XC612N3619ML [TOREX]

Power Management Circuit;
XC612N3619ML
型号: XC612N3619ML
厂家: Torex Semiconductor    Torex Semiconductor
描述:

Power Management Circuit

光电二极管
文件: 总14页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC612Series  
ETR0204_001  
2-Channel Voltage Detectors  
GENERAL DESCRIPTION  
The XC612 series consist of 2 voltage detectors, in 1 mini-molded, SOT-25 package.  
The series provides accuracy and low power consumption through CMOS processing and laser trimming and consists of a  
highly accurate voltage reference source, 2 comparators, hysteresis and output driver circuits.  
The input (VIN1) for voltage detector 1 (VD1) dually functions as the power supply pin for both detector 1 (VD1) and detector 2  
(VD2).  
APPLICATIONS  
FEATURES  
Highly Accurate  
Low Power Consumption  
: Setting voltage accuracy ±2%  
Microprocessor reset circuitry  
Memory battery back-up circuits  
Power-on reset circuits  
:
2.0μA(TYP.)  
(VIN1=VIN2=2.0V, Static state)  
Detect Voltage  
: 1.5V ~ 5.0V programmable in  
100mV steps. Detector’s voltages can  
be set-up independently  
Conditionaly;  
XC612N : VDET1>VDET2  
Power failure detection  
System battery life and charge voltage monitors  
Delay circuitry  
>
XC612D, XC612E : VDET1 VDET2,  
VDET1<VDET2  
Operating Voltage Range : 1.5V ~ 10.0V  
Temperature Characteristics  
:
±
100ppm/(TYP.)  
Output Configuration  
: N-channel open drain  
CMOS Low Power Consumption  
2 Voltage Detectors Built-in  
Small Package  
: SOT-25 (150mW) mini-mold  
* CMOS Output is under development  
TYPICAL APPLICATION CRICUIT  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
1/14  
XC612 Series  
PIN CONFIGURATION  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
1
2
3
4
5
VDET1  
VIN1  
Voltage Detector 1 Output  
Detector 1 Input, Power Supply  
Ground  
VSS  
VIN2  
Voltage Detector 2 Input  
Voltage Detector 2 Output  
VDET2  
PRODUCT CLASSIFICATION  
Selection Guide  
TYPE  
VDET1  
VDET2  
XC612N  
N-ch Open Drain  
N-ch Open Drain  
XC612D  
XC612E  
N-ch Open Drain  
CMOS  
CMOS  
N-ch Open Drain  
Ordering Information  
XC612①②③④⑤⑥⑦  
DESIGNATOR  
DESCRIPTION  
SYMBOL  
DESCRIPTION  
: VDET1/VDET2: N-ch open drain  
N
Output Configuration  
D
: VDET1: N-ch open drain, VDET2: CMOS  
: VDET1: CMOS, VDET2: N-ch open drain  
: VDET1: 2.5V→②25  
E
1550  
1550  
M
②③  
④⑤  
Detect Voltage 1 (VDET1)  
Detect Voltage 2 (VDET2)  
Package  
: VDET2: 3.3V33  
: SOT-25 (SOT-23-5)  
R
: Embossed tape, standard feed  
: Embossed tape, reverse feed  
Device Orientation  
L
2/14  
XC612  
Series  
BLOCK DIAGRAMS  
XC612N Series  
XC612D Series  
XC612E Series  
3/14  
XC612 Series  
ABSOLUTE MAXIMUM RATINGS  
Ta = 25℃  
PARAMETER  
SYMBOL  
VIN1  
RATINGS  
12.0  
UNITS  
V
VD 1  
VD 2  
Input Voltage  
Output Voltage  
Output Current  
VIN2  
12.0  
V
VD 1 (N-ch open drain)  
VD 1 (CMOS)  
VD 2 (N-ch open drain)  
VD 2 (CMOS)  
VD 1  
VSS – 0.3 ~ 12.0  
VSS – 0.3 ~ VIN1 + 0.3  
VSS – 0.3 ~ 12.0  
VSS – 0.3 ~ VIN1 + 0.3  
50  
V
VVDET1  
VVDET2  
V
V
V
IVDET1  
IVDET2  
Pd  
mA  
mA  
mW  
VD 2  
50  
Power Dissipation  
150  
Operating Temperature Range  
Storage Temperature Range  
Topr  
Tstg  
- 30 ~ + 80  
- 40 ~ + 125  
4/14  
XC612  
Series  
ELECTRICAL CHARACTERISTICS  
Ta=25  
CIRCUITS  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
VDF1  
TYP.  
MAX. UNITS  
Detect Voltage  
(VDET1) (*1)  
Voltage when VDET1 changes from  
H to L following a reduction of VIN1  
VDF1  
V
VDF1  
VDF1  
1
x 0.98  
VDF2  
x 1.02  
Detect Voltage  
(VDET2) (*1)  
Voltage when VDET2 changes from  
H to L following a reduction of VIN2  
VDF2  
V
VDF2  
VHYS1  
VHYS2  
VDF2  
1
1
1
x 0.98  
x 1.02  
Voltage (VDR1) - VDF1 when VDET1 changes VDF1(T)  
from L to H following an increase of VIN1  
VDF1(T)  
x 0.05  
VDF2(T)  
x 0.05  
1.35  
VDF1(T)  
V
Hysteresis Range 1  
Hysteresis Range 2  
x 0.02  
VDF2(T)  
x 0.02  
-
x 0.08  
VDF2(T)  
V
Voltage (VDR2) - VDF2 when VDET2 changes  
from L to H following an increase of VIN2  
x 0.08  
VIN1 = 1.5V  
VIN1 = 2.0V  
3.90  
4.50  
-
1.50  
1.95  
2.40  
3.00  
0.45  
0.50  
0.65  
0.80  
1.00  
-
Supply Current  
ISS  
μA  
2
VIN1 = 3.0V  
-
-
5.10  
5.70  
6.30  
1.30  
1.50  
1.70  
1.90  
2.10  
10  
(VIN1 Input Current)  
VIN1 = 4.0V  
VIN1 = 5.0V  
-
VIN2 = 1.5V  
-
VIN2 = 2.0V  
-
VIN2 Input Current  
Operating Voltage  
IIN2  
μA  
2
VIN2 = 3.0V  
-
VIN2 = 4.0V  
-
VIN2 = 5.0V  
-
VIN1  
VDF(T) = 1.5V to 6.0V  
VIN1 = 1.0V  
1.0  
0.3  
3.0  
5.0  
6.0  
7.0  
-
V
2.2  
-
VIN1 = 2.0V  
7.7  
-
N-ch, VDS=0.5V  
VIN1 = 3.0V  
VIN1 = 4.0V  
VIN1 = 5.0V  
VIN1 = 8.0V  
10.1  
11.5  
13.0  
-10.0  
-
Output Current (*3)  
Temperature  
IVDET  
mA  
3
-
-
P-ch (CMOS) VDS=-2.1V  
-2.0  
ΔVDF  
-30℃ ≦ Topr 80℃  
-
±100  
ppm/℃  
Characteristics (*3) ΔToprVDF  
Delay Time (*3)  
(Release Voltage→  
tDLY  
(VDRVOUT inversion)  
-
-
0.2  
ms  
5
Output inversion)  
NOTE:  
*1 : VDF1(T), VDF2(T) : User specified detect voltage.  
*2 : Release voltage (VDR) = VDF +VHYS  
*3 : Those parameters marked with an asterisk apply to both VDET1 and VDET2.  
*4 : Input Voltage : please ensure that VIN1 > VIN2  
>
(Input voltage of XC612D and XC612E series : please ensure that VIN1 VIN2, VIN1 < VIN2.)  
*5 : VIN1 pin serve both ISS and power supply pin so that VIN2 operates VIN1 as a power supply source. For normal operation of VIN2,  
operating voltage higher than the minimum is needed to be applied to power supply pin VIN1.  
*6 : For CMOS output products, high level output voltage which is generated when the transient response is released becomes input  
voltage of VIN.  
5/14  
XC612 Series  
OPERATONAL EXPLANATION  
Timing Chart (Pull up voltage =Input voltage VIN1)  
Operational Notes (N-ch Open drain)  
Timing Chart A (VIN1=voltages above release voltage, VIN2=sweep voltage)  
Because a voltage higher than the minimum operating voltage is applied to the voltage input pin (VIN), ground voltage will be  
output at the output pin (VDET) during stage 3. (Stages 1, 2, 4, 5 are the same as in B below).  
Timing Chart B (VIN1=VIN2)  
When a voltage greater than the release voltage (VDR) is applied to the voltage input pin (VIN1, VIN2), input voltage (VIN1,  
VIN2) will gradually fall.  
When a voltage greater than the detect voltage (VDF) is applied to the voltage input pin (VIN1, VIN2), a state of high  
impedance will exist at the output pin (VDET1, VDET2), so should the pin be pulled up, voltage will be equal to pull up  
voltage.  
When input voltage (VIN1, VIN2) falls below detect voltage (VDF), output voltage (VDET1, VDET2) will be equal to ground  
level (VSS).  
Should input voltage (VIN1, VIN2) fall below the minimum operational voltage (VMIN), output will become unstable. Should  
VIN2 fall below VMIN, voltage at the output pin (VDET2) will be equal to ground level (VSS) if the power supply (VIN1) is  
within the operating voltage range.  
*In general the output pin is pulled up so output will be equal to pull up voltage.  
Should input voltage (VIN1, VIN2) rise above ground voltage (VSS), output voltage (VDET1, VDET2) will equal ground level  
until the release voltage level (VDR) is reached.  
When input voltage (VIN1, VIN2) rises above release voltage, the output pin's (VDET1, VDET2) voltage will be equal to the  
voltage dependent on pull up.  
Note : The difference between release voltage (VDR) and detect voltage (VDF) is the Hysteresis Range .  
6/14  
XC612  
Series  
NOTES ON USE  
1. Please use this IC within the specified maximum absolute ratings.  
2. Please ensure that input voltage VIN2 is less than VIN1 + 0.3V. (refer to N.B. 1 below)  
3. With a resistor connected between the VIN1 pin and the input, oscillation is liable to occur as a result of through current at  
the time of release. (refer to N.B. 2 below)  
4. With a resistor connected between the VIN1 pin and the input, detect and release voltage will rise as a result of the IC's  
supply current flowing through the VIN1 pin.  
5. In order to stabilize the IC's operations, please ensure that the VIN1 pin's input frequency's rise and fall times are more  
than 5 msec/V.  
6. Should the power supply voltage VIN1 exceed 6V, voltage detector 2's detect voltage (VDF2) and the release voltage  
(VDR2) will shift somewhat.  
7. For CMOS output products, high level output voltage which is generated when the transient response is released  
becomes input voltage of VIN.  
N.B.  
1. Voltage detector 2's input voltage (VIN2)  
An input protect diode is connected from input detector 2's input (VIN2) to input detector 1's input. Therefore, should the  
voltage applied to VIN2 exceed VIN1, current will flow through VIN1 via the diode. (refer to diagram1)  
2. Oscillation as a result of through current  
Since the XC612 series are CMOS ICs, through current will flow when the IC's internal circuit switching operates  
(during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the  
through current's resistor (RIN) during release voltage operations. (refer to diagram 2)  
Since hysteresis exists during detect operations, oscillation is unlikely to occur.  
Diagram 1. Voltage detector 2's input voltage VIN2  
Diagram 2. Through current oscillation  
7/14  
XC612 Series  
TEST CIRCUITS  
Circuit 1  
* A resistor is not needed for CMOS output type.  
Circuit 2  
Circuit 3  
XC612N Series  
XC612D Series  
8/14  
XC612  
Series  
TEST CIRCUITS (Continued)  
Circuit 3 (Continued)  
XC612E Series  
Circuit 4  
9/14  
XC612 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Ambient Temperature Topr ()  
Ambient Temperature Topr ()  
Note: Unless otherwise stated, pull up resistance = 100kΩwith N-ch open drain output type.  
10/14  
XC612  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
11/14  
XC612 Series  
APPLICATION CIRCUITS EXAMPLE *Example covers N-channel open drain product's circuits  
Window comparator circuit  
Detect voltages above respective established voltages circuit  
On resistors R1 and R2 equation (1) and (2)  
Detect voltage = { (R1 + R2) ÷ R2} × VDF2  
N.B. VDF2 = detect voltage VD2  
(1)  
Hysteresis (VHYS2) = { (R1 + R2) ÷R2 } × VHYS2  
(2)  
Note: Please ensure that input voltage 2 (VIN2) is less than VIN1 + 0.3V  
Detect voltage circuit with delay built-in  
Note: Delay operates at both times of release and  
detect operations.  
12/14  
XC612  
Series  
PACKAGING INFORMATION  
SOT-25  
MARKING RULE  
SOT-25  
Represents output configuration  
CONFIGURATION  
MARK  
PRODUCT SERIES  
VDET1  
N-ch Open Drain  
N-ch Open Drain  
CMOS  
VDET2  
N-ch Open Drain  
CMOS  
5
4
N
D
E
XC612NxxxxMx  
XC612DxxxxMx  
XC612ExxxxMx  
1
N-ch Open Drain  
2
3
, Represents sequence number  
Represents production lot number  
0 to 9, A to Z repeated. (G, I, J, O, Q, W excepted.)  
13/14  
XC612 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this catalog is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this catalog.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this catalog.  
4. The products in this catalog are not developed, designed, or approved for use with such  
equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this catalog within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this catalog may be copied or reproduced without the  
prior permission of Torex Semiconductor Ltd.  
14/14  

相关型号:

XC612N3619MR-G

Power Management Circuit
TOREX

XC612N3620DR-G

Power Management Circuit
TOREX

XC612N3620ML

Power Management Circuit
TOREX

XC612N3620MR-G

Power Management Circuit
TOREX

XC612N3621DR

Power Management Circuit
TOREX

XC612N3621ML

Power Management Circuit
TOREX

XC612N3621MR

Power Management Circuit
TOREX

XC612N3621MR-G

Power Management Circuit
TOREX

XC612N3622DR

Power Management Circuit
TOREX

XC612N3622MR

Power Management Circuit
TOREX

XC612N3623ML

Power Management Circuit
TOREX

XC612N3623MR

Power Management Circuit
TOREX