TK63042BCB-G [TOKO]

Fixed Positive LDO Regulator, 4.2V, 0.185V Dropout, CMOS, PBGA4, FC-4;
TK63042BCB-G
型号: TK63042BCB-G
厂家: TOKO, INC    TOKO, INC
描述:

Fixed Positive LDO Regulator, 4.2V, 0.185V Dropout, CMOS, PBGA4, FC-4

输出元件 调节器
文件: 总29页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION MANUAL  
CMOS LDO REGULATOR IC  
TK630xxB  
CONTENTS  
1 . DESCRIPTION  
2 . FEATURES  
2
2
3 . APPLICATIONS  
2
4 . PIN CONFIGURATION  
5 . BLOCK DIAGRAM  
2
2
6 . ORDERING INFORMATION  
7 . ABSOLUTE MAXIMUM RATINGS  
8 . ELECTRICAL CHARACTERISTICS  
9 . TEST CIRCUIT  
3
3
4
6
10 . TYPICAL CHARACTERISTICS  
11 . PIN DESCRIPTION  
12 . APPLICATIONS INFORMATION  
13 . PACKAGE OUTLINE  
14 . NOTES  
8
23  
24  
28  
29  
29  
MEETING YOUR NEEDS  
15. OFFICES  
GC3-J013  
Page 1  
TK630xxB  
CMOS LDO REGULATOR IC  
TK630xxB  
1. DESCRIPTION  
4. PIN CONFIGURATION  
The TK630xxB is a CMOS LDO regulator in very small  
FC-4 package.  
„ FC-4  
The IC is designed for portable applications with space  
requirements.  
The IC does not require a noise-bypass capacitance.  
The IC offers very low dropout voltage.  
The output voltage is internally fixed from 1.5V to 4.2V  
in 0.1V steps.  
VIn  
B2  
A2  
B1  
VOut  
GND  
VCont  
A1  
2. FEATURES  
A1 mark  
„ Very small 4-bump flip chip  
„ No noise bypass capacitor required  
„ Low dropout voltage  
(Top View)  
„ Thermal and over current protection  
„ High maximum load current  
„ On/Off control  
5. BLOCK DIAGRAM  
„ High accuracy  
VIn  
VOut  
B2  
B1  
3. APPLICATIONS  
VRef  
CIn  
COut  
„ Portable appliances  
Thermal &  
Over Current  
Protection  
On/Off  
Control  
VCont  
GND  
A2  
A1  
GC3-J013  
Page 2  
TK630xxB  
6. ORDERING INFORMATION  
T K 6 3 0  
B C B - G  
Voltage Code  
(Refer to the following table)  
Solder Composion Code  
- G : Lead-Free only  
Package Code  
B : Flip Chip package only  
Tape/Reel Code  
B : standard only  
Operating Temp. Range Code  
C : C Rank(standard) only  
Preferred Product  
Limited Availability Product  
Special Product  
Output Voltage  
Voltage Code  
Output Voltage  
Voltage Code  
Output Voltage  
Voltage Code  
2.0V  
2.8V  
2.9V  
3.0V  
3.2V  
3.3V  
1.5V  
2.6V  
20  
15  
26  
1.8V  
2.2V  
2.5V  
2.7V  
3.1V  
3.5V  
2.85V  
4.2V  
28  
29  
30  
32  
33  
18  
22  
25  
27  
31  
35  
01  
42  
*Please contact your authorized TOKO representatives for voltage availability.  
If you need a voltage other than the value listed in the above table, please contact TOKO.  
7. ABSOLUTE MAXIMUM RATINGS  
Ta=25°C  
Parameter  
Absolute Maximum Ratings  
Input Voltage  
Symbol  
Rating  
Units  
Conditions  
VIn,MAX  
VOut,MAX  
VCont,MAX  
Tstg  
-0.3 ~ 6.0  
-0.3 ~ VIn+0.3  
V
V
Output pin Voltage  
Control pin Voltage  
-0.3 ~ VIn+0.3  
V
Storage Temperature Range  
Power Dissipation  
-55 ~ 150  
°C  
PD  
360 when mounted on PCB  
mW Internal Limited Tj=150°C *  
Operating Condition  
Operational Temperature Range  
Operational Voltage Range  
TOP  
VOP  
-40 ~ 85  
2.0 ~ 6.0  
°C  
V
* PD must be decreased at rate of 2.9mW/°C for operation above 25°C.  
The maximum ratings are the absolute limitation values with the possibility of damaging the IC.  
When the operation exceeds this standard, quality can not be guaranteed.  
GC3-J013  
Page 3  
TK630xxB  
8. ELECTRICAL CHARACTERISTICS  
The parameters with min. or max. values will be guaranteed at Ta=Tj=25°C with test when manufacturing or  
SQC(Statistical Quality Control) methods. The operation between -40 ~ 85°C is guaranteed by design.  
VIn=VOut,TYP+1V, VCont=1.3V, Ta=Tj=25°C  
Value  
Parameter  
Symbol  
Units  
Conditions  
MIN  
Refer to TABLE 1 ~ 3  
0.0 4.0  
TYP  
MAX  
Output Voltage  
VOut  
V
IOut=5mA  
Line Regulation  
Load Regulation  
LinReg  
mV  
mV  
mV  
mV  
mV  
mA  
µA  
µA  
µA  
VIn=1V  
IOut=5mA ~ 100mA  
IOut=5mA ~ 150mA  
IOut=100mA  
Refer to TABLE 1 ~ 3  
Refer to TABLE 1 ~ 3  
Refer to TABLE 1 ~ 3  
Refer to TABLE 1 ~ 3  
LoaReg  
VDrop  
Dropout Voltage *1  
IOut=150mA  
Maximum Load Current *2  
Quiescent Current  
IOut,MAX  
IQ  
IStandby  
IGND  
200  
300  
80  
When (VOut,TYP×0.9)  
IOut=0mA  
120  
0.1  
Standby Current  
0.01  
100  
VCont=0V  
GND Pin Current  
Control Terminal  
Control Current  
150  
IOut=50mA  
ICont  
2.0  
4.0  
VCont=1.3V  
µA  
V
1.3  
VOut On state  
VOut Off state  
Control Voltage  
VCont  
0.25  
V
Reference Value  
Output Voltage / Temp.  
Output Noise Voltage  
(TK63028B-G)  
100  
40  
ppm/°C IOut=5mA  
VOut/Ta  
COut=1.0µF , IOut=30mA  
VNoise  
µVrms  
BPF=400Hz~80kHz  
Ripple Rejection  
COut=1.0µF,  
RR  
tr  
70  
30  
dB  
(TK63028B-G)  
IOut=50mA , f=1kHz  
COut=1.0µF,  
Rise Time  
V
V
Cont : Pulse Wave (100Hz)  
Cont On VOut×95% point  
µs  
(TK63028B-G)  
*1: For VOut 2.0V, no regulations because VOP2.0V.  
*2: The maximum output current is limited by power dissipation.  
General Note  
Parameters with only typical values are just reference. (Not guaranteed)  
The noise level is dependent on the output voltage, the capacitance and capacitor characteristic.  
GC3-J013  
Page 4  
TK630xxB  
TABLE 1. Preferred Product  
Output Voltage  
Minimum Input  
Voltage at  
Load Regulation  
Dropout Voltage  
I
Out=100mA IOut=150mA IOut=100mA IOut=150mA  
C
Out=CIn=1.0µF  
(ceramic)  
V
Part Number  
MIN TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX  
mV mV mV mV mV mV mV mV  
V
V
V
TK63020B-G  
TK63028B-G  
TK63029B-G  
TK63030B-G  
TK63032B-G  
TK63033B-G  
1.940 2.000 2.060  
2.740 2.800 2.860  
2.840 2.900 2.960  
2.940 3.000 3.060  
3.136 3.200 3.264  
3.234 3.300 3.366  
4
4
4
4
4
4
16  
16  
16  
16  
16  
16  
6
6
6
6
7
7
24  
24  
24  
24  
28  
28  
127  
86  
83  
80  
80  
80  
-
190  
-
2.50  
3.15  
3.25  
3.30  
3.50  
3.60  
133 130 199  
128 125 192  
123 120 185  
123 120 185  
123 120 185  
TABLE 2. Limited Availability Product  
Minimum Input  
Voltage at  
COut=CIn=1.0µF  
(ceramic)  
Load Regulation  
Dropout Voltage  
Output Voltage  
Part Number  
I
Out=100mA IOut=150mA IOut=100mA IOut=150mA  
MIN TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX  
V
V
V
mV mV mV mV mV mV mV mV  
V
TK63015B-G  
TK63018B-G  
TK63022B-G  
TK63025B-G  
TK63027B-G  
TK63031B-G  
TK63035B-G  
1.440 1.500 1.560  
1.740 1.800 1.860  
2.140 2.200 2.260  
2.440 2.500 2.560  
2.640 2.700 2.760  
3.038 3.100 3.162  
3.430 3.500 3.570  
4
4
4
4
4
4
4
16  
16  
16  
16  
16  
16  
16  
6
6
6
6
6
6
7
24  
24  
24  
24  
24  
24  
28  
179  
143  
-
-
268  
215  
-
-
2.25  
2.40  
2.65  
2.90  
3.05  
3.40  
3.75  
113 174 170 262  
98  
90  
80  
80  
151 147 226  
138 135 208  
123 120 185  
123 120 185  
TABLE 3. Special Product  
Output Voltage  
Minimum Input  
Voltage at  
Load Regulation  
Dropout Voltage  
IOut=100mA IOut=150mA IOut=100mA IOut=150mA  
C
Out=CIn=1.0µF  
(ceramic)  
V
Part Number  
MIN TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX  
V
V
V
mV mV mV mV mV mV mV mV  
TK63026B-G  
TK63001B-G  
TK63042B-G  
2.540 2.600 2.660  
2.790 2.850 2.910  
4.116 4.200 4.284  
4
4
4
16  
16  
16  
6
6
7
24  
24  
28  
94  
85  
80  
144 141 216  
130 127 195  
123 120 185  
3.00  
3.20  
4.40  
Notice.  
Please contact your authorized TOKO representative for voltage availability.  
If you need a voltage other than the value listed in the above tables, please contact TOKO.  
GC3-J013  
Page 5  
TK630xxB  
9. TEST CIRCUIT  
„ Test circuit for electrical characteristic  
IIn  
_
VIn  
VCont GND  
ICont  
VCont  
VOut  
A
Notice.  
CIn  
2.2uF  
COut  
1.0uF  
The limit value of electrical characteristics is applied when  
CIn=2.2µF(Tantalum), COut=1.0µF(Tantalum).  
But CIn, and COut can be used with both ceramic and  
tantalum capacitors (when IOut0.5mA).  
_
V
VIn=  
VOut,TYP+1.0V  
IOut  
=5mA  
VOut  
_
A
CIn=COut=1.0µF(ceramic) is applicable under the limited  
input voltages listed in TABLE 1~3.  
IIn  
_
A
VIn  
VCont GND  
ICont  
VCont  
VOut  
„ VOut vs VIn  
„ VDrop vs IOut  
„ VOut vs IOut  
„ VOut vs IOut  
„ VOut vs Ta  
„ VDrop vs Ta  
CIn  
2.2uF  
COut  
1.0uF  
_
V
VIn  
IOut  
VOut  
_
A
„ IOut,MAX vs Ta  
„ ICont vs VCont , VOut vs VCont  
„ ICont vs Ta  
„ VCont vs Ta  
„ VNoise vs VIn  
„ VNoise vs IOut  
„ VNoise vs VOut  
„ VNoise vs Frequency  
IIn  
_
VIn  
VCont GND  
ICont  
VCont  
VOut  
A
„ IQ vs VIn  
„ IStandby vs VIn  
„ IQ vs Ta  
Open  
CIn  
2.2uF  
COut  
1.0uF  
VIn=  
VOut,TYP+1.0V  
_
A
VIn  
VCont GND  
ICont IGND  
VCont  
VOut  
„ IGND vs IOut  
„ IGND vs Ta  
CIn  
2.2uF  
COut  
1.0uF  
VIn=  
VOut,TYP+1.0V  
IOut  
_
A
_
A
GC3-J013  
Page 6  
TK630xxB  
VIn=  
Out,TYP+1.5V  
V
VIn  
VOut  
„ RR vs VIn  
„ RR vs Frequency  
„ RR vs Frequency  
Vripple  
500mVP-P  
=
CIn  
2.2uF  
COut  
1.0uF  
VCont GND  
IOut  
=10mA  
VCont  
=1.3V  
VOut,TYP+2V  
VIn  
VOut  
„ Line Transient  
„ Load Transient  
„ On/Off Transient  
CIn  
2.2uF  
COut  
1.0uF  
VOut,TYP+1V  
VCont GND  
_
V
IOut  
=5mA  
VOut  
VOut  
VOut  
VCont  
=1.3V  
IIn  
_
A
VIn  
VOut  
CIn  
COut  
1.0uF  
_
A
2.2uF  
VCont GND  
_
V
VIn=  
VOut,TYP+1.0V  
IOut  
VCont  
=1.3V  
IIn  
_
A
VIn  
VOut  
CIn  
COut  
1.0uF  
2.2uF  
VCont GND  
_
V
VIn=  
VOut,TYP+1.0V  
IOut  
=5mA  
VCont  
=0V 1.3V  
GC3-J013  
Page 7  
TK630xxB  
10. TYPICAL CHARACTERISTICS  
10-1. DC CHARACTERISTICS  
„ VOut vs VIn (TK63015B)  
„ VOut vs VIn (TK63015B)  
10  
5
40  
IOut=0, 50, 100, 150, 200mA  
20  
0
0
-5  
-20  
-40  
-60  
-80  
-100  
-10  
-15  
-20  
-25  
-30  
0
1
2
3
4
4
4
5
5
5
6
6
6
-100  
0
100  
200  
300  
400  
500  
VIn [V]  
VIn - VOut,TYP[mV]  
„ VOut vs VIn (TK63028B)  
„ VOut vs VIn (TK63028B)  
10  
5
40  
20  
IOut=0, 50, 100, 150, 200mA  
0
0
-20  
-5  
-10  
-15  
-20  
-25  
-30  
-40  
-60  
-80  
-100  
0
1
2
3
-100  
0
100  
200  
VIn [V]  
VIn - VOut,TYP[mV]  
„ VOut vs VIn (TK63042B)  
„ VOut vs VIn (TK63042B)  
10  
5
40  
20  
IOut=0, 50, 100, 150, 200mA  
0
0
-20  
-5  
-10  
-15  
-20  
-25  
-30  
-40  
-60  
-80  
-100  
0
1
2
3
-100  
0
100  
200  
VIn [V]  
VIn - VOut,TYP[mV]  
GC3-J013  
Page 8  
TK630xxB  
„ VDrop vs IOut (TK63015B)  
„ VOut vs IOut (TK63015B)  
0
-100  
-200  
-300  
-400  
-500  
2
1.5  
1
500m  
0
0
50  
100  
150  
150  
150  
200  
200  
200  
0
100  
200  
300  
300  
300  
400  
400  
400  
500  
IOut [mA]  
IOut [mA]  
„ VDrop vs IOut (TK63028B)  
„ VOut vs IOut (TK63028B)  
0
-50  
4
3.5  
3
2.5  
2
-100  
-150  
-200  
1.5  
1
500m  
0
0
50  
100  
0
100  
200  
IOut [mA]  
500  
IOut [mA]  
„ VDrop vs IOut (TK63042B)  
„ VOut vs IOut (TK63042B)  
0
-20  
6
5
4
3
2
1
0
-40  
-60  
-80  
-100  
-120  
-140  
0
50  
100  
0
100  
200  
IOut [mA]  
500  
IOut [mA]  
GC3-J013  
Page 9  
TK630xxB  
„ VOut vs IOut (TK63015B)  
„ VOut vs Ta (TK63015B)  
10  
5
100  
80  
0
60  
-5  
40  
20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
50  
50  
75  
75  
75  
100  
0
50  
100  
150  
150  
150  
200  
200  
200  
Ta[°C]  
IOut [mA]  
„ VOut vs IOut (TK63028B)  
„ VOut vs Ta (TK63028B)  
10  
5
100  
80  
0
60  
-5  
40  
20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
100  
0
50  
100  
Ta[°C]  
IOut [mA]  
„ VOut vs IOut (TK63042B)  
„ VOut vs Ta (TK63042B)  
10  
5
100  
80  
0
60  
-5  
40  
20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
100  
0
50  
100  
Ta[°C]  
IOut [mA]  
GC3-J013  
Page 10  
TK630xxB  
„ VDrop vs Ta (TK63015B)  
„ IOut,MAX vs Ta (TK63015B)  
0
-50  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
-100  
-150  
-200  
-250  
-300  
IOut=100mA  
-350  
-400  
IOut=150mA  
-50  
-25  
0
25  
50  
50  
50  
75  
75  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
100  
100  
Ta [ºC]  
Ta[ºC]  
„ VDrop vs Ta (TK63028B)  
„ IOut,MAX vs Ta (TK63028B)  
0
-50  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
IOut=100mA  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
IOut=150mA  
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
100  
Ta[ºC]  
Ta [ºC]  
„ VDrop vs Ta (TK63042B)  
„ IOut,MAX vs Ta (TK63042B)  
0
-50  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
IOut=100mA  
-100  
-150  
IOut=150mA  
-200  
-250  
-300  
-350  
-400  
-50  
-25  
0
25  
100  
-50  
-25  
0
25  
50  
75  
Ta [ºC]  
Ta [ºC]  
GC3-J013  
Page 11  
TK630xxB  
„ IIn vs VIn (TK63015B)  
„ IStandby vs VIn (TK63015B)  
10  
9
8
7
6
5
4
3
2
1
0
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
4
4
5
5
5
6
6
6
0
1
2
3
4
4
4
5
5
5
6
VIn [V]  
VIn [V]  
„ IIn vs VIn (TK63028B)  
„ IStandby vs VIn (TK63028B)  
10  
9
8
7
6
5
4
3
2
1
0
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
0
1
2
3
6
VIn [V]  
VIn [V]  
„ IIn vs VIn (TK63042B)  
„ IStandby vs VIn (TK63042B)  
10  
9
8
7
6
5
4
3
2
1
0
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
0
1
2
3
6
VIn [V]  
VIn [V]  
GC3-J013  
Page 12  
TK630xxB  
„ IGND vs IOut (TK63015B)  
„ IQ vs Ta (TK63015B)  
200  
180  
160  
140  
120  
100  
80  
140  
120  
100  
80  
VCont=VIn  
IOut=50mA  
60  
60  
40  
40  
20  
20  
0
0
0
40  
80  
120  
120  
120  
160  
200  
200  
200  
-50  
-25  
0
25  
50  
75  
100  
IOut [mA]  
Ta [ºC]  
„ IGND vs IOut (TK63028B)  
„ IQ vs Ta (TK63028B)  
200  
180  
160  
140  
120  
100  
80  
140  
120  
100  
80  
VCont=VIn  
IOut=50mA  
60  
60  
40  
40  
20  
20  
0
0
0
40  
80  
IOut [mA]  
160  
-50  
-25  
0
25  
50  
75  
100  
Ta [ºC]  
„ IGND vs IOut (TK63042B)  
„ IQ vs Ta (TK63042B)  
200  
180  
160  
140  
120  
100  
80  
140  
120  
100  
80  
VCont=VIn  
IOut=50mA  
60  
60  
40  
40  
20  
20  
0
0
0
40  
80  
IOut [mA]  
160  
-50  
-25  
0
25  
50  
75  
100  
Ta [ºC]  
GC3-J013  
Page 13  
TK630xxB  
„ IGND vs Ta (TK63015B)  
„ ICont vs VCont , VOut vs VCont (TK63015B)  
140  
120  
100  
80  
8
6
2
VCont=VIn, IOut=50mA  
1.5  
1
VOut  
4
60  
40  
2
500m  
ICont  
20  
0
0
0
2
-50  
-25  
0
25  
50  
75  
100  
100  
100  
0
500m  
1
1.5  
Ta [ºC]  
VCont [V]  
„ IGND vs Ta (TK63028B)  
„ ICont vs VCont , VOut vs VCont (TK63028B)  
140  
120  
100  
80  
8
4
3
2
1
VCont=VIn, IOut=50mA  
6
VOut  
4
2
60  
40  
ICont  
20  
0
0
0
2
-50  
-25  
0
25  
50  
75  
0
500m  
1
1.5  
Ta [ºC]  
VCont [V]  
„ IGND vs Ta (TK63042B)  
„ ICont vs VCont , VOut vs VCont (TK63042B)  
140  
120  
100  
80  
6
5
4
6
5
4
3
2
1
VCont=VIn, IOut=50mA  
VOut  
3
60  
2
1
0
ICont  
40  
20  
0
0
2
-50  
-25  
0
25  
50  
75  
0
500m  
1
1.5  
Ta [ºC]  
VCont [V]  
GC3-J013  
Page 14  
TK630xxB  
„ ICont vs Ta (TK630xxB)  
2.5  
2.4  
2.3  
2.2  
2.1  
2
1.9  
1.8  
1.7  
1.6  
1.5  
VCont=1.3V  
-50  
-25  
0
25  
50  
75  
100  
Ta [ºC]  
„ VCont vs Ta (TK630xxB)  
1.4  
1.2  
1
VIn=6, 5, 4, 3, 2V  
800m  
600m  
400m  
200m  
0
-50  
-25  
0
25  
50  
75  
100  
Ta [ºC]  
GC3-J013  
Page 15  
TK630xxB  
10-2. AC CHARACTERISTICS  
Ripple Rejection  
„ RR vs VIn (TK63015B)  
„ RR vs Frequency (TK63015B)  
Vripple=0.1Vp-p  
IOut=10mA  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
IOut=200mA  
150mA  
100mA  
50mA  
COut=1.0uF (cer.)  
10mA  
-40  
-50  
-60  
-70  
-80  
COut=1.0uF (tant.)  
10k 100k  
-90  
-100  
0
500m  
1
1.5  
2
2.5  
3
3.5  
100  
1k  
VIn [V]  
Frequency [Hz]  
„ RR vs VIn (TK63028B)  
„ RR vs Frequency (TK63028B)  
IOut=10mA  
Vripple=0.1Vp-p  
0
0
-10  
-20  
-30  
IOut=200mA  
150mA  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100mA  
50mA  
10mA  
COut=1.0uF (cer.)  
-40  
-50  
-60  
-70  
COut=1.0uF (tant.)  
-80  
-90  
-100  
0
500m  
1
1.5  
2
2.5  
3
3.5  
100  
1k  
10k  
Frequency [Hz]  
100k  
VIn [V]  
„ RR vs VIn (TK63042B)  
„ RR vs Frequency (TK63042B)  
Vripple=0.1Vp-p  
IOut=10mA  
0
-10  
-20  
-30  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IOut=200mA  
150mA  
100mA  
50mA  
COut=1.0uF (cer.)  
-40  
-50  
10mA  
-60  
-70  
COut=1.0uF (tant.)  
-80  
-90  
-100  
100  
1k  
10k  
100k  
0
500m  
1
1.5  
VIn [V]  
2
2.5  
Frequency [Hz]  
GC3-J013  
Page 16  
TK630xxB  
„ RR vs Frequency (TK63015B)  
IOut=10mA  
0
-10  
COut= 1.0µF (cer.)  
2.2µF (cer.)  
4.7µF (cer.)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
1k  
10k  
Frequency [Hz]  
100k  
„ RR vs Frequency (TK63028B)  
IOut=10mA  
0
-10  
COut= 1.0µF (cer.)  
2.2µF (cer.)  
4.7µF (cer.)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
1k  
10k  
Frequency [Hz]  
100k  
„ RR vs Frequency (TK63042B)  
IOut=10mA  
0
-10  
COut= 1.0µF (cer.)  
2.2µF (cer.)  
4.7µF (cer.)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
1k  
10k  
Frequency [Hz]  
100k  
The ripple rejection (R.R) characteristic depends on the characteristic and the capacitance value of the capacitor  
connected to the output side. The R.R characteristic of 50kHz or more varies greatly with the capacitor on the output side  
and PCB pattern. If necessary, please confirm stability of your design.  
GC3-J013  
Page 17  
TK630xxB  
Output Noise Characteristics  
„ VNoise vs VIn (TK63015B)  
„ VNoise vs IOut (TK63015B)  
IOut=30mA  
COut=1.0uF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
1
2
3
4
4
4
5
6
0
20 40 60 80 100 120 140 160 180 200  
IOut [mA]  
VIn [V]  
„ VNoise vs VIn (TK63028B)  
„ VNoise vs IOut (TK63028B)  
COut=1.0uF  
IOut=30mA  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
20 40 60 80 100 120 140 160 180 200  
IOut [mA]  
0
1
2
3
5
6
VIn [V]  
„ VNoise vs VIn (TK63042B)  
„ VNoise vs IOut (TK63042B)  
IOut=30mA  
COut=1.0uF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
1
2
3
5
6
0
20 40 60 80 100 120 140 160 180 200  
IOut [mA]  
VIn [V]  
GC3-J013  
Page 18  
TK630xxB  
„ VNoise vs VOut (TK630xxB)  
IOut=30mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
VOut [V]  
„ VNoise vs Frequency (TK63028B)  
COut=1.0uF,IOut=10mA  
1
0.1  
0.01  
100k  
10  
100  
1k  
10k  
Frequency [Hz]  
GC3-J013  
Page 19  
TK630xxB  
10-3. TRANSIENT CHARACTERISTICS  
„ Line Transient (TK63015B)  
„ Load Transient (IOut=5100mA) (TK63015B)  
COut=1.0uF  
3.5V  
100mA  
IOut  
100mA/div  
50mV/div  
5mA  
VIn  
2.5V  
COut=2.2uF  
COut=1.0uF  
I
Out=30mA  
VOut  
10mV/div  
VOut  
IOut=100mA  
IOut=150mA  
20us/div  
Time  
10usec/div  
Time  
„ Line Transient (TK63028B)  
„ Load Transient (IOut=5100mA) (TK63028B)  
COut=1.0uF  
4.8V  
100mA  
IOut  
100mA/div  
5mA  
VIn  
3.8V  
I
Out=30mA  
VOut  
10mV/div  
VOut  
50mV/div  
COut=2.2uF  
COut=1.0uF  
IOut=100mA  
IOut=150mA  
10usec/div  
Time  
20us/div  
Time  
„ Line Transient (TK63042B)  
„ Load Transient (IOut=5100mA) (TK63042B)  
COut=1.0uF  
6.0V  
100mA  
IOut  
100mA/div  
50mV/div  
5mA  
VIn  
5.2V  
I
Out=30mA  
10mV/div  
VOut  
VOut  
COut=2.2uF  
COut=1.0uF  
IOut=100mA  
IOut=150mA  
20us/div  
Time  
10usec/div  
Time  
GC3-J013  
Page 20  
TK630xxB  
„ Load Transient (IOut=0100mA) (TK63015B)  
COut=1.0uF  
COut=1.0uF  
100mA  
100mA  
IOut  
IOut  
0 or 5mA  
0 or 5mA  
VOut  
VOut  
0↔100mA  
0↔100mA  
100mV/div  
100mV/div  
VOut  
VOut  
5100mA  
5100mA  
10usec/div  
Time  
5msec/div  
Time  
„ Load Transient (IOut=0100mA) (TK63028B)  
COut=1.0uF  
COut=1.0uF  
100mA  
100mA  
IOut  
IOut  
0 or 5mA  
0 or 5mA  
VOut  
VOut  
0↔100mA  
0↔100mA  
100mV/div  
100mV/div  
VOut  
VOut  
5100mA  
5100mA  
10u/div  
2msec/div  
Time  
Time  
„ Load Transient (IOut=0100mA) (TK63042B)  
COut=1.0uF  
COut=1.0uF  
100mA  
100mA  
IOut  
IOut  
0 or 5mA  
0 or 5mA  
VOut  
VOut  
0↔100mA  
0↔100mA  
100mV/div  
100mV/div  
VOut  
VOut  
5100mA  
5100mA  
10usec/div  
Time  
1msec/div  
Time  
GC3-J013  
Page 21  
TK630xxB  
„ On/Off Transient (VCont=01.3V) (TK63015B)  
„ On/Off Transient (VCont=1.30V) (TK63015B)  
IOut=30mA  
IOut=30mA  
1V/div  
VCont  
VCont  
0.5V/div  
1V/div  
VOut  
COut=1.0 , 2.2 , 4.7uF  
COut=1.0 , 2.2 , 4.7uF  
VOut  
0.5V/div  
200mA/div  
IIn  
IIn  
200mA/div  
10usec/div  
Time  
200usec/div  
Time  
„ On/Off Transient (VCont=01.3V) (TK63028B)  
„ On/Off Transient (VCont=1.30V) (TK63028B)  
IOut=30mA  
IOut=30mA  
1V/div  
VCont  
COut=1.0 , 2.2 , 4.7uF  
VCont  
1V/div  
1V/div  
VOut  
COut=1.0 , 2.2 , 4.7uF  
VOut  
1V/div  
200mA/div  
IIn  
IIn  
200mA/div  
10usec/div  
Time  
200usec/div  
Time  
„ On/Off Transient (VCont=01.3V) (TK63042B)  
„ On/Off Transient (VCont=1.30V) (TK63042B)  
IOut=30mA  
IOut=30mA  
1V/div  
VCont  
VCont  
COut=1.0 , 2.2 , 4.7uF  
1V/div  
COut=1.0 , 2.2 , 4.7uF  
VOut  
2V/div  
2V/div  
VOut  
200mA/div  
IIn  
IIn  
200mA/div  
10usec/div  
Time  
200usec/div  
Time  
GC3-J013  
Page 22  
TK630xxB  
11. PIN DESCRIPTION  
Pin No. Pin Description  
Internal Equivalent Circuit  
Description  
A1  
A2  
GND  
VCont  
GND Terminal  
On/Off Control Terminal  
ESD  
Protection  
VCont > 1.3V : On  
VCont < 0.25V : Off  
A2  
VCont  
Control pin voltage must be less than VIn+0.3V.  
675kΩ  
The pull-down resister (about 675k) is built-in.  
B1  
VOut  
Output Terminal  
B1  
VIn  
VOut  
ESD  
Protection  
B2  
VIn  
Input Terminal  
GC3-J013  
Page 23  
TK630xxB  
ceramic capacitor of 1.0µF. ESR of the output capacitor  
must be in the stable operation area. Please select the best  
output capacitor according to the voltage and current  
used. The stability of the regulator improves as the value  
of the output side capacitor increases (the stable  
operation area extends.) Please use as large a value  
capacitor as is practical.  
12. APPLICATIONS INFORMATION  
12-1. Stability  
Linear regulators require input and output capacitors in  
order to maintain the regulator's loop stability.  
An output capacitor of about 1µF is required between the  
output pin and ground. However, it is recommended to  
use as large a value capacitor as is practical. The output  
noise and the ripple noise decrease as the value of the  
capacitor increases.  
For evaluation  
Kyocera : CM05B104K10AB , CM05B224K10AB ,  
CM105B104K16A , CM105B224K16A ,  
CM21B225K10A  
Murata : GRM36B104K10 , GRM42B104K10 ,  
GRM39B104K25 , GRM39B224K10 ,  
GRM39B105K6.3  
A recommended value of the application is as follows.  
CIn=2.2µF, COut=1.0µF  
Fig12-1: Capacitor in the application  
VIn  
VOut  
TK63042B  
Fig12-3: ex. Ceramic Capacitance vs Voltage,  
Temperature  
CIn>COut  
COut1.0µF  
VCont  
Capacitance vs Voltage  
100  
90  
B Curve  
80  
The stability of the regulator improves if the value of the  
input side capacitor is lager than the value of the output  
side capacitor.  
An input and output capacitance of 1µF can be used when  
connected to a low impedance power source (like a Li  
battery and so on).  
70  
60  
50  
F Curve  
4
0
2
6
8
10  
12  
Bias Voltage(V)  
It is not possible to determine this indiscriminately.  
Please confirm the stability in your design.  
Capacitance vs Temperature  
100  
90  
80  
70  
60  
50  
B Curve  
Fig12-2: Output Current vs Stable Operation Area  
VOut=1.5V  
VOut=2.8V, 4.2V  
F Curve  
100  
10  
100  
10  
Unstable area  
Unstable area  
-50 -25  
0
25  
50  
75  
100  
Ta(°C)  
Generally, a ceramic capacitor has both a temperature  
characteristic and a voltage characteristic. Please consider  
both characteristics when selecting the part. The B curves  
are the recommended characteristics.  
Stable area  
COut=1.0uF  
Stable area  
1
1
COut=1.0uF  
0.1  
0.01  
0.1  
0.01  
0
50 100 150 200  
IOut (mA)  
0
50 100 150 200  
IOut (mA)  
Fig.12-2 shows the stable operation area of output  
current and the equivalent series resistance (ESR) with a  
GC3-J013  
Page 24  
TK630xxB  
again as soon as the output voltage drops and the  
temperature of the chip decreases.  
12-2. Layout  
Fig12-4: Layout example  
VCont GND VIn  
How to determine the thermal resistance when  
mounted on PCB  
The thermal resistance when mounted is expressed as  
follows:  
Tj=θja×Pd+Ta  
Tj of IC is set around 150°C. Pd is the value when the  
thermal sensor is activated.  
If the ambient temperature is 25°C, then:  
150=θja×Pd+25  
θja=125/Pd (°C /mW)  
Pd is easily calculated.  
A simple way to determine Pd is to calculate VIn×IIn  
when the output side is shorted. Input current gradually  
falls as output voltage rises after working thermal  
shutdown. You should use the value when thermal  
equilibrium is reached. In many cases, heat radiation is  
good, and Pd is 360mW or more.  
GND  
GND  
VOut  
(Top View)  
PCB Material : Glass epoxy  
Size : 7mm×8mm×0.8mm  
Fig12-6: How to determine DPd  
Pd(mW)  
Please do derating with 2.9mW/°C at Pd=360mW and  
25°C or more. Thermal resistance (θja) is=278°C/W.  
2
Pd  
Fig12-5: Derating curve  
Pd(mW)  
D Pd  
5
3
360  
-2.9mW/°C  
4
0
25  
50  
75  
Ta ()  
100  
150  
Procedure (When mounted on PCB.)  
1. Find Pd (VIn×IIn when the output side is short-  
circuited).  
2. Plot Pd against 25°C.  
3. Connect Pd to the point corresponding to the 150°C  
with a straight line.  
4. In design, take a vertical line from the maximum  
operating temperature (e.g., 75°C) to the derating  
curve.  
5. Read off the value of Pd against the point at which the  
vertical line intersects the derating curve. This is taken  
as the maximum power dissipation DPd.  
6. DPd ÷ (VIn,MAXVOut)=IOut (at 75°C)  
25  
50  
100  
(85°C)  
150°C  
The package loss is limited at the temperature that the  
internal temperature sensor works (about 150°C).  
Therefore, the package loss is assumed to be an internal  
limitation. There is no heat radiation characteristic of the  
package unit assumed because of its small size. Heat is  
carried away from the device by being mounted on the  
PCB. This value is directly effected by the material and  
the copper pattern etc. of the PCB. The losses are  
approximately 360mW. Enduring these losses becomes  
possible in a lot of applications operating at 25°C.  
The overheating protection circuit operates when the  
junction temperature reaches 150°C (this happens when  
the regulator is dissipating excessive power, outside  
temperature is high, or heat radiation is bad). The output  
current and the output voltage will drop when the  
protection circuit operates. However, operation begins  
The maximum output current at the highest operating  
temperature will be IOut DPd ÷ (VIn,MAXVOut).  
Please use the device at low temperature with better  
radiation. The lower temperature provides better quality.  
GC3-J013  
Page 25  
TK630xxB  
12-3. On/Off Control  
12-4. Influence by Light  
It is recommended to turn the regulator Off when the  
circuit following the regulator is not operating. A design  
with little electric power loss can be implemented. We  
recommend the use of the On/Off control of the regulator  
without using a high side switch to provide an output  
from the regulator. A highly accurate output voltage with  
low voltage drop is obtained.  
When this IC is exposed to strong light, the electrical  
characteristics change. Please confirm the influence by  
light in your design.  
Because the control current is small, it is possible to  
control it directly by CMOS logic.  
Fig12-7: The use of On/Off control  
Vsat  
REG  
On/Off Cont.  
Control Terminal Voltage ((VCont  
)
On/Off State  
VCont > 1.3V  
On  
VCont < 0.25V  
Off  
Parallel Connected On/Off Control  
Fig12-8: The example of parallel connected IC  
TK63042B  
VIn  
VOut  
4.2V  
3.3V  
1.5V  
TK63033B  
TK63015B  
On/Off  
Cont.  
The above figure is multiple regulators being controlled  
by a single On/Off control signal. There is concern of  
overheating, because the power loss of the low voltage  
side IC (TK63015B) is large. The series resistor (R) is put  
in the input line of the low output voltage regulator in  
order to prevent over-dissipation. The voltage dropped  
across the resistor reduces the large input-to-output  
voltage across the regulator, reducing the power  
dissipation in the device. When the thermal sensor works,  
a decrease of the output voltage, oscillation, etc. may be  
observed.  
GC3-J013  
Page 26  
TK630xxB  
12-5. Definition of term  
Characteristics  
Protections  
Over Current Sensor  
Output Voltage (VOut  
)
The over current sensor protects the device when there is  
excessive output current. It also protects the device if the  
output is accidentally connected to ground.  
The output voltage is specified with VIn=(VOutTYP+1V)  
and IOut=5mA.  
Maximum Output Current (IOut, MAX  
)
Thermal Sensor  
The rated output current is specified under the condition  
where the output voltage drops 0.9V times the value  
specified with IOut=5mA. The input voltage is set to  
The thermal sensor protects the device in case the  
junction temperature exceeds the safe value (Tj=150°C).  
This temperature rise can be caused by external heat,  
excessive power dissipation caused by large input to  
output voltage drops, or excessive output current. The  
regulator will shut off when the temperature exceeds the  
safe value. As the junction temperatures decrease, the  
regulator will begin to operate again. Under sustained  
fault conditions, the regulator output will oscillate as the  
device turns off then resets. Damage may occur to the  
device under extreme fault.  
V
OutTYP+1V and the current is pulsed to minimize  
temperature effect.  
Dropout Voltage (VDrop  
)
The dropout voltage is the difference between the input  
voltage and the output voltage at which point the  
regulator starts to fall out of regulation. Below this value,  
the output voltage will fall as the input voltage is reduced.  
It is dependent upon the output voltage, the load current,  
and the junction temperature.  
Please prevent the loss of the regulator when this  
protection operates, by reducing the input voltage or  
providing better heat efficiency.  
Line Regulation (LinReg)  
Line regulation is the ability of the regulator to maintain a  
constant output voltage as the input voltage changes. The  
line regulation is specified as the input voltage is changed  
from VIn=VOut,TYP+1V to VIn=VOut,TYP+6V. It is a pulse  
measurement to minimize temperature effect.  
ESD  
MM : 200pF 0150V or more  
HBM : 100pF 1.5k2000V or more  
Load Regulation (LoaReg)  
Load regulation is the ability of the regulator to maintain  
a constant output voltage as the load current changes. It is  
a pulsed measurement to minimize temperature effects  
with the input voltage set to VIn=VOut,TYP+1V. The load  
regulation is specified under an output current step  
condition of 5mA to 100mA.  
Ripple Rejection (RR)  
Ripple rejection is the ability of the regulator to attenuate  
the ripple content of the input voltage at the output. It is  
specified with 500mVrms, 1kHz super-imposed on the  
input voltage, where VIn=VOut,TYP+1.5V. Ripple rejection  
is the ratio of the ripple content of the output vs. input and  
is expressed in dB.  
Standby Current (IStandby  
)
Standby current is the current which flows into the  
regulator when the output is turned off by the control  
function (VCont=0V).  
GC3-J013  
Page 27  
TK630xxB  
13. PACKAGE OUTLINE  
„ FC-4  
+
0.03  
Mark  
4- 0.30  
M
0.05  
B
A
0.5  
A1 Pin Mark Area  
+
0.03  
1.06  
0.05  
0.5  
Reference Mount Pad  
4- 0.275  
Unit : mm  
Package Structure and Others  
Base Material  
: Si  
Mark Method  
: Laser  
Terminal Material : Solder Bump  
Solder Composition : Sn-3.0Ag  
Country of Origin : Japan  
Marking  
Part Number  
Marking Code  
Part Number  
Marking Code  
Part Number  
Marking Code  
TK63015B-G  
TK63018B-G  
TK63020B-G  
TK63022B-G  
TK63025B-G  
TK63026B-G  
AA.  
TK63027B-G  
AG.  
AH.  
AJ.  
TK63032B-G  
AN.  
AB.  
AC.  
AD.  
AE.  
AF.  
TK63028B-G  
TK63001B-G  
TK63029B-G  
TK63030B-G  
TK63031B-G  
TK63033B-G  
TK63035B-G  
TK63042B-G  
AP.  
AQ.  
AR.  
AK.  
AL.  
AM.  
GC3-J013  
Page 28  
TK630xxB  
14. NOTES  
15. OFFICES  
„ Please be sure that you carefully discuss your planned  
purchase with our office if you intend to use the products in  
this application manual under conditions where particularly  
extreme standards of reliability are required, or if you intend  
to use products for applications other than those listed in this  
application manual.  
If you need more information on this product and other  
TOKO products, please contact us.  
„ TOKO Inc. Headquarters  
1-17, Higashi-yukigaya 2-chome, Ohta-ku, Tokyo,  
145-8585, Japan  
z Power drive products for automobile, ship or aircraft  
transport systems; steering and navigation systems,  
emergency signal communications systems, and any  
system other than those mentioned above which include  
electronic sensors, measuring, or display devices, and  
which could cause major damage to life, limb or property  
if misused or failure to function.  
TEL: +81.3.3727.1161  
FAX: +81.3.3727.1176 or +81.3.3727.1169  
Web site: http://www.toko.co.jp/  
„ TOKO America  
Web site: http://www.toko.com/  
z Medical devices for measuring blood pressure, pulse,  
etc., treatment units such as coronary pacemakers and heat  
treatment units, and devices such as artificial organs and  
artificial limb systems which augment physiological  
functions.  
„ TOKO Europe  
Web site: http://www.tokoeurope.com/  
„ TOKO Hong Kong  
Web site: http://www.toko.com.hk/  
z Electrical instruments, equipment or systems used in  
disaster or crime prevention.  
„ TOKO Taiwan  
Web site: http://www.tokohc.com.tw/  
„ Semiconductors, by nature, may fail or malfunction in  
spite of our devotion to improve product quality and  
reliability. We urge you to take every possible precaution  
against physical injuries, fire or other damages which may  
cause failure of our semiconductor products by taking  
appropriate measures, including a reasonable safety margin,  
malfunction preventive practices and fire-proofing when  
designing your products.  
„ TOKO Singapore  
Web site: http://www.toko.com.sg/  
„ TOKO Seoul  
Web site: http://www.toko.co.kr/  
„ TOKO Manila  
Web site: http://www.toko.com.ph/  
„ This application manual is effective from Sept 2003. Note  
that the contents are subject to change or discontinuation  
without notice. When placing orders, please confirm  
specifications and delivery condition in writing.  
„ TOKO Brazil  
Web site: http://www.toko.com.br/  
„ TOKO is not responsible for any problems nor for any  
infringement of third party patents or any other intellectual  
property rights that may arise from the use or method of use  
of the products listed in this application manual. Moreover,  
this application manual does not signify that TOKO agrees  
implicitly or explicitly to license any patent rights or other  
intellectual property rights which it holds.  
MEETING YOUR NEEDS  
TO BUILD THE QUALITY RELIED UPON BY CUSTOMERS  
„ None of the ozone depleting substances(ODS) under the  
Montreal Protocol are used in our manufacturing process.  
YOUR DISTRIBUTOR  
GC3-J013  
Page 29  

相关型号:

TK630STL

CMOS LDO REGULATOR WITH HIGH ACTIVE CONTROL ADVANCED
TOKO

TK63101BB6G0B-C

Fixed Positive LDO Regulator, 2.85V, 0.38V Dropout, CMOS, PBGA4, LEAD FREE, FC-4
TOKO

TK63101BCB-G

Fixed Positive LDO Regulator, 2.85V, 0.38V Dropout, CMOS, PBGA4, LEAD FREE, FC-4
TOKO

TK63101HCB-G

Fixed Positive LDO Regulator
AKM

TK63101HCL

Fixed Positive LDO Regulator
AKM

TK63101HCL-G

Fixed Positive LDO Regulator
AKM

TK63101HCL-G

Fixed Positive LDO Regulator, 2.85V, 0.42V Dropout, CMOS, PDSO6, LEAD FREE, 2 X 1.70 MM, SON-6
TOKO

TK63101HCL-GH

Fixed Positive LDO Regulator
AKM

TK63101SCB

Fixed Positive LDO Regulator
AKM

TK63101SCB-G

Fixed Positive LDO Regulator
AKM

TK63101SCL-G

Fixed Positive LDO Regulator
AKM

TK63115BB6GHB-C

Fixed Positive LDO Regulator
AKM