XCL208 [TOREX]

400mA Inductor Built-in Step-Down “micro DC/DC” Converters; 400毫安电感内置步下了????微型DC / DCA ????转换器
XCL208
型号: XCL208
厂家: Torex Semiconductor    Torex Semiconductor
描述:

400mA Inductor Built-in Step-Down “micro DC/DC” Converters
400毫安电感内置步下了????微型DC / DCA ????转换器

转换器
文件: 总22页 (文件大小:824K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCL208/XCL209 Series  
ETR28003-001a  
400mA Inductor Built-in Step-Down “micro DC/DC” Converters  
GreenOperation Compatible  
GENERAL DESCRIPTION  
The XCL208/XCL209 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control IC in  
one tiny package (2.5mm×2.15mm, h=1.05mm). A stable power supply with an output current of 400mA is configured using only  
two capacitors connected externally.  
An internal coil simplifies the circuit and enables minimization of noise and other operational trouble due to the circuit wiring.  
A wide operating voltage range of 1.8V (2.0V) to 6.0V enables support for applications that require an alkaline battery (2-cell) or  
AC adapter (5V) power supply. An internally fixed output voltage (0.8V to 4.0V) or an externally set output voltage can be selected.  
The XCL208/XCL209 series uses synchronous rectification at an operating frequency of 3.0MHz. PWM control (XCL208) or  
automatic PWM/PFM switching control (XCL209) can be selected. The XCL208 series has a fixed frequency, enabling the  
suppression of output ripple. The XCL209 series achieves high efficiency while holding down output ripple across the full range of  
loads, from light to heavy, enabling the extension of battery operation time.  
Soft start and on/off functions with CL discharge are provided, and the IC can be put in the standby state by inputting a Low level  
signal into the CE pin.  
FEATURES  
APPLICATIONS  
Mobile phones, Smart phones  
Bluetooth Headsets  
Tablet PCs  
Input Voltage  
: 1.8V ~ 6.0V (Type F)  
: 2.0V ~ 6.0V (Type A/B)  
: 0.8V ~ 4.0V (±2.0%)  
: 90% (VIN=4.2V, VOUT=3.3V)  
: 400mA  
Fixed Output Voltage  
High Efficiency  
PND  
Output Current  
PC peripheral devices  
DSC, Camcorders  
Oscillation Frequency  
CE Function  
: 3.0MHz (±15%)  
: Active High  
Soft-start Circuit Built-in  
CL High Speed Auto Discharge  
: Current Limiter Built-in  
(Constant Current & Latching)  
: PWM (XCL208)  
Protection Circuits  
Control Methods  
TYPICAL APPLICATION CIRCUIT  
PWM/PFM (XCL209)  
Operating Ambient Temperature : -40+85℃  
Package  
: USP-10B03  
Environmentally Friendly  
: EU RoHS Compliant, Pb Free  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
Efficiency vs. Output Current  
XCL208x333DR/XCL209x333D  
XCL208A / XCL208B / XCL209A / XCL209B Type  
100  
XCL209(PWM/PFM)  
80  
60  
VIN= 4.2V  
40  
5.0V  
XCL208(PWM)  
VOUT =3.3V  
20  
0
0.01  
0.1  
1
10  
100  
1000  
Output Current:IOUT (mA)  
XCL208F / XCL209F Type  
1/22  
XCL208/XCL209 Series  
BLOCK DIAGRAM  
1)XCL208A / XCL209A Type  
2) XCL208B / XCL209B Type  
L1  
L2  
L1  
L2  
VOUT  
VOUT  
LX  
LX  
VIN  
VIN  
PVSS  
PVSS  
AVSS  
AVSS  
CE  
CE  
3)XCL208F / XCL209F Type  
L1  
L2  
FB  
LX  
VIN  
PVSS  
AVSS  
CE  
NOTE:  
The XCL208 offers a fixed PWM control, a signal from CE Control Logic to PWM/PFM Selector is fixed to "L" level inside. The XCL209 control  
scheme is PWM/PFM automatic switching, a signal from CE Control Logic to PWM/PFM Selector is fixed to "H" level inside. The diodes placed  
inside are ESD protection diodes and parasitic diodes.  
2/22  
XCL208/XCL209  
Series  
PRODUCT CLASSIFICATION  
XCL208①②③④⑤⑥ Fixed PWM  
XCL209①②③④⑤⑥ PWM/PFM Auto Switching  
DESIGNATOR  
ITEM  
Type  
SYMBOL  
A
DESCRIPTION  
VIN2.0V Fixed Output Voltage  
Standard soft-start , No CL auto discharge  
VIN2.0V Fixed Output Voltage  
B
F
CL auto discharge, High speed soft-start  
VIN1.8V Output Voltage External Setting  
CL auto discharge, High speed soft-start  
10  
12  
15  
18  
25  
28  
2L  
30  
33  
08  
3
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
②③  
Output Voltage (*1)  
2.8V  
2.85V  
3.0V  
3.3V  
External Setting 0.8V (XCL208F/XCL209F)  
3.0MHz  
Oscillation Frequency  
Package (Order Unit)  
(*2)  
⑤⑥  
DR  
USP-10B03 (3,000/Reel)  
(*1) When other output voltages (semi-custom) are needed, please contact your local Torex sales office for more information.  
Output voltage range is 0.8~4.0V.  
(*2) Halogen free and RoHS compliant.  
3/22  
XCL208/XCL209 Series  
PIN CONFIGURATION  
VIN 8  
L1  
9
PVSS  
LX  
1
2
NC  
CE  
7
6
3
4
NC  
10  
AVSS 5  
VOUT  
L2  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTIONS  
USP-10B03  
PVSS  
LX  
1
2
3
(Power) Ground  
Switching Output  
No Connection  
NC  
FB  
Output Voltage Sense Pin (Type F)  
4
VOUT  
AVSS  
CE  
Fixed Output Voltage Pin (Type A/B)  
(Analog) Ground  
5
6
Active High Enable  
No Connection  
NC  
7
VIN  
L1  
8
Power Supply Input  
Inductor Electrodes  
Inductor Electrodes  
9
L2  
10  
FUNCTION  
PIN NAME  
SIGNAL  
CONDITIONS  
AVSSVCE0.25V  
0.65VVCE6V  
STATUS  
L
Stand-by  
Active  
CE  
H
* When the CE pin is left open, the IC may operate unstable. Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
Ta=25℃  
PARAMETER  
SYMBOL  
RATINGS  
UNITS  
Input Voltage  
Lx Pin Voltage  
VIN  
VLx  
-0.36.5  
-0.3VIN+0.36.5  
-0.36.5  
V
V
Output Voltage  
VOUT  
VCE  
ILX  
V
CE Input Voltage  
-0.36.5  
V
Lx Pin Current  
±1500  
mA  
mW  
Power Dissipation (*1)  
Operating Ambient Temperature  
Storage Temperature  
Pd  
500  
Topr  
Tstg  
-40+85  
-40+125  
Each voltage rating uses the VSS pin as a reference.  
(*1) The value is an example data which is taken with the PCB mounted.  
4/22  
XCL208/XCL209  
Series  
ELECTRICAL CHARACTERISTICS  
Ta=25℃  
1) XCL208Axx3DR/XCL209Axx3DR  
PARAMETER  
Output Voltage  
SYMBOL  
VOUT  
CONDITIONS  
MIN.  
TYP.  
MAX.  
<E-3>  
6.0  
UNIT  
V
CIRCUIT  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
<E-1> <E-2>  
Operating Voltage Range  
VIN  
2.0  
-
-
V
VIN=VOUT(T)+2.0V, VCE=1.0V,  
Maximum Output Current  
UVLO Voltage  
IOUTMAX  
400  
-
mA  
V
When connected to external components (*8)  
VCE =VIN, VOUT =0V, Voltage which Lx pin holding  
“L” level (*1),(*10)  
VUVLO  
1.00  
1.40  
1.78  
Supply Current (XCL208)  
Supply Current (XCL209)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
1
IDD  
ISTB  
fOSC  
VIN=VCE=5.0V, VOUT=VOUT(T)×1.1  
μA  
μA  
VIN=5.0V, VCE=0V, VOUT=VOUT(T)×1.1  
When connected to external components,  
VIN=VOUT(T)+2.0V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
2.55  
3.00  
3.45  
MHz  
When connected to external components,  
VIN=VOUT(T)+2.0V, VCE=VIN , IOUT=1mA  
PFM Switching Current (*11)  
IPFM  
<E-4> <E-5>  
<E-6>  
mA  
PFM Duty Limit (*11)  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM VCE=VIN=<C-1>, IOUT=1mA  
-
100  
-
200  
300  
%
%
%
DMAX  
DMIN  
VIN=VCE=5.0V, VOUT=VOUT(T)×0.9  
VIN=VCE=5.0V, VOUT=VOUT(T)×1.1  
-
-
-
0
When connected to external components,  
VCE=VIN=VOUT(T)+1.2V, IOUT=100mA  
Efficiency (*2)  
EFFI  
-
<E-7>  
-
%
LX SW "H" ON Resistance 1  
LX SW "H" ON Resistance 2  
LX SW "L" ON Resistance 1  
LX SW "L" ON Resistance 2  
RLxH1  
RLxH2  
RLxL1  
RLxL2  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=3.6V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.55  
0.67  
0.65  
0.77  
-
VIN=VCE=3.6V (*4)  
-
LX SW "H" Leakage Current (*5)  
ILeakH  
VIN=VOUT=5.0V, VCE=0V, VLX=0V  
-
0.01  
1.00  
μA  
LX SW "L" Leakage Current (*5)  
ILeakL  
VIN=VOUT=5.0V, VCE= 0V, VLX=5.0V  
-
600  
-
0.01  
800  
1.00  
1000  
-
μA  
Current Limit (*9)  
Output Voltage Temperature  
Characteristics  
ILIM  
ΔVOUT  
VIN=VCE=5.0V, VOUT=VOUT(T)×0.9V (*7)  
IOUT=30mA,  
mA  
/
±100  
ppm/  
V
(VOUT  
ΔTopr) -40℃≦Topr85℃  
VOUT=0V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
VIN  
Voltage changes Lx to “L” level (*10)  
VOUT=0V, Applied voltage to VCE,  
Voltage changes Lx to “L” level (*10)  
VCEL  
0.25  
V
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE= 5.0V, VOUT=0V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN=5.0V, VCE=0V, VOUT=0V  
When connected to external components,  
VCE=0VVIN, IOUT=1mA  
Soft-start Time  
Latch Time  
tSS  
0.5  
1
0.90  
-
2.50  
20  
ms  
ms  
VIN=VCE=5.0V, VOUT=0.8×VOUT(T)  
Short Lx at 1resistance (*6)  
Sweeping VOUT, VIN=VCE=5.0V,  
,
tLAT  
Short Protection Threshold Voltage  
VSHORT  
<E-8> <E-9> <E-10>  
V
Short Lx at 1resistance, VOUT voltage which  
Lx becomes “L” level within 1ms  
Test Frequency=1MHz  
Inductance Value  
L
-
-
1.5  
-
-
μH  
-
-
Allowed Inductor Current  
IDC  
ΔT=+40℃  
700  
mA  
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(T)=Nominal Voltage  
NOTE:  
(*1) Including hysteresis operating voltage range.  
(*2) EFFI={ (output voltage×output current) / (input voltage×input current) }×100  
(*3) ON resistance ()=(VIN - Lx pin measurement voltage) / 100mA  
(*4) Design value  
(*5) When temperature is high, a current of approximately 10μA (maximum) may leak.  
(*6) Time until it short-circuits VOUT with GND via 1of resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
(*7) When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
(*8) When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
(*9) Current limit denotes the level of detection at peak of coil current.  
(*10) “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
(*11) IPFM and DTYLIMIT_PFM are defined only for the XCL209 series.  
5/22  
XCL208/XCL209 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
2) XCL208Bxx3DR/XCL209Bxx3DR  
PARAMETER  
SYMBOL  
CONDITIONS  
When connected to external components,  
VIN=VCE=5.0V, IOUT=30mA  
MIN.  
<E-1>  
2.0  
TYP.  
<E-2>  
-
MAX.  
<E-3>  
6.0  
UNIT CIRCUIT  
Output Voltage  
VOUT  
V
V
Operating Voltage Range  
VIN  
VIN=VOUT(T)+2.0V, VCE=1.0V,  
Maximum Output Current  
UVLO Voltage  
IOUTMAX  
VUVLO  
400  
-
-
mA  
V
When connected to external components (*8)  
VCE=VIN, VOUT=0V,  
1.00  
1.40  
1.78  
Voltage which Lx pin holding “L” level (*1),(*10)  
Supply Current (XCL208)  
Supply Current (XCL209)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
1
IDD  
VIN=VCE=5.0V, VOUT=VOUT(T) ×1.1  
μA  
μA  
ISTB  
VIN=5.0V, VCE=0V, VOUT=VOUT(T) ×1.1  
When connected to external components,  
VIN=VOUT(T)+2.0V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
fOSC  
2.55  
3.00  
3.45  
MHz  
mA  
When connected to external components,  
VIN=VOUT(T)+2.0V, VCE=VIN , IOUT=1mA  
PFM Switching Current (*11)  
IPFM  
<E-4>  
<E-5>  
<E-6>  
PFM Duty Limit (*11)  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM VCE=VIN=<C-1>, IOUT=1mA  
-
100  
-
200  
-
-
300  
-
0
%
%
%
DMAX  
DMIN  
VIN=VCE=5.0V, VOUT=VOUT(T)×0.9  
VIN=VCE=5.0V, VOUT=VOUT(T)×1.1  
When connected to external components,  
VCE=VIN=VOUT(T)+1.2V, IOUT=100mA  
Efficiency (*2)  
EFFI  
-
<E-7>  
-
%
LX SW "H" ON Resistance 1  
LX SW "H" ON Resistance 2  
LX SW "L" ON Resistance 1  
LX SW "L" ON Resistance 2  
RLxH1  
RLxH2  
RLxL1  
RLxL2  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=3.6V, VOUT=0V, ILX=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.55  
0.67  
0.65  
0.77  
-
VIN=VCE=3.6V (*4)  
-
LX SW "H" Leakage Current (*5)  
Current Limit (*9)  
ILeakH  
VIN=VOUT=5.0V, VCE=0V, VLX=0V  
VIN=VCE=5.0V, VOUT=VOUT(T)×0.9V (*7)  
IOUT=30mA, -40℃≦Topr85℃,  
-
600  
-
0.01  
800  
1.00  
1000  
-
μA  
ILIM  
ΔVOUT  
mA  
Output Voltage Temperature  
Characteristics  
/
±100  
ppm/℃  
(VOUT  
ΔTopr)  
VOUT=0V, Applied voltage to VCE Voltage  
changes Lx to “L” level  
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
VIN  
V
V
*10  
VOUT=0V, Applied voltage to VCE Voltage  
VCEL  
0.25  
*10  
changes Lx to “L” level  
VIN=VCE=5.0V, VOUT=0V  
-
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN=5.0V, VCE=0V, VOUT=0V  
When connected to external components,  
VCE=0VVIN, IOUT=1mA  
Soft-start Time  
Latch Time  
tSS  
-
<E-11> <E-12>  
ms  
ms  
VIN=VCE=5.0V, VOUT=0.8×VOUT(T)  
Short Lx at 1resistance(*6)  
Sweeping VOUT, VIN=VCE=5.0V,  
,
tLAT  
1
-
20  
Short Protection Threshold Voltage  
VSHORT  
<E-8>  
<E-9>  
<E-10>  
V
Short Lx at 1resistance, VOUT voltage which  
Lx becomes “L” level within 1ms  
CL Discharge  
RDCHG  
VIN=5.0V, LX=5.0V, VCE=0V, VOUT=Open  
200  
300  
450  
Inductance Value  
Allowed Inductor Current  
L
IDC  
Test Frequency=1MHz  
ΔT=+40℃  
-
-
1.5  
700  
-
-
μH  
mA  
-
-
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT (T)=Nominal Voltage  
NOTE:  
(*1) Including hysteresis operating voltage range.  
(*2) EFFI={ ( output voltage×output current ) / ( input voltage×input current) }×100  
(*3) ON resistance ()= (VIN - Lx pin measurement voltage) / 100mA  
(*4) Design value  
(*5) When temperature is high, a current of approximately 10μA (maximum) may leak.  
(*6) Time until it short-circuits VOUT with GND via 1of resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
(*7) When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
(*8) When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
(*9) Current limit denotes the level of detection at peak of coil current.  
(*10) “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
(*11) IPFM and DTYLIMIT_PFM are defined only for the XCL209 series which have PFM control function. (Not for the XCL 208 series)  
6/22  
XCL208/XCL209  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
Ta=25℃  
3) XCL208F083DR/XCL209F083DR  
PARAMETER  
FB Voltage  
SYMBOL  
VFB  
CONDITIONS  
MIN.  
TYP.  
MAX.  
0.816  
UNIT  
V
CIRCUIT  
VIN=VCE=5.0V, VFB voltage which Decrease  
VFB from 0.9V, Lx becomes “L” (*10) level  
0.784  
0.800  
Operating Voltage Range  
Maximum Output Current  
VIN  
1.8  
-
-
6.0  
-
V
VIN=3.2V, VCE=1.0V,  
IOUTMAX  
400  
mA  
When connected to external components (*8)  
VCE=VIN, VFB=0.4V,  
Voltage which Lx pin holding “L” level (*1), (*10)  
UVLO Voltage  
VUVLO  
1.00  
1.40  
1.78  
V
Supply Current (XCL208)  
Supply Current (XCL209)  
Stand-by Current  
-
-
-
46  
21  
0
65  
35  
IDD  
ISTB  
fOSC  
VIN=VCE= 5.0V, VFB=0.88V  
μA  
μA  
VIN=5.0V, VCE=0V, VFB=0.88V  
1.0  
When connected to external components,  
VIN=3.2V, VCE=1.0V, IOUT=100mA  
Oscillation Frequency  
2.55  
3.00  
3.45  
MHz  
When connected to external components,  
VIN=3.2V, VCE= VIN, IOUT=1mA  
PFM Switching Current (*11)  
IPFM  
<E-4>  
<E-5>  
<E-6>  
mA  
PFM Duty Limit (*11)  
Maximum Duty Cycle  
Minimum Duty Cycle  
DTYLIMIT_PFM VIN=VCE=2.2V, IOUT=1mA  
-
100  
-
200  
300  
%
%
%
MAXDTY  
MINDTY  
VIN=VCE=5.0V, VFB=0.72V  
VIN=VCE=5.0V, VFB=0.88V  
-
-
-
0
When connected to external components,  
VCE=VIN=2.4V, IOUT=100mA  
Efficiency (*2)  
EFFI  
-
<E-7>  
-
%
LX SW "H" ON Resistance 1  
LX SW "H" ON Resistance 2  
LX SW "L" ON Resistance 1  
LX SW "L" ON Resistance 2  
RLxH1  
RLxH2  
RLxL1  
RLxL2  
VIN=VCE=5.0V, VFB=0.72V, ILX=100mA (*3)  
VIN=VCE=3.6V, VFB=0.72V, ILX=100mA (*3)  
VIN=VCE=5.0V (*4)  
-
-
-
-
0.35  
0.42  
0.45  
0.52  
0.55  
0.67  
0.65  
0.77  
-
VIN=VCE=3.6V (*4)  
-
LX SW "H" Leakage Current (*5)  
ILeakH  
VIN=VFB=5.0V, VCE=0V, VLX=0V  
VIN=VCE=5.0V, VFB=0.72V (*7)  
IOUT=30mA, -40℃≦Topr85℃,  
-
600  
-
0.01  
800  
1.00  
1000  
-
μA  
mA  
PFM Duty Limit (*9)  
Output Voltage Temperature  
Characteristics  
ILIM  
ΔVOUT  
(VOUT ΔTopr)  
/
±100  
ppm/  
V
VFB=0.72V, Applied voltage to VCE  
Voltage changes LX to “L” level (*10)  
VFB=0.72V, Applied voltage to VCE  
,
CE "H" Voltage  
CE "L" Voltage  
VCEH  
0.65  
VSS  
-
-
VIN  
,
VCEL  
0.25  
V
Voltage changes LX to “L” level (*10)  
CE "H" Current  
CE "L" Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VFB=0.72V  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
VIN=5.0V, VCE=0V, VFB=0.72V  
When connected to external components,  
VCE=0VVIN, IOUT=1mA  
Soft-start Time  
Latch Time  
tSS  
-
0.25  
-
0.40  
20  
ms  
ms  
VIN=VCE=5.0V, VFB=0.64V,  
tLAT  
1
Short Lx at 1resistance(*6)  
VIN=VCE=5.0V, VFB voltage which Decrease  
VFB from 0.9V, Lx becomes “L” (*10) level  
VIN=5.0V, LX=5.0V, VCE=0V, VFB=Open  
Test Frequency=1MHz  
Short Protection Threshold Voltage  
VSHORT  
0.150  
0.200  
0.250  
V
CL Discharge  
Inductance Value  
RDCHG  
L
200  
300  
1.5  
450  
-
-
-
-
-
μH  
mA  
Allowed Inductor Current  
IDC  
ΔT=40℃  
700  
-
Test conditions: Unless otherwise stated, VIN=5.0V, VOUT(T)=Nominal Voltage, and the order of voltage application is VFBVINVCE  
NOTE:  
(*1) Including hysteresis operating voltage range.  
(*2) EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100  
(*3) ON resistance ()= (VIN - Lx pin measurement voltage) / 100mA  
(*4) Design value  
(*5) When temperature is high, a current of approximately 10μA (maximum) may leak.  
(*6) Time until it short-circuits VOUT with GND via 1of resistor from an operational state and is set to Lx=0V from current limit pulse generating.  
(*7) When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
(*8) When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.  
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.  
(*9) Current limit denotes the level of detection at peak of coil current.  
(*10) “H”=VIN~VIN-1.2V, L”=+0.1V~-0.1V  
(*11) IPFM and DTYLIMIT_PFM are defined only for the XCL209 series which have PFM control function.  
7/22  
XCL208/XCL209 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
PFM  
VOUT (V)  
IPFM (mA)  
EFFI (%)  
VSHORT (ms)  
tss (ms)  
TYP. MAX.  
Duty  
VOUT  
MIN.  
TYP.  
MAX.  
MIN.  
TYP.  
MAX.  
TYP.  
MIN.  
TYP. MAX.  
VIN (V)  
<C-1> <E-1> <E-2> <E-3> <E-4> <E-5> <E-6>  
<E-7>  
79  
<E-8> <E-9> <E-10> <E-11> <E-12>  
1.00  
1.20  
1.50  
1.80  
2.50  
2.80  
2.85  
3.00  
3.30  
2.0V  
2.20  
2.50  
2.80  
3.50  
3.80  
3.85  
4.00  
4.30  
0.980 1.000 1.020  
1.176 1.200 1.224  
1.470 1.500 1.530  
1.764 1.800 1.836  
2.450 2.500 2.550  
2.744 2.800 2.856  
2.793 2.850 2.907  
2.940 3.000 3.060  
3.234 3.300 3.366  
190  
190  
180  
170  
170  
170  
170  
170  
170  
260  
260  
240  
220  
220  
220  
220  
220  
220  
350  
350  
300  
270  
270  
270  
270  
270  
270  
0.375 0.500  
0.450 0.600  
0.563 0.750  
0.675 0.900  
0.938 1.250  
1.050 1.400  
1.069 1.425  
1.125 1.500  
1.238 1.650  
0.625  
0.750  
0.938  
1.125  
1.563  
1.750  
1.781  
1.875  
2.063  
0.25  
0.25  
0.25  
0.32  
0.32  
0.32  
0.32  
0.32  
0.32  
0.40  
0.40  
0.40  
0.50  
0.50  
0.50  
0.50  
0.50  
0.50  
82  
84  
85  
86  
86  
86  
86  
86  
<XCL208/XCL209 F type output voltage setting>  
The output voltage can be set by adding external dividing resistors. The output voltage is determined by R1 and R2 in the  
equation below. The sum of R1 and R2 is normally kept 1Mor less. The output voltage range can be set from 0.9V to 6.0V  
based on the 0.8V ±2.0% reference voltage source.  
Note that when the input voltage (VIN) is less than or equal to the set output voltage, an output voltage (VOUT) higher than the  
input voltage (VIN) cannot be output.  
VOUT=0.8×(R1+R2)/R2  
Adjust the value of the phase compensation speedup capacitor CFB so that fzfb=1/(2×π×CFB×R1) is 10kHz or less. It is  
optimum to adjust to a value from 1kHz to 20kH based on the components used and the board layout.  
[Calculation example]  
When R1=470k, R2=150k, VOUT=0.8×(470k+150k)/150k=3.3V  
e.g.  
VOUT (V)  
Circuit (XCL208F/XCL209F Type)  
R1 (k)  
100  
R2 (k)  
820  
300  
150  
240  
240  
120  
150  
30  
CFB (pF)  
150  
0.9  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
4.0  
150  
100  
130  
220  
300  
150  
510  
100  
330  
150  
470  
100  
120  
470  
8/22  
XCL208/XCL209  
Series  
TEST CIRCUITS  
9/22  
XCL208/XCL209 Series  
OPERATIONAL DESCRIPTION  
The XCL208/XCL209 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator,  
phase compensation circuit, output voltage adjustment resistors, P-ch MOSFET driver transistor, N-ch MOSFET switching  
transistor for the synchronous switch, current limiter circuit, UVLO circuit with control IC, and an inductor. (See the block  
diagram below.) Using the error amplifier, the voltage of the internal voltage reference source is compared with the feedback  
voltage from the VOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier  
output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator  
compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and  
delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle.  
This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-ch MOS  
driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple  
feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used  
ensuring stable output voltage.  
Type A  
L1  
L2  
VOUT  
LX  
VIN  
PVSS  
AVSS  
CE  
<Reference Voltage Source>  
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.  
<Ramp Wave Circuit>  
The ramp wave circuit determines switching frequency. The frequency is fixed internally 3.0MHz. Clock pulses generated in  
this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits.  
<Error Amplifier>  
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback  
(Type F: FB pin voltage) divided by the internal split resistors, R1 and R2. When a feed back voltage is lower than the reference  
voltage, the output voltage of the error amplifier is increased. The gain and frequency characteristics of the error amplifier  
output are fixed internally to deliver an optimized signal to the mixer.  
<Current Limit>  
The current limiter circuit of the XCL208/XCL209 series monitors the current flowing through the P-ch MOS driver transistor  
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.  
When the driver current is greater than a current limit level, the current limit function operates to turn off the pulses from the  
Lx pin at any given timing.  
When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.  
At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over  
current state.  
When the over current state is eliminated, the IC resumes its normal operation.  
The IC waits for the over current state to end by repeating the steps through . If an over current state continues for a latch  
time and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the driver  
transistor, and goes into operation suspension state. Once the IC is in suspension state, operations can be resumed by either  
turning the IC off via the CE pin, or by restoring power to the VIN pin. The suspension state does not mean a complete shutdown,  
but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the  
XCL208/XCL209 series can be set at 800mA at typical. Depending on the state of the PC Board, latch time may become longer  
and latch operation may not work. In order to avoid the effect of noise, an input capacitor is placed as close to the IC as possible.  
Limit#ms  
Limit#ms  
Current Limit Level  
0mA  
ILx  
VOUT  
VSS  
Lx  
VCE  
Restart  
VIN  
10/22  
XCL208/XCL209  
Series  
OPERATIONAL DESCRIPTION(Continued)  
<Short-Circuit Protection>  
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage (Type F: FB pin voltage). In case where  
output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference voltage  
(Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off  
and to latch the driver transistor. In the latch state, the operation can be resumed by either turning the IC off and on via the  
CE pin, or by restoring power supply to the VIN pin.  
Also, when sharp load transient happens, a voltage drop at the VOUT is propagated through CFB, as a result, short circuit  
protection may operate in the voltage higher than short-circuit protection voltage.  
<UVLO Circuit>  
When the VIN pin voltage becomes 1.4V (TYP.) or lower, the P-channel output driver transistor is forced OFF to prevent false  
pulse output caused by unstable operation of the internal circuitry. When the VIN pin voltage becomes 1.8V or higher, by  
releasing the UVLO state then the soft-start function initiates output startup operation. The soft-start function operates even  
when the VIN pin voltage falls momentarily below the UVLO operating voltage same as releasing the UVLO function. The  
UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal  
circuitry remains in operation.  
<PFM Switch Current>  
In PFM control operation, until coil current reaches to IPFM, the IC keeps the P-ch MOSFET on.  
In this case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula.  
t
ON = L×IPFM / (VINVOUT) IPFM①  
<PFM Duty Limit>  
In the PFM control operation, the maximum PFM Duty Limit is set to 200% (TYP.). Therefore, under the condition that the  
step-down ratio is small, it’s possible for P-ch MOSFET to be turned off even when coil current doesn’t reach to IPFM. IPFM②  
IPFM①  
IPFM②  
<CL High Speed Discharge>  
The XCL208B/XCL209B and the XCL208F/XCL209F can quickly discharge the electric charge at the output capacitor (CL)  
when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-ch transistor located  
between the LX pin and the VSS pin. When the IC is disabled, electric charge left at the output capacitor (CL) is quickly  
discharged so that it may avoid application malfunction. Discharge time is set by the CL auto-discharge resistance (RDCHG) and  
the output capacitance (CL). By setting time constant as τ(τ=CL x RDCHG), discharge time of the output voltage is calculated  
by the following formula.  
V = VOUT(T) x e –t/ or t=τln (VOUT(T) / V)  
τ
V : Output voltage after discharge  
100  
CL=10uF  
CL=20uF  
CL=50uF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
OUT(T) : Output voltage  
t: Discharge time,  
τ: CL x RDCHG  
CL : Output capacitance (CL)  
R
DCHG : CL auto-discharge resistance  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
11/22  
XCL208/XCL209 Series  
OPERATIONAL DESCRIPTION(Continued)  
<CE Pin Function>  
The operation of the XCL208/XCL209 series will enter into the stand-by mode when a low level signal is input to the CE pin.  
During the stand-by mode, the current consumption of the IC becomes 0μA (TYP.), with a state of high impedance at the Lx pin  
and VOUT pin. The IC starts its operation by inputting a high level signal to the CE pin. The input to the CE pin is a CMOS input  
and the sink current is 0μA (TYP.).  
(A)  
(B)  
(A)  
VDD  
SW_CE  
ON  
OPERATIONAL STATES  
Stand-by  
VDD  
VIN  
CE  
VIN  
CE  
SW_CE  
R1  
OFF  
Active  
(B)  
SW_CE  
R2  
SW_CE  
ON  
OPERATIONAL STATES  
Active  
< IC inside >  
< IC inside >  
OFF  
Stand-by  
<Soft-Start>  
Soft-start time is internally set. Soft-start time is defined as the time to reach 90% of the output nominal voltage when the CE pin  
is turned on.  
tSS  
VCEH  
0V  
90% of setting voltage  
VOUT  
0V  
12/22  
XCL208/XCL209  
Series  
NOTE ON USE  
1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be  
exceeded.  
2. The XCL208/XCL209 series is designed for use with ceramic output capacitors. If, however, the potential difference is too  
large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching  
energy and oscillation could occur on the output. In this case, increase 10μF to the output capacitance for adding  
insufficient capacitance. Also, if the output capacitance is too large, the output voltage is slowly rising and the IC may not  
operate. Adjust the output capacitance so that the output voltage can go up within the soft-start time.  
3. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by  
external component selection, such as the coil inductance, capacitance values, and board layout of external components.  
Once the design has been completed, verification with actual components should be done.  
4. Depending on the input-output voltage differential, or load current, some pulses may be skipped as 1/2, 1/3 and the ripple voltage  
may increase.  
5. When the difference between input and output is large in PWM control, very narrow pulses will be outputted, and there is the  
possibility that 0% duty cycles may be continued during some cycles.  
6. When the difference between input and output is small, and the load current is heavy, very wide pulses will be outputted and  
there is the possibility that 100% duty cycles may be continued during some cycles.  
7. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current of the coil increases  
when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current  
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the  
peak current according to the following formula:  
Ipk = (VIN - VOUT) x OnDuty / (2 x L x fOSC) + IOUT  
L: Coil Inductance Value  
fOSC: Oscillation Frequency  
8. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off.  
During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current  
flows; therefore, care must be taken when selecting the rating for the external components such as a coil.  
9. When VIN is less than 2.4V, limit current may not be reached because voltage falls caused by ON resistance.  
10. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid  
the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.  
11. Use of the IC at voltages below the minimum operating voltage range may lead to instability.  
12. This IC should be used within the stated absolute maximum ratings of external components in order to prevent damage to  
the device.  
13. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the  
leak current of the driver transistor.  
14. The current limit is set to 1000mA (MAX.) at typical. However, the current of 1000mA or more may flow.  
In case that the current limit functions while the VOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential  
difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By  
contrast, when N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the VOUT pin is  
shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this  
operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of  
current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for  
several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent  
damage to the device.  
Current flows into P-ch MOSFET to reach the current limit (ILIM).  
The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-ch MOSFET.  
Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.  
Lx oscillates very narrow pulses by the current limit for several ms.  
The circuit is latched, stopping its operation.  
Limit #ms  
Delay  
Lx  
ILIM  
ILx  
13/22  
XCL208/XCL209 Series  
NOTE ON USE (Continued)  
15. In order to stabilize VIN voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected  
as close as possible to the VIN & VSS pins.  
16. High step-down ratio and very light load may lead an intermittent oscillation when PWM mode.  
17. For the XCL209, when PWM/PFM automatic switching goes into continuous mode, the IC may be in unstable operation for  
the range of MAXDUTY area with small input/output differential. Once the design has been completed, verification with  
actual components should be done.  
18. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their  
systems.  
19. Instructions of pattern layouts  
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN) be connected as close as possible to  
the VIN (No.8) and PVSS (No.1) pins.  
(2) Please mount each external component as close to the IC as possible.  
(3) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
(4) Make sure that the PCB GND traces are as thick as possible, as variations in ground potential caused by high ground  
currents at the time of switching may result in instability of the IC.  
(5) Internal driver transistors bring on heat because of the output current and ON resistance of the driver transistors.  
(6) Please connect Lx (No.2) pin and L1 (No.9) pin on the PCB layout.  
(7) Please connect VOUT (No.4) pin and L2 (No.10) pin on the PCB layout. (Type A/B)  
<Type A/B (VOUT)>  
PCB mounted TOP VIEW)  
TOP VIEW)  
BOTTOM VIEW)  
<Type F (FB)>  
PCB mounted TOP VIEW)  
TOP VIEW)  
BOTTOM VIEW)  
XCL208/209  
XCL208/209  
GND  
CE  
VOUT  
CFB  
GND  
CE  
VOUT  
CFB  
CL  
CL  
RFB1  
RFB1  
IC  
IC  
LX  
LX  
CIN  
CIN  
GND  
VIN  
GND  
VIN  
TOREX  
FB  
TOREX  
FB  
USP-10B03  
USP-10B03  
: IC  
: Ceramic Cap  
: Chip Resistance  
14/22  
XCL208/XCL209  
Series  
NOTE ON USE (Continued)  
20. Typical application circuit  
<Typical application circuits Type A/B>  
< Typical application circuits Type F>  
Example of external components  
Example of external components (VOUT=1.8V)  
CIN: 10V/4.7μFLMK107BJ475KA TAIYO YUDEN)  
CL: 10V/10μFLMK107BBJ106MA TAIYO YUDEN)  
CIN: 10V/4.7μFLMK107BJ475KA TAIYO YUDEN)  
CL: 10V/10μFLMK107BBJ106MA TAIYO YUDEN)  
R
R
C
FB1: 300kΩ  
FB2: 240kΩ  
FB: 150pFC1005CH1H151J TDK)  
NOTE:  
The integrated Inductor can be used only for this DC/DC converter. Please do not use this inductor for other reasons.  
Please use B, X5R, and X7R grades in temperature characteristics for the CIN and CL capacitors.  
These grade ceramic capacitors minimize capacitance-loss as a function of voltage stress.  
If necessary, increase capacitance by adding or replacing.  
Examples of external components  
PART NUMBER  
LMK107BJ475KA  
LMK212B7475KG  
LMK107BBJ106MA  
LMK212B7106MG  
MANUFACTURE RATED VOLTAGE / INDUCTANCE / FEATURES  
Size (L×W)  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
10V/4.7μF/X5R  
10V/4.7μF/X7R  
10V/10μF/X5R  
10V/4.7μF/X7R  
1.6mm×0.8mm  
2.0mm×1.25mm  
1.6mm×0.8mm  
2.0mm×1.25mm  
CIN  
CL  
15/22  
XCL208/XCL209 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
(2) Output Voltage vs. Output Current  
XCL208B183DR/XCL209B183DR  
XCL209(PWM/PFM)  
XCL208B183DR/XCL209B183DR  
100  
80  
60  
40  
20  
0
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
XCL208/XCL209  
VIN=4.2V,3.6V,2.4V  
2.4V  
3.6V  
ꢀꢀꢀꢀ  
VIN= 4.2V  
XCL208  
(PWM)  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
1000  
100  
Output Current:IOUT (mA)  
Output Current:IOUT (mA)  
(3) Ripple Voltage vs. Output Current  
(4) Oscillation Frequency vs. Ambient Temperature  
XCL208B183DR/XCL209B183DR  
3.5  
XCL208B183DR/XCL209B183DR  
100  
80  
60  
40  
20  
0
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
VIN=3.6V  
XCL208  
VIN=2.4  
XCL209  
VIN=2.4V  
V
3.6V,4.2V  
3.6V,4.2  
0.1  
1
10  
100  
-50  
-25  
0
25  
50  
75  
100  
Output Current:IOUT (mA)  
Ambient Temperature: Ta (  
)
(5) Supply Current vs. Ambient Temperature  
(6) Output Voltage vs. Ambient Temperature  
XCL209B183DR  
40  
XCL208B183DR/XCL209B183DR  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VIN=6.0V  
35  
30  
25  
20  
15  
10  
5
4.0V  
VIN=3.6V  
2.0V  
0
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
16/22  
XCL208/XCL209  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(7) UVLO Voltage vs. Ambient Temperature  
(8) CE "H" Voltage vs. Ambient Temperature  
XCL208B183DR/XCL209B183DR  
XCL208B183DR/XCL209B183DR  
1.8  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
CE=VIN  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
VIN=5.0V  
3.6V  
2.4V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(9) CE "L" Voltage vs. Ambient Temperature  
(10) Soft Start Time vs. Ambient Temperature  
XCL208B183DR/XCL209B183DR  
XCL208B183DR/XCL209B183DR  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
VIN=5.0V  
3.6V  
VIN=3.6V  
2.4V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage  
(12) Rise Wave Form  
XCL208B333DR/XCL209B333DR  
XCL208B183DR/XCL209B183DR  
1.0  
VIN = 5.0V  
0.9  
0.8  
IOUT = 1.0mA  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Nch on Resistance  
2ch  
VOUT  
Pch on Resistance  
1ch  
CE:0.0V1.0V  
1ch:1V/div  
2ch:1V/div  
0
1
2
3
4
5
6
Input Voltage : VIN (V)  
Time:100μs/div  
17/22  
XCL208/XCL209 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(13) Soft-Start Time vs. Ambient Temperature  
(14) CL Discharge Resistance vs. Ambient Temperature  
XCL208B333DR/XCL209B333DR  
500  
XCL208B333DR/XCL209B333DR  
600  
500  
400  
300  
200  
100  
400  
VIN=5.0V  
2.0V  
IOUT =1.0mA  
VIN=6.0V  
300  
200  
100  
0
4.0V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature: Ta (  
)
Ambient Temperature: Ta (  
)
(15) Load Transient Response  
MODEPWM/PFM Automatic Switching Control  
XCL209B183DR  
XCL209B183DR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT =1mA  
100mA  
IOUT =1mA  
300mA  
1ch  
2ch  
1ch  
VOUT  
VOUT  
2ch  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time:100μs/div  
Time:100μs/div  
XCL209B183DR  
XCL209B183DR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT =100mA 1mA  
IOUT =300mA 1mA  
1ch  
2ch  
1ch  
2ch  
VOUT  
VOUT  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time:100μs/div  
Time:100μs/div  
18/22  
XCL208/XCL209  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) Load Transient Response (Continued)  
MODEPWM Control  
XCL208B183DR  
XCL208B183DR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT =1mA  
100mA  
IOUT =1mA  
300mA  
1ch  
2ch  
1ch  
2ch  
VOUT  
VOUT  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time:100μs/div  
Time:100μs/div  
XCL208B183DR  
XCL208B183DR  
VIN=3.6V,VOUT=1.8V  
VIN=3.6V,VOUT=1.8V  
IOUT =100mA 1mA  
I
OUT =300mA 1mA  
1ch  
2ch  
1ch  
2ch  
VOUT  
VOUT  
1ch:100mA/div 2ch:50mV/div  
1ch:100mA/div 2ch:50mV/div  
Time:100μs/div  
Time:100μs/div  
19/22  
XCL208/XCL209 Series  
PACKAGING INFORMATION  
USP-10B03 (unit: mm)  
2.5±0.05  
1PIN INDENT  
(0.5) 0.9±0.05  
(0.6)  
0.4±0.05  
(0.05)  
1
2
3
4
9
10  
8
7
(0.65)  
6
5
0.3±0.05  
(0.05)  
USP-10B03 Reference Pattern Layout (unit: mm)  
USP-10B03 Reference Metal Mask Design (unit: mm)  
20/22  
XCL208/XCL209  
Series  
MARKING RULE  
represents products series  
USP-10B03  
MARK  
PRODUCT SERIES  
XCL208******  
8
9
1
2
3
4
8
7
6
5
XCL209******  
represents integer of output voltage and oscillation frequency  
XCL20*F***** (FB Product)  
MARK  
OUTPUT VOLTAGE(V)  
OSCILLATION FREQUENCY=3.0MHz  
(XCL20*F**3**)  
0.x  
F
XCL20*A*****  
MARK  
OUTPUT VOLTAGE (V)  
OSCILLATION FREQUENCY=3.0MHz  
(XCL20*A**3**)  
0.x  
1.x  
2.x  
3.x  
4.x  
0
1
2
3
4
XCL20*B*****  
MARK  
OUTPUT VOLTAGE (V)  
OSCILLATION FREQUENCY=3.0MHz  
(XCL20*B**3**)  
0.x  
1.x  
2.x  
3.x  
4.x  
A
B
C
D
E
represents the decimal part of output voltage  
OUTPUT  
OUTPUT  
MARK  
PRODUCT SERIES  
MARK  
PRODUCT SERIES  
VOLTAGE (V)  
VOLTAGE (V)  
X.0  
X.1  
X.2  
X.3  
X.4  
X.5  
X.6  
X.7  
X.8  
X.9  
0
1
2
3
4
5
6
7
8
9
XCL20***0***  
XCL20***1***  
XCL20***2***  
XCL20***3***  
XCL20***4***  
XCL20***5***  
XCL20***6***  
XCL20***7***  
XCL20***8***  
XCL20***9***  
X.05  
X.15  
X.25  
X.35  
X.45  
X.55  
X.65  
X.75  
X.85  
X.95  
A
B
C
D
E
F
XCL20***A***  
XCL20***B***  
XCL20***C***  
XCL20***D***  
XCL20***E***  
XCL20***F***  
XCL20***H***  
XCL20***K***  
XCL20***L***  
XCL20***M***  
H
K
L
M
Example Mark , ③)  
MARK  
OSCILLATION  
FREQUENCY  
XCL20*F08***  
XCL20*A18***  
XCL20*B3D***  
3.0MHz  
F
8
1
8
D
D
,represents production lot number  
0109, 0A0Z, 119Z, A1A9, AAAZ, B1ZZ in order.  
(G, I, J, O, Q, W excluded)  
*No character inversion used.  
21/22  
XCL208/XCL209 Series  
1. The products and product specifications contained herein are subject to change without  
notice to improve performance characteristics. Consult us, or our representatives  
before use, to confirm that the information in this datasheet is up to date.  
2. We assume no responsibility for any infringement of patents, patent rights, or other  
rights arising from the use of any information and circuitry in this datasheet.  
3. Please ensure suitable shipping controls (including fail-safe designs and aging  
protection) are in force for equipment employing products listed in this datasheet.  
4. The products in this datasheet are not developed, designed, or approved for use with  
such equipment whose failure of malfunction can be reasonably expected to directly  
endanger the life of, or cause significant injury to, the user.  
(e.g. Atomic energy; aerospace; transport; combustion and associated safety  
equipment thereof.)  
5. Please use the products listed in this datasheet within the specified ranges.  
Should you wish to use the products under conditions exceeding the specifications,  
please consult us or our representatives.  
6. We assume no responsibility for damage or loss due to abnormal use.  
7. All rights reserved. No part of this datasheet may be copied or reproduced without the  
prior permission of TOREX SEMICONDUCTOR LTD.  
22/22  

相关型号:

XCL209

400mA Inductor Built-in Step-Down “micro DC/DC” Converters
TOREX

XCL210C101GR-G

200MA INDUCTOR BUILT-IN PFM STEP
TOREX

XCL210C251GR-G

200MA INDUCTOR BUILT-IN PFM STEP
TOREX

XCL210C301GR-G

200MA INDUCTOR BUILT-IN PFM STEP
TOREX

XCL210C331GR-G

200MA INDUCTOR BUILT-IN PFM STEP
TOREX

XCL210D101GR-G

50MA INDUCTOR BUILT-IN PFM STEP-
TOREX

XCL210D251GR-G

50MA INDUCTOR BUILT-IN PFM STEP-
TOREX

XCL210D301GR-G

50MA INDUCTOR BUILT-IN PFM STEP-
TOREX

XCL210D331GR-G

50MA INDUCTOR BUILT-IN PFM STEP-
TOREX

XCL211

3.1mm×4.7mm, h=1.3mm
TOREX

XCL211B082DR

3.1mm×4.7mm, h=1.3mm
TOREX

XCL212

3.1mm×4.7mm, h=1.3mm
TOREX