XC6108N49AGR-G [TOREX]

IC SUPERVISOR 4.9V 4-USP;
XC6108N49AGR-G
型号: XC6108N49AGR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

IC SUPERVISOR 4.9V 4-USP

文件: 总22页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC6108 series is Not Recommended for New Designs.  
XC6108Series  
ETR0205_010b  
Voltage Detector with Separated Sense Pin & Delay Capacitor Pin  
GENERAL DESCRIPTION  
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming  
technologies.  
Since the sense pin is separated from power supply, it allows the IC to monitor added power supply.  
Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when  
voltage of the monitored power supply drops to 0V.  
Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an  
arbitrary release delay time.  
Both CMOS and N-channel open drain output configurations are available.  
FEATURES  
APPLICATIONS  
Microprocessor reset circuitry  
Highly Accurate  
: +2% (Detect Voltage1.5V)  
+30mV (Detect Voltage1.5V)  
Charge voltage monitors  
Low Power Consumption  
Memory battery back-up switch circuits  
Power failure detection circuits  
: 0.6 μA TYP. (detect, VIN= 1.0V )  
0.8 μA TYP. (release, VIN= 1.0V )  
: 0.8V ~ 5.0V in 0.1V increments  
Detect Voltage Range  
Operating Voltage Range : 1.0V ~ 6.0V  
Temperature Stability  
Output Configuration  
: ±100ppm/ TYP.  
: CMOS or N-channel open drain  
Operating Temperature : -40 ~ +85 ℃  
Separated Sense Pin  
Built-In Delay Circuit  
Packages  
: VSEN Pin Available  
: Delay Time Adjustable  
: USP-4, SOT-25  
Environmentally Friendly : EU RoHS Compliant, Pb Free  
TYPICAL APPLICATION CIRCUIT TYPICAL PERFORMANCE  
CHARACTERISTICS  
Output Voltage vs. Sense Voltage  
XC6108C25AGR  
Monitering  
Power  
Ta=25  
supply  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
(No Pull-Up resistor needed for  
CMOS output product)  
VIN=6.0V  
4.0V  
1.0V  
5
0
1
2
3
4
6
Sense Voltage: VSEN (V)  
1/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
PIN CONFIGURATION  
5
4
Cd  
VSEN  
VIN  
3
VOUT VSS  
USP-4  
1
2
(BOTTOM VIEW)  
* In the XC6108xxxA/B series, the dissipation pad should  
not be short-circuited with other pins.  
* In the XC6108xxxC/D series, when the dissipation pad  
is short-circuited with other pins, connect it to the NC  
pin (No.2) pin before use.  
SOT-25  
(TOP VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
USP- 4  
SOT-25  
1
2
2
3
4
5
1
5
-
VOUT  
Cd  
Output (Detect ”L”)  
Delay Capacitance (*1)  
No Connection  
Sense  
NC  
4
3
2
VSEN  
VIN  
Input  
Ground (*2)  
VSS  
NOTE:  
*1: With the VSS pin of the USP-4 package, a tab on the backside is used as the pin No.5.  
*2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be  
used as the N.C.  
PRODUCT CLASSIFICATION  
Ordering Information  
(
*1  
)
XC6108 ①②③④⑤⑥-⑦  
DESIGNATOR  
DESCRIPTION  
Output Configuration  
Detect Voltage  
SYMBOL  
DESCRIPTION  
C
N
CMOS output  
N-ch open drain output  
②③  
08 ~ 50 e.g. 181.8V  
A
B
C
Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)  
Built-in delay capacitance pin, hysteresis less than 1%(Standard*)  
No built-in delay capacitance pin, hysteresis 5% (TYP.)  
(Semi-custom)  
Output Delay & Hysteresis  
(Options)  
No built-in delay capacitance pin, hysteresis less than 1%  
(Semi-custom)  
D
GR  
GR-G  
MR  
USP-4  
USP-4  
SOT-25  
SOT-25  
Packages  
Taping Type (*2)  
⑤⑥-⑦  
MR-G  
*When delay function isn’t used, open the delay capacitance pin before use.  
(*1)  
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.  
The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or  
representative. (Standard orientation: R-, Reverse orientation: L-)  
(*2)  
2/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
BLOCK DIAGRAMS  
(1) XC6108CxxA  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram  
of XC6108CxxC (semi-custom).  
(2) XC6108CxxB  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6108CxxD (semi-custom).  
(3) XC6108NxxA  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6108NxxC (semi-custom).  
(4) XC6108NxxB  
*The delay capacitance pin (Cd) is not  
connected to the circuit in the block diagram of  
XC6108NxxD (semi-custom).  
3/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
ABSOLUTE MAXIMUM RATINGS  
XC6108xxxA/B  
Ta = 25OC  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
VIN  
RATINGS  
VSS0.3 ~ 7.0  
10  
UNITS  
V
IOUT  
mA  
XC6108C (*1)  
XC6108N (*2)  
VSS0.3 ~ VIN0.3  
VSS0.3 ~ 7.0  
VSS0.3 ~ 7.0  
VSS0.3 ~ VIN0.3  
5.0  
Output Voltage  
VOUT  
V
Sense Pin Voltage  
Delay Capacitance Pin Voltage  
Delay Capacitance Pin Current  
USP-4  
VSEN  
VCD  
ICD  
V
V
mA  
120  
Power Dissipation  
Pd  
mW  
SOT-25  
Operating Temperature Range  
Storage Temperature Range  
250  
Ta  
40 ~85  
55 ~125  
Tstg  
Ta = 25OC  
UNITS  
XC6108xxxC/D  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
VIN  
RATINGS  
VSS0.3 ~ 7.0  
10  
V
IOUT  
mA  
XC6108C (*1)  
XC6108N (*2)  
VSS0.3 ~ VIN0.3  
VSS0.3 ~ 7.0  
VSS0.3 ~ 7.0  
120  
Output Voltage  
VOUT  
VSEN  
Pd  
V
V
Sense Pin Voltage  
USP-4  
Power Dissipation  
mW  
SOT-25  
250  
Operating Temperature Range  
Storage Temperature Range  
Ta  
40 ~85  
55 ~125  
Tstg  
NOTE:  
*1: CMOS output  
*2: N-ch open drain output  
4/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
ELECTRICAL CHARACTERISTICS  
XC6108xxxA  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUITS  
V
V
V
-
VDF  
E-1  
E-2  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VHYS  
VIN = 1.0 ~ 6.0V  
Δ
VDF  
/
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
(Δ  
V
IN・  
V
DF  
)
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
-
-
-
0.6  
0.7  
0.8  
1.5  
1.6  
1.7  
1.8  
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
ISS2  
μA  
VDF x 0.9  
VSEN =  
μA  
VDF x 1.1  
VIN = 6.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
-
0.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
VSEN =0V  
VDS = 0.5V  
(N-ch)  
IOUT1  
-
mA  
Output Current (*3)  
VIN = 1.0V  
VIN = 6.0V  
-
-
-0.30  
-2.00  
-0.08  
-0.70  
VSEN = 6.0V  
VDS = 0.5V  
(P-ch)  
IOUT2  
mA  
CMOS  
0.20  
0.20  
-
0.40  
-
Output  
Leakage  
Current  
VIN=6.0V, VSEN=6.0V,  
VOUT=6.0V, Cd: Open  
-
-
ILEAK  
μA  
Nch Open  
Drain Output  
Δ
VDF /  
Topr  
RSEN  
ppm/  
Temperature Characteristics  
Sense Resistance (*4)  
-40 ℃ ≦ Ta 85℃  
±100  
E-4  
(
Δ
V
DF  
)
VSEN = 5.0V, VIN = 0V  
M  
M  
VSEN = 6.0V, VIN = 5.0V,  
Cd = 0V  
Delay Resistance (*5)  
Rdelay  
ICD  
1.6  
-
2.0  
2.4  
-
Delay capacitance pin  
Sink Current  
VDS = 0.5V, VIN = 1.0V  
200  
μA  
V  
Delay Capacitance Pin  
Threshold Voltage  
VSEN = 6.0V, VIN = 1.0V  
VSEN = 6.0V, VIN = 6.0V  
0.4  
2.9  
0.5  
3.0  
0.6  
3.1  
VTCD  
Unspecified Operating  
Voltage (*6)  
VUNS  
tDF0  
VIN = VSEN = 0V ~ 1.0V  
-
0.3  
30  
30  
0.4  
230  
200  
V
VIN = 6.0V, VSEN = 6.0V0.0V  
Cd: Open  
Detect Delay Time (*7)  
μs  
μs  
VIN = 6.0V, VSEN = 0.0V6.0V  
Cd: Open  
Release Delay Time (*8)  
tDR0  
NOTE:  
*1: VDF(T): Nominal detect voltage  
*2: Current flows the sense resistor is not included.  
*3: The Pch values are applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: Calculated from the voltage value of the VIN and the current value of the Cd.  
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited  
This value is applied only to the XC6108C series (CMOS output).  
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.  
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.  
5/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6108xxxB  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUITS  
V
V
V
-
VDF  
E-1  
E-3  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VHYS  
VIN = 1.0 ~ 6.0V  
Δ
VDF  
/
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
(Δ  
V
IN・  
V
DF  
)
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
-
-
-
-
0.6  
0.7  
0.8  
0.9  
1.5  
1.6  
1.7  
1.8  
-
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
ISS2  
μA  
VDF x 0.9  
VSEN =  
μA  
VDF x 1.1  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
VSEN =0V  
VDS = 0.5V  
(N-ch)  
IOUT1  
mA  
-
Output Current (*3)  
VSEN = 6.0V  
VDS = 0.5V  
(P-ch)  
VIN = 1.0V  
VIN = 6.0V  
-
-
-0.30  
-2.00  
-0.08  
-0.70  
IOUT2  
mA  
CMOS  
0.20  
0.20  
-
0.40  
-
Output  
VIN=6.0V, VSEN=6.0V,  
VOUT=6.0V, Cd: Open  
Leakage  
Current  
ILEAK  
-
-
μA  
Nch Open  
Drain Output  
Δ
VDF /  
Topr  
RSEN  
ppm/  
Temperature Characteristics  
Sense Resistance (*4)  
-40 ℃ ≦ Ta 85℃  
±100  
E-4  
(
Δ
V
DF  
)
VSEN = 5.0V, VIN = 0V  
M  
M  
VSEN = 6.0V, VIN = 5.0V,  
Cd = 0V  
Delay Resistance (*5)  
Rdelay  
ICD  
1.6  
-
2.0  
2.4  
-
Delay capacitance pin  
Sink Current  
VDS = 0.5V, VIN = 1.0V  
200  
μA  
V  
Delay Capacitance Pin  
Threshold Voltage  
VSEN = 6.0V, VIN = 1.0V  
VSEN = 6.0V, VIN = 6.0V  
0.4  
2.9  
0.5  
3.0  
0.6  
3.1  
VTCD  
Unspecified Operating  
Voltage (*6)  
VUNS  
tDF0  
VIN = VSEN = 0V ~ 1.0V  
-
0.3  
30  
30  
0.4  
230  
200  
V
VIN = 6.0V, VSEN = 6.0V0.0V  
Cd: Open  
Detect Delay Time (*7)  
Release Delay Time (*8)  
μs  
μs  
VIN = 6.0V, VSEN = 0.0V6.0V  
Cd: Open  
tDR0  
NOTE:  
*1: VDF(T): Nominal detect voltage  
*2: Current flows the sense resistor is not included.  
*3: The Pch values are applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: Calculated from the voltage value of the VIN and the current value of the Cd.  
*6: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited  
This value is applied only to the XC6108C series (CMOS output).  
*7: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.  
*8: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.  
6/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6108xxxC  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUITS  
V
V
V
-
VDF  
E-1  
E-2  
Hysteresis Width  
Detect Voltage  
Line Regulation  
VHYS  
VIN = 1.0 ~ 6.0V  
Δ
VDF  
/
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
(Δ  
V
IN・  
V
DF  
)
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
VIN = 6.0V  
-
-
-
-
0.6  
0.7  
0.8  
0.9  
1.5  
1.6  
1.7  
1.8  
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
ISS2  
μA  
VDF x 0.9  
VSEN =  
μA  
VDF x 1.1  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
VSEN =0V  
VDS = 0.5V  
(N-ch)  
IOUT1  
-
mA  
Output Current (*3)  
VIN = 1.0V  
VIN = 6.0V  
-
-
-0.30  
-2.00  
-0.08  
-0.70  
VSEN = 6.0V  
VDS = 0.5V  
(P-ch)  
IOUT2  
mA  
CMOS  
0.20  
0.20  
-
0.40  
-
Output  
VIN=6.0V, VSEN=6.0V,  
VOUT=6.0V, Cd: Open  
Leakage  
Current  
ILEAK  
-
-
μA  
Nch Open  
Drain Output  
ΔVDF/  
ppm/  
Temperature Characteristics  
-40 ℃ ≦ Ta 85℃  
VSEN = 5.0V, VIN = 0V  
VIN = VSEN = 0V ~ 1.0V  
±100  
E-4  
(
Δ
Topr・  
V
DF  
)
Sense Resistance (*4)  
Unspecified Operating  
Voltage (*5)  
RSEN  
M  
VUNS  
-
0.3  
0.4  
V
Detect Delay Time (*6)  
Release Delay Time (*7)  
tDF0  
tDR0  
VIN = 6.0V, VSEN = 6.0V0.0V  
VIN = 6.0V, VSEN = 0.0V6.0V  
30  
30  
230  
200  
μs  
μs  
NOTE:  
*1: VDF(T): Nominal detect voltage  
*2: Current flows the sense resistor is not included.  
*3: The Pch values are applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited  
This value is applied only to the XC6108C series (CMOS output).  
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.  
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.  
7/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XC6108xxxD  
Ta=25℃  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T) = 0.8 ~ 5.0V (*1)  
VIN = 1.0 ~ 6.0V  
MIN.  
1.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUITS  
V
V
V
-
VDF  
E-1  
E-3  
1
1
Hysteresis Width  
Detect Voltage  
Line Regulation  
VHYS1  
VIN = 1.0 ~ 6.0V  
Δ
VDF  
/
VIN = 1.0 ~ 6.0V  
-
±0.1  
-
%/V  
1
2
(Δ  
V
IN・  
V
DF  
)
VIN = 1.0V  
VIN = 6.0V  
VIN = 1.0V  
-
-
-
0.6  
0.7  
0.8  
1.5  
1.6  
1.7  
1.8  
VSEN =  
Supply Current 1 (*2)  
Supply Current 2 (*2)  
ISS1  
ISS2  
μA  
VDF x 0.9  
VSEN =  
μA  
2
VDF x 1.1  
VIN = 6.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 3.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
-
0.9  
0.7  
1.6  
2.0  
2.3  
2.4  
2.5  
0.1  
0.8  
1.2  
1.6  
1.8  
1.9  
VSEN =0V  
VDS = 0.5V  
(N-ch)  
IOUT1  
-
mA  
3
Output Current (*3)  
VIN = 1.0V  
VIN = 6.0V  
-
-
-0.30  
-2.00  
-0.08  
-0.70  
VSEN = 6.0V  
VDS = 0.5V  
(P-ch)  
IOUT2  
mA  
4
3
CMOS  
0.20  
0.20  
-
0.40  
-
Output  
VIN=6.0V, VSEN=6.0V,  
VOUT=6.0V, Cd: Open  
Leakage  
Current  
ILEAK  
-
-
μA  
Nch Open  
Drain Output  
Δ
VDF /  
ppm/  
Temperature Characteristics  
-40 ℃ ≦ Ta 85℃  
VSEN = 5.0V, VIN = 0V  
VIN = VSEN = 0V ~ 1.0V  
±100  
E-4  
1
5
7
(
Δ
Topr・  
V
DF  
)
Sense Resistance (*4)  
Unspecified Operating  
Voltage (*5)  
RSEN  
M  
VUNS  
-
0.3  
0.4  
V
Detect Delay Time (*6)  
Release Delay Time (*7)  
tDF0  
tDR0  
VIN = 6.0V, VSEN = 6.0V0.0V  
VIN = 6.0V, VSEN = 0.0V6.0V  
30  
30  
230  
200  
μs  
μs  
9
9
NOTE:  
*1: VDF(T): Nominal detect voltage  
*2: Current flows the sense resistor is not included.  
*3: The Pch values are applied only to the XC6108C series (CMOS output).  
*4: Calculated from the voltage value and the current value of the VSEN.  
*5: The maximum voltage of the VOUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited  
This value is applied only to the XC6108C series (CMOS output).  
*6: Time which ranges from the state of VSEN=VDF to the VOUT reaching 0.6V when the VSEN falls.  
*7: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.  
8/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
VOLTAGE CHART  
SYMBOL  
E-1  
E-2  
HYSTERESIS  
RANGE  
(V)  
E-3  
HYSTERESIS  
RANGE  
(V)  
E-4  
SENSE  
RESISTANCE  
(MΩ)  
NOMINAL DETECT  
VOLTAGE  
DETECT VOLTAGE (*1)  
(V)  
VDF  
VHYS  
VHYS  
RSEN  
VDF(T)  
(V)  
MIN.  
0.770  
0.870  
0.970  
1.070  
1.170  
1.270  
1.370  
1.470  
1.568  
1.666  
1.764  
1.862  
1.960  
2.058  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
3.528  
3.626  
3.724  
3.822  
3.920  
4.018  
4.116  
4.214  
4.312  
4.410  
4.508  
4.606  
4.704  
4.802  
4.900  
MAX.  
0.830  
0.930  
1.030  
1.130  
1.230  
1.330  
1.430  
1.530  
1.632  
1.734  
1.836  
1.938  
2.040  
2.142  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
3.672  
3.774  
3.876  
3.978  
4.080  
4.182  
4.284  
4.386  
4.488  
4.590  
4.692  
4.794  
4.896  
4.998  
5.100  
MIN.  
MAX.  
0.066  
0.074  
0.082  
0.090  
0.098  
0.106  
0.114  
0.122  
0.131  
0.085  
0.147  
0.155  
0.163  
0.171  
0.180  
0.188  
0.196  
0.204  
0.212  
0.220  
0.228  
0.237  
0.245  
0.253  
0.261  
0.269  
0.277  
0.286  
0.294  
0.302  
0.310  
0.318  
0.326  
0.335  
0.343  
0.351  
0.359  
0.367  
0.375  
0.384  
0.392  
0.400  
0.408  
MIN.  
MAX.  
MIN.  
TYP.  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
0.015  
0.017  
0.019  
0.021  
0.023  
0.025  
0.027  
0.029  
0.031  
0.033  
0.035  
0.037  
0.039  
0.041  
0.043  
0.045  
0.047  
0.049  
0.051  
0.053  
0.055  
0.057  
0.059  
0.061  
0.063  
0.065  
0.067  
0.069  
0.071  
0.073  
0.074  
0.076  
0.078  
0.080  
0.082  
0.084  
0.086  
0.088  
0.090  
0.092  
0.094  
0.096  
0.098  
0.008  
0.009  
0.010  
0.011  
0.012  
0.013  
0.014  
0.015  
0.016  
0.017  
0.018  
0.019  
0.020  
0.021  
0.022  
0.023  
0.024  
0.026  
0.027  
0.028  
0.029  
0.030  
0.031  
0.032  
0.033  
0.034  
0.035  
0.036  
0.037  
0.038  
0.039  
0.040  
0.041  
0.042  
0.043  
0.044  
0.045  
0.046  
0.047  
0.048  
0.049  
0.050  
0.051  
10  
20  
0
13  
24  
15  
28  
NOTE:  
*1: When VDF(T)1.4V, the detection accuracy is ±30mV.  
When VDF(T)1.5V, the detection accuracy is ±2%.  
9/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
TEST CIRCUITS  
Circuit 1  
R=100kΩ  
(No resistor needed for CMOS output products)  
XC6108 Series  
Circuit 2  
XC6108 Series  
Circuit 3  
XC6108 Series  
Circuit 4  
XC6108 Series  
Circuit 5  
XC6108 Series  
10/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
TEST CIRCUITS (Continued)  
Circuit 6  
XC6108 Series  
Circuit 7  
(No resistor needed for CMOS output products)  
XC6108 Series  
Circuit 8  
XC6108 Series  
Circuit 9  
(No resistor needed for CMOS output products)  
Waveform Measurement Point  
XC6108 Series  
*No delay capacitance pin available in the XC6108xxxC/D series.  
11/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
OPERATIONAL EXPLANATION  
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.  
As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged  
to the power supply input voltage, (VIN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to  
reach the detect voltage (VDF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).  
* If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input  
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.  
When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF), an N-ch transistor  
(M1) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An  
inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level  
(=VSS). The detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level  
(especially, when the Cd pin is not connected: tDF0).  
While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground  
voltage (=VSS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to  
reach the release voltage (VSEN< VDF +VHYS).  
When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for  
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay  
resistor (Rdelay). The inverter (Inv.1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic  
Threshold: VTHL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).  
While the delay capacitance pin voltage (VCD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the  
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC  
series circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1).  
tDR = Rdelay×Cd×In (1VTCD / VIN) (1)  
* In = a natural logarithm  
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and  
the delay capacitance pin voltage is VIN /2 (TYP.)  
tDR = Rdelay×Cd×0.69(2)  
*:Rdelay is 2.0MΩ(TYP.)  
As an example, presuming that the delay capacitance is 0.68μF, tDR is :  
2.0×106×0.68×10-6×0.69=938(ms)  
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the  
ground (=VSS) level because time described in is short.  
When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (VCD=VTCD), the inverter  
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=VIN) level. tDR0 is defined as time  
which ranges from VSEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.  
While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the  
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=VIN)  
level.  
12/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
OPERATIONAL EXPLANATION (Continued)  
Function Chart  
TRANSITION OF VOUT CONDITION *1  
VSEN  
Cd  
L
H
L
H
L
H
L
H
L
L
L
H
L
L
H
H
H
*1: VOUT transits from condition to because of the combination of VSEN and Cd.  
Example  
ex. 1) VOUT ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDRVSEN), Cd=’H’ (VTCDCd) while VOUT is ‘L’.  
ex. 2) VOUT maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when VOUT becomes ‘H’ in ex.1.  
Release Delay Time Chart  
RELEASE DELAY TIME [tDR]  
RELEASE DELAY TIME [tDR] *2  
DELAY CAPACITANCE [Cd]  
(TYP.)  
(ms)  
13.8  
30.4  
64.9  
138  
(MIN. ~ MAX.)  
(ms)  
(μF)  
0.010  
0.022  
0.047  
0.100  
0.220  
0.470  
1.000  
11.0 ~ 16.6  
24.3 ~ 36.4  
51.9 ~ 77.8  
110 ~ 166  
243~ 364  
304  
649  
519 ~ 778  
1100 ~ 1660  
1380  
* The release delay time values above are calculated by using the formula (2).  
*2: The release delay time (tDR) is influenced by the delay capacitance Cd.  
13/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
OPERATIONAL EXPLANATION (Continued)  
Figure 1: Typical application circuit example  
*The XC6108N series (N-ch open  
drain output) requires a pull-up  
resistor for pulling up output.  
VIN  
M2  
M4  
SEN=R1+R2+R3  
VSEN  
Rdelay  
Comparator  
Inverter  
VOUT  
R1  
VIN  
VSEN  
R2  
R3  
M3  
Vref  
M5  
M1  
VSS  
Cd  
Cd  
Figure 2: The timing chart of Figure 1  
VSEN (MIN.:0V, MAX.:6.0V)  
VDF+VHYS  
VDF  
VCD(MIN.:VSS, MAX.:VIN)  
VTCD  
VOUT (MIN.:VSS, MAX:VIN)  
14/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
NOTES ON USE  
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage  
to the device.  
2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current  
at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the  
minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage  
similarly occur. Moreover, in CMOS output, when the VIN pin and the sense pin are short-circuited and used, oscillation of  
the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis  
voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.  
3. When the setting voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over  
1.0V to the VIN pin.  
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.  
5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between VIN-GND and  
test on the board carefully.  
6. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation  
with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin  
and the Cd pin as the Figure 3 shown below.  
6. In N channel open drain output, VOUT voltage at detect and release is determined by resistance of a pull up resistor  
connected at the VOUT pin. Please choose proper resistance values with reffering to Figure 4;  
During detection : VOUT = Vpull / (1+Rpull / RON  
)
Vpull: Pull up voltage  
RON(1)On resistance of N channel driver M3 can be calculated as VDS / IOUT1 from electrical characteristics,  
For example, when (2) RON = 0.5 / 0.8×10-3 = 625Ω(MIN.at VIN=2.0V, Vpull = 3.0V and VOUT 0.1V at detect,  
Rpull= (Vpull /VOUT-1)×RON= (3 / 0.1-1)×62518kΩ  
In this case, Rpull should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during  
detection.  
(1) RON is bigger when VIN is smaller, be noted.  
(2) For calculation, Minimum VIN should be chosen among the input voltage range.  
During releasingVOUT = Vpull / (1 + Rpull / Roff)  
VpullPull up voltage  
RoffOn resistance of N channel driver M3 is 15MΩ(MIN.when the driver is off (as to VOUT / ILEAK  
For examplewhen Vpull = 6.0V and VOUT 5.99V,  
)
Rpull = (Vpull / VOUT-1)×Roff = (6/5.99-1)×15×106 25kΩ  
In this case, Rpull should be selected smaller or equal to 25kΩ in order to obtain output voltage higher than 5.99V  
during releasing.  
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode  
Figure 4: Circuit example of XC6108N Series  
Vpull  
VIN  
M2  
R=100kΩ  
(No resistor needed for  
VIN  
VSEN  
SEN=R1+R2+R3  
Comparator  
Rpull  
VSEN  
CMOS output products)  
Rdelay  
Inverter  
ILEA  
K
R1  
R2  
R3  
VOUT  
VOUT  
VIN  
VSEN  
VSEN  
VOUT  
VIN  
M3  
Vref  
M5  
Cd  
M1  
VSS  
Cd  
VSS  
Cd  
NOTERoff=VOUT/ILEAK  
Figure 3  
Figure 4  
15/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Supply Current vs. Sense Voltage  
XC6108C25AGR  
VIN=3.0V  
2.0  
Ta=85  
25  
1.5  
1.0  
0.5  
0.0  
-40  
0
1
2
3
4
5
6
Sense Voltage : VSEN (V)  
(2) Supply Current vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VSEN=2.25V  
VSEN=2.75V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
.0  
.8  
.6  
.4  
.2  
0.0  
Ta=85  
Ta=85  
25  
25  
-40  
-40  
5
0
1
2
3
4
5
6
0
1
2
3
4
6
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
(3) Detect Voltage vs. Ambient Temperature  
(4) Detect Voltage vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VIN=4.0V  
2.55  
2.50  
2.45  
2.55  
Ta=25  
85  
2.50  
2.45  
-40  
-50  
-25  
0
25  
50  
75  
100  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
Ambient Temperature : Ta ()  
lt:
Input Voltage : VIN (V)  
16/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(5) Hysteresis Voltage vs. Ambient Temperature  
(6) CD Pin Sink Current vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VIN=4.0V  
VSEN=0V, VDS=0.5V  
0.20  
0.15  
0.10  
0.05  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=-40  
25  
85  
4
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
5
6
Ambient Temperature : Ta ()  
Input Voltage : VIN (V)  
(7) Output Voltage vs. Sense Voltage  
XC6108C25AGR  
(8) Output Voltage vs. Input Voltage  
XC6108N25AGR  
Ta=25  
VSEN=VIN Pull-up=VIN R=100k  
Ω
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VIN=6.0V  
4.0V  
Ta=85  
25  
-40  
1.0V  
5
0
0.5  
1
1.5  
2
2.5  
3
0
1
2
3
4
6
Input Voltage : VIN (V)  
Sense Voltage : VSEN (V)  
(9) Output Current vs. Input Voltage  
XC6108C25AGR  
XC6108C25AGR  
VDS(Nch)=0.5V  
VDS(Pch)=0.5V  
4.0  
3.5  
0.0  
Ta=-40  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
Ta=85  
25  
25  
85  
-40  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Input Voltage : VIN (V)  
Input Voltage : VIN (V)  
17/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(10) Delay Resistance vs. Ambient Temperature  
(11) Release Delay Time vs. Delay Capacitance  
XC6108C25AGR  
XC6108C25AGR  
Ta=25  
VSEN=6.0V VCD=0.0V VIN=5.0V  
4
10000  
1000  
100  
10  
VIN=1.0V  
3.0V  
6.0V  
3.5  
3
2.5  
2
1
TDR=Cd×2.0×106×0.69  
1.5  
1
0.1  
0.0001  
0.001  
0.01  
0.1  
1
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature : Ta ()  
Delay Capacitance : Cd (μF)  
(12) Detect Delay Time vs. Delay Capacitance  
XC6108C25AGR  
(13) Leakage Current vs. Ambient Temperature  
XC6108N25AGR  
Ta=25  
1000  
VIN=VSEN=6.0V VOUT=6.0V  
0.25  
VIN=6.0V  
4.0V  
100  
3.0V  
0.20  
0.15  
0.10  
2.0V  
0.1  
10  
1
1.0V  
-50  
-25  
0
25  
50  
75  
100  
0.0001  
0.001  
0.01  
1
Ambient Temperature: Ta (  
)
Delay Capacitance : Cd (μF)  
(14) Leakage Current vs. Supply Voltage  
XC6108N25AGR  
VIN=VSEN=6.0V  
0.25  
0.20  
0.15  
0.10  
0
1
2
3
4
5
6
Output Voltage: VOUT (V)  
18/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
PACKAGING INFORMATION  
USP-4  
* Soldering fillet surface is not  
formed because the sides of the  
pins are plated.  
SOT-25  
2.9±0.2  
+0.1  
-0.05  
0.4  
5
1
4
3
0~0.1  
2
+0.1  
-0.05  
0.15  
(0.95)  
1.9±0.2  
19/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
PACKAGING INFORMATION (Continued)  
USP-4 Reference Pattern Layout  
USP-4 Reference Metal Mask Design  
20/22  
XC6108  
XC6108 series is Not Recommended for New Designs.  
Series  
MARKING RULE  
SOT-25  
represents output configuration and integer number of detect voltage  
CMOS Output (XC6108C Series)  
N-ch Open Drain Output (XC6108N Series)  
5
4
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
A
B
C
D
E
F
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
K
L
M
N
P
R
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
① ② ③ ④  
1
2
3
SOT-25  
(TOP VIEW)  
represents decimal number of detect voltage  
(ex.)  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
3
0
x.3  
x.0  
XC6108xx3xxx  
XC6108xx0xxx  
represents options  
OPTIONS  
PRODUCT SERIES  
XC6108xxxAxx  
XC6108xxxBxx  
XC6108xxxCxx  
XC6108xxxDxx  
MARK  
Built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Standard)  
A
B
C
D
Built-in delay capacitance pin with hysteresis less than 1%  
(Standard)  
No built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin with hysteresis less than 1%  
(Semi-custom)  
represents production lot number  
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated.  
(G, I, J, O, Q, W excluded)  
USP-4  
represents output configuration and integer number of detect voltage  
CMOS Output (XC6108C Series)  
N-ch Open Drain Output (XC6108N Series)  
4
3
1
2
MARK  
VOLTAGE (V)  
MARK  
VOLTAGE (V)  
A
B
C
D
E
F
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
K
L
M
N
P
R
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
USP-4  
(TOP VIEW)  
(ex.)  
represents decimal number of detect voltage  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
3
0
x.3  
x.0  
XC6108xx3xxx  
XC6108xx0xxx  
represents options  
PRODUCT  
SERIES  
MARK  
OPTIONS  
Built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Standard)  
A
B
C
D
XC6108xxxAxx  
Built-in delay capacitance pin with hysteresis less than 1%  
XC6108xxxBxx  
XC6108xxxCxx  
XC6108xxxDxx  
(Standard)  
No built-in delay capacitance pin with hysteresis 5% (TYP.)  
(Semi-custom)  
No built-in delay capacitance pin with hysteresis less than 1%  
(Semi-custom)  
represents production lot number  
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)  
*No character inversion used.  
21/22  
XC6108 series is Not Recommended  
for New Designs.  
XC6108 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
22/22  

相关型号:

XC6108N49BGR-G

IC SUPERVISOR 4.9V 4-USP
TOREX

XC6108N49CGR-G

IC SUPERVISOR 4.9V 4-USP
TOREX

XC6108N49DGR-G

IC SUPERVISOR 4.9V 4-USP
TOREX

XC6108N50AGR-G

IC SUPERVISOR 5.0V 4-USP
TOREX

XC6108N50BGR-G

IC SUPERVISOR 5.0V 4-USP
TOREX

XC6108N50CGR-G

IC SUPERVISOR 5.0V 4-USP
TOREX

XC6108N50DGR-G

IC SUPERVISOR 5.0V 4-USP
TOREX

XC6108_1

Voltage Detector with Separated Sense Pin & Delay Type Capacitor
TOREX

XC6109

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C0

Voltage Detector with External Delay Type Capacitor
TOREX

XC6109C08ANL

Voltage Detector with Delay Type Capacitor
TOREX

XC6109C08ANR

Voltage Detector with Delay Type Capacitor
TOREX