls) = 5 A, CS sinking 5 mA  
from external source  
Output clamp voltage  
2.5  
EN, INL, INH  
VIT+  
Positive-going input threshold voltage  
1.7  
0.7  
2.45  
1.3  
V
V
VIT–  
Negative-going input threshold voltage  
Input threshold voltage hysteresis  
Pull-down resistance  
1
400  
10  
V
200  
600  
0 V VPIN 3 V  
kΩ  
µA  
Pull-down current  
VAUX = 26 V; 10 V VPIN 26 V  
OVER-TEMPERATURE PROTECTION  
Temperature fault postive-going  
threshold temperature  
150  
130  
20  
°C  
°C  
°C  
Temperature fault negative-going  
threshold temperature  
Temperature fault threshold  
temperature hysteresis  
FLT  
Low-level output voltage  
FLT sinking 1mA while asserted  
VFLT = VAUX while de-asserted  
200  
1
mV  
µA  
Off-state current  
AUX  
VAUX,T+  
8.9  
8.6  
9.3  
9.0  
9.7  
9.4  
V
V
UVLO positive-going threshold voltage  
(UVLO)  
UVLO negative-going threshold  
voltage  
250  
50  
mV  
µA  
µA  
µA  
UVLO threshold voltage hysteresis  
Standby quiescent current  
VEN = 0 V  
80  
250  
1370  
370  
Quiescent current  
VINL = 5 V, ID(ls) = 0 A  
VINL = 0 V or 5 V, VDS(ls) = 0 V, fINL = 500  
kHz, ID(ls) = 0 A  
Operating current  
3.1  
mA  
BST  
VBST_SW,  
VBST_SW UVLO for FET to turn on –  
positive-going threshold voltage  
6.7  
4.8  
7
7.3  
V
V
T+(UVLO)  
VBST_SW UVLO for FET to stay on–  
negative-going threshold voltage  
5.1  
5.4  
65  
100  
Quiescent current  
µA  
VINH = 5 V  
330  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
1) Symbol definitions: VDS(ls) = SW to SL voltage; IDS(ls) = SW to SL current; VDS(hs) = DH to SW voltage; ID(hs) = DH to SW  
current; 2) Unless otherwise noted: voltage, resistance, and capacitance are respect to AGND; -40 °C TJ 125 °C; 10 ≤  
V
AUX 26; 7.5 VBST_SW 26; VEN = 5 V; VINL = 0 V; VINH = 0 V; RRDRVL = 0 ; RRDRVH_SW = 0 ; RCS = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VINH = 0 V or 5 V, VDS(hs) = 0 V; fINH = 500  
kHz  
Operating current  
1.2  
mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.6 Switching Characteristics  
1) Symbol definitions: VDS(ls) = SW to SL voltage; IDS(ls) = SW to SL current; VDS(hs) = DH to SW voltage; ID(hs) = DH to SW  
current; 2) Unless otherwise noted: voltage, resistance, and capacitance are respect to AGND; -40 °C TJ 125 °C; 10 ≤  
V
AUX 26; 7.5 VBST_SW 26; VEN = 5 V; VINL = 0 V; VINH = 0 V; RRDRVL = 0 ; RRDRVH_SW = 0 ; RCS = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOW-SIDE GAN POWER FET  
From VINL > VINL,IT+ to ID(ls) > 50 mA,  
VBUS = 400 V, LHB current = 2 A, at below  
low-side slew rate settings, see GaN  
Power FET Switching Parameters  
td(on)  
Drain current turn-on delay time  
slew rate setting 0 (slowest)  
slew rate setting 1  
68  
40  
35  
34  
(Idrain)(ls)  
ns  
slew rate setting 2  
slew rate setting 3 (fastest)  
From VINL > VINL,IT+ to VDS(ls) < 320 V,  
VBUS = 400 V, LHB current = 2 A, at below  
low-side slew rate settings, see GaN  
Power FET Switching Parameters  
td(on)(ls)  
Turn-on delay time  
slew rate setting 0 (slowest)  
slew rate setting 1  
91  
50  
43  
37  
ns  
slew rate setting 2  
slew rate setting 3 (fastest)  
From VDS(ls) < 320 V to VDS(ls) < 80 V,  
VBUS = 400 V, LHB current = 2 A, at below  
low-side slew rate settings, see GaN  
Power FET Switching Parameters  
tr(on)(ls)  
Turn-on rise time  
slew rate setting 0 (slowest)  
slew rate setting 1  
14.9  
5.6  
3.8  
1.9  
ns  
slew rate setting 2  
slew rate setting 3 (fastest)  
From VINL < VINL,ITto VDS(ls) > 80 V,  
VBUS = 400 V, LHB current = 2 A,  
(independent of slew rate  
setting), see GaN Power FET Switching  
Parameters  
td(off)(ls)  
Turn-off delay time  
Turn-off fall time  
43  
ns  
ns  
From VDS(ls) > 80 V to VDS(ls) > 320 V,  
VBUS = 400 V, LHB current = 2 A,  
(independent of slew rate  
tf(off)(ls)  
12.5  
setting), see GaN Power FET Switching  
Parameters  
From VDS(ls) < 250 V to VDS(ls) < 150 V, TJ  
= 25 , VBUS = 400 V, LHB current = 2 A,  
at below low-side slew rate  
settings, see GaN Power FET Switching  
Parameters  
Turn-on slew rate  
slew rate setting 0 (slowest)  
slew rate setting 1  
20  
50  
V/ns  
slew rate setting 2  
70  
slew rate setting 3 (fastest)  
140  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
1) Symbol definitions: VDS(ls) = SW to SL voltage; IDS(ls) = SW to SL current; VDS(hs) = DH to SW voltage; ID(hs) = DH to SW  
current; 2) Unless otherwise noted: voltage, resistance, and capacitance are respect to AGND; -40 °C TJ 125 °C; 10 ≤  
V
AUX 26; 7.5 VBST_SW 26; VEN = 5 V; VINL = 0 V; VINH = 0 V; RRDRVL = 0 ; RRDRVH_SW = 0 ; RCS = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HIGH-SIDE GAN POWER FET  
From VINH > VINH,IT+ to ID(hs) > 50 mA,  
VBUS = 400 V, LHB current = 2 A, at below  
high-side slew rate settings, see GaN  
Power FET Switching Parameters  
td(on)  
Drain current turn-on delay time  
slew rate setting 0 (slowest)  
slew rate setting 1  
60  
34  
31  
28  
(Idrain)(hs)  
ns  
slew rate setting 2  
slew rate setting 3 (fastest)  
From VINH > VINH,IT+ to VDS(hs) < 320 V,  
VBUS = 400 V, LHB current = 2 A, at below  
high-side slew rate settings, see GaN  
Power FET Switching Parameters  
td(on)(hs) Turn-on delay time  
slew rate setting 0 (slowest)  
slew rate setting 1  
86  
46  
39  
32  
ns  
slew rate setting 2  
slew rate setting 3 (fastest)  
From VDS(hs) < 320 V to VDS(hs) < 80 V,  
VBUS = 400 V, LHB current = 2 A, at below  
high-side slew rate settings, see GaN  
Power FET Switching Parameters  
tr(on)(hs)  
Turn-on rise time  
slew rate setting 0 (slowest)  
slew rate setting 1  
13.1  
4.7  
3.2  
1.7  
ns  
slew rate setting 2  
slew rate setting 3 (fastest)  
From VINH < VINH,ITto VDS(hs) > 80 V,  
VBUS = 400 V, LHB current = 2 A,  
(independent of slew rate  
setting), see GaN Power FET Switching  
Parameters  
td(off)(hs) Turn-off delay time  
37  
ns  
ns  
From VDS(hs) > 80 V to VDS(hs) > 320 V,  
VBUS = 400 V, LHB current = 2 A,  
(independent of slew rate  
tf(off)(hs)  
Turn-off fall time  
12.5  
setting), see GaN Power FET Switching  
Parameters  
From VDS(hs) < 250 V to VDS(hs) < 150 V,  
TJ = 25 , VBUS = 400 V, LHB current = 2  
A, at below high-side slew rate  
settings, see GaN Power FET Switching  
Parameters  
Turn-on slew rate  
slew rate setting 0 (slowest)  
slew rate setting 1  
20  
65  
V/ns  
slew rate setting 2  
90  
slew rate setting 3 (fastest)  
165  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
1) Symbol definitions: VDS(ls) = SW to SL voltage; IDS(ls) = SW to SL current; VDS(hs) = DH to SW voltage; ID(hs) = DH to SW  
current; 2) Unless otherwise noted: voltage, resistance, and capacitance are respect to AGND; -40 °C TJ 125 °C; 10 ≤  
V
AUX 26; 7.5 VBST_SW 26; VEN = 5 V; VINL = 0 V; VINH = 0 V; RRDRVL = 0 ; RRDRVH_SW = 0 ; RCS = 100 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CS  
From ICS > 0.1*ICS(src)(final) to ICS  
<
0.9*ICS(src)(final), Low-side enabled into a 2  
Settling time  
35  
ns  
A load, 0 V VCS 2 V,  
EN  
VINL = 5 V, From VEN > VIT+ to ID(ls) > 10  
mA  
EN wake-up time  
1
µs  
BST  
From VBST_SW VBST_SW,T+(UVLO) to  
high-side reacts to INH rising edge with  
VBST_SW rising from 0 V to 10 V in 1 µs  
Start-up time from deep BST to SW  
discharge  
5
2
µs  
µs  
From VBST_SW VBST_SW,T+(UVLO) to  
high-side reacts to INH rising edge with  
VBST_SW rising from 5 V to 10 V in 0.5 µs  
Start-up time from shallow BST to SW  
discharge  
6.7 Typical Characteristics  
2
1.75  
1.5  
2
1.75  
1.5  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
6-1. Low-Side Normalized On-Resistance vs Junction  
6-2. High-Side Normalized On-Resistance vs Junction  
Temperature  
Temperature  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
Drain-Source Voltage (V)  
6-3. Low-Side Output Capacitance vs Drain-Source Voltage  
6-4. Low-Side Output Capacitance Stored Energy vs Drain-  
Source Voltage  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.7 Typical Characteristics (continued)  
120  
100  
80  
60  
40  
20  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
Drain-Source Voltage (V)  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Drain-Source Voltage (V)  
6-5. High-Side Output Capacitance vs Drain-Source Voltage  
6-6. High-Side Output Capacitance Stored Energy vs Drain-  
Source Voltage  
100  
90  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
30  
30  
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
20  
10  
0
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
20  
10  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
6-8. Low-Side Turn-On Delay Time vs Junction Temperature  
6-7. Low-Side Drain Current Turn-On Delay Time vs Junction  
Temperature  
16  
14  
250  
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
200  
12  
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
10  
8
150  
100  
50  
0
6
4
2
0
-40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
JUnction Temperature (°C)  
6-10. Low-Side Turn-On Slew Rate vs Junction Temperature  
6-9. Low-Side Turn-On Rise Time vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.7 Typical Characteristics (continued)  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
6-11. Low-Side Turn-Off Delay Time vs Junction Temperature  
6-12. High-Side Drain Current Turn-On Delay Time vs  
Junction Temperature  
90  
80  
70  
60  
50  
40  
30  
12  
10  
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
8
6
4
2
0
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
20  
10  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
6-13. High-Side Turn-On Delay Time vs Junction Temperature 6-14. High-Side Turn-On Rise Time vs Junction Temperature  
250  
200  
150  
100  
50  
50  
40  
30  
20  
10  
0
Slew Rate 0  
Slew Rate 1  
Slew Rate 2  
Slew Rate 3  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
6-15. High-Side Turn-On Slew Rate vs Junction Temperature  
6-16. High-Side Turn-Off Delay Time vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.7 Typical Characteristics (continued)  
55  
50  
45  
40  
35  
30  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
INL = 0 V  
6-17. AUX Standby Current vs Junction Temperature  
6-18. AUX Quiescent Current vs Junction Temperature  
2000  
1800  
1600  
1400  
1200  
1000  
3.5  
3
2.5  
2
1.5  
1
100  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
150  
200  
250  
300  
350  
400  
450  
500  
Junction Temperature (°C)  
Frequency (kHz)  
INL = 5 V  
6-20. AUX Operating Current vs Frequency  
6-19. AUX Quiescent Current vs Junction Temperature  
80  
600  
550  
500  
450  
400  
350  
300  
250  
200  
75  
70  
65  
60  
55  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (°C)  
Junction Temperature (°C)  
INH = 5 V  
INH = 0 V  
6-22. BST Quiescent Current vs Junction Temperature  
6-21. BST Quiescent Current vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
6.7 Typical Characteristics (continued)  
1.4  
1.2  
1
0.8  
0.6  
0.4  
100  
150  
200  
250  
300  
350  
400  
450  
500  
Frequency (kHz)  
6-23. BST Operating Current vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
7 Parameter Measurement Information  
7.1 GaN Power FET Switching Parameters  
7-1 shows the circuit used to measure the GaN power FET switching parameters. The circuit is operated as a  
double-pulse tester. Consult external references for double-pulse tester details. The circuit is placed in the boost  
configuration to measure the low-side GaN switching parameters. The circuit is placed in the buck configuration  
to measure the high-side GaN switching parameters. The GaN FET not being measured in each configuration  
(high-side in the boost and low-side in the buck) acts as the double-pulse tester diode and circulates the inductor  
current in the off-state, third-quadrant conduction mode. 7-1 shows the details for each configuration.  
LMG2610  
BST  
DH  
CBST  
RDRVH  
NC4  
VDS(hs)  
PADH  
CBULK  
SW  
LHB  
+
PADH  
AUX  
FLT  
VBUS  
CAUX  
EN  
INH  
INL  
VDS(ls)  
+
VAUX  
+
CS  
RDRVL  
+
SL  
AGND  
PADL  
AGND  
PGND  
7-1. GaN Power FET Switching Parameters Test Circuit  
7-1. GaN Power FET Switching Parameters Test Circuit Configuration Details  
Configuration  
Boost  
GaN FET Under  
Test  
GaN FET Acting SBOOST  
as Diode  
SBUCK  
VINL  
VINH  
Low-side  
High-side  
Closed  
Open  
Closed  
Double-pulse  
0 V  
waveform  
0 V  
Buck  
High-side  
Low-side  
Open  
Double-pulse  
waveform  
7-2 shows the GaN power FET switching parameters.  
The GaN power FET turn-on transition has three timing components: drain-current turn-on delay time, turn-on  
delay time, and turn-on rise time. Note that the turn-on rise time is the same as the VDS 80% to 20% fall time. All  
three turn-on timing components are a function of the RDRVx pin setting.  
The GaN power FET turn-off transition has two timing components: turn-off delay time, and turn-off fall time.  
Note that the turn-off fall time is the same as the VDS 20% to 80% rise time. The turn-off timing components are  
independent of the RDRVx pin setting, but heavily dependent on the LHB current.  
The turn-on slew rate is measured over a smaller voltage delta (100 V) compared to the turn-on rise time voltage  
delta (240 V) to obtain a faster slew rate which is useful for EMI design. The RDRVx pin is used to program the  
slew rate.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMG2610  
 
 
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
INx  
VINx,IT+  
VINx,IT-  
0 V  
td(on)(Idrain)  
ID  
2 A  
0 A  
50 mA  
td(on)  
td(off)  
tr(on)  
tf(off)  
400 V  
320 V  
320 V  
VDS  
250 V  
150 V  
80 V  
80 V  
Slew Rate  
Calculation  
Points  
0 V  
7-2. GaN Power FET Switching Parameters  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8 Detailed Description  
8.1 Overview  
The LMG2610 is a highly-integrated 650-V GaN power-FET half bridge intended for use in active-clamp flyback  
(ACF) converters. The LMG2610 combines the half-bridge power FETs, gate drivers, low-side current-sense  
emulation function, high-side gate-drive level shifter, and bootstrap diode function in a 9-mm by 7-mm QFN  
package.  
The 650-V rated GaN power FETs support the large transformer turns ratios needed to minimize the secondary-  
side synchronous-rectifier voltage requirements in flyback converter applications. The GaN half-bridge low  
output-capacitive charge reduces both the time and energy needed for ACF zero-voltage switching (ZVS) and is  
the key characteristic needed to create small, efficient power converters.  
The GaN half-bridge consists of a 170-mlow-side FET and a 248-mhigh-side FET. The asymmetric GaN  
half-bridge FET sizes are a good utilization of total GaN FET size for ACF operating conditions.  
The LMG2610 internal gate drivers regulate the drive voltage for optimum GaN power-FET on-resistance.  
Internal drivers also reduce total gate inductance and GaN FET common-source inductance for improved  
switching performance, including common-mode transient immunity (CMTI). The low-side / high-side GaN FET  
turn-on slew rates can be individually programmed to one of four discrete settings for design flexibility with  
respect to power loss, switching-induced ringing, and EMI.  
Current-sense emulation places a scaled replica of the low-side drain current on the output of the CS pin. The  
CS pin is terminated with a resistor to AGND to create the current-sense input signal to the external power  
supply controller. This CS pin resistor replaces the traditional current-sense resistor, placed in series with the  
low-side GaN FET source, at significant power and space savings. Furthermore, with no current-sense resistor  
in series with the GaN source, the low-side GaN FET thermal pad can be connected directly to the PCB power  
ground. This thermal pad connection both improves system thermal performance and provides additional device  
routing flexibility since full device current can be conducted through the thermal pads.  
The high-side gate-drive level-shifter reduces the capacitive coupling of the sensitive high-side gate drive path  
for lower noise susceptibility and better CMTI compared to external solutions where the signal path has a much  
larger PCB footprint. The level shifter also has minimal impact on device quiescent current and no impact on  
device start-up time compared to external solutions with worse quiescent current and start up performance.  
The bootstrap diode function between AUX and BST is implemented with a smart-switched GaN bootstrap FET.  
The switched GaN bootstrap FET allows more complete charging of the BST-to-SW capacitor since the on-state  
GaN bootstrap FET does not have the forward voltage drop of a traditional bootstrap diode. The smart-switched  
GaN bootstrap FET also avoids the traditional bootstrap diode problem of BST-to-SW capacitor overcharging  
due to off-state third-quadrant current flow in the low-side half-bridge GaN power FET. Finally, the bootstrap  
function has more efficient switching due to low capacitance and no reverse-recovery charge compared to the  
traditional bootstrap diode.  
The AUX input supply wide voltage range is compatible with the corresponding wide range supply rail created by  
power supply controllers. The BST input supply range is even wider on the low end to account for capacitive  
droop in between bootstrap recharge cycles. Low AUX / BST idle quiescent currents and fast BST start-up time  
support converter burst-mode operation critical for meeting government light-load efficiency mandates. Further  
AUX quiescent current reduction is obtained by placing the device in standby mode with the EN pin.  
The INL, INH, and EN control pins have high input impedance, low input threshold voltage and maximum input  
voltage equal to the AUX voltage. This allows the pins to support both low voltage and high voltage input signals  
and be driven with low-power outputs.  
The LMG2610 protection features are low-side / high-side under-voltage lockout (UVLO), low-side / high-side  
input gate-drive interlock, low-side / high-side cycle-by-cycle current limit, and over-temperature shut down. The  
UVLO features also help achieve well-behaved converter operation. The over-temperature shut down is reported  
on the open drain FLT output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMG2610  
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.2 Functional Block Diagram  
DH  
BST  
INH  
Level-Shifter  
Receiver  
inh_receive  
HS  
GaN  
FET  
bst_uvlo  
hs_fet_enable  
HS FET  
Control  
HS FET  
Driver  
HS Fault  
Monitor  
hs_slew_rate_set  
hs_over_current  
hs_rdrv_det  
HS RDRV  
Detector  
RDRVH  
hs_current_sense  
SW  
Bootstrap  
GaN  
SW  
PADH  
FET  
Bootstrap  
Control  
inh_transmit  
INH  
Level-Shifter  
Transmitter  
AUX  
ls_inh_transmit  
FLT  
INH  
INL  
EN  
INH_pass  
INL_pass  
LS  
GaN  
FET  
Interlock  
ls_fet_on  
ls_fet_enable  
ls_slew_rate_set  
LS FET  
Driver  
LS FET  
Control  
aux_uvlo  
LS Fault  
Monitor  
over_temp  
ls_over_current  
ls_rdrv_det  
LS RDRV  
Detector  
RDRVL  
CS  
ls_current_sense  
AGND  
Current  
Emulation  
PADL  
AGND  
SL  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3 Feature Description  
8.3.1 GaN Power FET Switching Capability  
Due to the silicon FETs long reign as the dominant power-switch technology, many designers are unaware  
that the nameplate drain-source voltage cannot be used as an equivalent point to compare devices across  
technologies. The nameplate drain-source voltage of a silicon FET is set by the avalanche breakdown voltage.  
The nameplate drain-source voltage of a GaN FET is set by the long term compliance to data sheet  
specifications.  
Exceeding the nameplate drain-source voltage of a silicon FET can lead to immediate and permanent damage.  
Meanwhile, the breakdown voltage of a GaN FET is much higher than the nameplate drain-source voltage. For  
example, the breakdown drain-source voltage of the LMG2610 GaN power FET is more than 800 V which allows  
the LMG2610 to operate at conditions beyond an identically nameplate rated silicon FET.  
The LMG2610 GaN power FET switching capability is explained with the assistance of 8-1. The figure shows  
the drain-source voltage versus time for the LMG2610 GaN power FET for four distinct switch cycles in a  
switching application. No claim is made about the switching frequency or duty cycle. The first two cycles show  
normal operation and the second two cycles show operation during a rare input voltage surge. The LMG2610  
GaN power FETs are intended to be turned on in either zero-voltage switching (ZVS) or discontinuous-  
conduction mode (DCM) switching conditions.  
VDS(tr)(surge) = 800 V  
VDS(surge) = 720 V  
VDS(tr) = 650 V  
VDS = 520 V  
t1  
t1  
t1  
t1  
Normal  
ZVS Cycle  
Normal  
DCM Cycle  
Surge  
ZVS Cycle  
Surge  
DCM Cycle  
t0  
t2  
t0  
t2  
t0  
t2  
t0  
t2  
8-1. GaN Power FET Switching Capability  
Each cycle starts before t0 with the FET in the on state. At t0 the GaN FET turns off and parasitic elements cause  
the drain-source voltage to ring at a high frequency. The high frequency ringing has damped out by t1. Between  
t1 and t2 the FET drain-source voltage is set by the characteristic response of the switching application. The  
characteristic is shown as a flat line (plateau), but other responses are possible. At t2 the GaN FET is turned on.  
For normal operation, the transient ring voltage is limited to 650 V and the plateau voltage is limited to 520 V. For  
rare surge events, the transient ring voltage is limited to 800 V and the plateau voltage is limited to 720 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMG2610  
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3.2 Turn-On Slew-Rate Control  
The turn-on slew rate of both the low-side and high-side GaN power FETs are individually programmed to one of  
four discrete settings. The low-side slew rate is programmed by the resistance between the RDRVL and AGND  
pins. The high-side slew rate is programmed by the resistance between the RDRVH and SW pins. The low-side  
slew-rate setting is determined one time during AUX power up when the AUX voltage goes above the AUX  
Power-On Reset voltage. The high-side slew-rate setting is determined one time during BST-to-SW power up  
when the BST-to-SW voltage goes above the BST Power-On Reset voltage. The slew-rate setting determination  
time is not specified but is around 0.4 us.  
8-1 shows the recommended typical resistance programming value for the four slew rate settings and the  
typical turn-on slew rate at each setting. As noted in the table, an open-circuit connection is acceptable for  
programming slew-rate setting 0 and a short-circuit connection (RDRVL shorted to AGND for the low-side turn-  
on slew rate) (RDRVH shorted to SW for the high-side turn-on slew rate) is acceptable for programming slew-  
rate setting 3.  
8-1. Slew-Rate Setting  
Turn-On Slew Rate  
Setting  
Recommended Typical  
Programming Resistance  
Typical LS / HS Turn-  
On Slew Rate  
Comment  
(V/ns)  
(k)  
Open-circuit connection for programming  
resistance is acceptable.  
0
120  
20 / 20  
1
2
47  
22  
50 / 65  
70 / 90  
Short-circuit connection for programming  
resistance (RDRVL shorted to AGND for low-side  
slew rate) (RDRVH shorted to SW for high-side  
slew rate) is acceptable.  
3
5.6  
140 / 165  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3.3 Current-Sense Emulation  
The current-sense emulation function creates a scaled replica of the low-side GaN power FET positive drain  
current at the output of the CS pin. The current-sense emulation gain, GCSE, is 1 mA output from the CS pin, ICS  
for every 1 A passing into the drain of the low-side GaN power FET, ID.  
GCSE = ICS / ID = 1 mA / 1 A = 0.001  
(1)  
The CS pin is terminated with a resistor to AGND, RCS, to create the current-sense voltage input signal to the  
external power supply controller.  
RCS is determined by solving for the traditional current-sense design resistance, RCS(trad), and multiplying by the  
inverse of GCSE. The traditional current-sense design creates the current-sense voltage, VCS(trad), by passing the  
low-side GaN power FET drain current, ID, through RCS(trad). The LMG2610 creates the current-sense voltage,  
VCS, by passing the CS pin output current, ICS, through RCS. The current-sense voltage must be the same for  
both designs.  
VCS = ICS * RCS = VCS(trad) = ID * RCS(trad)  
RCS = ID / ICS * RCS(trad) = 1 / GCSE * RCS(trad)  
RCS = 1000 * RCS(trad)  
(2)  
(3)  
(4)  
The CS pin is clamped internally to a typical 2.5 V. The clamp protects vulnerable power-supply controller  
current-sense input pins from over voltage if, for example, the current sense resistor on the CS pin were to  
become disconnected.  
8-2 shows the current-sense emulation operation. In both cycles, the CS pin current emulates the low-side  
GaN power-FET drain current while the low-side FET is enabled. The first cycle shows normal operation where  
the controller turns off the low-side GaN power FET when the controller current-sense input threshold is tripped.  
The second cycle shows a fault situation where the LMG2610 Over-Current Protection turns off the low-side  
GaN power FET before the controller current-sense input threshold is tripped. In this second cycle, the LMG2610  
avoids a hung controller INL pulse by generating a fast-ramping artificial current-sense emulation signal to trip  
the controller current-sense input threshold. The artificial signal persists until the INL pin goes to logic-low which  
indicates the controller is back in control of switch operation.  
Cycle without  
Over-Current  
Protection  
Cycle with  
Over-Current  
Protection  
INL Logic High  
INL = PWM  
Signal from  
Controller  
INL Logic Low  
FET On  
Low-Side  
FET Enable  
FET Off  
IT(OC)  
Low-Side FET  
Drain Current  
0 A  
Effective Controller  
Current-Sense  
Input Threshold  
CS Pin  
Current  
0 A  
Artificial Current-Sense  
Emulation Signal  
8-2. Current-Sense Emulation Operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMG2610  
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3.4 Bootstrap Diode Function  
The internal bootstrap diode function is implemented with a smart-switched GaN bootstrap FET. The GaN  
bootstrap FET blocks current in both directions between AUX and BST when The GaN bootstrap FET is turned  
off.  
The bootstrap diode function is active when the low-side GaN power FET is turned on and inactive when the  
low-side GaN power FET is turned off. The GaN bootstrap FET is held off in the bootstrap diode inactive phase.  
The GaN bootstrap FET is turned on a single time at the beginning of the bootstrap active phase and is  
controlled as an ideal diode with diode current flowing from AUX to BST to charge the BST-to-SW capacitor. If a  
small reverse current from BST to AUX is detected after the GaN bootstrap FET is turned on, the GaN bootstrap  
FET is turned off for the remainder of the bootstrap active phase.  
The bootstrap diode function implements a current limit to protect the GaN bootstrap FET when the BST-to-SW  
capacitor is significantly discharged at the beginning of the bootstrap active phase. If there is no current limit  
situation during the GaN bootstrap FET turn on, or if the bootstrap function drops out of current limit as the BST-  
to-SW capacitor charges, the current limit function is disabled for the remainder of the GaN bootstrap FET turn-  
on time. The current limit function is disabled to save quiescent current.  
8.3.5 Input Control Pins (EN, INL, INH)  
The EN pin is used to toggle the device between the active and standby modes described in Device Functional  
Modes.  
The INL pin is used to turn the low-side GaN power FET on and off.  
The INH pin is used to turn the high-side GaN power FET on and off.  
The input control pins have a typical 1-V input-voltage-threshold hysteresis for noise immunity. The pins also  
have a typical 400 kpull-down resistance to protect against floating inputs. The 400 ksaturates for typical  
input voltages above 4 V to limit the maximum input pull-down current to a typical 10 uA.  
The INL turn-on action is impacted by the following conditions 1) Standby Mode, 2) AUX UVLO, 3) INH in control  
of Interlock, 4) Low-Side Over-Current Protection, and 5) Over-Temperature Protection.  
The INH turn-on action is impacted by the following conditions 1) Standby Mode, 2) AUX UVLO, 3) INL in control  
of Interlock, 4) High-Side Over-Current Protection, and 5) Over-Temperature Protection.  
The Standby Mode, AUX UVLO, and Over-Temperature Protection are the universal INL / INH blocking  
conditions. These conditions hold both GaN half-bridge power FETs off independent of INL and INH. 8-3  
shows the Universal Blocking Condition Operation. Note that the high-side FET does not turn on at transistion  
#4. INH only turns on the high-side FET if there is no universal blocking condition when INH goes to logic high.  
This avoids an incomplete high-side FET turn-on period which can create undesired spike voltages in the  
converter.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
INL Logic High  
INL  
INL Logic Low  
INH Logic High  
INH  
INH Logic Low  
Universal  
Blocking  
Condition  
Blocking Condition Asserted  
Blocking Condition De-Asserted  
Low-Side FET On  
Low-Side FET Off  
High-Side FET On  
Low-Side  
FET Enable  
1
2
High-Side  
FET Enable  
High-Side FET Off  
4
3
8-3. Universal INL / INH Blocking Condition Operation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3.6 INL - INH Interlock  
The interlock function keeps the low-side and high-side GaN power FETs from being simultaneously turned on  
when the INL and INH pins are both logic-high. Either the INL or the INH pin gains control of the interlock if it is  
logic high when the other pin is logic low. Once the INL or INH pin gains control of the interlock, it retains control  
as long as it remains logic high. Only the INL or INH pin in control of the interlock passes a logic-high signal  
through the interlock.  
The interlock is disabled if any of the universal INL / INH blocking conditions defined in Input Control Pins are  
asserted. When the interlock is disabled, the interlock outputs are held at logic low. If both INL and INH are logic-  
high when the interlock is enabled, the INL takes priority, gains control of the interlock, and passes the INL logic-  
high signal through the interlock.  
8.3.7 AUX Supply Pin  
The AUX pin is the input supply for the low-side internal circuits and is the power source to charge the BST-to-  
SW capacitor through the internal bootstrap diode function.  
8.3.7.1 AUX Power-On Reset  
The AUX Power-On Reset disables all low-side functionality if the AUX voltage is below the AUX Power-On  
Reset voltage. The AUX Power-On Reset voltage is not specified but is around 5 V. The AUX Power-On Reset  
initates the one-time determination of the low-side slew-rate setting programmed on the RDRVL pin if the AUX  
voltage goes above the AUX Power-On Reset voltage. The AUX Power-On Reset enables the over-temperature  
protection function if the AUX voltage is above the AUX Power-On Reset voltage.  
8.3.7.2 AUX Under-Voltage Lockout (UVLO)  
The AUX UVLO holds off both the low-side and high-side GaN power FETs if the AUX voltage is below the AUX  
UVLO voltage. The AUX UVLO voltage is set higher than the BST UVLO voltage so the high-side GaN power  
FET can be operated when the low-side GaN power FET is operating. The voltage separation between the AUX  
UVLO voltage and BST UVLO voltage accounts for operating conditions where the bootstrap charging of the  
BST-to-SW capacitor from the AUX supply is incomplete. The AUX UVLO voltage hysteresis prevents on-off  
chatter near the UVLO voltage trip point.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3.8 BST Supply Pin  
The BST pin is the input supply for the high-side internal circuits. The BST pin and corresponding high-side  
circuits are referenced to the SW pin. The BST pin is powered by the low-side AUX Supply pin through the  
internal bootstrap diode function. The bootstrap function is inactive when the low-side GaN FET is off and the  
BST pin must rely on an external BST-to-SW capacitor for the BST power source.  
Designing the BST-to-SW capacitance is a trade-off between high-side charge-up time and hold-up time. The  
BST-to-SW external capacitance is recommended to be a ceramic capacitor that is at least 10 nF over operating  
conditions.  
8.3.8.1 BST Power-On Reset  
The BST Power-On Reset voltage is with respect to the SW pin. The BST Power-On Reset disables all high-side  
functionality if the BST-to-SW voltage is below the BST Power-On Reset voltage. The BST Power-On Reset  
voltage is not specified but is around 5 V. The BST Power-On Reset initiates the one-time determination of the  
high-side slew-rate setting programmed on the RDRVH pin if the BST-to-SW voltage goes above the BST  
Power-On Reset voltage.  
8.3.8.2 BST Under-Voltage Lockout (UVLO)  
The BST UVLO voltage is with respect to the SW pin. The BST UVLO only controls the high-side GaN power  
FET. The BST UVLO does not control the low-side GaN power FET. The BST UVLO consists of two separate  
UVLO functions to create a two-level BST UVLO. The upper BST UVLO is called the BST Turn-On UVLO and  
only controls if the high-side GaN power FET is turned on. The lower BST UVLO is called the BST Turn-Off  
UVLO and only controls if the high-side GaN power FET is turned off after the high-side GaN power FET is  
turned on. The operation of the two-level UVLO is not the same as a single UVLO with wide hysteresis.  
8-4 shows the BST UVLO operation. The BST Turn-On UVLO prevents the high-side GaN power FET from  
turning on at a INH logic-high rising edge if the BST-to-SW voltage is below the BST Turn-On UVLO voltage -  
INH pulses #1, #2, and #5. After the high-side GaN power FET is successfully turned-on, the BST Turn-On  
UVLO is ignored and the BST Turn-Off UVLO output is watched for the remainder of the INH logic-high pulse -  
INH pulses #3, #4, and #6. The BST Turn-Off UVLO turns off the high-side GaN power FET for the remainder of  
the INH logic-high pulse if the BST-to-SW voltage falls below the BST Turn-Off UVLO voltage - INH pulse #6.  
BST Turn-On UVLO  
BST-to-SW  
BST Turn-Off UVLO  
INx Logic High  
Voltage  
1
2
3
4
5
6
INH  
INx Logic Low  
FET On  
High-Side  
FET Enable  
FET Off  
8-4. BST UVLO Operation  
The effective voltage hysteresis of the two-level BST UVLO is the difference between the upper and lower BST  
UVLO voltages. A single-level BST UVLO can be implemented with the same hysteresis but allows subsequent  
high-side GaN power FET turn on anywhere in the hysteresis range. The two-level UVLO design prevents any  
turn on in the hysteresis range. A single-level BST UVLO would allow INH pulse #5 to turn on the high-side GaN  
power FET.  
The two-level BST UVLO allows a wide hysteresis while making sure the BST-to-SW capacitor is adequately  
charged at the beginning of every INH pulse. The wide hysteresis allows a smaller BST-to-SW capacitor to be  
used which is useful for faster high-side start-up time. The adequate capacitor charge at the beginning of the  
INH pulse helps make sure the high-side GaN power FET is not turned-off early in the INH pulse which can  
create undesired spike voltages in the converter.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMG2610  
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
8.3.9 Over-Current Protection  
The LMG2610 implements cycle-by-cycle over-current protection for both half-bridge GaN power FETs. 8-5  
shows the cycle-by-cycle over-current operation. Every INx logic-high cycle turns on the GaN power FET. If the  
GaN power FET drain current exceeds the over-current threshold current, the over-current protection turns off  
the GaN power FET for the remainder of the INx logic-high duration.  
INx Logic High  
INx  
INx Logic Low  
IT(OC)  
FET Drain Current  
0 A  
FET On  
FET Enable  
FET Off  
8-5. Cycle-by-Cycle Over-Current Protection Operation  
An over-current protection event is not reported on the FLT pin. Cycle-by-cycle over-current protection minimizes  
system disruption because the event is not reported and because the protection allows the GaN power FET to  
turn on every INx cycle.  
The low-side / high-side over-current protection threshold currents are set to different levels corresponding to the  
different GaN power FET sizes. As described in Current-Sense Emulation, an artificial CS pin current is  
produced after the low-side GaN power FET is turned off by the low-side over-current protection, to prevent the  
controller from entering a hung state.  
8.3.10 Over-Temperature Protection  
The over-temperature protection holds off both the low-side and high-side GaN power FETs if the LMG2610  
temperature is above the over-temperature shut-down temperature. The over-temperature shut-down hysteresis  
avoids erratic thermal cycling. An over-temperature fault is reported on the FLT pin when the over-temperature  
protection is asserted. This is the only fault event reported on the FLT pin. The over-temperature protection is  
enabled when the AUX voltage is above the AUX Power-On Reset voltage. The low AUX Power-On Reset  
voltage helps the over-temperature protection remain operational when the AUX rail droops during the cool-  
down phase.  
8.3.11 Fault Reporting  
The LMG2610 only reports an over-temperature fault. An over-temperature fault is reported on the FLT pin when  
the Over-Temperature Protection function is asserted. The FLT pin is an active low open-drain output so the pin  
pulls low when there is an over-temperature fault.  
8.4 Device Functional Modes  
The LMG2610 has two modes of operation controlled by the EN pin. The device is in Active mode when the EN  
is logic high and in Standby mode when the EN pin is logic low. In active mode, the half-bridge GaN power FETs  
are controlled by the INL and INH pins. In Standby mode, the INL and INH pins are ignored, the half-bridge GaN  
power FETs are held off, and the AUX quiescent current is reduced to the AUX standby quiescent current.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LMG2610 is a GaN power-FET half bridge intended for use in off-line active-clamp flyback (ACF)  
converters. The LMG2610 provides plug-and-play simplicity since it integrates the half-bridge FETs, FET gate  
drivers, high-side gate-drive level shifter, bootstrap diode function, and current-sense emulation in a single  
package. The typical application example shows the LMG2610 pairing seamlessly with the Texas Instruments  
UCC28782 ACF controller to create a high-power-density, high-efficiency, 65-W, USB-PD charger.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMG2610  
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9.2 Typical Application  
LDAMP RDAMP  
VO  
Transformer  
DBG  
FAC  
VBUS  
VBULK  
VAC  
QPD  
LK  
LO  
CX  
CBULK  
RBLEED  
CCLAMP  
LM  
NP  
NS  
RCO1  
CO1  
CREG  
RCO2  
CO2  
ROCP  
QSEC  
GND  
RDSC  
LMG2610  
BST  
DH  
VD VG VS  
SR Controller  
REG  
VDD  
CBST  
RDRVH  
RXCD1  
RXCD2  
NC4  
VP13  
PADH  
QS  
QXCD  
VP13  
SW  
CDIFF  
PADH  
VS13  
CAUX  
AUX  
FLT  
DSWS  
RBIAS1  
FLT  
RDIFF  
RUN  
EN  
RSWS  
PWMH  
PWML  
INH  
INL  
VSWS  
CSWS  
VRCS  
CS  
RDRVL  
RBIAS2  
SL  
AGND  
PADL  
AGND  
PGND  
CINT  
RINT  
VBIN  
DAUX  
LB  
DB  
CBIN1  
CBIN2  
CVDD1  
NA  
VP13  
VS13  
DP13  
DBIN  
CVDD2  
CP13  
RVS1  
RVS2  
VS  
XCD  
BIN BGND BSW  
VDD  
P13  
S13  
SWS  
VSWS  
RUN  
XCD  
VREF  
RUN  
UCC28782  
PWMH  
PWMH  
PWML  
PGND  
PWML  
BUR  
SET  
REF  
FB RDM RTZ EP AGND FLT  
FLT  
IPC CS  
ROPP  
VRCS  
VREF  
CFB  
CREF  
CCS  
AGND  
RFB  
9-1. 65-W USB-PD Charger Application  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9.2.1 Design Requirements  
9-1. Electrical Performance Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
VIN  
Input line voltage (RMS)  
Input line frequency  
90 115 / 230  
264  
63  
V
fLINE  
47  
50 / 60  
55  
Hz  
VIN = 230 VRMS, IO = 0 A  
70  
mW  
mW  
mW  
mW  
Input power at no-load,  
VO = 5 V  
PSTBY  
VIN = 115 VRMS, IO = 0 A  
45  
70  
VIN = 230 VRMS, PO = 250 mW  
VIN = 115 VRMS, PO = 250 mW  
399  
359  
470  
470  
Input power at 0.25-W load,  
VO = 20 V  
P0.25W  
OUTPUT CHARACTERISTICS  
Output voltage, 20-V setting  
VIN = 90 to 264 VRMS, IO = 0 A to 3.25 A  
VIN = 90 to 264 VRMS, IO = 0 A to 3 A  
VIN = 90 to 264 VRMS, IO = 0 A to 3 A  
VIN = 90 to 264 VRMS, IO = 0 A to 3 A  
19.95  
15.06  
9.05  
V
Output voltage, 15-V setting  
Output voltage, 9-V setting  
Output voltage, 5-V setting  
VO  
5.05  
Full-load rated output current,  
20-V setting  
3.25  
A
A
IO(FL)  
VIN = 90 to 264 VRMS, VO = 20 V  
Full-load rated output current,  
15-V, 9-V, 5-V settings  
3.00  
150  
150  
150  
150  
IO(FL2)  
VIN = 90 to 264 VRMS, VO = 15 V, 9 V, 5 V  
Output ripple voltage, peak to  
peak  
20-V setting  
600 mVpp  
VIN = 90 to 264 VRMS, IO = 0 A to 3.25 A  
VIN = 90 to 264 VRMS, IO = 0 A to 3 A  
VIN = 90 to 264 VRMS, IO = 0 A to 3 A  
VIN = 90 to 264 VRMS, IO = 0 A to 3 A  
Output ripple voltage, peak to  
peak  
15-V setting  
450  
300  
200  
VO_pp  
Output ripple voltage, peak to  
peak  
9-V setting  
Output ripple voltage, peak to  
peak  
5-V setting  
PO(OPP)  
tOPP  
Over-power protection threshold VIN = 90 to 264 VRMS  
70  
W
ms  
Over-power protection duration  
VIN = 90 to 264 VRMS, PO > PO(OPP)  
160  
Output voltage deviation during  
step-load transient  
VO = 20 V, IO step between 0 A to IO(FL) at 100  
Hz  
-604 /  
+340  
±1000 mVpp  
ΔVO  
SYSTEM CHARACTERISTICS  
VIN = 230 VRMS, IO = 3.25 A  
VIN = 115 VRMS, IO = 3.25 A  
VIN = 90 VRMS, IO = 3.25 A  
VIN = 230 VRMS  
94%  
94%  
93%  
89%  
89%  
79%  
79%  
94.2%  
94.2%  
93.3%  
93.4%  
92.4%  
83.8%  
89.0%  
25°C  
ηFL_20  
Full-load efficiency,  
VO = 20 V  
4-point average efficiency(1)  
VO = 20 V  
,
ηavg_20  
VIN = 115 VRMS  
VIN = 230 VRMS, IO = 10% of IO(FL)  
VIN = 115 VRMS, IO = 10% of IO(FL)  
η10%_20  
Efficiency at 10% load,  
VO = 20 V  
TAMB  
Ambient operating temperature  
range  
VIN = 90 to 264 VRMS, VO = 20 V, IO = 0 to 3.25  
A
(1) Average efficiency of four load points, IO = 100%, 75%, 50%, and 25% of IO(FL)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9.2.2 Detailed Design Procedure  
The 65-W USB-PD Charger Application is adapted from the typical application found in the UCC28782 High-  
Density Active-Clamp Flyback Controller data sheet. The UCC28782 data sheet detailed design procedure is not  
repeated here. Refer to the UCC28782 data sheet for the details in designing the active-clamp flyback primary-  
side power stage and in using the UCC28782 controller. This detailed design procedure focuses on the specifics  
of using the LMG2610 in the application.  
9.2.2.1 Turn-On Slew-Rate Design  
The LMG2610 turn-on slew rates are programmed as discussed in Turn-On Slew-Rate Control. In normal active-  
clamp flyback (ACF) operation the high-side power switch operates at zero-voltage switching (ZVS), so the high-  
side turn-on time does not affect the switch node slew rate. Therefore, the high-side GaN power FET is  
programmed to turn on as fast as possible to minimize high-side GaN power-FET third-quadrant losses. The  
fastest high-side turn-on time is programmed by setting  
RDRVH < 5.6 kΩ  
(5)  
In normal ACF operation, the low-side power switch operates at both ZVS and non-ZVS valley switching  
depending on the load condition. The valley switching occurs at zero transformer current. Therefore, the low-side  
is programmed to turn on as slow as possible to minimize EMI and circuit ringing with no additional switching  
loss penalty. The slowest low-side turn-on time is programmed by setting  
RDRVL > 120 kΩ  
(6)  
9.2.2.2 Current-Sense Design  
The UCC28782 High-Density Active-Clamp Flyback Controller data sheet shows the calculation for a traditional  
current sense resistor, RCS(UCC28782), in series with the low-side power switch current. RCS is calculated with 方  
4  
RCS = 1000 * RCS(UCC28782)  
(7)  
The ROPP(UCC2872) determination in the UCC28782 High-Density Active-Clamp Flyback Controller data sheet  
assumes the current sense resistor is very small. ROPP is adjusted to account for the significant RCS value.  
ROPP = ROPP(UCC2872) - RCS  
(8)  
9.3 Power Supply Recommendations  
The LMG2610 operates from a single input supply connected to the AUX pin. The BST pin is powered internally  
by the AUX pin. The LMG2610 is intended to be operated from the same supply managed and used by the  
power supply controller. The wide recommended AUX voltage range of 10 V to 26 V overlaps common-controller  
supply-pin turn-on and UVLO voltage limits.  
The BST-to-SW external capacitance is recommended to be a ceramic capacitor that is at least 10 nF over  
operating conditions.  
The AUX external capacitance is recommended to be a ceramic capacitor that is at least three-times larger than  
the BST-to-SW capacitance over operating conditions.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9.4 Layout  
9.4.1 Layout Guidelines  
9.4.1.1 Solder-Joint Stress Relief  
Large QFN packages can experience high solder-joint stress. Several best practices are recommended to  
provide solder-joint stress relief. First, the instructions for the NC1, NC2, and NC3 anchor pins found in 5-1  
must be followed. Second, all the board solder pads must be non-solder-mask defined (NSMD) as shown in the  
land pattern example in the Mechanical Data. Finally, any board trace connected to an NSMD pad must be less  
than 2/3 the width of the pad on the pad side where it is connected. The trace must maintain this 2/3 width limit  
for as long as it is not covered by solder mask. After the trace is under solder mask, there are no limits on the  
trace dimensions. All these recommendations are followed in the Layout Example.  
9.4.1.2 Signal-Ground Connection  
Design the power supply with separate signal and power grounds that only connect in one location. Connect the  
LMG2610 AGND pin to signal ground. Connect the LMG2610 SL pin and PADL thermal pad to power ground.  
The LMG2610 serves as the single connection point between the signal and power grounds since the AGND  
pin, SL pin, and PADL thermal pad are connected internally. Do not connect the signal and power grounds  
anywhere else on the board except as recommended in the next sentence. To facillitate board debug with the  
LMG2610 not installed, connect the AGND pad to the PADL thermal pad as shown in the Layout Example.  
9.4.1.3 CS Pin Signal  
As seen with 方程式 4, the current-sense signal impedance is three orders of magnitude higher than a traditional  
current-sense signal. This higher impedance has implications for current-sense signal noise susceptibility.  
Minimize routing the current-sense signal near any noisy traces. Place the current-sense resistor and any  
filtering capacitors at the far end of the trace next to the controller current-sense input pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9.4.2 Layout Example  
9-2. PCB Top Layer (First Layer)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
9-3. PCB Inner Layer (Second Layer)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
10.1 Documentation Support  
10.1.1 Related Documentation  
The LMG2610 Active-Clamp Flyback Power Stage Design Calculator is an Excel-based calculation tool for  
LMG2610 design.  
Using the UCC28782EVM-030 65-W USB-C PD High-Density Active-Clamp Flyback Converter is a User Guide  
for the EVM  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMG2610  
 
 
 
 
 
 
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
PACKAGE OUTLINE  
RRG0040A-C01  
VQFN - 1.0 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
7.1  
6.9  
1.0  
0.8  
C
SEATING PLANE  
0.08  
C
0.05  
0.00  
1.96 0.1  
(2)  
(0.04)  
(0.1) TYP  
1.75 0.1  
21  
0.55  
26X  
0.45  
14  
13  
0.55  
0.45  
4X  
(2)  
0.1  
C A B  
5.02 0.1  
PKG  
SYMM  
2X  
5
5.02 0.1  
0.05  
C
41  
42  
30X  
0.5  
(0.29) TYP  
33  
1
4X 0.625  
40  
2X 0.515  
0.75  
0.65  
14X  
PIN 1 ID  
0.3  
0.2  
36X  
2X 2.085  
PKG  
0.1  
0.05  
C A B  
C
4226975/A 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMG2610  
 
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
EXAMPLE BOARD LAYOUT  
RRG0040A-C01  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.3) TYP  
(0.1)  
(0.37)  
(2.21)  
CONNECTION  
COVERED BY  
SOLDER MASK  
(1.25) TYP  
PAD  
PAD  
SEE SOLDER MASK  
DETAILS  
26X (0.7)  
40  
34  
14X (0.9)  
4X (0.5)  
1
33  
36X (0.25)  
(1.3)  
TYP  
(1.3)  
TYP  
41  
42  
(5.02) (6.5)  
PKG SYMM  
(R0.05) TYP  
(5.02)  
(1.96)  
30X (0.5)  
(1.75)  
4X (0.625)  
21  
(
13  
PKG  
2X (0.515)  
2X (2.085)  
(2.835)  
0.2) TYP  
14  
20  
VIA  
1.02  
(8.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MAX  
ALL AROUND  
METAL EDGE  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226975/A 07/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMG2610  
LMG2610  
www.ti.com.cn  
ZHCSNW8A OCTOBER 2022 REVISED DECEMBER 2022  
EXAMPLE STENCIL DESIGN  
RRG0040A-C01  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.02)  
(2.835)  
26X (0.7)  
40  
34  
14X (0.9)  
4X (0.5)  
1
33  
36X (0.25)  
(1.3) TYP  
41  
42  
(0.65) TYP  
PKG SYMM  
(R0.05) TYP  
(6.5)  
8X (1.1)  
4X (1.5)  
30X (0.5)  
4X (1.66)  
4X (0.625)  
21  
13  
20  
14  
2X (0.515)  
2X  
(2.085)  
PKG  
(8.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
EXPOSED PAD 41: 74%  
EXPOSED PAD 42: 75%  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMG2610  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMG2610RRGR  
LMG2610RRGT  
XLMG2610RRGT  
ACTIVE  
VQFN  
VQFN  
VQFN  
RRG  
40  
40  
40  
RoHS-Exempt  
& Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
LMG2610  
NNNNC  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
RRG  
RoHS-Exempt  
& Green  
NIPDAU  
Call TI  
LMG2610  
NNNNC  
RRG  
250  
RoHS &  
Non-Green  
XLMG2610  
NNNNC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMG2610RRGR  
LMG2610RRGT  
VQFN  
VQFN  
RRG  
RRG  
40  
40  
2000  
250  
330.0  
180.0  
16.4  
16.4  
9.3  
9.3  
7.3  
7.3  
1.2  
1.2  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMG2610RRGR  
LMG2610RRGT  
VQFN  
VQFN  
RRG  
RRG  
40  
40  
2000  
250  
350.0  
213.0  
350.0  
191.0  
43.0  
55.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

XLMG3422R030RQZT

具有集成驱动器、保护和温度报告功能的 600V 30mΩ GaN FET | RQZ | 54 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XLMG3422R050RQZT

具有集成驱动器、保护和温度报告功能的 600V 50mΩ GaN FET | RQZ | 54 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XLMG3526R030RQST

具有集成驱动器、保护和零电压检测功能的 650V 30mΩ GaN FET | RQS | 52 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XLMH32401QWRGTRQ1

汽车类可编程增益差分输出高速跨阻放大器 | RGT | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XLMH34400IDRLR

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器 | DRL | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

XLMO12W

LED ORANGE CLEAR T-1 3/4 T/H

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUNLED

XLMYK11D14V

LED YELLOW DIFFUSED T-1 T/H

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUNLED

XLMYK11W

LED YELLOW CLEAR T-1 T/H

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SUNLED

XLN15010-GL

PWR SUPP PROGRAM DC 5-150V 1560W

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XLN30052

PWR SUPP PROGRAM DC 5-300V 1560W

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XLN30052-GL

PWR SUPP PROGRAM DC 5-300V 1560W

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

XLN310

IDT XO LVPECL Crystal Oscillator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IDT