XCL210D331GR-G [TOREX]

50MA INDUCTOR BUILT-IN PFM STEP-;
XCL210D331GR-G
型号: XCL210D331GR-G
厂家: Torex Semiconductor    Torex Semiconductor
描述:

50MA INDUCTOR BUILT-IN PFM STEP-

文件: 总25页 (文件大小:1306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ETR28009-005a  
50mA/200mA Inductor Built-in Step-Down “micro DC/DC” Converters  
Green Operation Compatible  
GENERAL DESCRIPTION  
The XCL210 series is a synchronous step-down micro DC/DC converter which integrates an inductor and a control IC in one  
tiny package (2.0mm×2.5mm, h=1.0mm). An internal coil simplifies the circuit and enables minimization of noise and other  
operational trouble due to the circuit wiring. A wide operating voltage range of 2.0V to 6.0V enables support for applications that  
require an internally fixed output voltage from 1.0V to 4.0V in increments of 0.05V.  
During stand-by, all circuits are shutdown to reduce current consumption to as low as 0.1μA or less.  
With the built-in UVLO (Under Voltage Lock Out) function, the internal P-channel MOS driver transistor is forced OFF when  
input voltage becomes UVLO detect Voltage or lower.  
The XCL210 integrate CL discharge function which enables the electric charge at the output capacitor CL to be discharged via  
the internal discharge switch located between the LX and VSS pins. When the devices enter stand-by mode, output voltage  
quickly returns to the VSS level as a result of this function.  
FEATURES  
APPLICATIONS  
Wearable Devices  
Input Voltage  
:
:
:
:
2.0V ~ 6.0V  
Output Voltage  
Control Methods  
Output Current  
1.0V ~ 4.0V (±2.0%)  
PFM control  
Smart meters  
200mA (Type A/C)  
50mA (Type B/D)  
0.5μA  
Bluetooth units  
Energy Harvest devices  
Backup power supply circuits  
Portable game consoles  
Devices with 1 Lithium cell  
Supply Current  
High Efficiency  
Function  
:
:
:
93% (VIN=3.6V,VOUT=3.0V/100μA)  
UVLO  
Short Circuit Protection  
CL Discharge(Type C/D)  
Low ESR Ceramic Capacitor  
-40~ 85℃  
Capacitor  
:
:
:
:
Operating Ambient Temperature  
Packages  
CL-2025-02  
Environmentally Friendly  
EU RoHS Compliant, Pb Free  
TYPICALAPPLICATION CIRCUIT  
TYPICAL PERFORMANCE  
CHARACTERISTICS  
XCL210B301GR-G (VOUT=3.0V)  
100  
7
VIN  
80  
60  
40  
20  
1 Lx  
6
5
4
VIN  
NC  
CE  
CIN  
GND  
2
3
10μ F  
CL  
50mA 22μ F  
VOUT  
8
VIN=3.6V  
VIN=4.2V  
0
0.01  
0.1  
1
10  
100  
Output Current : IOUT [mA]  
1/25  
XCL210 Series  
BLOCK DIAGRAM  
XCL210 Series, Type A/B  
L2  
L1  
Inductor  
Short  
Protection  
VOUT  
VDD  
PFM  
Comparator  
R1  
R2  
CFB  
Current  
Sense  
Vref  
Synch  
Buffer  
Drive  
PFM  
Controller  
Lx  
CE Controller Logic  
CE  
VIN  
VDD  
UVLO  
VIN Start Up  
Controller  
GND  
* XCL210A and B type do not have CL Discharge function.  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
XCL210 Series, Type C/D  
L1  
L2  
Inductor  
Short  
Protection  
VOUT  
VDD  
PFM  
Comparator  
R1  
R2  
CFB  
Current  
Sense  
CL  
Discharge  
Vref  
Synch  
Buffer  
Drive  
PFM  
Controller  
Lx  
CE Controller Logic  
CE  
VIN  
VDD  
UVLO  
VIN Start Up  
Controller  
GND  
* Diodes inside the circuits are ESD protection diodes and parasitic diodes.  
2/25  
XCL210  
Series  
PRODUCT CLASSIFICATION  
Ordering information  
XCL210①②③④⑤⑥-PFM control  
DESIGNATOR  
ITEM  
SYMBOL  
DESCRIPTION  
A
B
C
D
IOUT=200mA , Without CL Auto Discharge  
IOUT=50mA Without CL Auto Discharge  
IOUT=200mA , With CL Auto Discharge  
IOUT=50mA, With CL Auto Discharge  
Product Type  
Output voltage options  
e.g.) 1.2V → = 1 = 2  
1.25V→ = 1 = C  
0.05V increments :  
②③  
Output Voltage  
10 ~ 40  
0.05=A, 0.15=B, 0.25=C, 0.35=D, 0.45=E,  
0.55=F, 0.65=H, 0.75=K, 0.85=L, 0.95=M  
Fixed number  
1
Fixed number  
(*1)  
⑤⑥-⑦  
Package (Order Unit)  
GR-G  
CL-2025-02 (3,000pcs/Reel)  
(*1) The “-G” suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.  
3/25  
XCL210 Series  
PIN CONFIGURATION  
L1  
7
* The dissipation pad for the CL-2025-02 package should be solder-plated in  
recommended mount pattern and metal masking so as to enhance mounting  
strength and heat release.  
VIN  
6
1
2
3
Lx  
GND  
VOUT  
NC  
CE  
5
4
The mount pattern should be connected to GND pin (No.2).  
8
L2  
(BOTTOM VIEW)  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
LX  
FUNCTIONS  
Switching  
1
2
3
4
5
6
7
8
GND  
VOUT  
CE  
Ground  
Output Voltage  
Chip Enable  
NC  
No Connection  
Power Input  
VIN  
L1  
Inductor Electrodes  
Inductor Electrodes  
L2  
CE PIN FUNCTION  
PIN NAME  
SIGNAL  
STATUS  
H
L
Operation (All Types)  
Stand-by (All Types)  
CE  
* Please do not leave the CE pin open.  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
LX Pin Voltage  
SYMBOL  
RATINGS  
UNITS  
VIN  
-0.3 ~ 7.0  
V
V
V
V
VLX  
-0.3 ~ VIN + 0.3 or 7.0 (*1)  
-0.3 ~ VIN + 0.3 or 7.0 (*1)  
-0.3 ~ 7.0  
VOUT Pin Voltage  
CE Pin Voltage  
VOUT  
VCE  
LX Pin Current  
ILX  
1000  
mA  
Power Dissipation (Ta=25˚C)  
Operating Ambient Temperature  
Storage Temperature  
Pd  
1000 (40mm x 40mm Standard board) (*2)  
mW  
˚C  
Topr  
Tstg  
-40 ~ 85  
-55 ~ 125  
˚C  
* All voltages are described based on the GND.  
(*1) The maximum value is the lower of either VIN + 0.3V or 7.0V.  
(*2) The power dissipation figure shown is PCB mounted and is for reference only.  
Please refer to PACKAGING INFORMATION for the mounting condition.  
4/25  
XCL210  
Series  
ELECTRICAL CHARACTERISTICS  
XCL210Axx1GR-G, without CL discharge function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
CIRCUIT  
Input Voltage  
VIN  
-
V
V
Resistor connected with LX pin. Voltage which LX pin  
changes “L” to “H” level while VOUT is decreasing.  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VIN is increasing.  
(*2)  
Output Voltage  
VOUT(E)  
E1  
UVLO Release Voltage  
VUVLO(E)  
1.65  
0.11  
1.80  
1.95  
0.24  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
UVLO Hysteresis  
Voltage  
VHYS(E)  
0.15  
VIN=VCE=VOUT(T)+0.5V (*1), VIN=2.0V, if VOUT(T)1.5V  
(*1), VOUT=VOUT(T)+0.5V (*1), LX=Open.  
Supply Current  
Iq  
E2  
0.1  
0.1  
μA  
μA  
μA  
Standby Current  
LX SW “H” Leak  
Current  
ISTB  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
-
-
1.0  
1.0  
ILEAKH  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
LX SW “L” Leak Current  
ILEAKL  
IPFM  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
-
0.1  
1.0  
μA  
PFM Switching Current  
Maximum  
260  
330  
400  
mA  
MAXDTY  
100  
-
-
%
Duty Ratio(*3)  
Resistor connected with LX pin.  
Efficiency (*4)  
Efficiency (*4)  
Efficiency (*4)  
EFFI  
EFFI  
EFFI  
VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.  
-
-
-
93  
93  
87  
-
-
-
%
%
%
LX SW “Pch”  
ON Resistance (*5)  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
-
-
0.4  
0.65  
-
Ω
Ω
LX SW “Nch”  
RLXN  
0.4 (*6)  
-
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/  
V
(VOUT ΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.2→1.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCE=1.5→0.2V.  
VCEL  
GND  
V
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
VOUT= VOUT(T)+0.1V→0V(*1)  
.
Inductance Value  
L
Test Frequency=1MHz  
-
-
8.0  
-
-
μH  
Inductor Rated Current  
IDC_L  
ΔT=+40  
600  
mA  
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
5/25  
XCL210 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL210Bxx1GR-G, without CL discharge function  
Ta=25˚C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
CIRCUIT  
Input Voltage  
VIN  
-
Resistor connected with LX pin.Voltage which LX pin  
changes “L” to “H” level while VOUT is decreasing.  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VIN is increasing.  
(*2)  
Output Voltage  
VOUT(E)  
E1  
V
UVLO Release Voltage  
VUVLO(E)  
1.65  
0.11  
1.80  
1.95  
0.24  
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
UVLO Hysteresis  
Voltage  
VHYS(E)  
0.15  
V
VIN=VCE=VOUT(T)+0.5V (*1),VIN=2.0V, if VOUT(T)1.5V  
(*1), VOUT=VOUT(T)+0.5V (*1), LX=Open.  
Supply Current  
Iq  
E2  
0.1  
0.1  
μA  
μA  
μA  
Standby Current  
LX SW “H” Leak  
Current  
ISTB  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
-
-
1.0  
1.0  
ILEAKH  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
LX SW “L” Leak Current  
ILEAKL  
IPFM  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
-
0.1  
1.0  
μA  
PFM Switching Current  
Maximum  
115  
180  
250  
mA  
MAXDTY  
100  
-
-
%
Duty Ratio(*3)  
Resistor connected with LX pin.  
Efficiency (*4)  
Efficiency (*4)  
Efficiency (*4)  
EFFI  
EFFI  
EFFI  
VIN=VCE=5.0V,VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.  
-
-
-
95  
95  
89  
-
-
-
%
%
%
LX SW “Pch”  
ON Resistance (*5)  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
-
-
0.4  
0.65  
-
Ω
Ω
LX SW “Nch”  
RLXN  
0.4 (*6)  
-
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/  
V
(VOUT ΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.2→1.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCE=1.5→0.2V.  
VCEL  
GND  
V
CE “High” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
CE “Low” Current  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
VOUT=VOUT(T)+0.1V→0V(*1)  
Test Frequency=1MHz  
ΔT=+40℃  
.
Inductance Value  
L
-
-
8.0  
-
-
μH  
Inductor Rated Current  
IDC_L  
600  
mA  
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
6/25  
XCL210  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL210Cxx1GR-G, with CL Discharge Function  
Ta=25˚C  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
CIRCUIT  
Input Voltage  
VIN  
-
Resistor connected with LX pin. Voltage which LX pin  
changes “L” to “H” level while VOUT is decreasing.  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VIN is increasing.  
(*2)  
Output Voltage  
VOUT(E)  
E1  
V
UVLO Release Voltage  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.80  
1.95  
0.24  
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
UVLO Hysteresis  
Voltage  
0.15  
E2  
V
VIN=VCE=VOUT(T)+0.5V (*1),VIN=2.0V, if VOUT(T)1.5V  
(*1)  
Supply Current  
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
Standby Current  
LX SW “H” Leak  
Current  
ISTB  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
-
-
0.1  
0.1  
1.0  
1.0  
μA  
μA  
ILEAKH  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
LX SW “L” Leak Current  
ILEAKL  
IPFM  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
-
0.1  
1.0  
μA  
PFM Switching Current  
Maximum  
260  
330  
400  
mA  
MAXDTY  
100  
-
-
%
Duty Ratio(*3)  
Resistor connected with LX pin.  
Efficiency (*4)  
Efficiency (*4)  
Efficiency (*4)  
EFFI  
EFFI  
EFFI  
VIN=VCE=5.0V, VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.  
-
-
-
93  
93  
87  
-
-
-
%
%
%
LX SW “Pch”  
ON Resistance (*5)  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
-
-
0.4  
0.65  
-
Ω
Ω
LX SW “Nch”  
RLXN  
0.4 (*6)  
-
ON Resistance  
Output Voltage  
Temperature  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/  
V
(VOUT ΔTopr)  
Characteristics  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.2→1.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCE=1.5→0.2V.  
VCEL  
GND  
V
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
VOUT= VOUT(T)+0.1V→0V(*1)  
.
CL Discharge  
Inductance Value  
RDCHG  
L
VIN=VOUT=5.0V, VCE=0V, LX=Open.  
Test Frequency=1MHz  
ΔT=+40℃  
55  
-
80  
8.0  
600  
105  
Ω
-
-
μH  
mA  
Inductor Rated Current  
IDC_L  
-
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
7/25  
XCL210 Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL210Dxx1GR-G, with CL Discharge Function  
Ta=25˚C  
CIRCUIT  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN.  
2.0  
TYP.  
-
MAX.  
6.0  
UNITS  
V
Input Voltage  
VIN  
-
Resistor connected with LX pin. Voltage which LX  
pin changes “L” to “H” level while VOUT is  
decreasing.  
(*2)  
Output Voltage  
VOUT(E)  
E1  
1.80  
0.15  
E2  
V
V
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level  
while VIN is increasing.  
UVLO Release  
Voltage  
VUVLO(E)  
VHYS(E)  
Iq  
1.65  
0.11  
1.95  
0.24  
VCE=VIN, VOUT=0V. Resistor connected with LX pin.  
VUVLO(E) - Voltage which LX pin changes “H” to “L”  
level while VIN is decreasing.  
UVLO Hysteresis  
Voltage  
V
VIN=VCE=VOUT(T)+0.5V (*1)  
VIN=2.0V, if VOUT(T)1.5V (*1)  
,
Supply Current  
,
μA  
VOUT=VOUT(T)+0.5V (*1), LX=Open.  
Standby Current  
LX SW “H” Leak  
Current  
ISTB  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
-
-
0.1  
0.1  
1.0  
1.0  
μA  
μA  
ILEAKH  
VIN=5.0V, VCE=VOUT=0V, VLX=0V.  
LX SW “L” Leak  
Current  
ILEAKL  
IPFM  
VIN=5.0V, VCE=VOUT=0V, VLX=5.0V.  
VIN=VCE=VOUT(T)+2.0V (*1), IOUT=10mA.  
VIN=VOUT=VOUT()×0.95V(*1), VCE=1.2V  
-
0.1  
180  
-
1.0  
250  
-
μA  
mA  
%
PFM Switching Current  
115  
100  
Maximum  
MAXDTY  
Duty Ratio(*3)  
Efficiency (*4)  
Efficiency (*4)  
Resistor connected with LX pin.  
EFFI  
EFFI  
EFFI  
VIN=VCE=5.0V,VOUT(T)=4.0V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=3.3V (*1), IOUT=30mA.  
VIN=VCE=3.6V, VOUT(T)=1.8V (*1), IOUT=30mA.  
-
-
-
95  
95  
89  
-
-
-
%
%
%
Efficiency (*4)  
LX SW “Pch”  
ON Resistance (*5)  
RLXP  
VIN=VCE=5.0V, VOUT=0V, ILX=100mA.  
VIN=VCE=5.0V.  
-
-
0.4  
0.65  
-
Ω
Ω
LX SW “Nch”  
RLXN  
0.4 (*6)  
-
ON Resistance  
Output Voltage  
Temperature  
Characteristics  
ΔVOUT  
/
-40℃≦Topr85.  
-
±100  
-
ppm/  
V
(VOUT ΔTopr)  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “L” to “H” level while  
VCE=0.2→1.5V.  
CE “High” Voltage  
CE “Low” Voltage  
VCEH  
1.2  
-
-
6.0  
0.3  
VOUT=0V. Resistor connected with LX pin.  
Voltage which LX pin changes “H” to “L” level while  
VCE=1.5→0.2V.  
VCEL  
GND  
V
CE “High” Current  
CE “Low” Current  
ICEH  
ICEL  
VIN=VCE=5.0V, VOUT=0V, LX=Open.  
VIN=5.0V, VCE=VOUT=0V, LX=Open.  
Resistor connected with LX pin.  
-0.1  
-0.1  
-
-
0.1  
0.1  
μA  
μA  
Short Protection  
VSHORT  
Voltage which LX pin changes “H” to “L” level while  
0.4  
0.5  
0.6  
V
Threshold Voltage  
VOUT= VOUT(T)+0.1V→0V(*1)  
.
CL Discharge  
Inductance Value  
RDCHG  
L
VIN=VOUT=5.0V, VCE=0V, LX=Open.  
Test Frequency=1MHz  
ΔT=+40℃  
55  
-
80  
8.0  
600  
105  
Ω
-
-
μH  
mA  
Inductor Rated Current  
IDC  
-
Unless otherwise stated, VIN=VCE=5.0V  
(*1) VOUT(T)=Nominal Output Voltage  
(*2) VOUT(E)=Effective Output Voltage  
The actual output voltage value VOUT(E) is the PFM comparator threshold voltage in the IC.  
Therefore, the DC/DC circuit output voltage, including the peripheral components, is boosted by the ripple voltage average value.  
Please refer to the characteristic example.  
(*3) Not applicable to the products with VOUT(T) < 2.15V since it is out of operational volatge range.  
(*4) EFFI=[{ (Output Voltage)×(Output Current)] / [(Input Voltage)×(Input Current)}]×100  
(*5) LX SW “Pch” ON resistance = (VIN VLX pin measurement voltage) / 100mA  
(*6) Designed value  
8/25  
XCL210  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL210 Series voltage chart  
SYMBOL  
E1  
E2  
SYMBOL  
E1  
E2  
PARAMETER OUTPUT VOLTAGE  
SUPPLY CURRENT PARAMETER OUTPUT VOLTAGE  
SUPPLY CURRENT  
UNITS: μA  
UNITS: V  
OUTPUT  
VOLTAGE  
1.00  
UNITS: V  
UNITS: μA  
TYP.  
UNITS: V  
OUTPUT  
VOLTAGE  
2.50  
UNITS: V  
MIN.  
MAX.  
MAX.  
MIN.  
MAX.  
TYP.  
MAX.  
0.980  
1.029  
1.078  
1.127  
1.176  
1.225  
1.274  
1.323  
1.372  
1.421  
1.470  
1.519  
1.568  
1.617  
1.666  
1.715  
1.764  
1.813  
1.862  
1.911  
1.960  
2.009  
2.058  
2.107  
2.156  
2.205  
2.254  
2.303  
2.352  
2.401  
1.020  
1.071  
1.122  
1.173  
1.224  
1.275  
1.326  
1.377  
1.428  
1.479  
1.530  
1.581  
1.632  
1.683  
1.734  
1.785  
1.836  
1.887  
1.938  
1.989  
2.040  
2.091  
2.142  
2.193  
2.244  
2.295  
2.346  
2.397  
2.448  
2.499  
2.450  
2.499  
2.548  
2.597  
2.646  
2.695  
2.744  
2.793  
2.842  
2.891  
2.940  
2.989  
3.038  
3.087  
3.136  
3.185  
3.234  
3.283  
3.332  
3.381  
3.430  
3.479  
3.528  
3.577  
3.626  
3.675  
3.724  
3.773  
3.822  
3.871  
3.920  
2.550  
2.601  
2.652  
2.703  
2.754  
2.805  
2.856  
2.907  
2.958  
3.009  
3.060  
3.111  
3.162  
3.213  
3.264  
3.315  
3.366  
3.417  
3.468  
3.519  
3.570  
3.621  
3.672  
3.723  
3.774  
3.825  
3.876  
3.927  
3.978  
4.029  
4.080  
1.05  
2.55  
1.10  
2.60  
1.15  
2.65  
1.20  
2.70  
0.500  
0.500  
0.600  
0.800  
0.700  
1.500  
1.25  
2.75  
1.30  
2.80  
1.35  
2.85  
1.40  
2.90  
1.45  
2.95  
1.50  
3.00  
1.55  
3.05  
1.60  
3.10  
1.65  
3.15  
1.70  
3.20  
0.900  
0.800  
2.100  
1.75  
3.25  
1.80  
3.30  
1.85  
3.35  
1.90  
3.40  
1.95  
3.45  
2.00  
3.50  
2.05  
3.55  
2.10  
3.60  
2.15  
3.65  
2.20  
3.70  
1.100  
2.25  
3.75  
1.500  
3.000  
2.30  
3.80  
2.35  
3.85  
2.40  
3.90  
2.45  
3.95  
4.00  
9/25  
XCL210 Series  
TEST CIRCUITS  
< Circuit No.>  
< Circuit No.>  
Wave Form Measure Point  
L
Wave Form Measure Point  
L2  
L1  
L2  
L1  
VOUT  
Lx  
VOUT  
Lx  
VIN  
A
VIN  
CL  
V
V
RL  
RPulldown  
CIN  
CIN  
CE  
CE  
GND  
GND  
External Components  
External Components  
CIN10μ F(Ceramic)  
RPULLDOWN:100Ω  
L10μ H(Selected goods)  
CIN10μ F(Ceramic)  
CL:22μ F(Ceramic)  
< Circuit No.>  
< Circuit No.>  
L2  
L1  
L2  
L1  
VOUT  
Lx  
VOUT  
Lx  
A
VIN  
VIN  
V
A
A
ILX  
CIN  
CIN  
CE  
GND  
CE  
GND  
External Components  
CIN10μ F(Ceramic)  
External Components  
CIN10μ F(Ceramic)  
< Circuit No.>  
< Circuit No.>  
Wave Form Measure Point  
L2  
L1  
L2  
L1  
VOUT  
Lx  
VOUT  
Lx  
V
VIN  
VIN  
CL  
RL  
ICEH  
A
RPulldown  
A
CIN  
CE  
GND  
CIN  
CE  
GND  
A
ICEL  
External Components  
CIN10μ F(Ceramic)  
RPULLDOWN:100Ω  
External Components  
CIN10μ F(Ceramic)  
CL22μ F(Ceramic)  
10/25  
XCL210  
Series  
TYPICAL APPLICATION CIRCUIT  
7
VIN  
1 Lx  
6
5
4
VIN  
NC  
CE  
CIN  
NOTE:  
GND  
2
3
The integrated Inductor can be used only for this DC/DC converter.  
Please do not use this inductor for other reasons.  
CL  
VOUT  
VOUT  
8
Manufacturer  
Taiyo Yuden  
Part Number  
VALUE  
LMK107BBJ106MALT  
LMK212ABJ106MG  
C1608X5R1A106M  
C2012X5R1A106M  
LMK107BBJ226MA  
LMK212BBJ226MG  
C1608X5R1A226M  
C2012X5R1A226M  
10μF/10V  
10μF/10V  
CIN  
CL  
10μF/10V  
10μF/10V  
22μF/10V  
22μF/10V  
22μF/10V  
22μF/10V  
TDK  
Taiyo Yuden  
TDK  
* Take capacitance loss, withstand voltage, and other conditions into consideration when selecting components.  
11/25  
XCL210 Series  
OPERATIONAL EXPLANATION  
The XCL210 series consists of a reference voltage supply, PFM comparator, Pch driver Tr, Nch synchronous rectification switch  
Tr, current sensing circuit, PFM control circuit, CE control circuit, and others. (Refer to the block diagram below.)  
L1  
L1  
L2  
L2  
Inductor  
Inductor  
Short  
Protection  
Short  
Protection  
VOUT  
VOUT  
VDD  
VDD  
PFM  
Comparator  
PFM  
Comparator  
R1  
R2  
CFB  
R1  
R2  
CFB  
Current  
Sense  
Current  
Sense  
CL  
Discharge  
Vref  
Vref  
Synch  
Buffer  
Drive  
Synch  
Buffer  
Drive  
PFM  
Controller  
PFM  
Controller  
Lx  
Lx  
CE Controller Logic  
CE Controller Logic  
CE  
VIN  
CE  
VIN  
VDD  
VDD  
UVLO  
VIN Start Up  
Controller  
UVLO  
VIN Start Up  
Controller  
GND  
GND  
<BLOCK DIAGRAM TYPE A/B >  
<BLOCK DIAGRAM TYPE C/D >  
An ultra-low quiescent current circuit and synchronous rectification enable a significant reduction of dissipation in the IC, and the  
IC operates with high efficiency at both light loads and heavy loads. Current limit PFM is used for the control method, and even  
when switching current superposition occurs, increases of output voltage ripple are suppressed, allowing use over a wide voltage  
and current range. The IC is compatible with low-capacitance ceramic capacitors, and a small, high-performance step-down DC-  
DC converter can be created.  
The actual output voltage VOUT(E) in the electrical characteristics is the threshold voltage of the PFM comparator in the block  
diagram. Therefore the average output voltage of the step-down circuit, including peripheral components, depends on the ripple  
voltage. Before use, test fully using the actual device.  
VIN=VCE=3.6VVOUT=1.8VIOUT=5mAL=8.0μHCL=22uFTa=25℃  
VIN=VCE=3.6VVOUT=1.8VIOUT=30mAL=8.0μHCL=22uFTa=25℃  
VLX  
VLX  
VLX : 2[V/div]  
VOUT  
VOUT  
VOUT : 50[mV/div]  
ILX : 100[mA/div]  
VOUT(E)  
Voltage  
ILX  
ILX  
IPFM  
10[μs/div]  
10[μs/div]  
<Reference voltage supply (VREF)>  
Reference voltage for stabilization of the output voltage of the IC.  
12/25  
XCL210  
Series  
OPERATIONAL EXPLANATION (Continued)  
<PFM control>  
(1) The feedback voltage (FB voltage) is the voltage that results from dividing the output voltage with the IC internal dividing  
resistors RFB1 and RFB2. The PFM comparator compares this FB voltage to VREF. When the FB voltage is lower than VREF, the PFM  
comparator sends a signal to the buffer driver through the PFM control circuit to turn on the Pch driver Tr. When the FB voltage is  
higher than VREF, the PFM comparator sends a signal to prevent the Pch driver Tr from turning on.  
(2) When the Pch driver Tr is on, the current sense circuit monitors the current that flows through the Pch driver Tr connected to the  
Lx pin. When the current reaches the set PFM switching current (IPFM), the current sense circuit sends a signal to the buffer driver  
through the PFM control circuit. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.  
(3) The on time (off time) of the Nch synchronous rectification switch Tr is dynamically optimized inside the IC. After the off time  
elapses and the PFM comparator detects that the VOUT voltage is higher than the set voltage, the PFM comparator sends a signal  
to the PFM control circuit that prevents the Pch driver Tr from turning on. However, if the VOUT voltage is lower than the set voltage,  
the PFM comparator starts Pch driver Tr on.  
By continuously adjusting the interval of the linked operation of (1), (2) and (3) above in response to the load current, the output  
voltage is stabilized with high efficiency from light loads to heavy loads.  
<PFM Switching Current >  
The PFM switching current monitors the current that flows through the Pch driver Tr, and is a value that limits the Pch driver Tr  
current. The Pch driver Tr remains on until the coil current reaches the PFM switching current (IPFM). An approximate value for this  
on-time tON can be calculated using the following equation:  
tON = L × IPFM / (VIN VOUT  
)
<Maximum on-time function>  
To avoid excessive ripple voltage in the event that the coil current does not reach the PFM switching current within a certain  
interval even though the Pch driver Tr has turned on and the FB voltage is above VREF, the Pch driver Tr can be turned off at any  
timing using the maximum on-time function of the PFM control circuit. If the Pch driver Tr turns off by the maximum on-time function  
instead of the current sense circuit, the Nch synchronous rectification switch Tr will not turn on and the coil current will flow to the  
VOUT pin by means of the parasite diode of the Nch synchronous rectification switch Tr.  
<Through mode>  
When the VIN voltage is lower than the output voltage, through mode automatically activates and the Pch driver Tr stays on  
continuously.  
(1) In through mode, when the load current is increased and the current that flows through the Pch driver Tr reaches a load current  
that is several tens of mA lower than the set PFM switching current (IPFM), the current sense circuit sends a signal through the PFM  
control circuit to the buffer driver. This signal turns off the Pch driver Tr and turns on the Nch synchronous rectification switch Tr.  
(2) After the on-time (off-time) of the Nch synchronous rectification switch Tr, the Pch driver Tr turns on until the current reaches  
the set PFM switching current (IPFM) again.  
If the load current is large as described above, operations (1) and (2) above are repeated. If the load current is several tens of  
mA lower than the PFM switching current (IPFM), the Pch driver Tr stays on continuously.  
<VIN start mode>  
When the VIN voltage rises, VIN start mode stops the short-circuit protection function during the interval until the FB voltage  
approaches VREF. After the VIN voltage rises and the FB voltage approaches VREF by step-down operation, VIN start mode is  
released. In order to prevent an excessive rush current while VIN start mode is activated, the coil current flows to the VOUT pin by  
means of the parasitic diode of the Nch synchronous rectification Tr. In VIN start mode as well, the coil current is limited by the  
PFM switching current.  
13/25  
XCL210 Series  
OPERATIONAL EXPLANATION (Continued)  
<Short-circuit protection function>  
The short-circuit protection function monitors the VOUT pin voltage, and if the VOUT pin voltage drops below the Short Protection  
Threshold Voltage (VSHORT) due to a short circuit or overcurrent, the short circuit protection function operates.  
When the short-circuit protection function is activated, the Pch driver Tr and Nch Synchronous Switch Tr are held off. If the VOUT  
pin voltage exceeds the Short Protection Threshold Voltage (VSHORT) after the short-circuit protection function is activated, normal  
operation resumes.  
To cancel the short-circuit protection function, it is necessary to start the IC after putting the IC in the standby state with the CE  
function, or to raise the input voltage after setting the input voltage below the UVLO detection voltage (VUVLO(E)-VHYS(E)).  
<UVLO function>  
When the VIN pin voltage drops below the UVLO detection voltage, the IC stops switching operation at any selected timing, turns  
off the Pch driver Tr and Nch synchronous rectification switch Tr (UVLO mode). When the VIN pin voltage recovers and rises above  
the UVLO release voltage, the IC restarts operation.  
<CL discharge function>  
On the XCL210 series, a CL discharge function is available as an option (Type C/D). This function enables quick discharging of  
the CL load capacitance when Lvoltage is input into the CE pin by the Nch Tr connected between the VOUT-GND pins, or in  
UVLO mode. This prevents malfunctioning of the application in the event that a charge remains on CL when the IC is stopped.  
The discharge time is determined by CL and the CL discharge resistance RDCHG, including the Nch Tr (refer to the diagram below).  
Using this time constant τ= CL×RDCHG, the discharge time of the output voltage is calculated by means of the equation below.  
V = VOUT × e - t /τ, or in terms of t, t = τIn(VOUT / V)  
V
VOUT  
t
: Output voltage after discharge  
: Set output voltage  
: Discharge time  
CL  
RDCHG  
τ
: Value of load capacitance (CL)  
: Value of CL discharge resistance Varies by power supply voltage.  
: CL × RDCHG  
VOUT  
R
RDCHG = R + RON  
CE / UVLO  
Signal  
RON  
The CL discharge function is not available on the Type A/B  
14/25  
XCL210  
Series  
NOTE ON USE  
1. Be careful not to exceed the absolute maximum ratings for externally connected components and this IC.  
2. The DC/DC converter characteristics greatly depend not only on the characteristics of this IC but also on those of externally  
connected components, so refer to the specifications of each component and be careful when selecting the components. Be  
especially careful of the characteristics of the capacitor used for the load capacity CL and use a capacitor with B characteristics  
(JIS Standard) or an X7R/X5R (EIA Standard) ceramic capacitor.  
3. Use a ground wire of sufficient strength. Ground potential fluctuation caused by the ground current during switching could cause  
the IC operation to become unstable, so reinforce the area around the GND pin of the IC in particular.  
4. Mount the externally connected components in the vicinity of the IC. Also use short, thick wires to reduce the wire impedance.  
5. When the voltage difference between VIN and VOUT is small, switching energy increases and there is a possibility that the ripple  
voltage will be too large. Before use, test fully using the actual device.  
6. The CE pin does not have an internal pull-up or pull-down, etc. Apply the prescribed voltage to the CE pin.  
7. If other than the recommended inductance and capacitance values are used, excessive ripple voltage or a drop in efficiency  
may result.  
8. If other than the recommended inductance and capacitance values are used, a drop in output voltage when the load is excessive  
may cause the short-circuit protection function to activate. Before use, test fully using the actual device.  
9. At high temperature, excessive ripple voltage may occur and cause a drop in output voltage and efficiency. Before using at high  
temperature, test fully using the actual device  
10. At light loads or when IC operation is stopped, leakage current from the Pch driver Tr may cause the output voltage to rise.  
11. The average output voltage may vary due to the effects of output voltage ripple caused by the load current. Before use, test  
fully using the actual device.  
12. If the CL capacitance or load current is large, the output voltage rise time will lengthen when the IC is started, and coil current  
overlay may occur during the interval until the output voltage reaches the set voltage (refer to the diagram below).  
XCL210A SeriesVIN=VCE=06.0VVOUT=1.0VIOUT=200ACL=22uFTa=25℃  
VLX  
VLX : 10[V/div ]  
IPFM  
ILX  
IL : 200[mA/div ]  
VOUT : 1[V/div ]  
VIN : 5[V/div ]  
VOUT  
VIN  
Zoom  
200[μs/div]  
VLX  
ILX  
VLX : 10[V/div ]  
IL : 200[mA/div ]  
VOUT  
VIN  
VOUT : 1[V/div ]  
VIN : 5[V/div ]  
5[μs/div]  
13. When the IC is started, the short-circuit protection function does not operate during the interval until the VOUT voltage reaches  
a value near the set voltage.  
14. If the IC is started at a VIN voltage that activates through mode, it is possible that the short-circuit protection function will not  
operate. Before use, test fully using the actual device.  
15. If the load current is excessively large when the IC is started, it is possible that the VOUT voltage will not rise to the set voltage.  
Before use, test fully using the actual device.  
15/25  
XCL210 Series  
NOTE ON USE (Continued)  
16. In actual operation, the maximum on-time depends on the peripheral components, input voltage, and load current. Before use,  
test fully using the actual device.  
17. When the VIN voltage is turned on and off continuously, excessive rush current may occur while the voltage is on. Before use,  
test fully using the actual device.  
18. When the VIN voltage is high, the Pch driver may change from on to off before the coil current reaches the PFM switching  
current (IPFM), or before the maximum on-time elapses. Before use, test fully using the actual device.  
19. When the IC change to the Through Mode at light load, the supply current of this IC can increase in some cases.  
20. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be  
exceeded.  
21. Torex places an importance on improving our products and their reliability.  
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their  
systems.  
22. The UVLO function can be activated when the UVLO hysteresis width gets to about 0mV and after several tens ms elapses  
at light loads.  
Before use, test fully using the actual device.  
23. Please use within the power dissipation range below. Please also note that the power dissipation may change by test  
conditions, the power dissipation figure shown is PCB mounted.  
24. The proper position of mounting is based on the coil terminal  
Pd vs Operating Temperature  
Package Body Temperature vs Operating Temperature  
the power loss of micro DC/DC according to the following formula:  
power loss = VOUT×IOUT×((100/EFFI) 1) (W)  
VOUT : Output Voltage (V)  
IOUT : Output Current (A)  
EFFI : Conversion Efficiency (%)  
16/25  
XCL210  
Series  
NOTE ON USE (Continued)  
Instructions of pattern layouts  
1. To suppress fluctuations in the VIN potential, connect a bypass capacitor (CIN) in the shortest path between the VIN pin and  
ground pin.  
2. Please mount each external component as close to the IC as possible.  
3. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.  
4. Make sure that the ground traces are as thick as possible, as variations in ground potential caused by high ground currents at  
the time of switching may result in instability of the IC.  
5. Internal driver transistors bring on heat because of the transistor current and ON resistance of the driver transistors.  
6. As precautions on mounting, please set the mounting position accuracy within 0.05 mm  
Recommended Pattern Layout  
Top view  
Back side top view  
17/25  
XCL210 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
1) Output Voltage vs. Output Current  
XCL210B121GR-G/XCL210D121GR-G  
XCL210A121GR-G/XCL210C121GR-G  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
XCL210A181GR-G/XCL210C181GR-G  
XCL210B181GR-G/XCL210D181GR-G  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
XCL210A331GR-G/XCL210C331GR-G  
XCL210B331GR-G/XCL210D331GR-G  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=5.0V,CL=22uF  
Vin=5.0V,CL=22uF×2  
Vin=4.2V,CL=22uF×2  
Vin=5.0V,CL=22uF  
Vin=5.0V,CL=22uF×2  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
18/25  
XCL210  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
2) Efficiency vs. Output Current  
XCL210A121GR-G/XCL210C121GR-G  
XCL210B121GR-G/XCL210D121GR-G  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
XCL210A181GR-G/XCL210C181GR-G  
XCL210B181GR-G/XCL210D181GR-G  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
XCL210A331GR-G/XCL210C331GR-G  
XCL210B331GR-G/XCL210D331GR-G  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=5.0V,CL=22uF  
Vin=5.0V,CL=22uF×2  
Vin=4.2V,CL=22uF×2  
Vin=5.0V,CL=22uF  
Vin=5.0V,CL=22uF×2  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
19/25  
XCL210 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
3) Ripple Voltage vs. Output Current  
XCL210A121GR-G/XCL210C121GR-G  
XCL210B121GR-G/XCL210D121GR-G  
200  
150  
100  
50  
200  
150  
100  
50  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
XCL210A181GR-G/XCL210C181GR-G  
XCL210B181GR-G/XCL210D181GR-G  
200  
150  
100  
50  
200  
150  
100  
50  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=3.0V,CL=22uF×2  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
XCL210A331GR-G/XCL210C331GR-G  
XCL210B331GR-G/XCL210D331GR-G  
200  
150  
100  
50  
200  
150  
100  
50  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF  
Vin=4.2V,CL=22uF×2  
Vin=5.0V,CL=22uF  
Vin=5.0V,CL=22uF×2  
Vin=4.2V,CL=22uF×2  
Vin=5.0V,CL=22uF  
Vin=5.0V,CL=22uF×2  
0
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Output Current: IOUT [mA]  
Output Current: IOUT [mA]  
20/25  
XCL210  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
4) Ambient Temperature vs. Output Voltage  
XCL210A121GR-G/XCL210C121GR-G  
XCL210B121GR-G/XCL210D121GR-G  
1.4  
1.3  
1.2  
1.1  
1.0  
1.4  
1.3  
1.2  
1.1  
1.0  
VIN=3.6V  
VIN=3.6V  
IOUT=0.1mA  
IOUT=1mA  
IOUT=10mA  
IOUT=100mA  
IOUT=0.1mA  
IOUT=1mA  
IOUT=10mA  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
100  
100  
Ambient Temperature : Ta []  
Ambient Temperature : Ta []  
XCL210A181GR-G/XCL210C181GR-G  
XCL210B181GR-G/XCL210D181GR-G  
2.0  
1.9  
1.8  
1.7  
1.6  
2.0  
1.9  
1.8  
1.7  
1.6  
VIN=3.6V  
VIN=3.6  
IOUT=0.1mA  
IOUT=1mA  
IOUT=10mA  
IOUT=100mA  
IOUT=0.1mA  
IOUT=1mA  
IOUT=10mA  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature : Ta []  
Ambient Temperature : Ta []  
XCL210A331GR-G/XCL210C331GR-G  
XCL210B331GR-G/XCL210D331GR-G  
3.5  
3.4  
3.3  
3.2  
3.1  
3.5  
3.4  
3.3  
3.2  
3.1  
VIN=5.0V  
VIN=5.0V  
IOUT=0.1mA  
IOUT=1mA  
IOUT=10mA  
IOUT=100mA  
IOUT=0.1mA  
IOUT=1mA  
IOUT=10mA  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature : Ta []  
Ambient Temperature : Ta []  
21/25  
XCL210 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
5) Load Transient Response  
(1)XCL210B181GR-G, VIN=3.6V, VOUT=1.8V / IOUT=0.1mA 30mA  
VOUT = 1.8V  
IOUT = 0.1mA 30mA  
(2)XCL210B181GR-G, VIN=3.6V, VOUT=1.8V / IOUT=10mA 30mA  
VOUT = 1.8V  
IOUT = 10mA 30mA  
22/25  
XCL210  
Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torexsemi.com/technical-support/packages  
PACKAGE  
OUTLINE / LAND PATTERN  
CL-2025-02 PKG  
THERMAL CHARACTERISTICS  
CL-2025-02 Power Dissipation  
CL-2025-02  
23/25  
XCL210 Series  
MARKING RULE  
CL-2025-02  
represents products series  
MARK  
0
PRODUCT SERIES  
XCL210******-G  
represents integer of the output voltage  
1
2
3
6
5
4
OUTPUT  
MARK  
TYPE  
PRODUCT SERIES  
VOLTAGE(V)  
8
9
1.x  
2.x  
3.x  
4.x  
1.x  
2.x  
XCL210A1****-G  
XCL210A2****-G  
XCL210A3****-G  
XCL210A4****-G  
XCL210B1****-G  
XCL210B2****-G  
A
E
F
H
K
B
C
D
L
M
N
P
R
S
T
3.x  
4.x  
1.x  
2.x  
3.x  
4.x  
1.x  
2.x  
3.x  
4.x  
XCL210B3****-G  
XCL210B4****-G  
XCL210C1****-G  
XCL210C2****-G  
XCL210C3****-G  
XCL210C4****-G  
XCL210D1****-G  
XCL210D2****-G  
XCL210D3****-G  
XCL210D4****-G  
U
V
X
represents the decimal part of output voltage  
OUTPUT  
MARK  
PRODUCT SERIES  
VOLTAGE(V)  
X.0  
X.05  
X.1  
0
A
1
XCL210**0***-G  
XCL210**A***-G  
XCL210**1***-G  
XCL210**B***-G  
XCL210**2***-G  
XCL210**C***-G  
XCL210**3***-G  
XCL210**D***-G  
XCL210**4***-G  
XCL210**E***-G  
XCL210**5***-G  
XCL210**F***-G  
XCL210**6***-G  
XCL210**H***-G  
XCL210**7***-G  
XCL210**K***-G  
XCL210**8***-G  
XCL210**L***-G  
XCL210**9***-G  
XCL210**M***-G  
X.15  
X.2  
B
2
X.25  
X.3  
C
3
X.35  
X.4  
D
4
X.45  
X.5  
E
5
X.55  
X.6  
F
6
X.65  
X.7  
H
7
X.75  
X.8  
K
8
X.85  
X.9  
L
9
X.95  
M
,represents production lot number  
01090A0Z119ZA1A9AAAZB1ZZ in order.  
(G, I, J, O, Q, W excluded)  
Note: No character inversion used.  
24/25  
XCL210  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or completeness  
of the information contained in this datasheet nor grant any license to any intellectual property rights  
of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require extremely  
high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human  
life, bodily injury, serious property damage including but not limited to devices or equipment used in 1)  
nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other  
transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless  
Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or  
property damage resulting from such failure, customers are required to incorporate adequate safety  
measures in their designs, such as system fail safes, redundancy and fire prevention features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
25/25  

相关型号:

XCL211

3.1mm×4.7mm, h=1.3mm
TOREX

XCL211B082DR

3.1mm×4.7mm, h=1.3mm
TOREX

XCL212

3.1mm×4.7mm, h=1.3mm
TOREX

XCL212B082DR

3.1mm×4.7mm, h=1.3mm
TOREX

XCL214B103DR

DC/DC CONVERTER 1V 2W
TOREX

XCL214B123DR

DC/DC CONVERTER 1.2V 2W
TOREX

XCL214B153DR

DC/DC CONVERTER 1.5V 2W
TOREX

XCL214B183DR

DC/DC CONVERTER 1.8V 3W
TOREX

XCL214B253DR

DC/DC CONVERTER 2.5V 4W
TOREX

XCL214B303DR

DC/DC CONVERTER 3V 5W
TOREX

XCL214B333DR

DC/DC CONVERTER 3.3V 5W
TOREX

XCL214E303DR

Switching Regulator/Controller,
TOREX