XCL231B0K1H2 [TOREX]

36V, 600mA Inductor Built-in Step-down “micro DC/DC” Converter;
XCL231B0K1H2
型号: XCL231B0K1H2
厂家: Torex Semiconductor    Torex Semiconductor
描述:

36V, 600mA Inductor Built-in Step-down “micro DC/DC” Converter

文件: 总37页 (文件大小:1494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XCL230/XCL231 Series  
36V, 600mA Inductor Built-in Step-down “micro DC/DC” Converter  
GENERAL DESCRIPTION  
ETR28019-002  
The XCL230/XCL231 Series is a small (3.0mm×3.0mm, h=1.7mm) 36V, 600mA step-down DC/DC converter with an integrated  
control IC and coil. Integrating the coil makes for easier circuit board layout and minimizes malfunction and noise from the  
component and wiring layout.  
The input voltage range is 3.0 to 36V, the switching frequency is 1.2MHz, and a synchronous rectification circuit is used to achieve  
a stable power supply at high efficiency. The XCL230 Series fixes the operation frequency using PWM control to suppress output  
ripple voltage.  
The XCL231 Series automatically switches between PWM and PFM control to reduce loss by lowering the operation frequency  
during low loads to achieve high efficiency across the entire range from low to high loads.  
A 0.75V standard voltage supply is built in, and the output voltage can be set to 1.0V to 5.0V using an external resistance.  
The soft start time is internally set to 2.0ms, and a time that is longer than the internal soft-start can be freely set depending on the  
resistance and capacity connected to the EN/SS pin.  
An overcurrent protection function and thermal shutdown function are built in as protective functions to ensure safe use in the  
event of a short circuit.  
FEATURES  
Input Voltage Range  
Output Voltage Range  
FB Voltage  
APPLICATIONS  
Electricity Meters  
Gas Detectors  
:
:
:
:
:
:
:
:
:
3.0V ~ 36V (Absolute Max 40V)  
1.0V ~ 5.0V  
0.75V ± 1.5%  
Various Sensors  
Output Current  
600mA  
Industrial Equipment  
Home Appliances  
Oscillation Frequency  
Efficiency  
1.2MHz  
86%(VIN=12V,VOUT=5V, IOUT=300mA)  
PWM control (XCL230)  
PWM/PFM Auto (XCL231)  
Soft-start External settings  
Control Methods  
Function  
Power good  
Over Current Protection  
(Automatic recovery)  
Thermal Shutdown  
Protection Circuits  
:
Output Capacitor  
Operating Ambient Temperature  
Packages  
:
:
:
:
Ceramic Capacitor  
-40~ 105℃  
DFN3030-10B  
Environmentally Friendly  
EU RoHS Compliant, Pb Free  
TYPICAL PERFORMANCE  
TYPICAL APPLICATION CIRCUIT  
CHARACTERISTICS  
XCL230/XCL231  
VIN=VEN/SS=12V, VOUT=5.0V  
C
IN1=4.7μF(UMK212BBJ475KG),  
C
IN2=0.1μF(UMK107BJ104MAHT)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RPG  
CL=22μF(TMK212BBJ226MG)  
Lx  
L1  
PG  
PG  
L2  
VEN/SS  
EN/SS  
VOUT  
VIN  
CFB  
VIN  
CL  
RFB1  
FB  
CIN1  
CIN2  
GND  
RFB2  
XCL230  
XCL231  
0.1  
1
10  
100  
1000  
Output current : IOUT [mA]  
1/37  
XCL230/XCL231 Series  
BLOCK DIAGRAM  
L1  
L2  
Inductor  
VIN  
Local  
Reg  
Each  
Circuit  
Under  
Voltage  
Lock Out  
Gate  
CLAMP  
Current  
SENSE  
Thermal  
Shutdown  
Operation  
Enable  
Each  
Circuit  
CE  
Controller  
Logic  
EN/SS  
Current  
Feed  
Back  
Current  
Limit  
PFM  
Vref  
Soft Start  
Current  
Limit  
High  
Side  
Buffer  
PWM/PFM  
Controller  
Logic  
FB  
Lx  
Low  
Side  
Buffer  
Error  
Amp.  
PWM  
Comparator  
Ramp Wave  
Generator  
Oscillator  
PG  
GND  
Power-Good  
Comparator  
* "PWM/PFM Controller Logic" in the XCL230 series is fixed to PWM control.  
"PWM/PFM Controller Logic" In the XCL231 series is fixed to PWM/PFM automatic switching control.  
Diodes inside the circuit are an ESD protection diode and a parasitic diode.  
2/37  
XCL230/XCL231  
Series  
PRODUCT CLASSIFICATION  
Ordering Information  
XCL230①②③④⑤⑥ PWM Control  
XCL231①②③④⑤⑥ PWM/PFM Automatic Switching Control  
DESIGNATOR  
ITEM  
Type  
SYMBOL  
B
DESCRIPTION  
Refer to Selection Guide  
0.75V  
②③  
FB Voltage  
0K  
(Output voltage can be adjusted in 1.0V to 5.0V)  
1.2MHz  
Oscillation Frequency  
Packages (Order Unit)  
1
⑤⑥  
H2  
DFN3030-10B (3,000pcs/Reel)  
Selection Guide  
FUNCTION  
B TYPE  
Yes  
Chip Enable  
UVLO  
Yes  
Thermal Shutdown  
Soft Start  
Yes  
Yes  
Power-Good  
Current Limiter  
Yes  
Yes  
(Automatic Recovery)  
3/37  
XCL230/XCL231 Series  
PIN CONFIGURATION  
9 L1  
VIN  
8
1 Lx  
NC 7  
EN/SS 6  
PG 5  
2 GND  
3 NC  
4 FB  
10 L2  
( BOTTOM VIEW )  
* The dissipation pad for the DFN3030-10B package should be solder plated in recommended mount pattern  
and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to  
other pins, it should be connected to the GND (No.2) pin.  
PIN ASSIGNMENT  
PIN NUMBER  
PIN NAME  
FUNCTION  
Switching Output  
Ground  
1
2
LX  
GND  
NC  
3
No Connection  
Output Voltage Sense  
Power good Output  
Enable Soft-start  
No Connection  
Power Input  
4
FB  
5
PG  
6
EN/SS  
NC  
7
8
VIN  
9
L1  
Inductor Electrodes  
Inductor Electrodes  
10  
L2  
* The NC terminals (pin numbers 3 & 7) are not connected to the IC chip.  
4/37  
XCL230/XCL231  
Series  
FUNCTION CHART  
PIN NAME  
SIGNAL  
STATUS  
Active  
H
L
EN/SS  
Stand-by  
OPEN  
Undefined State(*1)  
(*1) Please do not leave the EN/SS pin open. Each should have a certain voltage  
PIN NAME CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
UVLO  
PG  
Undefined State  
(VIN < VUVLOD  
)
Stand-by  
L (Low impedance)  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
VIN Pin Voltage  
SYMBOL  
VIN  
RATINGS  
UNITS  
V
-0.3 ~ 40  
-0.3 ~ 40  
EN/SS Pin Voltage  
FB Pin Voltage  
VEN/SS  
VFB  
V
-0.3 ~ 6.2  
V
PG Pin Voltage  
VPG  
-0.3 ~ 6.2  
V
PG Pin Current  
IPG  
8
mA  
V
Lx Pin Voltage  
VLx  
-0.3 ~ VIN + 0.3 or 40 (*1)  
Power Dissipation (Ta=25)  
Operating Ambient Temperature  
Storage Temperature  
Pd  
1950 (JESD51-7 board) (*2)  
-40 ~ 105  
mW  
Topr  
Tstg  
-55 ~ 125  
All voltages are described based on the GND pin.  
(*1) The maximum value should be either VIN+0.3V, or 40V, whichever is the lowest.  
(*2) The power dissipation figure shown is PCB mounted and is for reference only.  
Please refer to PACKAGING INFORMATION for mounting conditions.  
5/37  
XCL230/XCL231 Series  
ELECTRICAL CHARACTERISTICS  
XCL230/XCL231 Series  
Ta=25℃  
CIRCUIT  
PARAMETER  
SYMBOL  
VFBE  
CONDITIONS  
VFB=0.739V→0.761V,  
MIN.  
TYP.  
MAX.  
UNIT  
V
FB Voltage when Lx pin voltage changes  
from"H" level to "L" level  
FB Voltage  
0.739 0.750 0.761  
Output Voltage  
Setting Range  
-
-
VOUTSET  
1.0  
3.0  
-
-
5.0  
V
V
-
-
Input Voltage  
VIN  
36.0  
Operating Range  
VEN/SS=12V,VIN=2.8V→  
Ta=25℃  
2.6  
2.53  
2.7  
2.7  
-
2.8  
2.87  
2.9  
2.6V,VFB=0V  
UVLO Detect Voltage  
UVLO Release Voltage  
VUVLOD  
V
V
IN Voltage which Lx pin  
Ta=-40~105(*1)  
Ta=25℃  
voltage holding "H" level  
VEN/SS=12V,VIN=2.7V→  
2.8  
-
2.9V,VFB=0V  
VUVLOR  
V
V
IN Voltage which Lx pin  
Ta=-40~105(*1)  
2.63  
2.97  
voltage holding "L" level  
Quiescent Current  
(XCL230)  
VFB=0.825V  
Iq  
-
180  
350  
μA  
Quiescent Current  
(XCL231)  
VFB=0.825V  
Iq  
-
-
12.5  
1.65  
21.0  
2.50  
μA  
μA  
VIN=12V, VEN/SS=VFB=0V  
Stand-by Current  
ISTBY  
fOSC  
Connected to external components,  
OUT=150mA  
Oscillation Frequency  
1.098 1.200 1.302  
MHz  
I
Connected to external components  
VFB=0.825V  
Minimum On Time  
Minimum Duty Cycle  
tONMIN  
DMIN  
DMAX  
RLxH  
RLxL  
ILIMH  
tSS1  
-
-
85 (*1)  
-
-
ns  
%
%
Ω
-
0
VFB=0.675V  
Maximum Duty Cycle  
100  
-
-
-
1.38  
-
VFB=0.675V, ILx=200mA  
Lx SW "H" On Resistance  
Lx SW "L" On Resistance  
High side Current Limit (*2)  
Internal Soft-Start Time  
1.20  
0.60(*1)  
1.3  
-
Ω
VFB=VFBE×0.98  
VFB=0.675V  
1.0  
1.6  
-
A
2.0  
2.4  
ms  
VFB=0.675V  
External Soft-Start Time  
tSS2  
21  
-
26  
33  
-
ms  
RSS=430kΩ, CSS=0.47μF  
Connected to external components,  
VIN=VEN/SS=12VIOUT=1mA  
PFM Switch Current  
(XCL231)  
IPFM  
450  
mA  
Connected to external components,  
VIN=12V, VOUT=5V, IOUT=300mA  
Efficiency  
EFFI  
-
-
86  
-
-
%
ΔVFB  
/
FB Voltage  
-40℃≦Topr105℃  
±100  
ppm/℃  
(ΔToprVFBE  
)
Temperature Characteristics  
Test Condition: Unless otherwise stated, VIN=12V, VEN/SS=12V, PG=OPEN  
Peripheral parts connection conditions (VOUT=5.0V): RFB1=680kΩ, RFB2=120kΩ, CFB=15pF, CL=22μF, CIN=4.7μF  
(*1) Design reference value. This parameter is provided only for reference.  
(*2) Current limit denotes the level of detection at peak of coil current.  
6/37  
XCL230/XCL231  
Series  
ELECTRICAL CHARACTERISTICS (Continued)  
XCL230/XCL231 Series  
Ta=25℃  
CIRCUIT  
PARAMETER  
SYMBOL  
CONDITIONS  
VFB=0.712V→0.638V,  
PG:100kΩ pull-up to 5V  
MIN.  
TYP.  
MAX.  
UNIT  
V
R
PG Detect Voltage  
VPGDET  
0.638 0.675 0.712  
FB Voltage when PG pin voltage changes  
from"H" level to "L" level  
VFB=0.6V, IPG=1mA  
PG Output Voltage  
FB "H" Current  
FB "L" Current  
VPG  
IFBH  
IFBL  
-
-
0.3  
0.1  
0.1  
V
VIN=VEN/SS=36V, VFB=3.0V  
VIN=VEN/SS=36V, VFB=0V  
-0.1  
-0.1  
0.0  
0.0  
μA  
μA  
VEN/SS=0.3V→2.5V,  
Ta=25℃  
V
FB=0.71V  
EN/SS Voltage when Lx  
pin voltage changes from  
"L" level to "H" level  
EN/SS "H" Voltage  
EN/SS "L" Voltage  
VEN/SSH  
2.5  
-
-
36.0  
0.3  
V
V
Ta=-40~105(*1)  
Ta=25℃  
VEN/SS=2.5V→0.3V,  
V
FB=0.71V  
EN/SS Voltage when Lx  
pin voltage changes from  
"H" level to "L" level  
VEN/SSL  
GND  
Ta=-40~105(*1)  
VIN=VEN/SS=36V, VFB=0.825V  
EN/SS "H" Current  
EN/SS "L" Current  
IEN/SSH  
IEN/SSL  
-
0.1  
0.0  
0.3  
0.1  
μA  
μA  
VIN=36V, VEN/SS=0V, VFB=0.825V  
-0.1  
Thermal Shutdown  
Temperature  
Junction Temperature  
TTSD  
-
-
150  
25  
-
-
-
-
Thermal Shutdown  
Hysteresis Width  
Junction Temperature  
THYS  
Test Freq.=1MHz  
Inductance  
L
-
-
4.7  
1.8  
-
-
μH  
-
-
T=+40℃  
Inductor Rated Current  
IDC  
A
Test Condition: Unless otherwise stated, VIN=12V, VEN/SS=12V, PG=OPEN  
(*1) Design reference value. This parameter is provided only for reference.  
7/37  
XCL230/XCL231 Series  
TEST CIRCUITS  
Circuit No.①  
Probe  
VIN  
L2  
A
EN/SS  
PG  
L1  
Lx  
V
VOUT  
CIN  
V
RFB1  
A
CFB  
CL  
FB  
V
RFB2  
GND  
Circuit No.②  
VIN  
L2  
V
Probe  
EN/SS  
PG  
L1  
Lx  
CIN  
RPG=100kΩ  
V
FB  
V
V
GND  
V
100kΩ  
Circuit No.③  
VIN  
L2  
RSS=430kΩ  
Probe  
EN/SS  
PG  
L1  
Lx  
CIN  
V
V
CSS  
FB  
0.47μF  
V
GND  
V
100kΩ  
8/37  
XCL230/XCL231  
Series  
TEST CIRCUITS (Continued)  
Circuit No.④  
VIN  
L2  
A
EN/SS  
PG  
L1  
Lx  
A
V
V
FB  
A
V
GND  
Circuit No.⑤  
VIN  
L2  
V
EN/SS  
L1  
Lx  
CIN  
RPG=100kΩ  
V
PG  
FB  
V
V
V
GND  
Probe  
9/37  
XCL230/XCL231 Series  
TYPICAL APPLICATION CIRCUIT / Parts Selection Method  
RPG  
Lx  
L1  
PG  
PG  
L2  
VEN/SS  
EN/SS  
VOUT  
VIN  
CFB  
VIN  
CL  
RFB1  
FB  
CIN1  
CIN2  
GND  
RFB2  
* The inductor is dedicated to this product. Please do not use it for purposes other than this product.  
Typical Example】  
VALUE  
PRODUCT NUMBER  
Notes  
VIN<20V  
UMK212BBJ475KG (Taiyo Yuden)  
VIN20V, 2 parallel  
VIN<20V  
(*1)  
CIN1  
50V/4.7μF  
C2012X7R1H475K125AC (TDK)  
VIN20V, 2 parallel  
C1608X7R1H104K080AE (TDK)  
UMK107BJ104MAHT (Taiyo Yuden)  
C2012X7R1A106K125AC (TDK)  
C3216X7R1E106K160AB (TDK)  
TMK212BBJ226MG (Taiyo Yuden)  
CIN2  
50V/0.1μF  
10V/10μF  
35V/10μF  
25V/22μF  
2 parallel  
(*2)  
CL  
Select parts considering the DC bias characteristics and rated voltage of ceramic capacitors.  
(*1) For CIN1, use a capacitor with the same or higher effective capacity value as the recommended components.  
(*2) For CL, use a capacitor with the same or higher effective capacity value as the recommended components.  
If a capacitor with a low effective capacity value is used, the output voltage may become unstable.  
However, if large capacity capacitors, such as electrolytic capacitors, are connected in parallel, the inrush current  
during startup could increase or the output could become unstable.  
10/37  
XCL230/XCL231  
Series  
TYPICAL APPLICATION CIRCUIT / Parts Selection Method (Continued)  
< Output Voltage Setting Value VOUTSET Setting >  
The output voltage can be set by adding an external dividing resistor.  
The output voltage is determined by the equation below based on the values of RFB1 and RFB2  
.
VOUTSET = 0.75V × (RFB1 + RFB2) / RFB2  
With RFB2 200and RFB1 + RFB2 1MΩ  
< CFB Setting >  
Adjust the value of the phase compensation speed-up capacitor CFB using the equation below.  
1
CFB  
=
2π × fzfb× RFB1  
1
fzfb =  
2π CL × L  
Setting Example】  
When the output voltage setting is 5V with fosc=1.2MHz, CL=22μF, L=4.7μH,  
VOUTSET = 0.75V × (680kΩ + 120kΩ) / 120kΩ = 5.0V,  
From the above formula, fzfb = 15.66kHz is targeted,  
CFB= 1 / (2 × π × 15.66kHz × 680kΩ) = 14.95pF, which is 15pF for the E24 series.  
XCL230 Series  
VOUTSET  
1.2V  
RFB1  
12kΩ  
51kΩ  
68kΩ  
RFB2  
20kΩ  
15kΩ  
12kΩ  
CFB  
Target fzfb  
15.66kHz  
15.66kHz  
15.66kHz  
820pF  
220pF  
150pF  
3.3V  
5.0V  
XCL231 Series  
VOUTSET  
1.2V  
RFB1  
RFB2  
CFB  
Target fzfb  
15.66kHz  
15.66kHz  
15.66kHz  
120kΩ  
510kΩ  
680kΩ  
200kΩ  
150kΩ  
120kΩ  
82pF  
22pF  
15pF  
3.3V  
5.0V  
11/37  
XCL230/XCL231 Series  
OPERATIONAL EXPLANATION  
The XCL230/XCL231 series consists internally of a reference voltage supply with soft-start function, a ramp wave circuit, an  
error amp, a PWM comparator, a High side driver FET, a Low side driver FET, a High side buffer circuit, a Low side buffer circuit,  
a current sense circuit, a phase compensation (Current feedback) circuit, a current limiting circuit, an under voltage lockout  
(UVLO) circuit, an internal power supply (Local Reg) circuit, a gate clamp (CLAMP) circuit and other elements.  
The control method is the current mode control method for handling low ESR ceramic capacitors.  
L1  
L2  
Inductor  
VIN  
Local  
Reg  
Each  
Circuit  
Under  
Voltage  
Lock Out  
Gate  
CLAMP  
Current  
SENSE  
Thermal  
Shutdown  
Operation  
Enable  
Each  
Circuit  
CE  
Controller  
Logic  
EN/SS  
Current  
Feed  
Back  
Current  
Limit  
PFM  
Vref  
Soft Start  
Current  
Limit  
High  
Side  
Buffer  
PWM/PFM  
Controller  
Logic  
FB  
Lx  
Low  
Side  
Buffer  
Error  
Amp.  
PWM  
Comparator  
Ramp Wave  
Generator  
Oscillator  
PG  
GND  
Power-Good  
Comparator  
12/37  
XCL230/XCL231  
Series  
OPERATIONAL EXPLANATION (Continued)  
< Normal Operation >  
The standard voltage Vref and FB pin voltage are compared using an error amplifier and then the control signal to which phase  
compensation has been added to the error amplifier output is input to the PWM comparator. The PWM comparator compares the  
above control signal and lamp wave to control the duty width during PWM control. Continuously conducting these controls  
stabilizes the output voltage.  
In addition, the current detecting circuit monitors the driver FET current for each switching and modulates the error amplifier  
output signal into a multiple feedback signal (current feedback circuit). This achieves stable feedback control even when low ESR  
capacitors, such as ceramic capacitors, are used to stabilize the output voltage.  
XCL230 Series  
The XCL230 Series (PWM control) performs switching at a set switching frequency fOSC regardless of the output current. At light  
loads the on time is short and the circuit operates in discontinuous mode, and as the output current increases, the on time becomes  
longer and the circuit operates in continuous mode.  
fOSC  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IOUT  
Coil  
Current  
Coil  
Current  
IOUT  
0mA  
0mA  
XCL230 series: Example of light load operation  
XCL230 series: Example of heavy load operation  
XCL231 Series  
The XCL231 Series (PWM/PFM automatic switching control) lowers the switching frequency during light loads by turning on the  
High side driver FET when the coil current reaches the PFM current (IPFM). This operation reduces the loss during light loads and  
achieves high efficiency from light to heavy loads. As the output current increases, the switching frequency increases proportional  
to the output current, and when the switching frequency increases fOSC, the circuit switches from PFM control to PWM control and  
the switching frequency becomes fixed.  
fOSC  
tON  
tON  
Lx  
Lx  
0V  
0V  
IPFM  
IOUT  
Coil  
Current  
Coil  
Current  
IOUT  
0mA  
0mA  
XCL231 series: Example of light load operation  
XCL231 series: Example of heavy load operation  
< 100% Duty Cycle Mode >  
When the dropout voltage is low or there is a transient response, the circuit might change to the 100% Duty cycle mode where  
the High side driver FET is continuously on.  
The 100% Duty cycle mode operation makes it possible to maintain the output current even when the dropout voltage is low  
such as when the input voltage declines due to cranking, etc.  
13/37  
XCL230/XCL231 Series  
OPERATIONAL EXPLANATION (Continued)  
< CE Function >  
When an “H” voltage (VEN/SSH) is input to the EN/SS pin, normal operation is performed after the output voltage is started up by  
the soft start function, normal operation is performed. When the “L” voltage (VEN/SSL) is input to the EN/SS pin, the circuit enters  
the standby state, the supply current is suppressed to the standby current ISTB (TYP. 1.65μA), and the High side driver FET and  
Low side driver FET are turned off.  
< Soft Start Function >  
This function gradually starts up the output voltage to suppress the inrush current.  
The soft start time is the time until the output voltage from VEN/SSH reaches 90% of the output voltage set value, and when the  
output voltage increases further, the soft start function is cancelled to switch to normal operation.  
Internal Soft Start Time  
The internal soft start time (tSS1) is configured so that after the “H” voltage (VEN/SSH) is input to the EN/SS pin, the standard voltage  
connected to the error amplifier increases linearly during the soft-start period. This causes the output voltage to increase  
proportionally to the standard voltage increase. This operation suppresses the inrush current and smoothly increases the output  
voltage.  
tss1  
EN/SS  
V1  
V1  
90% of setting voltage  
VOUT  
< Overview of internal soft start >  
< Internal soft start EN/SS circuit >  
External Setting Soft Start Time  
The external setting soft start time (tSS2) can adjust the increase speed of the standard voltage in the IC by adjusting the EN/SS  
pin voltage inclination during startup using externally connected component RSS and CSS. This makes it possible to externally  
adjust the soft start time.  
Soft start time (tSS2) is approximated by the equation below according to values of V1, RSS, and CSS  
When tss2 is shorter than tss1, the output voltage rises at the internal soft start time.  
tss2=Css×Rss× ln ( V1 / (V1-1.45V) )  
Setting Example】  
CSS = 0.47μF, RSS = 430kΩ, V1 = 12V  
tSS2 = 0.47μF x 430kΩ x ( ln (12V/(12V-1.45V)) = 26ms  
tss2  
V1  
RSS  
EN/SS  
CSS  
V1  
1.45V  
EN/SS  
VOUT  
90% of setting voltage  
< External soft start EN/SS circuit >  
< Overview of external soft start >  
14/37  
XCL230/XCL231  
Series  
OPERATIONAL EXPLANATION (Continued)  
< Power Good >  
The output state can be monitored using the power good function. The PG pin is an Nch open drain output, therefore a pull-up  
resistor (approx. 100kΩ) must be connected to the PG pin.  
The pull-up voltage should be 5.5V or less. When not using the power good function, connect the PG terminal to GND or leave  
it open.  
CONDITION  
SIGNAL  
VFB > VPGDET  
H (High impedance)  
L (Low impedance)  
L (Low impedance)  
Undefined State  
VFB VPGDET  
EN/SS = H  
EN/SS = L  
Thermal Shutdown  
UVLO (VIN < VUVLOD  
Stand-by  
)
L (Low impedance)  
< UVLO Function >  
When the VIN pin voltage falls below VUVLOD (TYP. 2.7V), the high side driver FET and low side driver FET are forcibly turned off  
to prevent false pulse output due to instable operation of the internal circuits. When the VIN pin voltage rises above VUVLOR (TYP.  
2.8V), the UVLO function is released, the soft start function activates, and output start operation begins. Stopping by UVLO is not  
shutdown; only pulse output is stopped and the internal circuits continue to operate.  
< Thermal Shutdown Function >  
Athermal shutdown (TSD) function is built in for protection from overheating. When the junction temperature reaches the thermal  
shutdown detection temperature TTSD, the High side driver FET and Low side driver FET are compulsorily turned off.  
If the driver FET continues in the off state, the junction temperature declines, and when the junction temperature falls to the  
thermal shutdown cancel temperature, the thermal shutdown function is cancelled and the soft-start function operates to start up  
the output voltage.  
15/37  
XCL230/XCL231 Series  
OPERATIONAL EXPLANATION (Continued)  
< Current Limit Function >  
The current limiting circuit of the XCL230/XCL231 series monitors the current that flows through the High side driver FET and  
Low side driver FET, and when over current is detected, the current limiting function activates.  
High side driver FET current limiting  
The current in the High side driver FET is detected to equivalently monitor the peak value of the coil current. The High side driver  
FET current limiting function forcibly turns off the High side driver FET when the peak value of the coil current reaches the High  
side driver current limit value ILIMH  
.
High side driver FET current limit value ILIMH=1.3A (TYP.)  
Low side driver FET current limiting  
The current in the Low side driver FET is detected to equivalently monitor the bottom value of the coil current. The Low side  
driver FET current limiting function operates when the High side driver FET current limiting value reaches ILIMH. The Low side  
driver FET current limiting function prohibits the High side driver FET from turning on in an over current state where the bottom  
value of the coil current is higher than the Low side driver FET current limit value ILIML  
.
Low side driver FET current limit value ILIML=0.9A (TYP.)  
When the output current increases and reaches the current limit value, the current foldback circuit operates and lowers the  
output voltage and FB voltage. The ILIMH and ILIML decline accompanying the FB voltage decrease to restrict the output current.  
When the overcurrent state is removed, the foldback circuit operation increases the ILIMH and ILIML together with output voltage  
to return the output to the output voltage set value.  
Current Limit  
ILIMH=1.3A(TYP.)  
ILIML=0.9A(TYP.)  
Coil  
Current  
0A  
Lx  
0V  
VOUT  
0V  
RLOAD  
0Ω  
16/37  
XCL230/XCL231  
Series  
NOTES ON USE  
1) In the case of a temporary and transient voltage drop or voltage rise.  
If the absolute maximum ratings are exceeded, the IC may deteriorate or be destroyed.  
If a voltage exceeding the absolute maximum voltage is applied to the IC due to chattering caused by a mechanical switch or  
an external surge voltage, please use a protection element such as a TVS and a protection circuit as a countermeasure.  
RPG  
Lx  
L1  
PG  
PG  
L2  
VEN/SS  
EN/SS  
VOUT  
VIN  
CFB  
VIN  
CL  
RFB1  
CIN1 CIN2  
FB  
TVS  
GND  
RFB2  
When the input voltage decreases below the output voltage, there is a possibility that an overcurrent will flow in the IC’s  
internal parasitic diode and Lx pin. If the current is pulled into the input side by the low impedance between VIN-GND, then  
countermeasures, such as adding an SBD between VOUT-VIN, should be taken.  
SBD  
RPG  
Lx  
L1  
PG  
PG  
L2  
VEN/SS  
EN/SS  
VOUT  
VIN  
CFB  
VIN  
CL  
RFB1  
CIN1 CIN2  
FB  
GND  
RFB2  
When a negative voltage is applied to the input voltage by a reverse connection or chattering, an overcurrent could flow in  
the IC’s parasitic diode and damage the IC. Take countermeasures, such as adding a reverse touching protection diode.  
RPG  
Lx  
L1  
PG  
PG  
L2  
VEN/SS  
EN/SS  
VOUT  
Reverse Touching  
Protection Diode  
VIN  
CFB  
VIN  
CL  
RFB1  
FB  
CIN1  
CIN2  
GND  
RFB2  
17/37  
XCL230/XCL231 Series  
NOTES ON USE (Continued)  
2)  
Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.  
3)  
The DC/DC converter characteristics depend greatly on the externally connected components as well as on the  
characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully  
considering which components to select.  
Be especially careful of the capacitor characteristics and use X7R or X5R (EIA standard) ceramic capacitors.  
The capacitance decrease caused by the bias voltage may become large depending on the external size of the  
capacitor.  
4)  
The current limit value is the coil current peak value when switching is not conducted.  
The coil current peak value when the actual current limit function begins to operate may exceed the current limit of the  
electrical characteristics due to the effect of the propagation delay inside the circuit.  
5)  
6)  
7)  
When the On time is less than the Min On Time (tONMIN) and the dropout voltage is large or the load is low, the PWM control  
operates intermittently and the ripple voltage may become large or the output voltage may become unstable.  
The ripple voltage could be increased when switching from discontinuous conduction mode to continuous conduction mode  
and when switching to 100% Duty cycle.  
The PWM/PFM auto series may cause superimposed ripple voltage by continuous pulses if used in high temperature and  
no load conditions. It is necessary to set an idle current of higher than 100μA from VOUT if used at no load.  
It can have the same effect as when RFB2 is lower than 7.5kΩ. Please refer to the  
< Output Voltage Setting Value VOUTSET Setting > section under TYPICAL APPLICATION CIRCUIT.  
8)  
9)  
If the voltage at the EN/SS Pin does not start from 0V but is at the midpoint potential when the power is switched on, the  
soft start function may not work properly and it may cause larger inrush current and bigger ripple voltages.  
Torex places an importance on improving our products and their reliability. We request that users incorporate fail safe  
designs and post aging protection treatment when using Torex products in their systems.  
18/37  
XCL230/XCL231  
Series  
NOTES ON USE (Continued)  
10) Pattern Layout Instructions  
(1) The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is  
high. Please place the input capacitor (CIN1, CIN2) and the output capacitor (CL) as close to the IC as possible.  
(2) In order to stabilize the VIN voltage level, we recommend that a bypass capacitor (CIN1, CIN2) be connected as close as  
possible to the VIN and GND pins.  
(3) Please mount each external component as close to the IC as possible.  
(4) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit  
impedance.  
(5) Make sure that the GND traces are as thick as possible, as variations in ground potential caused  
by high ground currents at the time of switching may result in instability of the IC.  
(6) This product has a built in driver FET, which causes heat generation from the on resistance, so take measures to dissipate  
the heat when necessary.  
< Reference Pattern Layout >  
< Layer2 >  
< Layer1 >  
< Layer4 >  
< Layer3 >  
19/37  
XCL230/XCL231 Series  
HANDLING OF THIS PRODUCT  
(1) The coil complies with the general surface-mounted type chip coil (inductor) specifications and could have scratches,  
be dirty with flux, etc.  
(2) Please do not use this product in the following environments:  
Areas where it could come in to contact with water or salt water. Areas where it could be affected by condensation.  
Areas where it could come in contact with toxic gases (Hydrogen Sulfide, Sulfurous Acid, Chlorine, Ammonia, etc.)  
(3) This product should not be washed in a solvent.  
ABOUT IMPLEMENTATION  
(1) This product is only suitable for reflow soldering (it is not suitable for flow soldering).  
(2) This product uses solder to mount the coil on top of the package. This is no problem for regular circuit board mounted reflow,  
but if excessive impact is applied during reflow, the mounted coil could be moved out of position or the coil could fall off. Be  
careful not to strike the circuit board during circuit board mounting reflow.  
20/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
(1) Efficiency vs. Output Current  
XCL230B0K1H2  
(VIN=12V, VOUT=3.3V)  
XCL230B0K1H2  
(VIN=12V, VOUT=5V)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XCL231B0K1H2  
XCL231B0K1H2  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
21/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(2) Output Voltage vs. Output Current  
XCL230B0K1H2  
XCL230B0K1H2  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XCL231B0K1H2  
XCL231B0K1H2  
(VIN=12V, VOUT=5V)  
(VIN=12V, VOUT=3.3V)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
22/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(3) Ripple Voltage vs. Output Current  
XCL230B0K1H2  
XCL230B0K1H2  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
XCL231B0K1H2  
XCL231B0K1H2  
(VIN=12V, VOUT=3.3V)  
(VIN=12V, VOUT=5V)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Output Current :IOUT[mA]  
Output Current :IOUT[mA]  
23/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(4) FB Voltage vs. Ambient Temperature  
(5) UVLO Voltage vs. Ambient Temperature  
XCL230/XCL231  
XCL230/XCL231  
VIN=12V  
3.0  
0.760  
2.9  
0.755  
0.750  
0.745  
0.740  
VUVLOR(Release Voltage)  
2.8  
2.7  
VUVLOD(Detect Voltage)  
2.6  
2.5  
-50 -25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(6) Oscillation Frequency vs. Ambient Temperature  
XCL230/XCL231  
(7) Lx SW On Resistance vs. Ambient Temperature  
XCL230/XCL231  
VIN=12V  
VIN=12V  
2.0  
1.44  
1.36  
1.28  
1.20  
1.12  
1.04  
0.96  
1.5  
RLXH  
1.0  
0.5  
RLXL  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(8) Quiescent Current vs. Ambient Temperature  
XCL230B0K1H2  
XCL231B0K1H2  
VIN=12V  
VIN=12V  
400  
30  
25  
20  
15  
10  
5
350  
300  
250  
200  
150  
100  
50  
0
0
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75  
100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
24/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(9) Stand-by Current vs. Ambient Temperature  
(10) EN/SS Voltage vs. Ambient Temperature  
XCL230/XCL231  
XCL230/XCL231  
V
IN=12V  
VIN=12V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4
EN/SS"H"  
EN/SS"L"  
3
2
1
0
-50 -25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(11) Internal Soft-Start Time vs. Ambient Temperature  
XCL230/XCL231  
(12) External Soft-Start Time vs. Ambient Temperature  
XCL230/XCL231  
VIN=12V, RSS=430, CSS=0.47μF  
VIN=12V  
2.6  
31  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
29  
27  
25  
23  
21  
19  
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75  
100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
(13) PG Detect Voltage vs. Ambient Temperature  
XCL230/XCL231  
(14) PG Output Voltage vs. Ambient Temperature  
XCL230/XCL231  
VIN=12V, IPG=1mA  
VIN=12V  
0.75  
0.4  
0.3  
0.2  
0.1  
0.0  
0.70  
0.65  
0.60  
-50 -25  
0
25  
50  
75  
100 125  
-50 -25  
0
25  
50  
75  
100 125  
Ambient Temperature :Ta[]  
Ambient Temperature :Ta[]  
25/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(15) VIN-VOUT Operation Area  
XCL230B0K1H2  
XCL231B0K1H2  
IO T50mA  
I
50mA  
U
OUT  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Operation Area  
Operation Area  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Voltage:Vout[V]  
Output Voltage:Vout[V]  
(16) Output Current Operation Area  
XCL230/XCL231  
VOUT=5.0V, θja=50/W  
700  
600  
500  
Operation Area  
400  
V
=12V  
300  
200  
100  
0
IN  
VIN=24V  
VIN=36V  
-40 -20  
0
20 40 60 80 100 120  
Ambient Temperature :Ta[]  
26/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(17) Load Transient Response (XCL230)  
XCL230B0K1H2  
VIN=24V, VOUT=3.3V, IOUT=10mA300mA (tr, tf=5μs)  
XCL230B0K1H2  
VIN=12V, VOUT=3.3V, IOUT=10mA300mA (tr, tf=5μs)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 200mV/div  
VOUT: 200mV/div  
1.0ms/div  
1.0ms/div  
XCL230B0K1H2  
VIN=12V, VOUT=5.0V, IOUT=10mA300mA (tr, tf=5μs)  
XCL230B0K1H2  
VIN=24V, VOUT=5.0V, IOUT=10mA300mA (tr, tf=5μs)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
IOUT=10mA300mA  
VOUT: 200mV/div  
1.0ms/div  
IOUT=10mA300mA  
VOUT: 200mV/div  
1.0ms/div  
27/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(17) Load Transient Response (XCL231)  
XCL231B0K1H2  
VIN=12V, VOUT=3.3V, IOUT=10mA300mA (tr, tf=5μs)  
XCL231B0K1H2  
VIN=24V, VOUT=3.3V, IOUT=10mA300mA (tr, tf=5μs)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
1.0ms/div  
1.0ms/div  
XCL231B0K1H2  
VIN=24V, VOUT=5.0V, IOUT=10mA300mA (tr, tf=5μs)  
XCL231B0K1H2  
VIN=12V, VOUT=5.0V, IOUT=10mA300mA (tr, tf=5μs)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
IOUT=10mA300mA  
IOUT=10mA300mA  
VOUT: 500mV/div  
VOUT: 500mV/div  
1.0ms/div  
1.0ms/div  
28/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(18) Input Transient Response (XCL230)  
XCL230B0K1H2  
VIN=8V16V (tr, tf=50μs), VOUT=3.3V, IOUT=300mA  
XCL230B0K1H2  
VIN=16V32V (tr, tf=50μs), VOUT=3.3V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
1.0ms/div  
VOUT: 200mV/div  
1.0ms/div  
XCL230B0K1H2  
VIN=8V16V (tr, tf=50μs), VOUT=5.0V, IOUT=300mA  
XCL230B0K1H2  
VIN=16V32V (tr, tf=50μs), VOUT=5.0V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
1.0ms/div  
1.0ms/div  
29/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(18) Input Transient Response (XCL231)  
XCL231B0K1H2  
VIN=8V16V (tr, tf=50μs), VOUT=3.3V, IOUT=300mA  
XCL231B0K1H2  
VIN=16V32V (tr, tf=50μs), VOUT=3.3V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
1.0ms/div  
1.0ms/div  
XCL231B0K1H2  
VIN=16V32V (tr, tf=50μs), VOUT=5.0V, IOUT=300mA  
XCL231B0K1H2  
VIN=8V16V (tr, tf=50μs), VOUT=5.0V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=16V32V  
VIN=8V16V  
VOUT: 200mV/div  
VOUT: 200mV/div  
1.0ms/div  
1.0ms/div  
30/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) EN/SS Rising Response (XCL230)  
XCL230B0K1H2  
VIN=24V, VEN/SS=0V→24V(tr=50μs), VOUT=3.3V, IOUT=300mA  
XCL230B0K1H2  
VIN=12V, VEN/SS=0V→12V(tr=50μs), VOUT=3.3V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VEN/SS=0V→12V  
VEN/SS=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
XCL230B0K1H2  
VIN=12V, VEN/SS=0V→12V(tr=50μs), VOUT=5.0V, IOUT=300mA  
XCL230B0K1H2  
VIN=24V, VEN/SS=0V→24V(tr=50μs), VOUT=5.0V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VEN/SS=0V→12V  
VEN/SS=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
31/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(19) EN/SS Rising Response (XCL231)  
XCL231B0K1H2  
VIN=24V, VEN/SS=0V→24V(tr=50μs), VOUT=3.3V, IOUT=300mA  
XCL231B0K1H2  
VIN=12V, VEN/SS=0V→12V(tr=50μs), VOUT=3.3V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VEN/SS=0V→12V  
VEN/SS=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
XCL231B0K1H2  
VIN=12V, VEN/SS=0V→12V(tr=50μs), VOUT=5.0V, IOUT=300mA  
XCL231B0K1H2  
VIN=24V, VEN/SS=0V→24V(tr=50μs), VOUT=5.0V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VEN/SS=0V→12V  
VEN/SS=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
32/37  
XCL230/XCL231  
Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(20) VIN Rising Response (XCL230)  
XCL230B0K1H2  
VIN=0V→24V(tr=50μs), VEN/SS=VIN, VOUT=3.3V, IOUT=300mA  
XCL230B0K1H2  
VIN=0V→12V(tr=50μs),VEN/SS=VIN, VOUT=3.3V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=0V→12V  
VIN=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
XCL230B0K1H2  
VIN=0→24V(tr=50μs), VEN/SS=VIN, VOUT=5.0V, IOUT=300mA  
XCL230B0K1H2  
VIN=0→12V(tr=50μs), VEN/SS=VIN, VOUT=5.0V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=0V→12V  
VIN=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
33/37  
XCL230/XCL231 Series  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
(20) VIN Rising Response (XCL231)  
XCL231B0K1H2  
VIN=0→12V(tr=50μs), VEN/SS=VIN, VOUT=3.3V, IOUT=300mA  
XCL231B0K1H2  
VIN=0→24V(tr=50μs), VEN/SS=VIN, VOUT=3.3V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=0V→12V  
VIN=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
XCL231B0K1H2  
VIN=0→12V(tr=50μs), VEN/SS=VIN, VOUT=5.0V, IOUT=300mA  
XCL231B0K1H2  
VIN=0→24V(tr=50μs), VEN/SS=VIN, VOUT=5.0V, IOUT=300mA  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
CIN1=4.7μF(UMK212BBJ475KG), CIN2=0.1μF(UMK107BJ104MAHT)  
CL=22μF(TMK212BBJ226MG)  
VIN=0V→12V  
VIN=0V→24V  
VOUT : 2V/div  
1.0ms/div  
VOUT : 2V/div  
1.0ms/div  
34/37  
XCL230/XCL231  
Series  
PACKAGING INFORMATION  
For the latest package information go to, www.torex.co.jp/technical-support/packages/  
PACKAGE  
OUTLINE / LAND PATTERN  
THERMAL CHARACTERISTICS  
JESD51-7 Board DFN3030-10B Power Dissipation  
DFN3030-10B  
DFN3030-10B PKG  
35/37  
XCL230/XCL231 Series  
MARKING RULE  
DFN3030-10B  
Mark ,, represents product series, products type.  
SYMBOL  
Product  
Type  
PRODUCT NAME  
Number  
T
T
N
T
XCL230  
XCL231  
B
B
XCL230B0K1H2  
XCL231B0K1H2  
Mark ,, represents production lot number.  
01~09, 0A~0Z, 11~9Z, A1~A9, AA~B1~ZZ, repeated.  
(GIJOQW excluded) No character inversion used.  
36/37  
XCL230/XCL231  
Series  
1. The product and product specifications contained herein are subject to change without notice to  
improve performance characteristics. Consult us, or our representatives before use, to confirm that  
the information in this datasheet is up to date.  
2. The information in this datasheet is intended to illustrate the operation and characteristics of our  
products. We neither make warranties or representations with respect to the accuracy or  
completeness of the information contained in this datasheet nor grant any license to any intellectual  
property rights of ours or any third party concerning with the information in this datasheet.  
3. Applicable export control laws and regulations should be complied and the procedures required by  
such laws and regulations should also be followed, when the product or any information contained in  
this datasheet is exported.  
4. The product is neither intended nor warranted for use in equipment of systems which require  
extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss  
of human life, bodily injury, serious property damage including but not limited to devices or equipment  
used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and  
other transportation industry and 5) safety devices and safety equipment to control combustions and  
explosions. Do not use the product for the above use unless agreed by us in writing in advance.  
5. Although we make continuous efforts to improve the quality and reliability of our products;  
nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal  
injury and/or property damage resulting from such failure, customers are required to incorporate  
adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention  
features.  
6. Our products are not designed to be Radiation-resistant.  
7. Please use the product listed in this datasheet within the specified ranges.  
8. We assume no responsibility for damage or loss due to abnormal use.  
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex  
Semiconductor Ltd in writing in advance.  
TOREX SEMICONDUCTOR LTD.  
37/37  

相关型号:

XCL303

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters
TOREX

XCL303A052KR-G

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters
TOREX

XCL304

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters
TOREX

XCL304A052KR-G

Inductor Built-in Negative Output Voltage “micro DC/DC” Converters
TOREX

XCLA00811001C

Array/Network Resistor, Isolated, Thin Film, 0.05W, 11000ohm, 100V, 0.2% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00811102B

Array/Network Resistor, Isolated, Thin Film, 0.05W, 111000ohm, 100V, 0.1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00812702C

Array/Network Resistor, Isolated, Thin Film, 0.05W, 127000ohm, 100V, 0.2% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00817401B

Array/Network Resistor, Isolated, Thin Film, 0.05W, 17400ohm, 100V, 0.1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA0082100BF

Array/Network Resistor, Isolated, Thin Film, 0.05W, 21ohm, 100V, 1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA0082430BD

Array/Network Resistor, Isolated, Thin Film, 0.05W, 24.3ohm, 100V, 0.5% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00828001B

Array/Network Resistor, Isolated, Thin Film, 0.05W, 28000ohm, 100V, 0.1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY

XCLA00844202F

Array/Network Resistor, Isolated, Thin Film, 0.05W, 442000ohm, 100V, 1% +/-Tol, -100,100ppm/Cel, 0906,
VISHAY