XC6109C38ANR [TOREX]

Voltage Detector with Delay Type Capacitor; 电压检测器与延时型电容器
XC6109C38ANR
型号: XC6109C38ANR
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Voltage Detector with Delay Type Capacitor
电压检测器与延时型电容器

电容器
文件: 总14页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC6109Series  
ETR0206_005  
Voltage Detector with External Delay Type Capacitor  
GENERAL DESCRIPTION  
The XC6109 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming  
technologies.  
With the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an arbitrary  
release delay time.  
Using an ultra small package (SSOT-24), the series is suited for high density mounting.  
Both CMOS and N-channel open drain output configurations are available.  
FEATURES  
Highly Accurate  
APPLICATIONS  
Microprocessor reset circuitry  
: +2%  
(Setting Voltage Accuracy>1.5V)  
: +30mV  
Charge voltage monitors  
Memory battery back-up switch circuits  
Power failure detection circuits  
(Setting Voltage Accuracy<1.5V)  
Low Power Consumption : 0.9μA  
(TYP., VDF=1.9V, VIN= 2.0V)  
Detect Voltage Range  
: 0.8V ~ 5.0V  
in 100mV increments  
Operating Voltage Range : 0.7V ~ 6.0V  
Detect Voltage Temperature Characteristics  
: ±100ppm/ OC (TYP.)  
Output Configuration  
: CMOS or  
N-channel open drain  
Operating Temperature Range : -40 OC ~ +85 OC  
CMOS  
Built-In Delay Circuit, Delay Pin Available  
Ultra Small Package  
: SSOT-24  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
TYPICAL APPLICATION CIRCUIT  
Release Delay Time vs. Delay Capacitance  
XC6109xxxAN  
VIN(MIN.)=0.7V,VIN(MAX.)=6.0V  
Tr=5μs, Ta=25  
10000  
1000  
100  
10  
(No resistor needed for  
CMOS output products)  
1
0.1  
0.0001  
0.001  
0.01  
0.1  
1
Delay Capacitance: Cd (μF)  
1/14  
XC6109 Series  
PIN CONFIGURATION  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
VIN  
FUNCTION  
Input  
1
2
3
4
VSS  
Ground  
Cd  
Delay Capacitance  
Output (Detect ”L”)  
VOUT  
PRODUCT CLASSIFICATION  
Ordering Information  
XC6109 ①②③④⑤⑥  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
C
N
: CMOS output  
Output Configuration  
: N-ch open drain output  
② ③  
Detect Voltage  
Output Delay & Hysteresis  
Package  
08 ~ 50  
: e.g. 181.8V  
A
: Built-in delay pin & hysteresis 5% (TYP.)  
N
: SSOT-24  
R
L
: Embossed tape, standard feed  
: Embossed tape, reverse feed  
Device Orientation  
2/14  
XC6109  
Series  
BLOCK DIAGRAMS  
(1) XC6109C (CMOS Output)  
(2) XC6109N (N-ch Open Drain Output)  
Ta = 25OC  
UNITS  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Input Voltage  
Output Current  
SYMBOL  
RATINGS  
VSS - 0.3 ~ 7.0  
10  
VIN  
V
IOUT  
mA  
XC6109C (*1)  
XC6109N (*2)  
Delay Pin Voltage  
Delay Pin Current  
Power Dissipation SSOT-24  
VSS - 0.3 ~ VIN + 0.3  
VSS - 0.3 ~ 7.0  
VSS-0.3 ~ VIN + 0.3  
Output Voltage  
VOUT  
V
VCD  
ICD  
V
5.0  
mA  
Pd  
Ta  
150  
mW  
OC  
OC  
Operating Temperature Range  
Storage Temperature Range  
- 40 ~ + 85  
- 40 ~ + 125  
Tstg  
NOTE:  
*1: CMOS output  
*2: N-ch open drain output  
3/14  
XC6109 Series  
ELECTRICAL CHARACTERISTICS  
Ta = 25OC  
CIRCUIT  
PARAMETER  
Operating Voltage  
Detect Voltage  
SYMBOL  
VIN  
CONDITIONS  
VDF(T)=0.8~5.0V (*1)  
VDF(T)=0.8~5.0V  
MIN.  
0.7  
TYP.  
MAX.  
6.0  
UNIT  
V
-
-
VDF  
E-1  
V
VDF  
VDF  
VDF  
x 0.08  
1.70  
1.90  
2.00  
1.80  
2.00  
2.20  
Hysteresis Width  
VHYS  
ISS1  
VIN=1.0~6.0V  
V
x 0.02  
x 0.05  
0.80  
0.90  
1.00  
0.90  
1.10  
1.20  
VDF(T)=0.8~1.9V  
-
-
-
-
-
-
Supply Current 1  
VIN=VDF x 0.9  
VIN=VDF x 1.1  
μA  
VDF(T)=2.0~3.9V  
VDF(T)=4.0~5.0V  
VDF(T)=0.8~1.9V  
VDF(T)=2.0~3.9V  
VDF(T)=4.0~5.0V  
Supply Current 2  
ISS2  
μA  
VIN=0.7V  
0.01  
VDS=0.5V(Nch)  
VIN=1.0V (*2)  
VDS=0.5V(Nch)  
VIN=2.0V (*3)  
VDS=0.5V(Nch)  
VIN=3.0V (*4)  
VDS=0.5V(Nch)  
VIN=4.0V (*5)  
0.36  
0.7  
1.6  
2.0  
0.1  
0.8  
1.2  
1.6  
IOUT1  
-
mA  
mA  
Output Current  
VDS=0.5V(Nch)  
VIN=VDFx1.1  
2.3  
(*6)  
IOUT2  
E-2  
VDS=0.5V (P-ch)  
CMOS  
-
-
-
0.20  
0.20  
output  
Leak  
μA  
N-ch Open  
Current  
ILEAK  
VIN=6.0V, VOUT=6.0V, Cd: Open  
Drain  
0.40  
Output  
UVDF  
UTaVDF  
Rdelay  
ICD  
Temperature  
Characteristics  
O
O
O
-
±100  
-
-40 C<Ta<85 C  
ppm/  
C
Delay Resistance (*7)  
Delay Pin Sink Current  
Delay Capacitance Pin  
Threshold Voltage  
Unspecified Operating  
Voltage (*8)  
VIN=6.0V, Cd=0V  
Cd=0.5V, VIN=0.7V  
VIN=1.0V  
1.6  
8
2.0  
60  
2.4  
-
MΩ  
μA  
0.4  
2.9  
0.5  
3.0  
0.6  
3.1  
VTCD  
VUNS  
TDF0  
TDR0  
V
V
VIN=6.0V  
VIN=0~0.7V  
-
-
-
0.3  
30  
30  
0.4  
230  
200  
VIN=6.0 down to 0.7V  
Cd: Open  
Detect Delay Time (*9)  
μs  
μs  
Release Delay Time  
VIN=0.7~6.0V  
Cd: Open  
(*10)  
NOTE:  
*1: VDF(T): Setting Detect Voltage  
*2: VDF(T)1.0V  
*3: VDF(T)2.0V  
*4: VDF(T)3.0V  
*5: VDF(T)4.0V  
*6: This numerical value is applied only to the XC6109C series (CMOS output).  
*7: Calculated from the voltage value and the current value of both ends of the resistor.  
*8: The maximum voltage of the VOUT in the range of the VIN 0 to 0.7V. This numerical value is applied only to the XC6109C series  
(CMOS output).  
*9: Time which ranges from the state of VIN =VDF to the VOUT reaching 0.6V when the VIN falls without connecting to the Cd pin.  
*10: Time which ranges from the state of VIN= VDF +VHYS to the VOUT reaching 5.4V when the VIN rises without connecting to the Cd pin.  
4/14  
XC6109  
Series  
VOLTAGE CHART  
SYMBOL  
E-1  
E-2  
PARAMETER  
DETECT VOLTAGE (*1)  
(V)  
OUTPUT CURRENT (*2)  
(mA)  
SETTING DETECT  
VOLTAGE  
VDF  
IOUT2  
VDF(T)  
MIN.  
0.770  
0.870  
0.970  
1.070  
1.170  
1.270  
1.370  
1.470  
1.568  
1.666  
1.764  
1.862  
1.960  
2.058  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
3.528  
3.626  
3.724  
3.822  
3.920  
4.018  
4.116  
4.214  
4.321  
4.410  
4.508  
4.606  
4.704  
4.802  
4.900  
TYP.  
0.800  
0.900  
1.000  
1.100  
1.200  
1.300  
1.400  
1.500  
1.600  
1.700  
1.800  
1.900  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
3.600  
3.700  
3.800  
3.900  
4.000  
4.100  
4.200  
4.300  
4.400  
4.500  
4.600  
4.700  
4.800  
4.900  
5.000  
MAX.  
0.830  
0.930  
1.030  
1.130  
1.230  
1.330  
1.430  
1.530  
1.632  
1.734  
1.836  
1.938  
2.040  
2.142  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
3.672  
3.774  
3.876  
3.978  
4.080  
4.182  
4.284  
4.386  
4.488  
4.590  
4.692  
4.794  
4.896  
4.998  
5.100  
MIN.  
-0.40  
TYP.  
-0.20  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
-0.60  
-0.80  
-0.30  
-0.40  
-1.00  
-0.50  
-1.20  
-0.60  
-1.30  
-0.65  
NOTE:  
*1: When VDF(T)1.4V, the detection accuracy is ±30mV. When VDF(T)1.5V, the detection accuracy is ±2%.  
*2: This numerical value is applied only to the XC6109C series (CMOS output).  
5/14  
XC6109 Series  
TEST CIRCUITS  
Circuit 1  
Circuit 2  
VIN  
A
VOUT  
(No resistor needed for  
CMOS output products)  
Cd  
VSS  
Circuit 3  
Circuit 4  
VIN  
VOUT  
A
Cd  
VSS  
Circuit 5  
Circuit 6  
(No resistor needed for  
CMOS output products)  
Circuit 7  
Circuit 8  
(No resistor needed for  
CMOS output products)  
Waveform Measurement Point  
6/14  
XC6109  
Series  
OPERATIONAL EXPLANATION  
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on the next page.  
As an early state, the input voltage pin is applied sufficiently high voltage to the release voltage and the delay capacitance  
(Cd) is charged to the input pin voltage. While the input pin voltage (VIN) starts dropping to reach the detect voltage  
(VDF) (VIN > VDF), the output voltage (VOUT) keeps the “High” level (=VIN).  
When the input pin voltage keeps dropping and becomes equal to the detect voltage (VIN = VDF), an N-ch transistor for  
the delay capacitance discharge is turned ON, and starts to discharge the delay capacitance. For the internal circuit,  
which uses the delay capacitance pin as power input, the reference voltage operates as a comparator of VIN, and the  
output voltage changes into the “Low” level (VIN×0.1). The detect delay time (TDF) is defined as time which ranges  
from VIN =VDF to the VOUT of “Low” level (especially, when the Cd pin is not connected: TDF0).  
While the input pin voltage keeps below the detect voltage, and 0.7V or more, the delay capacitance is discharged to the  
ground voltage (=VSS) level. Then, the output voltage (VOUT) maintains the “Low” level.  
While the input pin voltage drops to 0.7V or less and it increases again to 0.7V or more, the output voltage may not be  
able to maintain the “Low” level. Such an operation is called “Unspecified Operation”, and voltage which occurs at the  
output pin voltage is defined as unstable operating voltage (VUNS).  
While the input pin voltage increases more than 0.7V and it reaches to the release voltage level (VINVDF +VHYS), the  
output voltage (VOUT) maintains the “Low” level.  
When the input pin voltage continues to increase more than 0.7V up to the release voltage level (= VDF + VHYS), the N-ch  
transistor for the delay capacitance discharge will be turned OFF, and the delay capacitance will be started discharging  
via a delay resistor (Rdelay). The internal circuit, which uses the delay capacitance pin as power input, will operate as a  
hysteresis comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic Threshold: VTHL=VSS) while the input pin voltage  
keeps higher than the detect voltage (VIN > VDF).  
While the input pin voltage becomes equal to the release voltage or higher and keeps the detect voltage or higher, the  
delay capacitance (Cd) will be charged up to the input pin voltage. When the delay capacitance pin voltage (VCD)  
reaches to the delay capacitance pin threshold voltage (VTCD), the output voltage changes into the “High” (=VIN) level.  
TDR is defined as time which ranges from VIN =VDF+VHYS to the VOUT of “High” level (especially when the Cd pin is not  
connected: TDR0). TDR can be given by the formula (1).  
TDR = Rdelay×Cd×In (1VTCD / VIN) +TDR0 (1)  
* In = a natural logarithm  
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and  
the delay capacitance pin threshold voltage is VIN /2 (TYP.)  
TDR=Rdelay×Cd×0.69 (2)  
* Rdelay is 2.0MΩ(TYP.)  
As an example, presuming that the delay capacitance is 0.68μF, TDR is :  
2.0×106×0.68×10-6×0.69=938(ms)  
* Note that the release delay time may remarkably be short when the delay capacitance is not discharged to the ground  
(=VSS) level because time described in is short.  
While the input pin voltage is higher than the detect voltage (VIN > VDF), therefore, the output voltage maintains the  
“High”(=VIN) level.  
Release Delay Time Chart  
Delay Capacitance [Cd]  
Release Delay Time [TDR] (TYP.)  
Release Delay Time [TDR] (MIN. ~ MAX.)  
(μF)  
0.01  
0.022  
0.047  
0.1  
(ms)  
13.8  
30.4  
64.9  
138  
(ms)  
11.0 ~ 16.6  
24.3 ~ 36.4  
51.9 ~ 77.8  
110 ~ 166  
243~ 364  
0.22  
0.47  
1
304  
649  
519 ~ 778  
1100 ~ 1660  
1380  
7/14  
XC6109 Series  
OPERATIONAL EXPLANATION (Continued)  
Figure 1: Typical application circuit example  
The circuit which uses the delay  
Capacitance pin as power input.  
VIN  
M2  
RSEN=R1+R2+R3  
M4  
R1  
VOUT  
-
+
Rdelay  
R2  
Vref  
VIN  
M5  
M3  
M1  
R3  
Cd  
VSS  
N-ch transictor for the delay  
Capacitance discharge.  
Delay Capacitor [Cd]  
Cd  
Figure 2: The timing chart of Figure 1  
Input Voltage: VIN  
Release Voltage: VDF+VHYS  
Detect Voltage: VDF  
Minimum Operating Voltage (0.7V)  
Delay Capacitance Pin Voltage: VCD  
Delay Capacitance Pin Threshold Voltage: VTCD  
Output Pin Voltage: VOUT  
8/14  
XC6109  
Series  
NOTES ON USE  
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent  
damage to the device.  
2. The input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at  
operation of the IC. At this time, the operation may be wrong if the input pin voltage falls below the minimum operating  
voltage range. In CMOS output, for output current, drops in the input pin voltage similarly occur. Oscillation of the  
circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis  
voltage. Note it especially when you use the IC with the VIN pin connected to a resistor.  
3. Note that a rapid and high fluctuation of the input pin voltage may cause a wrong operation.  
4. When there is a possibility of which the input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation with the  
delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the VIN pin and  
the Cd pin as the Figure 3 shown below.  
5. When N-ch open drain output is used, output voltages VOUT at voltage detection and release are determined by a  
pull-up resistor tied to the output pin. A resistance value of the pull-up resistor can be selected with referring to the  
followings. (Refer to Figure 4)  
During detection, the formula is given as  
VOUT=Vpull/(1+Rpull/RON  
)
where Vpull is pull-up voltage and RON (*1) is ON resistance of N-ch driver M5 (RON=VDS/IOUT1 from the electrical  
characteristics table).  
For example, when VIN=2.0V (*2), RON = 0.5/0.8×10-3=625Ω(MIN.) and if you want to get VOUT less than 0.1V when  
Vpull=3.0V, Rpull can be calculated as follows;  
Rpull=(Vpull /VOUT-1)×RON=(3/0.1-1)×62518kΩ  
Therefore, pull-up resistance should be selected 18kΩ or higher.  
(*1) VIN is smaller, RON is bigger  
(*2) For the calculation, the lowest VIN should be used among of the VIN range  
During release, the formula is given as  
VOUT=Vpull/(1+Rpull/Roff)  
where Vpull is pull-up voltage Roff is OFF resistance of N-ch driver M5 (Roff=VOUT/ILEAK=15MΩ from the  
electrical characteristics table)  
For examples, if you want to get VOUT larger than 5.99V when Vpull is 6.0V, Rpull can be calculated as follows;  
Rpull=(Vpull/VOUT-1)×Roff=(6/5.99-1)×15×10625kΩ  
Therefore, pull-up resistance should be selected 25kΩ or below.  
(No resistor needed  
for CMOS output  
products)  
Note: Roff=VOUT/ILEAK  
Figure 3: Circuit example with the delay capacitance pin  
(Cd) connected to a schottky barrier diode  
Figure 4: Circuit example of XC6109N Series  
9/14  
XC6109 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Supply Current vs. Input Voltage  
(2) Detect Voltage vs. Ambient Temperature  
XC6109x25AN  
XC6109x25AN  
2.0  
1.5  
1.0  
0.5  
0.0  
2.55  
2.50  
2.45  
Ta=85  
25  
-40  
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
)
100  
Input Voltage: VIN (V)  
Ambient Temperature: Ta (  
(3) Hysteresis Voltage vs. Ambient Temperature  
XC6109x25AN  
0.20  
0.15  
0.10  
0.05  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
(4) Output Voltage vs. Input Voltage  
XC6109C25AN  
No Pull-up  
XC6109N25AN  
4.0  
3.0  
Pull-up=VIN R=100k  
Ω
4.0  
3.0  
2.0  
1.0  
0.0  
Ta=85  
25  
2.0  
1.0  
Ta=85  
-40  
25  
-40  
0.0  
-1.0  
-1.0  
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
10/14  
XC6109  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(5) Output Current vs. Input Voltage  
XC6109C08AN  
XC6109x50AN  
VDS(P-ch)=0.5V  
VDS(N-ch)=0.5V  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Ta=-40  
Ta=85  
25  
25  
3
-40  
5
85  
4
0
1
2
4
6
0
1
2
3
5
6
Input Voltage: VIN (V)  
Input Voltage: VIN (V)  
(6) Cd Pin Sink Current vs. Input Voltage  
XC6109x50AN  
(7) Delay Resistance vs. Ambient Temperature  
XC6109xxxAN  
VCD=0.0V VIN=6.0V  
4
VDS=0.5V  
3.0  
Ta=-40  
3.5  
3
2.5  
25  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2
85  
1.5  
1
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
6
Ambient Temperature: Ta (  
)
Input Voltage: VIN (V)  
(8) Release Delay Time vs. Delay Capacitance  
XC6109xxxAN  
(9) Detect Delay Time vs. Delay Capacitance  
XC6109xxxAN  
VIN(MIN.)=0.7V,VIN(MAX.)=6.0V  
VIN(MIN.)=0.7V, VIN(MAX.)=6.0V  
Tr=5μs, Ta=25  
Tf=5μs, Ta=25  
10000  
1000  
100  
10  
100000  
10000  
1000  
100  
1
10  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
Delay Capacitance: Cd (μF)  
Delay Capacitance: Cd (μF)  
11/14  
XC6109 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(11) Leak Current vs. Supply Voltage  
(10) Leak Current vs. Ambient Temperature  
XC6109N25AN  
XC6109N25AN  
VIN=6.0V  
VIN=6.0V VOUT=6.0V  
0.25  
0.20  
0.15  
0.10  
0.25  
0.20  
0.15  
0.10  
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
6
Ambient Temperature: Ta (  
)
Supply Voltage: VOUT (V)  
12/14  
XC6109  
Series  
PACKAGING INFORMATION  
SSOT-24  
MARKING RULE  
SSOT-24  
Represents output configuration and integer number of detect voltage  
4
3
CMOS output (XC6109C Series)  
N-ch Open Drain output (XC6109N Series)  
MARK VOLTAGE (V) PRODUCT SERIES MARK VOLTAGE (V) PRODUCT SERIES  
A
B
C
D
E
F
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
XC6109C0xxNx  
XC6109C1xxNx  
XC6109C2xxNx  
XC6109C3xxNx  
XC6109C4xxNx  
XC6109C5xxNx  
K
L
0.x  
1.x  
2.x  
3.x  
4.x  
5.x  
XC6109N0xxNx  
XC6109N1xxNx  
XC6109N2xxNx  
XC6109N3xxNx  
XC6109N4xxNx  
XC6109N5xxNx  
M
N
P
R
1
2
SSOT-24  
(TOP VIEW)  
Represents decimal number of detect voltage  
MARK  
VOLTAGE (V)  
PRODUCT SERIES  
N
P
R
S
T
x.0  
x.1  
x.2  
x.3  
x.4  
x.5  
x.6  
x.7  
x.8  
x.9  
XC6109xx0xNx  
XC6109xx1xNx  
XC6109xx2xNx  
XC6109xx3xNx  
XC6109xx4xNx  
XC6109xx5xNx  
XC6109xx6xNx  
XC6109xx7xNx  
XC6109xx8xNx  
XC6109xx9xNx  
U
V
X
Y
Z
Represents production lot number  
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated/  
(G, I, J, O, Q, W excepted)  
13/14  
XC6109 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
14/14  

相关型号:

XC6109C39ANL

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C39ANR

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C3XXNX

Voltage Detector with External Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C4

Voltage Detector with External Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C40ANL

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C40ANR

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C41ANL

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C41ANR

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C42ANL

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX

XC6109C42ANR

Voltage Detector with Delay Type Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
TOREX